|  | //===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the JIT interfaces for the ARM target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "jit" | 
|  | #include "ARMJITInfo.h" | 
|  | #include "ARMInstrInfo.h" | 
|  | #include "ARMConstantPoolValue.h" | 
|  | #include "ARMRelocations.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/JITCodeEmitter.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/System/Memory.h" | 
|  | #include <cstdlib> | 
|  | using namespace llvm; | 
|  |  | 
|  | void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) { | 
|  | report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction"); | 
|  | } | 
|  |  | 
|  | /// JITCompilerFunction - This contains the address of the JIT function used to | 
|  | /// compile a function lazily. | 
|  | static TargetJITInfo::JITCompilerFn JITCompilerFunction; | 
|  |  | 
|  | // Get the ASMPREFIX for the current host.  This is often '_'. | 
|  | #ifndef __USER_LABEL_PREFIX__ | 
|  | #define __USER_LABEL_PREFIX__ | 
|  | #endif | 
|  | #define GETASMPREFIX2(X) #X | 
|  | #define GETASMPREFIX(X) GETASMPREFIX2(X) | 
|  | #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) | 
|  |  | 
|  | // CompilationCallback stub - We can't use a C function with inline assembly in | 
|  | // it, because we the prolog/epilog inserted by GCC won't work for us (we need | 
|  | // to preserve more context and manipulate the stack directly).  Instead, | 
|  | // write our own wrapper, which does things our way, so we have complete | 
|  | // control over register saving and restoring. | 
|  | extern "C" { | 
|  | #if defined(__arm__) | 
|  | void ARMCompilationCallback(); | 
|  | asm( | 
|  | ".text\n" | 
|  | ".align 2\n" | 
|  | ".globl " ASMPREFIX "ARMCompilationCallback\n" | 
|  | ASMPREFIX "ARMCompilationCallback:\n" | 
|  | // Save caller saved registers since they may contain stuff | 
|  | // for the real target function right now. We have to act as if this | 
|  | // whole compilation callback doesn't exist as far as the caller is | 
|  | // concerned, so we can't just preserve the callee saved regs. | 
|  | "stmdb sp!, {r0, r1, r2, r3, lr}\n" | 
|  | #if (defined(__VFP_FP__) && !defined(__SOFTFP__)) | 
|  | "fstmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n" | 
|  | #endif | 
|  | // The LR contains the address of the stub function on entry. | 
|  | // pass it as the argument to the C part of the callback | 
|  | "mov  r0, lr\n" | 
|  | "sub  sp, sp, #4\n" | 
|  | // Call the C portion of the callback | 
|  | "bl   " ASMPREFIX "ARMCompilationCallbackC\n" | 
|  | "add  sp, sp, #4\n" | 
|  | // Restoring the LR to the return address of the function that invoked | 
|  | // the stub and de-allocating the stack space for it requires us to | 
|  | // swap the two saved LR values on the stack, as they're backwards | 
|  | // for what we need since the pop instruction has a pre-determined | 
|  | // order for the registers. | 
|  | //      +--------+ | 
|  | //   0  | LR     | Original return address | 
|  | //      +--------+ | 
|  | //   1  | LR     | Stub address (start of stub) | 
|  | // 2-5  | R3..R0 | Saved registers (we need to preserve all regs) | 
|  | // 6-20 | D0..D7 | Saved VFP registers | 
|  | //      +--------+ | 
|  | // | 
|  | #if (defined(__VFP_FP__) && !defined(__SOFTFP__)) | 
|  | // Restore VFP caller-saved registers. | 
|  | "fldmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n" | 
|  | #endif | 
|  | // | 
|  | //      We need to exchange the values in slots 0 and 1 so we can | 
|  | //      return to the address in slot 1 with the address in slot 0 | 
|  | //      restored to the LR. | 
|  | "ldr  r0, [sp,#20]\n" | 
|  | "ldr  r1, [sp,#16]\n" | 
|  | "str  r1, [sp,#20]\n" | 
|  | "str  r0, [sp,#16]\n" | 
|  | // Return to the (newly modified) stub to invoke the real function. | 
|  | // The above twiddling of the saved return addresses allows us to | 
|  | // deallocate everything, including the LR the stub saved, all in one | 
|  | // pop instruction. | 
|  | "ldmia  sp!, {r0, r1, r2, r3, lr, pc}\n" | 
|  | ); | 
|  | #else  // Not an ARM host | 
|  | void ARMCompilationCallback() { | 
|  | llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// ARMCompilationCallbackC - This is the target-specific function invoked | 
|  | /// by the function stub when we did not know the real target of a call. | 
|  | /// This function must locate the start of the stub or call site and pass | 
|  | /// it into the JIT compiler function. | 
|  | extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) { | 
|  | // Get the address of the compiled code for this function. | 
|  | intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr); | 
|  |  | 
|  | // Rewrite the call target... so that we don't end up here every time we | 
|  | // execute the call. We're replacing the first two instructions of the | 
|  | // stub with: | 
|  | //   ldr pc, [pc,#-4] | 
|  | //   <addr> | 
|  | if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub writable"); | 
|  | } | 
|  | *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4] | 
|  | *(intptr_t *)(StubAddr+4) = NewVal; | 
|  | if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub executable"); | 
|  | } | 
|  | } | 
|  |  | 
|  | TargetJITInfo::LazyResolverFn | 
|  | ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) { | 
|  | JITCompilerFunction = F; | 
|  | return ARMCompilationCallback; | 
|  | } | 
|  |  | 
|  | void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr, | 
|  | JITCodeEmitter &JCE) { | 
|  | uint8_t Buffer[4]; | 
|  | uint8_t *Cur = Buffer; | 
|  | MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr); | 
|  | void *PtrAddr = JCE.allocIndirectGV( | 
|  | GV, Buffer, sizeof(Buffer), /*Alignment=*/4); | 
|  | addIndirectSymAddr(Ptr, (intptr_t)PtrAddr); | 
|  | return PtrAddr; | 
|  | } | 
|  |  | 
|  | TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() { | 
|  | // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a | 
|  | // 4-byte address.  See emitFunctionStub for details. | 
|  | StubLayout Result = {16, 4}; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn, | 
|  | JITCodeEmitter &JCE) { | 
|  | void *Addr; | 
|  | // If this is just a call to an external function, emit a branch instead of a | 
|  | // call.  The code is the same except for one bit of the last instruction. | 
|  | if (Fn != (void*)(intptr_t)ARMCompilationCallback) { | 
|  | // Branch to the corresponding function addr. | 
|  | if (IsPIC) { | 
|  | // The stub is 16-byte size and 4-aligned. | 
|  | intptr_t LazyPtr = getIndirectSymAddr(Fn); | 
|  | if (!LazyPtr) { | 
|  | // In PIC mode, the function stub is loading a lazy-ptr. | 
|  | LazyPtr= (intptr_t)emitGlobalValueIndirectSym((GlobalValue*)F, Fn, JCE); | 
|  | DEBUG(if (F) | 
|  | errs() << "JIT: Indirect symbol emitted at [" << LazyPtr | 
|  | << "] for GV '" << F->getName() << "'\n"; | 
|  | else | 
|  | errs() << "JIT: Stub emitted at [" << LazyPtr | 
|  | << "] for external function at '" << Fn << "'\n"); | 
|  | } | 
|  | JCE.emitAlignment(4); | 
|  | Addr = (void*)JCE.getCurrentPCValue(); | 
|  | if (!sys::Memory::setRangeWritable(Addr, 16)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub writable"); | 
|  | } | 
|  | JCE.emitWordLE(0xe59fc004);            // ldr ip, [pc, #+4] | 
|  | JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip | 
|  | JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip] | 
|  | JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8));  // func - (L_func$scv+8) | 
|  | sys::Memory::InvalidateInstructionCache(Addr, 16); | 
|  | if (!sys::Memory::setRangeExecutable(Addr, 16)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub executable"); | 
|  | } | 
|  | } else { | 
|  | // The stub is 8-byte size and 4-aligned. | 
|  | JCE.emitAlignment(4); | 
|  | Addr = (void*)JCE.getCurrentPCValue(); | 
|  | if (!sys::Memory::setRangeWritable(Addr, 8)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub writable"); | 
|  | } | 
|  | JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4] | 
|  | JCE.emitWordLE((intptr_t)Fn);  // addr of function | 
|  | sys::Memory::InvalidateInstructionCache(Addr, 8); | 
|  | if (!sys::Memory::setRangeExecutable(Addr, 8)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub executable"); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // The compilation callback will overwrite the first two words of this | 
|  | // stub with indirect branch instructions targeting the compiled code. | 
|  | // This stub sets the return address to restart the stub, so that | 
|  | // the new branch will be invoked when we come back. | 
|  | // | 
|  | // Branch and link to the compilation callback. | 
|  | // The stub is 16-byte size and 4-byte aligned. | 
|  | JCE.emitAlignment(4); | 
|  | Addr = (void*)JCE.getCurrentPCValue(); | 
|  | if (!sys::Memory::setRangeWritable(Addr, 16)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub writable"); | 
|  | } | 
|  | // Save LR so the callback can determine which stub called it. | 
|  | // The compilation callback is responsible for popping this prior | 
|  | // to returning. | 
|  | JCE.emitWordLE(0xe92d4000); // push {lr} | 
|  | // Set the return address to go back to the start of this stub. | 
|  | JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12 | 
|  | // Invoke the compilation callback. | 
|  | JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4] | 
|  | // The address of the compilation callback. | 
|  | JCE.emitWordLE((intptr_t)ARMCompilationCallback); | 
|  | sys::Memory::InvalidateInstructionCache(Addr, 16); | 
|  | if (!sys::Memory::setRangeExecutable(Addr, 16)) { | 
|  | llvm_unreachable("ERROR: Unable to mark stub executable"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Addr; | 
|  | } | 
|  |  | 
|  | intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const { | 
|  | ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType(); | 
|  | switch (RT) { | 
|  | default: | 
|  | return (intptr_t)(MR->getResultPointer()); | 
|  | case ARM::reloc_arm_pic_jt: | 
|  | // Destination address - jump table base. | 
|  | return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal(); | 
|  | case ARM::reloc_arm_jt_base: | 
|  | // Jump table base address. | 
|  | return getJumpTableBaseAddr(MR->getJumpTableIndex()); | 
|  | case ARM::reloc_arm_cp_entry: | 
|  | case ARM::reloc_arm_vfp_cp_entry: | 
|  | // Constant pool entry address. | 
|  | return getConstantPoolEntryAddr(MR->getConstantPoolIndex()); | 
|  | case ARM::reloc_arm_machine_cp_entry: { | 
|  | ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal(); | 
|  | assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) && | 
|  | "Can't handle this machine constant pool entry yet!"); | 
|  | intptr_t Addr = (intptr_t)(MR->getResultPointer()); | 
|  | Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment(); | 
|  | return Addr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// relocate - Before the JIT can run a block of code that has been emitted, | 
|  | /// it must rewrite the code to contain the actual addresses of any | 
|  | /// referenced global symbols. | 
|  | void ARMJITInfo::relocate(void *Function, MachineRelocation *MR, | 
|  | unsigned NumRelocs, unsigned char* GOTBase) { | 
|  | for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { | 
|  | void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); | 
|  | intptr_t ResultPtr = resolveRelocDestAddr(MR); | 
|  | switch ((ARM::RelocationType)MR->getRelocationType()) { | 
|  | case ARM::reloc_arm_cp_entry: | 
|  | case ARM::reloc_arm_vfp_cp_entry: | 
|  | case ARM::reloc_arm_relative: { | 
|  | // It is necessary to calculate the correct PC relative value. We | 
|  | // subtract the base addr from the target addr to form a byte offset. | 
|  | ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; | 
|  | // If the result is positive, set bit U(23) to 1. | 
|  | if (ResultPtr >= 0) | 
|  | *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift; | 
|  | else { | 
|  | // Otherwise, obtain the absolute value and set bit U(23) to 0. | 
|  | *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift); | 
|  | ResultPtr = - ResultPtr; | 
|  | } | 
|  | // Set the immed value calculated. | 
|  | // VFP immediate offset is multiplied by 4. | 
|  | if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry) | 
|  | ResultPtr = ResultPtr >> 2; | 
|  | *((intptr_t*)RelocPos) |= ResultPtr; | 
|  | // Set register Rn to PC. | 
|  | *((intptr_t*)RelocPos) |= | 
|  | ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift; | 
|  | break; | 
|  | } | 
|  | case ARM::reloc_arm_pic_jt: | 
|  | case ARM::reloc_arm_machine_cp_entry: | 
|  | case ARM::reloc_arm_absolute: { | 
|  | // These addresses have already been resolved. | 
|  | *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr; | 
|  | break; | 
|  | } | 
|  | case ARM::reloc_arm_branch: { | 
|  | // It is necessary to calculate the correct value of signed_immed_24 | 
|  | // field. We subtract the base addr from the target addr to form a | 
|  | // byte offset, which must be inside the range -33554432 and +33554428. | 
|  | // Then, we set the signed_immed_24 field of the instruction to bits | 
|  | // [25:2] of the byte offset. More details ARM-ARM p. A4-11. | 
|  | ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; | 
|  | ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2; | 
|  | assert(ResultPtr >= -33554432 && ResultPtr <= 33554428); | 
|  | *((intptr_t*)RelocPos) |= ResultPtr; | 
|  | break; | 
|  | } | 
|  | case ARM::reloc_arm_jt_base: { | 
|  | // JT base - (instruction addr + 8) | 
|  | ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; | 
|  | *((intptr_t*)RelocPos) |= ResultPtr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |