|  | //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // When profitable, replace GPR targeting i64 instructions with their | 
|  | // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined | 
|  | // as minimizing the number of cross-class register copies. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TODO: Graph based predicate heuristics. | 
|  | // Walking the instruction list linearly will get many, perhaps most, of | 
|  | // the cases, but to do a truly thorough job of this, we need a more | 
|  | // wholistic approach. | 
|  | // | 
|  | // This optimization is very similar in spirit to the register allocator's | 
|  | // spill placement, only here we're determining where to place cross-class | 
|  | // register copies rather than spills. As such, a similar approach is | 
|  | // called for. | 
|  | // | 
|  | // We want to build up a set of graphs of all instructions which are candidates | 
|  | // for transformation along with instructions which generate their inputs and | 
|  | // consume their outputs. For each edge in the graph, we assign a weight | 
|  | // based on whether there is a copy required there (weight zero if not) and | 
|  | // the block frequency of the block containing the defining or using | 
|  | // instruction, whichever is less. Our optimization is then a graph problem | 
|  | // to minimize the total weight of all the graphs, then transform instructions | 
|  | // and add or remove copy instructions as called for to implement the | 
|  | // solution. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64.h" | 
|  | #include "AArch64InstrInfo.h" | 
|  | #include "AArch64RegisterInfo.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-simd-scalar" | 
|  |  | 
|  | // Allow forcing all i64 operations with equivalent SIMD instructions to use | 
|  | // them. For stress-testing the transformation function. | 
|  | static cl::opt<bool> | 
|  | TransformAll("aarch64-simd-scalar-force-all", | 
|  | cl::desc("Force use of AdvSIMD scalar instructions everywhere"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used"); | 
|  | STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted"); | 
|  | STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted"); | 
|  |  | 
|  | #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization" | 
|  |  | 
|  | namespace { | 
|  | class AArch64AdvSIMDScalar : public MachineFunctionPass { | 
|  | MachineRegisterInfo *MRI; | 
|  | const TargetInstrInfo *TII; | 
|  |  | 
|  | private: | 
|  | // isProfitableToTransform - Predicate function to determine whether an | 
|  | // instruction should be transformed to its equivalent AdvSIMD scalar | 
|  | // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. | 
|  | bool isProfitableToTransform(const MachineInstr &MI) const; | 
|  |  | 
|  | // transformInstruction - Perform the transformation of an instruction | 
|  | // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs | 
|  | // to be the correct register class, minimizing cross-class copies. | 
|  | void transformInstruction(MachineInstr &MI); | 
|  |  | 
|  | // processMachineBasicBlock - Main optimzation loop. | 
|  | bool processMachineBasicBlock(MachineBasicBlock *MBB); | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid. | 
|  | explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) { | 
|  | initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &F) override; | 
|  |  | 
|  | StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | char AArch64AdvSIMDScalar::ID = 0; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar", | 
|  | AARCH64_ADVSIMD_NAME, false, false) | 
|  |  | 
|  | static bool isGPR64(unsigned Reg, unsigned SubReg, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | if (SubReg) | 
|  | return false; | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass); | 
|  | return AArch64::GPR64RegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | static bool isFPR64(unsigned Reg, unsigned SubReg, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) && | 
|  | SubReg == 0) || | 
|  | (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) && | 
|  | SubReg == AArch64::dsub); | 
|  | // Physical register references just check the register class directly. | 
|  | return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) || | 
|  | (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub); | 
|  | } | 
|  |  | 
|  | // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64 | 
|  | // copy instruction. Return zero_reg if the instruction is not a copy. | 
|  | static MachineOperand *getSrcFromCopy(MachineInstr *MI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | unsigned &SubReg) { | 
|  | SubReg = 0; | 
|  | // The "FMOV Xd, Dn" instruction is the typical form. | 
|  | if (MI->getOpcode() == AArch64::FMOVDXr || | 
|  | MI->getOpcode() == AArch64::FMOVXDr) | 
|  | return &MI->getOperand(1); | 
|  | // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see | 
|  | // these at this stage, but it's easy to check for. | 
|  | if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) { | 
|  | SubReg = AArch64::dsub; | 
|  | return &MI->getOperand(1); | 
|  | } | 
|  | // Or just a plain COPY instruction. This can be directly to/from FPR64, | 
|  | // or it can be a dsub subreg reference to an FPR128. | 
|  | if (MI->getOpcode() == AArch64::COPY) { | 
|  | if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), | 
|  | MRI) && | 
|  | isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) | 
|  | return &MI->getOperand(1); | 
|  | if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), | 
|  | MRI) && | 
|  | isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), | 
|  | MRI)) { | 
|  | SubReg = MI->getOperand(1).getSubReg(); | 
|  | return &MI->getOperand(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this is some other kind of instruction. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent | 
|  | // that we're considering transforming to, return that AdvSIMD opcode. For all | 
|  | // others, return the original opcode. | 
|  | static unsigned getTransformOpcode(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | // FIXME: Lots more possibilities. | 
|  | case AArch64::ADDXrr: | 
|  | return AArch64::ADDv1i64; | 
|  | case AArch64::SUBXrr: | 
|  | return AArch64::SUBv1i64; | 
|  | case AArch64::ANDXrr: | 
|  | return AArch64::ANDv8i8; | 
|  | case AArch64::EORXrr: | 
|  | return AArch64::EORv8i8; | 
|  | case AArch64::ORRXrr: | 
|  | return AArch64::ORRv8i8; | 
|  | } | 
|  | // No AdvSIMD equivalent, so just return the original opcode. | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | static bool isTransformable(const MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | return Opc != getTransformOpcode(Opc); | 
|  | } | 
|  |  | 
|  | // isProfitableToTransform - Predicate function to determine whether an | 
|  | // instruction should be transformed to its equivalent AdvSIMD scalar | 
|  | // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. | 
|  | bool AArch64AdvSIMDScalar::isProfitableToTransform( | 
|  | const MachineInstr &MI) const { | 
|  | // If this instruction isn't eligible to be transformed (no SIMD equivalent), | 
|  | // early exit since that's the common case. | 
|  | if (!isTransformable(MI)) | 
|  | return false; | 
|  |  | 
|  | // Count the number of copies we'll need to add and approximate the number | 
|  | // of copies that a transform will enable us to remove. | 
|  | unsigned NumNewCopies = 3; | 
|  | unsigned NumRemovableCopies = 0; | 
|  |  | 
|  | unsigned OrigSrc0 = MI.getOperand(1).getReg(); | 
|  | unsigned OrigSrc1 = MI.getOperand(2).getReg(); | 
|  | unsigned SubReg0; | 
|  | unsigned SubReg1; | 
|  | if (!MRI->def_empty(OrigSrc0)) { | 
|  | MachineRegisterInfo::def_instr_iterator Def = | 
|  | MRI->def_instr_begin(OrigSrc0); | 
|  | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
|  | MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); | 
|  | // If the source was from a copy, we don't need to insert a new copy. | 
|  | if (MOSrc0) | 
|  | --NumNewCopies; | 
|  | // If there are no other users of the original source, we can delete | 
|  | // that instruction. | 
|  | if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0)) | 
|  | ++NumRemovableCopies; | 
|  | } | 
|  | if (!MRI->def_empty(OrigSrc1)) { | 
|  | MachineRegisterInfo::def_instr_iterator Def = | 
|  | MRI->def_instr_begin(OrigSrc1); | 
|  | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
|  | MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); | 
|  | if (MOSrc1) | 
|  | --NumNewCopies; | 
|  | // If there are no other users of the original source, we can delete | 
|  | // that instruction. | 
|  | if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1)) | 
|  | ++NumRemovableCopies; | 
|  | } | 
|  |  | 
|  | // If any of the uses of the original instructions is a cross class copy, | 
|  | // that's a copy that will be removable if we transform. Likewise, if | 
|  | // any of the uses is a transformable instruction, it's likely the tranforms | 
|  | // will chain, enabling us to save a copy there, too. This is an aggressive | 
|  | // heuristic that approximates the graph based cost analysis described above. | 
|  | unsigned Dst = MI.getOperand(0).getReg(); | 
|  | bool AllUsesAreCopies = true; | 
|  | for (MachineRegisterInfo::use_instr_nodbg_iterator | 
|  | Use = MRI->use_instr_nodbg_begin(Dst), | 
|  | E = MRI->use_instr_nodbg_end(); | 
|  | Use != E; ++Use) { | 
|  | unsigned SubReg; | 
|  | if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use)) | 
|  | ++NumRemovableCopies; | 
|  | // If the use is an INSERT_SUBREG, that's still something that can | 
|  | // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's | 
|  | // preferable to have it use the FPR64 in most cases, as if the source | 
|  | // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely. | 
|  | // Ditto for a lane insert. | 
|  | else if (Use->getOpcode() == AArch64::INSERT_SUBREG || | 
|  | Use->getOpcode() == AArch64::INSvi64gpr) | 
|  | ; | 
|  | else | 
|  | AllUsesAreCopies = false; | 
|  | } | 
|  | // If all of the uses of the original destination register are copies to | 
|  | // FPR64, then we won't end up having a new copy back to GPR64 either. | 
|  | if (AllUsesAreCopies) | 
|  | --NumNewCopies; | 
|  |  | 
|  | // If a transform will not increase the number of cross-class copies required, | 
|  | // return true. | 
|  | if (NumNewCopies <= NumRemovableCopies) | 
|  | return true; | 
|  |  | 
|  | // Finally, even if we otherwise wouldn't transform, check if we're forcing | 
|  | // transformation of everything. | 
|  | return TransformAll; | 
|  | } | 
|  |  | 
|  | static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI, | 
|  | unsigned Dst, unsigned Src, bool IsKill) { | 
|  | MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), | 
|  | TII->get(AArch64::COPY), Dst) | 
|  | .addReg(Src, getKillRegState(IsKill)); | 
|  | LLVM_DEBUG(dbgs() << "    adding copy: " << *MIB); | 
|  | ++NumCopiesInserted; | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | // transformInstruction - Perform the transformation of an instruction | 
|  | // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs | 
|  | // to be the correct register class, minimizing cross-class copies. | 
|  | void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) { | 
|  | LLVM_DEBUG(dbgs() << "Scalar transform: " << MI); | 
|  |  | 
|  | MachineBasicBlock *MBB = MI.getParent(); | 
|  | unsigned OldOpc = MI.getOpcode(); | 
|  | unsigned NewOpc = getTransformOpcode(OldOpc); | 
|  | assert(OldOpc != NewOpc && "transform an instruction to itself?!"); | 
|  |  | 
|  | // Check if we need a copy for the source registers. | 
|  | unsigned OrigSrc0 = MI.getOperand(1).getReg(); | 
|  | unsigned OrigSrc1 = MI.getOperand(2).getReg(); | 
|  | unsigned Src0 = 0, SubReg0; | 
|  | unsigned Src1 = 0, SubReg1; | 
|  | bool KillSrc0 = false, KillSrc1 = false; | 
|  | if (!MRI->def_empty(OrigSrc0)) { | 
|  | MachineRegisterInfo::def_instr_iterator Def = | 
|  | MRI->def_instr_begin(OrigSrc0); | 
|  | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
|  | MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0); | 
|  | // If there are no other users of the original source, we can delete | 
|  | // that instruction. | 
|  | if (MOSrc0) { | 
|  | Src0 = MOSrc0->getReg(); | 
|  | KillSrc0 = MOSrc0->isKill(); | 
|  | // Src0 is going to be reused, thus, it cannot be killed anymore. | 
|  | MOSrc0->setIsKill(false); | 
|  | if (MRI->hasOneNonDBGUse(OrigSrc0)) { | 
|  | assert(MOSrc0 && "Can't delete copy w/o a valid original source!"); | 
|  | Def->eraseFromParent(); | 
|  | ++NumCopiesDeleted; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!MRI->def_empty(OrigSrc1)) { | 
|  | MachineRegisterInfo::def_instr_iterator Def = | 
|  | MRI->def_instr_begin(OrigSrc1); | 
|  | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); | 
|  | MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1); | 
|  | // If there are no other users of the original source, we can delete | 
|  | // that instruction. | 
|  | if (MOSrc1) { | 
|  | Src1 = MOSrc1->getReg(); | 
|  | KillSrc1 = MOSrc1->isKill(); | 
|  | // Src0 is going to be reused, thus, it cannot be killed anymore. | 
|  | MOSrc1->setIsKill(false); | 
|  | if (MRI->hasOneNonDBGUse(OrigSrc1)) { | 
|  | assert(MOSrc1 && "Can't delete copy w/o a valid original source!"); | 
|  | Def->eraseFromParent(); | 
|  | ++NumCopiesDeleted; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we weren't able to reference the original source directly, create a | 
|  | // copy. | 
|  | if (!Src0) { | 
|  | SubReg0 = 0; | 
|  | Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | 
|  | insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0); | 
|  | KillSrc0 = true; | 
|  | } | 
|  | if (!Src1) { | 
|  | SubReg1 = 0; | 
|  | Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | 
|  | insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1); | 
|  | KillSrc1 = true; | 
|  | } | 
|  |  | 
|  | // Create a vreg for the destination. | 
|  | // FIXME: No need to do this if the ultimate user expects an FPR64. | 
|  | // Check for that and avoid the copy if possible. | 
|  | unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass); | 
|  |  | 
|  | // For now, all of the new instructions have the same simple three-register | 
|  | // form, so no need to special case based on what instruction we're | 
|  | // building. | 
|  | BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst) | 
|  | .addReg(Src0, getKillRegState(KillSrc0), SubReg0) | 
|  | .addReg(Src1, getKillRegState(KillSrc1), SubReg1); | 
|  |  | 
|  | // Now copy the result back out to a GPR. | 
|  | // FIXME: Try to avoid this if all uses could actually just use the FPR64 | 
|  | // directly. | 
|  | insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true); | 
|  |  | 
|  | // Erase the old instruction. | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | ++NumScalarInsnsUsed; | 
|  | } | 
|  |  | 
|  | // processMachineBasicBlock - Main optimzation loop. | 
|  | bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { | 
|  | bool Changed = false; | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { | 
|  | MachineInstr &MI = *I++; | 
|  | if (isProfitableToTransform(MI)) { | 
|  | transformInstruction(MI); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // runOnMachineFunction - Pass entry point from PassManager. | 
|  | bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { | 
|  | bool Changed = false; | 
|  | LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n"); | 
|  |  | 
|  | if (skipFunction(mf.getFunction())) | 
|  | return false; | 
|  |  | 
|  | MRI = &mf.getRegInfo(); | 
|  | TII = mf.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Just check things on a one-block-at-a-time basis. | 
|  | for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) | 
|  | if (processMachineBasicBlock(&*I)) | 
|  | Changed = true; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine | 
|  | // to add the pass to the PassManager. | 
|  | FunctionPass *llvm::createAArch64AdvSIMDScalar() { | 
|  | return new AArch64AdvSIMDScalar(); | 
|  | } |