|  | //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. | 
|  | // | 
|  | // Software pipelining (SWP) is an instruction scheduling technique for loops | 
|  | // that overlap loop iterations and exploits ILP via a compiler transformation. | 
|  | // | 
|  | // Swing Modulo Scheduling is an implementation of software pipelining | 
|  | // that generates schedules that are near optimal in terms of initiation | 
|  | // interval, register requirements, and stage count. See the papers: | 
|  | // | 
|  | // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, | 
|  | // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 | 
|  | // Conference on Parallel Architectures and Compilation Techiniques. | 
|  | // | 
|  | // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. | 
|  | // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE | 
|  | // Transactions on Computers, Vol. 50, No. 3, 2001. | 
|  | // | 
|  | // "An Implementation of Swing Modulo Scheduling With Extensions for | 
|  | // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at | 
|  | // Urbana-Chambpain, 2005. | 
|  | // | 
|  | // | 
|  | // The SMS algorithm consists of three main steps after computing the minimal | 
|  | // initiation interval (MII). | 
|  | // 1) Analyze the dependence graph and compute information about each | 
|  | //    instruction in the graph. | 
|  | // 2) Order the nodes (instructions) by priority based upon the heuristics | 
|  | //    described in the algorithm. | 
|  | // 3) Attempt to schedule the nodes in the specified order using the MII. | 
|  | // | 
|  | // This SMS implementation is a target-independent back-end pass. When enabled, | 
|  | // the pass runs just prior to the register allocation pass, while the machine | 
|  | // IR is in SSA form. If software pipelining is successful, then the original | 
|  | // loop is replaced by the optimized loop. The optimized loop contains one or | 
|  | // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If | 
|  | // the instructions cannot be scheduled in a given MII, we increase the MII by | 
|  | // one and try again. | 
|  | // | 
|  | // The SMS implementation is an extension of the ScheduleDAGInstrs class. We | 
|  | // represent loop carried dependences in the DAG as order edges to the Phi | 
|  | // nodes. We also perform several passes over the DAG to eliminate unnecessary | 
|  | // edges that inhibit the ability to pipeline. The implementation uses the | 
|  | // DFAPacketizer class to compute the minimum initiation interval and the check | 
|  | // where an instruction may be inserted in the pipelined schedule. | 
|  | // | 
|  | // In order for the SMS pass to work, several target specific hooks need to be | 
|  | // implemented to get information about the loop structure and to rewrite | 
|  | // instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/PriorityQueue.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/DFAPacketizer.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/RegisterPressure.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
|  | #include "llvm/CodeGen/ScheduleDAGMutation.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstdint> | 
|  | #include <deque> | 
|  | #include <functional> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "pipeliner" | 
|  |  | 
|  | STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); | 
|  | STATISTIC(NumPipelined, "Number of loops software pipelined"); | 
|  | STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); | 
|  |  | 
|  | /// A command line option to turn software pipelining on or off. | 
|  | static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), | 
|  | cl::ZeroOrMore, | 
|  | cl::desc("Enable Software Pipelining")); | 
|  |  | 
|  | /// A command line option to enable SWP at -Os. | 
|  | static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", | 
|  | cl::desc("Enable SWP at Os."), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | /// A command line argument to limit minimum initial interval for pipelining. | 
|  | static cl::opt<int> SwpMaxMii("pipeliner-max-mii", | 
|  | cl::desc("Size limit for the MII."), | 
|  | cl::Hidden, cl::init(27)); | 
|  |  | 
|  | /// A command line argument to limit the number of stages in the pipeline. | 
|  | static cl::opt<int> | 
|  | SwpMaxStages("pipeliner-max-stages", | 
|  | cl::desc("Maximum stages allowed in the generated scheduled."), | 
|  | cl::Hidden, cl::init(3)); | 
|  |  | 
|  | /// A command line option to disable the pruning of chain dependences due to | 
|  | /// an unrelated Phi. | 
|  | static cl::opt<bool> | 
|  | SwpPruneDeps("pipeliner-prune-deps", | 
|  | cl::desc("Prune dependences between unrelated Phi nodes."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | /// A command line option to disable the pruning of loop carried order | 
|  | /// dependences. | 
|  | static cl::opt<bool> | 
|  | SwpPruneLoopCarried("pipeliner-prune-loop-carried", | 
|  | cl::desc("Prune loop carried order dependences."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); | 
|  | #endif | 
|  |  | 
|  | static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", | 
|  | cl::ReallyHidden, cl::init(false), | 
|  | cl::ZeroOrMore, cl::desc("Ignore RecMII")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class NodeSet; | 
|  | class SMSchedule; | 
|  |  | 
|  | /// The main class in the implementation of the target independent | 
|  | /// software pipeliner pass. | 
|  | class MachinePipeliner : public MachineFunctionPass { | 
|  | public: | 
|  | MachineFunction *MF = nullptr; | 
|  | const MachineLoopInfo *MLI = nullptr; | 
|  | const MachineDominatorTree *MDT = nullptr; | 
|  | const InstrItineraryData *InstrItins; | 
|  | const TargetInstrInfo *TII = nullptr; | 
|  | RegisterClassInfo RegClassInfo; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static int NumTries; | 
|  | #endif | 
|  |  | 
|  | /// Cache the target analysis information about the loop. | 
|  | struct LoopInfo { | 
|  | MachineBasicBlock *TBB = nullptr; | 
|  | MachineBasicBlock *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> BrCond; | 
|  | MachineInstr *LoopInductionVar = nullptr; | 
|  | MachineInstr *LoopCompare = nullptr; | 
|  | }; | 
|  | LoopInfo LI; | 
|  |  | 
|  | static char ID; | 
|  |  | 
|  | MachinePipeliner() : MachineFunctionPass(ID) { | 
|  | initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addPreserved<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<LiveIntervals>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void preprocessPhiNodes(MachineBasicBlock &B); | 
|  | bool canPipelineLoop(MachineLoop &L); | 
|  | bool scheduleLoop(MachineLoop &L); | 
|  | bool swingModuloScheduler(MachineLoop &L); | 
|  | }; | 
|  |  | 
|  | /// This class builds the dependence graph for the instructions in a loop, | 
|  | /// and attempts to schedule the instructions using the SMS algorithm. | 
|  | class SwingSchedulerDAG : public ScheduleDAGInstrs { | 
|  | MachinePipeliner &Pass; | 
|  | /// The minimum initiation interval between iterations for this schedule. | 
|  | unsigned MII = 0; | 
|  | /// Set to true if a valid pipelined schedule is found for the loop. | 
|  | bool Scheduled = false; | 
|  | MachineLoop &Loop; | 
|  | LiveIntervals &LIS; | 
|  | const RegisterClassInfo &RegClassInfo; | 
|  |  | 
|  | /// A toplogical ordering of the SUnits, which is needed for changing | 
|  | /// dependences and iterating over the SUnits. | 
|  | ScheduleDAGTopologicalSort Topo; | 
|  |  | 
|  | struct NodeInfo { | 
|  | int ASAP = 0; | 
|  | int ALAP = 0; | 
|  | int ZeroLatencyDepth = 0; | 
|  | int ZeroLatencyHeight = 0; | 
|  |  | 
|  | NodeInfo() = default; | 
|  | }; | 
|  | /// Computed properties for each node in the graph. | 
|  | std::vector<NodeInfo> ScheduleInfo; | 
|  |  | 
|  | enum OrderKind { BottomUp = 0, TopDown = 1 }; | 
|  | /// Computed node ordering for scheduling. | 
|  | SetVector<SUnit *> NodeOrder; | 
|  |  | 
|  | using NodeSetType = SmallVector<NodeSet, 8>; | 
|  | using ValueMapTy = DenseMap<unsigned, unsigned>; | 
|  | using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; | 
|  | using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; | 
|  |  | 
|  | /// Instructions to change when emitting the final schedule. | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; | 
|  |  | 
|  | /// We may create a new instruction, so remember it because it | 
|  | /// must be deleted when the pass is finished. | 
|  | SmallPtrSet<MachineInstr *, 4> NewMIs; | 
|  |  | 
|  | /// Ordered list of DAG postprocessing steps. | 
|  | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; | 
|  |  | 
|  | /// Helper class to implement Johnson's circuit finding algorithm. | 
|  | class Circuits { | 
|  | std::vector<SUnit> &SUnits; | 
|  | SetVector<SUnit *> Stack; | 
|  | BitVector Blocked; | 
|  | SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; | 
|  | SmallVector<SmallVector<int, 4>, 16> AdjK; | 
|  | unsigned NumPaths; | 
|  | static unsigned MaxPaths; | 
|  |  | 
|  | public: | 
|  | Circuits(std::vector<SUnit> &SUs) | 
|  | : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {} | 
|  |  | 
|  | /// Reset the data structures used in the circuit algorithm. | 
|  | void reset() { | 
|  | Stack.clear(); | 
|  | Blocked.reset(); | 
|  | B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); | 
|  | NumPaths = 0; | 
|  | } | 
|  |  | 
|  | void createAdjacencyStructure(SwingSchedulerDAG *DAG); | 
|  | bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); | 
|  | void unblock(int U); | 
|  | }; | 
|  |  | 
|  | public: | 
|  | SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, | 
|  | const RegisterClassInfo &rci) | 
|  | : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), | 
|  | RegClassInfo(rci), Topo(SUnits, &ExitSU) { | 
|  | P.MF->getSubtarget().getSMSMutations(Mutations); | 
|  | } | 
|  |  | 
|  | void schedule() override; | 
|  | void finishBlock() override; | 
|  |  | 
|  | /// Return true if the loop kernel has been scheduled. | 
|  | bool hasNewSchedule() { return Scheduled; } | 
|  |  | 
|  | /// Return the earliest time an instruction may be scheduled. | 
|  | int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } | 
|  |  | 
|  | /// Return the latest time an instruction my be scheduled. | 
|  | int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } | 
|  |  | 
|  | /// The mobility function, which the number of slots in which | 
|  | /// an instruction may be scheduled. | 
|  | int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } | 
|  |  | 
|  | /// The depth, in the dependence graph, for a node. | 
|  | unsigned getDepth(SUnit *Node) { return Node->getDepth(); } | 
|  |  | 
|  | /// The maximum unweighted length of a path from an arbitrary node to the | 
|  | /// given node in which each edge has latency 0 | 
|  | int getZeroLatencyDepth(SUnit *Node) { | 
|  | return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; | 
|  | } | 
|  |  | 
|  | /// The height, in the dependence graph, for a node. | 
|  | unsigned getHeight(SUnit *Node) { return Node->getHeight(); } | 
|  |  | 
|  | /// The maximum unweighted length of a path from the given node to an | 
|  | /// arbitrary node in which each edge has latency 0 | 
|  | int getZeroLatencyHeight(SUnit *Node) { | 
|  | return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; | 
|  | } | 
|  |  | 
|  | /// Return true if the dependence is a back-edge in the data dependence graph. | 
|  | /// Since the DAG doesn't contain cycles, we represent a cycle in the graph | 
|  | /// using an anti dependence from a Phi to an instruction. | 
|  | bool isBackedge(SUnit *Source, const SDep &Dep) { | 
|  | if (Dep.getKind() != SDep::Anti) | 
|  | return false; | 
|  | return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); | 
|  | } | 
|  |  | 
|  | bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); | 
|  |  | 
|  | /// The distance function, which indicates that operation V of iteration I | 
|  | /// depends on operations U of iteration I-distance. | 
|  | unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { | 
|  | // Instructions that feed a Phi have a distance of 1. Computing larger | 
|  | // values for arrays requires data dependence information. | 
|  | if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Set the Minimum Initiation Interval for this schedule attempt. | 
|  | void setMII(unsigned mii) { MII = mii; } | 
|  |  | 
|  | void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); | 
|  |  | 
|  | void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); | 
|  |  | 
|  | /// Return the new base register that was stored away for the changed | 
|  | /// instruction. | 
|  | unsigned getInstrBaseReg(SUnit *SU) { | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) | 
|  | return It->second.first; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { | 
|  | Mutations.push_back(std::move(Mutation)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void addLoopCarriedDependences(AliasAnalysis *AA); | 
|  | void updatePhiDependences(); | 
|  | void changeDependences(); | 
|  | unsigned calculateResMII(); | 
|  | unsigned calculateRecMII(NodeSetType &RecNodeSets); | 
|  | void findCircuits(NodeSetType &NodeSets); | 
|  | void fuseRecs(NodeSetType &NodeSets); | 
|  | void removeDuplicateNodes(NodeSetType &NodeSets); | 
|  | void computeNodeFunctions(NodeSetType &NodeSets); | 
|  | void registerPressureFilter(NodeSetType &NodeSets); | 
|  | void colocateNodeSets(NodeSetType &NodeSets); | 
|  | void checkNodeSets(NodeSetType &NodeSets); | 
|  | void groupRemainingNodes(NodeSetType &NodeSets); | 
|  | void addConnectedNodes(SUnit *SU, NodeSet &NewSet, | 
|  | SetVector<SUnit *> &NodesAdded); | 
|  | void computeNodeOrder(NodeSetType &NodeSets); | 
|  | void checkValidNodeOrder(const NodeSetType &Circuits) const; | 
|  | bool schedulePipeline(SMSchedule &Schedule); | 
|  | void generatePipelinedLoop(SMSchedule &Schedule); | 
|  | void generateProlog(SMSchedule &Schedule, unsigned LastStage, | 
|  | MachineBasicBlock *KernelBB, ValueMapTy *VRMap, | 
|  | MBBVectorTy &PrologBBs); | 
|  | void generateEpilog(SMSchedule &Schedule, unsigned LastStage, | 
|  | MachineBasicBlock *KernelBB, ValueMapTy *VRMap, | 
|  | MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); | 
|  | void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, | 
|  | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, | 
|  | SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap, unsigned LastStageNum, | 
|  | unsigned CurStageNum, bool IsLast); | 
|  | void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, | 
|  | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, | 
|  | SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap, unsigned LastStageNum, | 
|  | unsigned CurStageNum, bool IsLast); | 
|  | void removeDeadInstructions(MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs); | 
|  | void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, | 
|  | SMSchedule &Schedule); | 
|  | void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs, SMSchedule &Schedule, | 
|  | ValueMapTy *VRMap); | 
|  | bool computeDelta(MachineInstr &MI, unsigned &Delta); | 
|  | void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, | 
|  | unsigned Num); | 
|  | MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, | 
|  | unsigned InstStageNum); | 
|  | MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, | 
|  | unsigned InstStageNum, | 
|  | SMSchedule &Schedule); | 
|  | void updateInstruction(MachineInstr *NewMI, bool LastDef, | 
|  | unsigned CurStageNum, unsigned InstStageNum, | 
|  | SMSchedule &Schedule, ValueMapTy *VRMap); | 
|  | MachineInstr *findDefInLoop(unsigned Reg); | 
|  | unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, | 
|  | unsigned LoopStage, ValueMapTy *VRMap, | 
|  | MachineBasicBlock *BB); | 
|  | void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, | 
|  | SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap); | 
|  | void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, | 
|  | InstrMapTy &InstrMap, unsigned CurStageNum, | 
|  | unsigned PhiNum, MachineInstr *Phi, | 
|  | unsigned OldReg, unsigned NewReg, | 
|  | unsigned PrevReg = 0); | 
|  | bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, | 
|  | unsigned &OffsetPos, unsigned &NewBase, | 
|  | int64_t &NewOffset); | 
|  | void postprocessDAG(); | 
|  | }; | 
|  |  | 
|  | /// A NodeSet contains a set of SUnit DAG nodes with additional information | 
|  | /// that assigns a priority to the set. | 
|  | class NodeSet { | 
|  | SetVector<SUnit *> Nodes; | 
|  | bool HasRecurrence = false; | 
|  | unsigned RecMII = 0; | 
|  | int MaxMOV = 0; | 
|  | unsigned MaxDepth = 0; | 
|  | unsigned Colocate = 0; | 
|  | SUnit *ExceedPressure = nullptr; | 
|  | unsigned Latency = 0; | 
|  |  | 
|  | public: | 
|  | using iterator = SetVector<SUnit *>::const_iterator; | 
|  |  | 
|  | NodeSet() = default; | 
|  | NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { | 
|  | Latency = 0; | 
|  | for (unsigned i = 0, e = Nodes.size(); i < e; ++i) | 
|  | for (const SDep &Succ : Nodes[i]->Succs) | 
|  | if (Nodes.count(Succ.getSUnit())) | 
|  | Latency += Succ.getLatency(); | 
|  | } | 
|  |  | 
|  | bool insert(SUnit *SU) { return Nodes.insert(SU); } | 
|  |  | 
|  | void insert(iterator S, iterator E) { Nodes.insert(S, E); } | 
|  |  | 
|  | template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { | 
|  | return Nodes.remove_if(P); | 
|  | } | 
|  |  | 
|  | unsigned count(SUnit *SU) const { return Nodes.count(SU); } | 
|  |  | 
|  | bool hasRecurrence() { return HasRecurrence; }; | 
|  |  | 
|  | unsigned size() const { return Nodes.size(); } | 
|  |  | 
|  | bool empty() const { return Nodes.empty(); } | 
|  |  | 
|  | SUnit *getNode(unsigned i) const { return Nodes[i]; }; | 
|  |  | 
|  | void setRecMII(unsigned mii) { RecMII = mii; }; | 
|  |  | 
|  | void setColocate(unsigned c) { Colocate = c; }; | 
|  |  | 
|  | void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } | 
|  |  | 
|  | bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } | 
|  |  | 
|  | int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } | 
|  |  | 
|  | int getRecMII() { return RecMII; } | 
|  |  | 
|  | /// Summarize node functions for the entire node set. | 
|  | void computeNodeSetInfo(SwingSchedulerDAG *SSD) { | 
|  | for (SUnit *SU : *this) { | 
|  | MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); | 
|  | MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned getLatency() { return Latency; } | 
|  |  | 
|  | unsigned getMaxDepth() { return MaxDepth; } | 
|  |  | 
|  | void clear() { | 
|  | Nodes.clear(); | 
|  | RecMII = 0; | 
|  | HasRecurrence = false; | 
|  | MaxMOV = 0; | 
|  | MaxDepth = 0; | 
|  | Colocate = 0; | 
|  | ExceedPressure = nullptr; | 
|  | } | 
|  |  | 
|  | operator SetVector<SUnit *> &() { return Nodes; } | 
|  |  | 
|  | /// Sort the node sets by importance. First, rank them by recurrence MII, | 
|  | /// then by mobility (least mobile done first), and finally by depth. | 
|  | /// Each node set may contain a colocate value which is used as the first | 
|  | /// tie breaker, if it's set. | 
|  | bool operator>(const NodeSet &RHS) const { | 
|  | if (RecMII == RHS.RecMII) { | 
|  | if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) | 
|  | return Colocate < RHS.Colocate; | 
|  | if (MaxMOV == RHS.MaxMOV) | 
|  | return MaxDepth > RHS.MaxDepth; | 
|  | return MaxMOV < RHS.MaxMOV; | 
|  | } | 
|  | return RecMII > RHS.RecMII; | 
|  | } | 
|  |  | 
|  | bool operator==(const NodeSet &RHS) const { | 
|  | return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && | 
|  | MaxDepth == RHS.MaxDepth; | 
|  | } | 
|  |  | 
|  | bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } | 
|  |  | 
|  | iterator begin() { return Nodes.begin(); } | 
|  | iterator end() { return Nodes.end(); } | 
|  |  | 
|  | void print(raw_ostream &os) const { | 
|  | os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV | 
|  | << " depth " << MaxDepth << " col " << Colocate << "\n"; | 
|  | for (const auto &I : Nodes) | 
|  | os << "   SU(" << I->NodeNum << ") " << *(I->getInstr()); | 
|  | os << "\n"; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void dump() const { print(dbgs()); } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /// This class repesents the scheduled code.  The main data structure is a | 
|  | /// map from scheduled cycle to instructions.  During scheduling, the | 
|  | /// data structure explicitly represents all stages/iterations.   When | 
|  | /// the algorithm finshes, the schedule is collapsed into a single stage, | 
|  | /// which represents instructions from different loop iterations. | 
|  | /// | 
|  | /// The SMS algorithm allows negative values for cycles, so the first cycle | 
|  | /// in the schedule is the smallest cycle value. | 
|  | class SMSchedule { | 
|  | private: | 
|  | /// Map from execution cycle to instructions. | 
|  | DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; | 
|  |  | 
|  | /// Map from instruction to execution cycle. | 
|  | std::map<SUnit *, int> InstrToCycle; | 
|  |  | 
|  | /// Map for each register and the max difference between its uses and def. | 
|  | /// The first element in the pair is the max difference in stages. The | 
|  | /// second is true if the register defines a Phi value and loop value is | 
|  | /// scheduled before the Phi. | 
|  | std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; | 
|  |  | 
|  | /// Keep track of the first cycle value in the schedule.  It starts | 
|  | /// as zero, but the algorithm allows negative values. | 
|  | int FirstCycle = 0; | 
|  |  | 
|  | /// Keep track of the last cycle value in the schedule. | 
|  | int LastCycle = 0; | 
|  |  | 
|  | /// The initiation interval (II) for the schedule. | 
|  | int InitiationInterval = 0; | 
|  |  | 
|  | /// Target machine information. | 
|  | const TargetSubtargetInfo &ST; | 
|  |  | 
|  | /// Virtual register information. | 
|  | MachineRegisterInfo &MRI; | 
|  |  | 
|  | std::unique_ptr<DFAPacketizer> Resources; | 
|  |  | 
|  | public: | 
|  | SMSchedule(MachineFunction *mf) | 
|  | : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), | 
|  | Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} | 
|  |  | 
|  | void reset() { | 
|  | ScheduledInstrs.clear(); | 
|  | InstrToCycle.clear(); | 
|  | RegToStageDiff.clear(); | 
|  | FirstCycle = 0; | 
|  | LastCycle = 0; | 
|  | InitiationInterval = 0; | 
|  | } | 
|  |  | 
|  | /// Set the initiation interval for this schedule. | 
|  | void setInitiationInterval(int ii) { InitiationInterval = ii; } | 
|  |  | 
|  | /// Return the first cycle in the completed schedule.  This | 
|  | /// can be a negative value. | 
|  | int getFirstCycle() const { return FirstCycle; } | 
|  |  | 
|  | /// Return the last cycle in the finalized schedule. | 
|  | int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } | 
|  |  | 
|  | /// Return the cycle of the earliest scheduled instruction in the dependence | 
|  | /// chain. | 
|  | int earliestCycleInChain(const SDep &Dep); | 
|  |  | 
|  | /// Return the cycle of the latest scheduled instruction in the dependence | 
|  | /// chain. | 
|  | int latestCycleInChain(const SDep &Dep); | 
|  |  | 
|  | void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, | 
|  | int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); | 
|  | bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); | 
|  |  | 
|  | /// Iterators for the cycle to instruction map. | 
|  | using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; | 
|  | using const_sched_iterator = | 
|  | DenseMap<int, std::deque<SUnit *>>::const_iterator; | 
|  |  | 
|  | /// Return true if the instruction is scheduled at the specified stage. | 
|  | bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { | 
|  | return (stageScheduled(SU) == (int)StageNum); | 
|  | } | 
|  |  | 
|  | /// Return the stage for a scheduled instruction.  Return -1 if | 
|  | /// the instruction has not been scheduled. | 
|  | int stageScheduled(SUnit *SU) const { | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); | 
|  | if (it == InstrToCycle.end()) | 
|  | return -1; | 
|  | return (it->second - FirstCycle) / InitiationInterval; | 
|  | } | 
|  |  | 
|  | /// Return the cycle for a scheduled instruction. This function normalizes | 
|  | /// the first cycle to be 0. | 
|  | unsigned cycleScheduled(SUnit *SU) const { | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); | 
|  | assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); | 
|  | return (it->second - FirstCycle) % InitiationInterval; | 
|  | } | 
|  |  | 
|  | /// Return the maximum stage count needed for this schedule. | 
|  | unsigned getMaxStageCount() { | 
|  | return (LastCycle - FirstCycle) / InitiationInterval; | 
|  | } | 
|  |  | 
|  | /// Return the max. number of stages/iterations that can occur between a | 
|  | /// register definition and its uses. | 
|  | unsigned getStagesForReg(int Reg, unsigned CurStage) { | 
|  | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; | 
|  | if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) | 
|  | return 1; | 
|  | return Stages.first; | 
|  | } | 
|  |  | 
|  | /// The number of stages for a Phi is a little different than other | 
|  | /// instructions. The minimum value computed in RegToStageDiff is 1 | 
|  | /// because we assume the Phi is needed for at least 1 iteration. | 
|  | /// This is not the case if the loop value is scheduled prior to the | 
|  | /// Phi in the same stage.  This function returns the number of stages | 
|  | /// or iterations needed between the Phi definition and any uses. | 
|  | unsigned getStagesForPhi(int Reg) { | 
|  | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; | 
|  | if (Stages.second) | 
|  | return Stages.first; | 
|  | return Stages.first - 1; | 
|  | } | 
|  |  | 
|  | /// Return the instructions that are scheduled at the specified cycle. | 
|  | std::deque<SUnit *> &getInstructions(int cycle) { | 
|  | return ScheduledInstrs[cycle]; | 
|  | } | 
|  |  | 
|  | bool isValidSchedule(SwingSchedulerDAG *SSD); | 
|  | void finalizeSchedule(SwingSchedulerDAG *SSD); | 
|  | void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, | 
|  | std::deque<SUnit *> &Insts); | 
|  | bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); | 
|  | bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, | 
|  | MachineOperand &MO); | 
|  | void print(raw_ostream &os) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; | 
|  | char MachinePipeliner::ID = 0; | 
|  | #ifndef NDEBUG | 
|  | int MachinePipeliner::NumTries = 0; | 
|  | #endif | 
|  | char &llvm::MachinePipelinerID = MachinePipeliner::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, | 
|  | "Modulo Software Pipelining", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
|  | INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, | 
|  | "Modulo Software Pipelining", false, false) | 
|  |  | 
|  | /// The "main" function for implementing Swing Modulo Scheduling. | 
|  | bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { | 
|  | if (skipFunction(mf.getFunction())) | 
|  | return false; | 
|  |  | 
|  | if (!EnableSWP) | 
|  | return false; | 
|  |  | 
|  | if (mf.getFunction().getAttributes().hasAttribute( | 
|  | AttributeList::FunctionIndex, Attribute::OptimizeForSize) && | 
|  | !EnableSWPOptSize.getPosition()) | 
|  | return false; | 
|  |  | 
|  | MF = &mf; | 
|  | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | RegClassInfo.runOnMachineFunction(*MF); | 
|  |  | 
|  | for (auto &L : *MLI) | 
|  | scheduleLoop(*L); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Attempt to perform the SMS algorithm on the specified loop. This function is | 
|  | /// the main entry point for the algorithm.  The function identifies candidate | 
|  | /// loops, calculates the minimum initiation interval, and attempts to schedule | 
|  | /// the loop. | 
|  | bool MachinePipeliner::scheduleLoop(MachineLoop &L) { | 
|  | bool Changed = false; | 
|  | for (auto &InnerLoop : L) | 
|  | Changed |= scheduleLoop(*InnerLoop); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Stop trying after reaching the limit (if any). | 
|  | int Limit = SwpLoopLimit; | 
|  | if (Limit >= 0) { | 
|  | if (NumTries >= SwpLoopLimit) | 
|  | return Changed; | 
|  | NumTries++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!canPipelineLoop(L)) | 
|  | return Changed; | 
|  |  | 
|  | ++NumTrytoPipeline; | 
|  |  | 
|  | Changed = swingModuloScheduler(L); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Return true if the loop can be software pipelined.  The algorithm is | 
|  | /// restricted to loops with a single basic block.  Make sure that the | 
|  | /// branch in the loop can be analyzed. | 
|  | bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { | 
|  | if (L.getNumBlocks() != 1) | 
|  | return false; | 
|  |  | 
|  | // Check if the branch can't be understood because we can't do pipelining | 
|  | // if that's the case. | 
|  | LI.TBB = nullptr; | 
|  | LI.FBB = nullptr; | 
|  | LI.BrCond.clear(); | 
|  | if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) | 
|  | return false; | 
|  |  | 
|  | LI.LoopInductionVar = nullptr; | 
|  | LI.LoopCompare = nullptr; | 
|  | if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) | 
|  | return false; | 
|  |  | 
|  | if (!L.getLoopPreheader()) | 
|  | return false; | 
|  |  | 
|  | // Remove any subregisters from inputs to phi nodes. | 
|  | preprocessPhiNodes(*L.getHeader()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); | 
|  |  | 
|  | for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { | 
|  | MachineOperand &DefOp = PI.getOperand(0); | 
|  | assert(DefOp.getSubReg() == 0); | 
|  | auto *RC = MRI.getRegClass(DefOp.getReg()); | 
|  |  | 
|  | for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { | 
|  | MachineOperand &RegOp = PI.getOperand(i); | 
|  | if (RegOp.getSubReg() == 0) | 
|  | continue; | 
|  |  | 
|  | // If the operand uses a subregister, replace it with a new register | 
|  | // without subregisters, and generate a copy to the new register. | 
|  | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); | 
|  | MachineBasicBlock::iterator At = PredB.getFirstTerminator(); | 
|  | const DebugLoc &DL = PredB.findDebugLoc(At); | 
|  | auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) | 
|  | .addReg(RegOp.getReg(), getRegState(RegOp), | 
|  | RegOp.getSubReg()); | 
|  | Slots.insertMachineInstrInMaps(*Copy); | 
|  | RegOp.setReg(NewReg); | 
|  | RegOp.setSubReg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The SMS algorithm consists of the following main steps: | 
|  | /// 1. Computation and analysis of the dependence graph. | 
|  | /// 2. Ordering of the nodes (instructions). | 
|  | /// 3. Attempt to Schedule the loop. | 
|  | bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { | 
|  | assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); | 
|  |  | 
|  | SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); | 
|  |  | 
|  | MachineBasicBlock *MBB = L.getHeader(); | 
|  | // The kernel should not include any terminator instructions.  These | 
|  | // will be added back later. | 
|  | SMS.startBlock(MBB); | 
|  |  | 
|  | // Compute the number of 'real' instructions in the basic block by | 
|  | // ignoring terminators. | 
|  | unsigned size = MBB->size(); | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), | 
|  | E = MBB->instr_end(); | 
|  | I != E; ++I, --size) | 
|  | ; | 
|  |  | 
|  | SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); | 
|  | SMS.schedule(); | 
|  | SMS.exitRegion(); | 
|  |  | 
|  | SMS.finishBlock(); | 
|  | return SMS.hasNewSchedule(); | 
|  | } | 
|  |  | 
|  | /// We override the schedule function in ScheduleDAGInstrs to implement the | 
|  | /// scheduling part of the Swing Modulo Scheduling algorithm. | 
|  | void SwingSchedulerDAG::schedule() { | 
|  | AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | buildSchedGraph(AA); | 
|  | addLoopCarriedDependences(AA); | 
|  | updatePhiDependences(); | 
|  | Topo.InitDAGTopologicalSorting(); | 
|  | postprocessDAG(); | 
|  | changeDependences(); | 
|  | DEBUG({ | 
|  | for (unsigned su = 0, e = SUnits.size(); su != e; ++su) | 
|  | SUnits[su].dumpAll(this); | 
|  | }); | 
|  |  | 
|  | NodeSetType NodeSets; | 
|  | findCircuits(NodeSets); | 
|  | NodeSetType Circuits = NodeSets; | 
|  |  | 
|  | // Calculate the MII. | 
|  | unsigned ResMII = calculateResMII(); | 
|  | unsigned RecMII = calculateRecMII(NodeSets); | 
|  |  | 
|  | fuseRecs(NodeSets); | 
|  |  | 
|  | // This flag is used for testing and can cause correctness problems. | 
|  | if (SwpIgnoreRecMII) | 
|  | RecMII = 0; | 
|  |  | 
|  | MII = std::max(ResMII, RecMII); | 
|  | DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII | 
|  | << ")\n"); | 
|  |  | 
|  | // Can't schedule a loop without a valid MII. | 
|  | if (MII == 0) | 
|  | return; | 
|  |  | 
|  | // Don't pipeline large loops. | 
|  | if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) | 
|  | return; | 
|  |  | 
|  | computeNodeFunctions(NodeSets); | 
|  |  | 
|  | registerPressureFilter(NodeSets); | 
|  |  | 
|  | colocateNodeSets(NodeSets); | 
|  |  | 
|  | checkNodeSets(NodeSets); | 
|  |  | 
|  | DEBUG({ | 
|  | for (auto &I : NodeSets) { | 
|  | dbgs() << "  Rec NodeSet "; | 
|  | I.dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); | 
|  |  | 
|  | groupRemainingNodes(NodeSets); | 
|  |  | 
|  | removeDuplicateNodes(NodeSets); | 
|  |  | 
|  | DEBUG({ | 
|  | for (auto &I : NodeSets) { | 
|  | dbgs() << "  NodeSet "; | 
|  | I.dump(); | 
|  | } | 
|  | }); | 
|  |  | 
|  | computeNodeOrder(NodeSets); | 
|  |  | 
|  | // check for node order issues | 
|  | checkValidNodeOrder(Circuits); | 
|  |  | 
|  | SMSchedule Schedule(Pass.MF); | 
|  | Scheduled = schedulePipeline(Schedule); | 
|  |  | 
|  | if (!Scheduled) | 
|  | return; | 
|  |  | 
|  | unsigned numStages = Schedule.getMaxStageCount(); | 
|  | // No need to generate pipeline if there are no overlapped iterations. | 
|  | if (numStages == 0) | 
|  | return; | 
|  |  | 
|  | // Check that the maximum stage count is less than user-defined limit. | 
|  | if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) | 
|  | return; | 
|  |  | 
|  | generatePipelinedLoop(Schedule); | 
|  | ++NumPipelined; | 
|  | } | 
|  |  | 
|  | /// Clean up after the software pipeliner runs. | 
|  | void SwingSchedulerDAG::finishBlock() { | 
|  | for (MachineInstr *I : NewMIs) | 
|  | MF.DeleteMachineInstr(I); | 
|  | NewMIs.clear(); | 
|  |  | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::finishBlock(); | 
|  | } | 
|  |  | 
|  | /// Return the register values for  the operands of a Phi instruction. | 
|  | /// This function assume the instruction is a Phi. | 
|  | static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, | 
|  | unsigned &InitVal, unsigned &LoopVal) { | 
|  | assert(Phi.isPHI() && "Expecting a Phi."); | 
|  |  | 
|  | InitVal = 0; | 
|  | LoopVal = 0; | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() != Loop) | 
|  | InitVal = Phi.getOperand(i).getReg(); | 
|  | else | 
|  | LoopVal = Phi.getOperand(i).getReg(); | 
|  |  | 
|  | assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); | 
|  | } | 
|  |  | 
|  | /// Return the Phi register value that comes from the incoming block. | 
|  | static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() != LoopBB) | 
|  | return Phi.getOperand(i).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return the Phi register value that comes the loop block. | 
|  | static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { | 
|  | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | if (Phi.getOperand(i + 1).getMBB() == LoopBB) | 
|  | return Phi.getOperand(i).getReg(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return true if SUb can be reached from SUa following the chain edges. | 
|  | static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SUnit *, 8> Worklist; | 
|  | Worklist.push_back(SUa); | 
|  | while (!Worklist.empty()) { | 
|  | const SUnit *SU = Worklist.pop_back_val(); | 
|  | for (auto &SI : SU->Succs) { | 
|  | SUnit *SuccSU = SI.getSUnit(); | 
|  | if (SI.getKind() == SDep::Order) { | 
|  | if (Visited.count(SuccSU)) | 
|  | continue; | 
|  | if (SuccSU == SUb) | 
|  | return true; | 
|  | Worklist.push_back(SuccSU); | 
|  | Visited.insert(SuccSU); | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction causes a chain between memory | 
|  | /// references before and after it. | 
|  | static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { | 
|  | return MI.isCall() || MI.hasUnmodeledSideEffects() || | 
|  | (MI.hasOrderedMemoryRef() && | 
|  | (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); | 
|  | } | 
|  |  | 
|  | /// Return the underlying objects for the memory references of an instruction. | 
|  | /// This function calls the code in ValueTracking, but first checks that the | 
|  | /// instruction has a memory operand. | 
|  | static void getUnderlyingObjects(MachineInstr *MI, | 
|  | SmallVectorImpl<Value *> &Objs, | 
|  | const DataLayout &DL) { | 
|  | if (!MI->hasOneMemOperand()) | 
|  | return; | 
|  | MachineMemOperand *MM = *MI->memoperands_begin(); | 
|  | if (!MM->getValue()) | 
|  | return; | 
|  | GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); | 
|  | for (Value *V : Objs) { | 
|  | if (!isIdentifiedObject(V)) { | 
|  | Objs.clear(); | 
|  | return; | 
|  | } | 
|  | Objs.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add a chain edge between a load and store if the store can be an | 
|  | /// alias of the load on a subsequent iteration, i.e., a loop carried | 
|  | /// dependence. This code is very similar to the code in ScheduleDAGInstrs | 
|  | /// but that code doesn't create loop carried dependences. | 
|  | void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { | 
|  | MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; | 
|  | Value *UnknownValue = | 
|  | UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); | 
|  | for (auto &SU : SUnits) { | 
|  | MachineInstr &MI = *SU.getInstr(); | 
|  | if (isDependenceBarrier(MI, AA)) | 
|  | PendingLoads.clear(); | 
|  | else if (MI.mayLoad()) { | 
|  | SmallVector<Value *, 4> Objs; | 
|  | getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); | 
|  | if (Objs.empty()) | 
|  | Objs.push_back(UnknownValue); | 
|  | for (auto V : Objs) { | 
|  | SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; | 
|  | SUs.push_back(&SU); | 
|  | } | 
|  | } else if (MI.mayStore()) { | 
|  | SmallVector<Value *, 4> Objs; | 
|  | getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); | 
|  | if (Objs.empty()) | 
|  | Objs.push_back(UnknownValue); | 
|  | for (auto V : Objs) { | 
|  | MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = | 
|  | PendingLoads.find(V); | 
|  | if (I == PendingLoads.end()) | 
|  | continue; | 
|  | for (auto Load : I->second) { | 
|  | if (isSuccOrder(Load, &SU)) | 
|  | continue; | 
|  | MachineInstr &LdMI = *Load->getInstr(); | 
|  | // First, perform the cheaper check that compares the base register. | 
|  | // If they are the same and the load offset is less than the store | 
|  | // offset, then mark the dependence as loop carried potentially. | 
|  | unsigned BaseReg1, BaseReg2; | 
|  | int64_t Offset1, Offset2; | 
|  | if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && | 
|  | TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { | 
|  | if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { | 
|  | assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && | 
|  | "What happened to the chain edge?"); | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // Second, the more expensive check that uses alias analysis on the | 
|  | // base registers. If they alias, and the load offset is less than | 
|  | // the store offset, the mark the dependence as loop carried. | 
|  | if (!AA) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); | 
|  | MachineMemOperand *MMO2 = *MI.memoperands_begin(); | 
|  | if (!MMO1->getValue() || !MMO2->getValue()) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | if (MMO1->getValue() == MMO2->getValue() && | 
|  | MMO1->getOffset() <= MMO2->getOffset()) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | continue; | 
|  | } | 
|  | AliasResult AAResult = AA->alias( | 
|  | MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, | 
|  | MMO1->getAAInfo()), | 
|  | MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, | 
|  | MMO2->getAAInfo())); | 
|  |  | 
|  | if (AAResult != NoAlias) { | 
|  | SDep Dep(Load, SDep::Barrier); | 
|  | Dep.setLatency(1); | 
|  | SU.addPred(Dep); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer | 
|  | /// processes dependences for PHIs. This function adds true dependences | 
|  | /// from a PHI to a use, and a loop carried dependence from the use to the | 
|  | /// PHI. The loop carried dependence is represented as an anti dependence | 
|  | /// edge. This function also removes chain dependences between unrelated | 
|  | /// PHIs. | 
|  | void SwingSchedulerDAG::updatePhiDependences() { | 
|  | SmallVector<SDep, 4> RemoveDeps; | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); | 
|  |  | 
|  | // Iterate over each DAG node. | 
|  | for (SUnit &I : SUnits) { | 
|  | RemoveDeps.clear(); | 
|  | // Set to true if the instruction has an operand defined by a Phi. | 
|  | unsigned HasPhiUse = 0; | 
|  | unsigned HasPhiDef = 0; | 
|  | MachineInstr *MI = I.getInstr(); | 
|  | // Iterate over each operand, and we process the definitions. | 
|  | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | MOE = MI->operands_end(); | 
|  | MOI != MOE; ++MOI) { | 
|  | if (!MOI->isReg()) | 
|  | continue; | 
|  | unsigned Reg = MOI->getReg(); | 
|  | if (MOI->isDef()) { | 
|  | // If the register is used by a Phi, then create an anti dependence. | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | UI = MRI.use_instr_begin(Reg), | 
|  | UE = MRI.use_instr_end(); | 
|  | UI != UE; ++UI) { | 
|  | MachineInstr *UseMI = &*UI; | 
|  | SUnit *SU = getSUnit(UseMI); | 
|  | if (SU != nullptr && UseMI->isPHI()) { | 
|  | if (!MI->isPHI()) { | 
|  | SDep Dep(SU, SDep::Anti, Reg); | 
|  | Dep.setLatency(1); | 
|  | I.addPred(Dep); | 
|  | } else { | 
|  | HasPhiDef = Reg; | 
|  | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | // predecessor. | 
|  | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (MOI->isUse()) { | 
|  | // If the register is defined by a Phi, then create a true dependence. | 
|  | MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); | 
|  | if (DefMI == nullptr) | 
|  | continue; | 
|  | SUnit *SU = getSUnit(DefMI); | 
|  | if (SU != nullptr && DefMI->isPHI()) { | 
|  | if (!MI->isPHI()) { | 
|  | SDep Dep(SU, SDep::Data, Reg); | 
|  | Dep.setLatency(0); | 
|  | ST.adjustSchedDependency(SU, &I, Dep); | 
|  | I.addPred(Dep); | 
|  | } else { | 
|  | HasPhiUse = Reg; | 
|  | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | // predecessor. | 
|  | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Remove order dependences from an unrelated Phi. | 
|  | if (!SwpPruneDeps) | 
|  | continue; | 
|  | for (auto &PI : I.Preds) { | 
|  | MachineInstr *PMI = PI.getSUnit()->getInstr(); | 
|  | if (PMI->isPHI() && PI.getKind() == SDep::Order) { | 
|  | if (I.getInstr()->isPHI()) { | 
|  | if (PMI->getOperand(0).getReg() == HasPhiUse) | 
|  | continue; | 
|  | if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) | 
|  | continue; | 
|  | } | 
|  | RemoveDeps.push_back(PI); | 
|  | } | 
|  | } | 
|  | for (int i = 0, e = RemoveDeps.size(); i != e; ++i) | 
|  | I.removePred(RemoveDeps[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Iterate over each DAG node and see if we can change any dependences | 
|  | /// in order to reduce the recurrence MII. | 
|  | void SwingSchedulerDAG::changeDependences() { | 
|  | // See if an instruction can use a value from the previous iteration. | 
|  | // If so, we update the base and offset of the instruction and change | 
|  | // the dependences. | 
|  | for (SUnit &I : SUnits) { | 
|  | unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; | 
|  | int64_t NewOffset = 0; | 
|  | if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, | 
|  | NewOffset)) | 
|  | continue; | 
|  |  | 
|  | // Get the MI and SUnit for the instruction that defines the original base. | 
|  | unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); | 
|  | MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); | 
|  | if (!DefMI) | 
|  | continue; | 
|  | SUnit *DefSU = getSUnit(DefMI); | 
|  | if (!DefSU) | 
|  | continue; | 
|  | // Get the MI and SUnit for the instruction that defins the new base. | 
|  | MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); | 
|  | if (!LastMI) | 
|  | continue; | 
|  | SUnit *LastSU = getSUnit(LastMI); | 
|  | if (!LastSU) | 
|  | continue; | 
|  |  | 
|  | if (Topo.IsReachable(&I, LastSU)) | 
|  | continue; | 
|  |  | 
|  | // Remove the dependence. The value now depends on a prior iteration. | 
|  | SmallVector<SDep, 4> Deps; | 
|  | for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; | 
|  | ++P) | 
|  | if (P->getSUnit() == DefSU) | 
|  | Deps.push_back(*P); | 
|  | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | Topo.RemovePred(&I, Deps[i].getSUnit()); | 
|  | I.removePred(Deps[i]); | 
|  | } | 
|  | // Remove the chain dependence between the instructions. | 
|  | Deps.clear(); | 
|  | for (auto &P : LastSU->Preds) | 
|  | if (P.getSUnit() == &I && P.getKind() == SDep::Order) | 
|  | Deps.push_back(P); | 
|  | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | Topo.RemovePred(LastSU, Deps[i].getSUnit()); | 
|  | LastSU->removePred(Deps[i]); | 
|  | } | 
|  |  | 
|  | // Add a dependence between the new instruction and the instruction | 
|  | // that defines the new base. | 
|  | SDep Dep(&I, SDep::Anti, NewBase); | 
|  | LastSU->addPred(Dep); | 
|  |  | 
|  | // Remember the base and offset information so that we can update the | 
|  | // instruction during code generation. | 
|  | InstrChanges[&I] = std::make_pair(NewBase, NewOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // FuncUnitSorter - Comparison operator used to sort instructions by | 
|  | // the number of functional unit choices. | 
|  | struct FuncUnitSorter { | 
|  | const InstrItineraryData *InstrItins; | 
|  | DenseMap<unsigned, unsigned> Resources; | 
|  |  | 
|  | FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} | 
|  |  | 
|  | // Compute the number of functional unit alternatives needed | 
|  | // at each stage, and take the minimum value. We prioritize the | 
|  | // instructions by the least number of choices first. | 
|  | unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { | 
|  | unsigned schedClass = Inst->getDesc().getSchedClass(); | 
|  | unsigned min = UINT_MAX; | 
|  | for (const InstrStage *IS = InstrItins->beginStage(schedClass), | 
|  | *IE = InstrItins->endStage(schedClass); | 
|  | IS != IE; ++IS) { | 
|  | unsigned funcUnits = IS->getUnits(); | 
|  | unsigned numAlternatives = countPopulation(funcUnits); | 
|  | if (numAlternatives < min) { | 
|  | min = numAlternatives; | 
|  | F = funcUnits; | 
|  | } | 
|  | } | 
|  | return min; | 
|  | } | 
|  |  | 
|  | // Compute the critical resources needed by the instruction. This | 
|  | // function records the functional units needed by instructions that | 
|  | // must use only one functional unit. We use this as a tie breaker | 
|  | // for computing the resource MII. The instrutions that require | 
|  | // the same, highly used, functional unit have high priority. | 
|  | void calcCriticalResources(MachineInstr &MI) { | 
|  | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | for (const InstrStage *IS = InstrItins->beginStage(SchedClass), | 
|  | *IE = InstrItins->endStage(SchedClass); | 
|  | IS != IE; ++IS) { | 
|  | unsigned FuncUnits = IS->getUnits(); | 
|  | if (countPopulation(FuncUnits) == 1) | 
|  | Resources[FuncUnits]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if IS1 has less priority than IS2. | 
|  | bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { | 
|  | unsigned F1 = 0, F2 = 0; | 
|  | unsigned MFUs1 = minFuncUnits(IS1, F1); | 
|  | unsigned MFUs2 = minFuncUnits(IS2, F2); | 
|  | if (MFUs1 == 1 && MFUs2 == 1) | 
|  | return Resources.lookup(F1) < Resources.lookup(F2); | 
|  | return MFUs1 > MFUs2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Calculate the resource constrained minimum initiation interval for the | 
|  | /// specified loop. We use the DFA to model the resources needed for | 
|  | /// each instruction, and we ignore dependences. A different DFA is created | 
|  | /// for each cycle that is required. When adding a new instruction, we attempt | 
|  | /// to add it to each existing DFA, until a legal space is found. If the | 
|  | /// instruction cannot be reserved in an existing DFA, we create a new one. | 
|  | unsigned SwingSchedulerDAG::calculateResMII() { | 
|  | SmallVector<DFAPacketizer *, 8> Resources; | 
|  | MachineBasicBlock *MBB = Loop.getHeader(); | 
|  | Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); | 
|  |  | 
|  | // Sort the instructions by the number of available choices for scheduling, | 
|  | // least to most. Use the number of critical resources as the tie breaker. | 
|  | FuncUnitSorter FUS = | 
|  | FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), | 
|  | E = MBB->getFirstTerminator(); | 
|  | I != E; ++I) | 
|  | FUS.calcCriticalResources(*I); | 
|  | PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> | 
|  | FuncUnitOrder(FUS); | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), | 
|  | E = MBB->getFirstTerminator(); | 
|  | I != E; ++I) | 
|  | FuncUnitOrder.push(&*I); | 
|  |  | 
|  | while (!FuncUnitOrder.empty()) { | 
|  | MachineInstr *MI = FuncUnitOrder.top(); | 
|  | FuncUnitOrder.pop(); | 
|  | if (TII->isZeroCost(MI->getOpcode())) | 
|  | continue; | 
|  | // Attempt to reserve the instruction in an existing DFA. At least one | 
|  | // DFA is needed for each cycle. | 
|  | unsigned NumCycles = getSUnit(MI)->Latency; | 
|  | unsigned ReservedCycles = 0; | 
|  | SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); | 
|  | SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); | 
|  | for (unsigned C = 0; C < NumCycles; ++C) | 
|  | while (RI != RE) { | 
|  | if ((*RI++)->canReserveResources(*MI)) { | 
|  | ++ReservedCycles; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Start reserving resources using existing DFAs. | 
|  | for (unsigned C = 0; C < ReservedCycles; ++C) { | 
|  | --RI; | 
|  | (*RI)->reserveResources(*MI); | 
|  | } | 
|  | // Add new DFAs, if needed, to reserve resources. | 
|  | for (unsigned C = ReservedCycles; C < NumCycles; ++C) { | 
|  | DFAPacketizer *NewResource = | 
|  | TII->CreateTargetScheduleState(MF.getSubtarget()); | 
|  | assert(NewResource->canReserveResources(*MI) && "Reserve error."); | 
|  | NewResource->reserveResources(*MI); | 
|  | Resources.push_back(NewResource); | 
|  | } | 
|  | } | 
|  | int Resmii = Resources.size(); | 
|  | // Delete the memory for each of the DFAs that were created earlier. | 
|  | for (DFAPacketizer *RI : Resources) { | 
|  | DFAPacketizer *D = RI; | 
|  | delete D; | 
|  | } | 
|  | Resources.clear(); | 
|  | return Resmii; | 
|  | } | 
|  |  | 
|  | /// Calculate the recurrence-constrainted minimum initiation interval. | 
|  | /// Iterate over each circuit.  Compute the delay(c) and distance(c) | 
|  | /// for each circuit. The II needs to satisfy the inequality | 
|  | /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest | 
|  | /// II that satistifies the inequality, and the RecMII is the maximum | 
|  | /// of those values. | 
|  | unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { | 
|  | unsigned RecMII = 0; | 
|  |  | 
|  | for (NodeSet &Nodes : NodeSets) { | 
|  | if (Nodes.empty()) | 
|  | continue; | 
|  |  | 
|  | unsigned Delay = Nodes.getLatency(); | 
|  | unsigned Distance = 1; | 
|  |  | 
|  | // ii = ceil(delay / distance) | 
|  | unsigned CurMII = (Delay + Distance - 1) / Distance; | 
|  | Nodes.setRecMII(CurMII); | 
|  | if (CurMII > RecMII) | 
|  | RecMII = CurMII; | 
|  | } | 
|  |  | 
|  | return RecMII; | 
|  | } | 
|  |  | 
|  | /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | /// but we do this to find the circuits, and then change them back. | 
|  | static void swapAntiDependences(std::vector<SUnit> &SUnits) { | 
|  | SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; | 
|  | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | SUnit *SU = &SUnits[i]; | 
|  | for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); | 
|  | IP != EP; ++IP) { | 
|  | if (IP->getKind() != SDep::Anti) | 
|  | continue; | 
|  | DepsAdded.push_back(std::make_pair(SU, *IP)); | 
|  | } | 
|  | } | 
|  | for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), | 
|  | E = DepsAdded.end(); | 
|  | I != E; ++I) { | 
|  | // Remove this anti dependency and add one in the reverse direction. | 
|  | SUnit *SU = I->first; | 
|  | SDep &D = I->second; | 
|  | SUnit *TargetSU = D.getSUnit(); | 
|  | unsigned Reg = D.getReg(); | 
|  | unsigned Lat = D.getLatency(); | 
|  | SU->removePred(D); | 
|  | SDep Dep(SU, SDep::Anti, Reg); | 
|  | Dep.setLatency(Lat); | 
|  | TargetSU->addPred(Dep); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create the adjacency structure of the nodes in the graph. | 
|  | void SwingSchedulerDAG::Circuits::createAdjacencyStructure( | 
|  | SwingSchedulerDAG *DAG) { | 
|  | BitVector Added(SUnits.size()); | 
|  | DenseMap<int, int> OutputDeps; | 
|  | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | Added.reset(); | 
|  | // Add any successor to the adjacency matrix and exclude duplicates. | 
|  | for (auto &SI : SUnits[i].Succs) { | 
|  | // Only create a back-edge on the first and last nodes of a dependence | 
|  | // chain. This records any chains and adds them later. | 
|  | if (SI.getKind() == SDep::Output) { | 
|  | int N = SI.getSUnit()->NodeNum; | 
|  | int BackEdge = i; | 
|  | auto Dep = OutputDeps.find(BackEdge); | 
|  | if (Dep != OutputDeps.end()) { | 
|  | BackEdge = Dep->second; | 
|  | OutputDeps.erase(Dep); | 
|  | } | 
|  | OutputDeps[N] = BackEdge; | 
|  | } | 
|  | // Do not process a boundary node and a back-edge is processed only | 
|  | // if it goes to a Phi. | 
|  | if (SI.getSUnit()->isBoundaryNode() || | 
|  | (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) | 
|  | continue; | 
|  | int N = SI.getSUnit()->NodeNum; | 
|  | if (!Added.test(N)) { | 
|  | AdjK[i].push_back(N); | 
|  | Added.set(N); | 
|  | } | 
|  | } | 
|  | // A chain edge between a store and a load is treated as a back-edge in the | 
|  | // adjacency matrix. | 
|  | for (auto &PI : SUnits[i].Preds) { | 
|  | if (!SUnits[i].getInstr()->mayStore() || | 
|  | !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) | 
|  | continue; | 
|  | if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { | 
|  | int N = PI.getSUnit()->NodeNum; | 
|  | if (!Added.test(N)) { | 
|  | AdjK[i].push_back(N); | 
|  | Added.set(N); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Add back-eges in the adjacency matrix for the output dependences. | 
|  | for (auto &OD : OutputDeps) | 
|  | if (!Added.test(OD.second)) { | 
|  | AdjK[OD.first].push_back(OD.second); | 
|  | Added.set(OD.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify an elementary circuit in the dependence graph starting at the | 
|  | /// specified node. | 
|  | bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, | 
|  | bool HasBackedge) { | 
|  | SUnit *SV = &SUnits[V]; | 
|  | bool F = false; | 
|  | Stack.insert(SV); | 
|  | Blocked.set(V); | 
|  |  | 
|  | for (auto W : AdjK[V]) { | 
|  | if (NumPaths > MaxPaths) | 
|  | break; | 
|  | if (W < S) | 
|  | continue; | 
|  | if (W == S) { | 
|  | if (!HasBackedge) | 
|  | NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); | 
|  | F = true; | 
|  | ++NumPaths; | 
|  | break; | 
|  | } else if (!Blocked.test(W)) { | 
|  | if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) | 
|  | F = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (F) | 
|  | unblock(V); | 
|  | else { | 
|  | for (auto W : AdjK[V]) { | 
|  | if (W < S) | 
|  | continue; | 
|  | if (B[W].count(SV) == 0) | 
|  | B[W].insert(SV); | 
|  | } | 
|  | } | 
|  | Stack.pop_back(); | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /// Unblock a node in the circuit finding algorithm. | 
|  | void SwingSchedulerDAG::Circuits::unblock(int U) { | 
|  | Blocked.reset(U); | 
|  | SmallPtrSet<SUnit *, 4> &BU = B[U]; | 
|  | while (!BU.empty()) { | 
|  | SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); | 
|  | assert(SI != BU.end() && "Invalid B set."); | 
|  | SUnit *W = *SI; | 
|  | BU.erase(W); | 
|  | if (Blocked.test(W->NodeNum)) | 
|  | unblock(W->NodeNum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identify all the elementary circuits in the dependence graph using | 
|  | /// Johnson's circuit algorithm. | 
|  | void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { | 
|  | // Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | // but we do this to find the circuits, and then change them back. | 
|  | swapAntiDependences(SUnits); | 
|  |  | 
|  | Circuits Cir(SUnits); | 
|  | // Create the adjacency structure. | 
|  | Cir.createAdjacencyStructure(this); | 
|  | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | Cir.reset(); | 
|  | Cir.circuit(i, i, NodeSets); | 
|  | } | 
|  |  | 
|  | // Change the dependences back so that we've created a DAG again. | 
|  | swapAntiDependences(SUnits); | 
|  | } | 
|  |  | 
|  | /// Return true for DAG nodes that we ignore when computing the cost functions. | 
|  | /// We ignore the back-edge recurrence in order to avoid unbounded recurison | 
|  | /// in the calculation of the ASAP, ALAP, etc functions. | 
|  | static bool ignoreDependence(const SDep &D, bool isPred) { | 
|  | if (D.isArtificial()) | 
|  | return true; | 
|  | return D.getKind() == SDep::Anti && isPred; | 
|  | } | 
|  |  | 
|  | /// Compute several functions need to order the nodes for scheduling. | 
|  | ///  ASAP - Earliest time to schedule a node. | 
|  | ///  ALAP - Latest time to schedule a node. | 
|  | ///  MOV - Mobility function, difference between ALAP and ASAP. | 
|  | ///  D - Depth of each node. | 
|  | ///  H - Height of each node. | 
|  | void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { | 
|  | ScheduleInfo.resize(SUnits.size()); | 
|  |  | 
|  | DEBUG({ | 
|  | for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), | 
|  | E = Topo.end(); | 
|  | I != E; ++I) { | 
|  | SUnit *SU = &SUnits[*I]; | 
|  | SU->dump(this); | 
|  | } | 
|  | }); | 
|  |  | 
|  | int maxASAP = 0; | 
|  | // Compute ASAP and ZeroLatencyDepth. | 
|  | for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), | 
|  | E = Topo.end(); | 
|  | I != E; ++I) { | 
|  | int asap = 0; | 
|  | int zeroLatencyDepth = 0; | 
|  | SUnit *SU = &SUnits[*I]; | 
|  | for (SUnit::const_pred_iterator IP = SU->Preds.begin(), | 
|  | EP = SU->Preds.end(); | 
|  | IP != EP; ++IP) { | 
|  | SUnit *pred = IP->getSUnit(); | 
|  | if (IP->getLatency() == 0) | 
|  | zeroLatencyDepth = | 
|  | std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); | 
|  | if (ignoreDependence(*IP, true)) | 
|  | continue; | 
|  | asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - | 
|  | getDistance(pred, SU, *IP) * MII)); | 
|  | } | 
|  | maxASAP = std::max(maxASAP, asap); | 
|  | ScheduleInfo[*I].ASAP = asap; | 
|  | ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; | 
|  | } | 
|  |  | 
|  | // Compute ALAP, ZeroLatencyHeight, and MOV. | 
|  | for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), | 
|  | E = Topo.rend(); | 
|  | I != E; ++I) { | 
|  | int alap = maxASAP; | 
|  | int zeroLatencyHeight = 0; | 
|  | SUnit *SU = &SUnits[*I]; | 
|  | for (SUnit::const_succ_iterator IS = SU->Succs.begin(), | 
|  | ES = SU->Succs.end(); | 
|  | IS != ES; ++IS) { | 
|  | SUnit *succ = IS->getSUnit(); | 
|  | if (IS->getLatency() == 0) | 
|  | zeroLatencyHeight = | 
|  | std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); | 
|  | if (ignoreDependence(*IS, true)) | 
|  | continue; | 
|  | alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + | 
|  | getDistance(SU, succ, *IS) * MII)); | 
|  | } | 
|  |  | 
|  | ScheduleInfo[*I].ALAP = alap; | 
|  | ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; | 
|  | } | 
|  |  | 
|  | // After computing the node functions, compute the summary for each node set. | 
|  | for (NodeSet &I : NodeSets) | 
|  | I.computeNodeSetInfo(this); | 
|  |  | 
|  | DEBUG({ | 
|  | for (unsigned i = 0; i < SUnits.size(); i++) { | 
|  | dbgs() << "\tNode " << i << ":\n"; | 
|  | dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; | 
|  | dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Compute the Pred_L(O) set, as defined in the paper. The set is defined | 
|  | /// as the predecessors of the elements of NodeOrder that are not also in | 
|  | /// NodeOrder. | 
|  | static bool pred_L(SetVector<SUnit *> &NodeOrder, | 
|  | SmallSetVector<SUnit *, 8> &Preds, | 
|  | const NodeSet *S = nullptr) { | 
|  | Preds.clear(); | 
|  | for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); | 
|  | I != E; ++I) { | 
|  | for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); | 
|  | PI != PE; ++PI) { | 
|  | if (S && S->count(PI->getSUnit()) == 0) | 
|  | continue; | 
|  | if (ignoreDependence(*PI, true)) | 
|  | continue; | 
|  | if (NodeOrder.count(PI->getSUnit()) == 0) | 
|  | Preds.insert(PI->getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), | 
|  | ES = (*I)->Succs.end(); | 
|  | IS != ES; ++IS) { | 
|  | if (IS->getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (S && S->count(IS->getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(IS->getSUnit()) == 0) | 
|  | Preds.insert(IS->getSUnit()); | 
|  | } | 
|  | } | 
|  | return !Preds.empty(); | 
|  | } | 
|  |  | 
|  | /// Compute the Succ_L(O) set, as defined in the paper. The set is defined | 
|  | /// as the successors of the elements of NodeOrder that are not also in | 
|  | /// NodeOrder. | 
|  | static bool succ_L(SetVector<SUnit *> &NodeOrder, | 
|  | SmallSetVector<SUnit *, 8> &Succs, | 
|  | const NodeSet *S = nullptr) { | 
|  | Succs.clear(); | 
|  | for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); | 
|  | I != E; ++I) { | 
|  | for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); | 
|  | SI != SE; ++SI) { | 
|  | if (S && S->count(SI->getSUnit()) == 0) | 
|  | continue; | 
|  | if (ignoreDependence(*SI, false)) | 
|  | continue; | 
|  | if (NodeOrder.count(SI->getSUnit()) == 0) | 
|  | Succs.insert(SI->getSUnit()); | 
|  | } | 
|  | for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), | 
|  | PE = (*I)->Preds.end(); | 
|  | PI != PE; ++PI) { | 
|  | if (PI->getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (S && S->count(PI->getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(PI->getSUnit()) == 0) | 
|  | Succs.insert(PI->getSUnit()); | 
|  | } | 
|  | } | 
|  | return !Succs.empty(); | 
|  | } | 
|  |  | 
|  | /// Return true if there is a path from the specified node to any of the nodes | 
|  | /// in DestNodes. Keep track and return the nodes in any path. | 
|  | static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, | 
|  | SetVector<SUnit *> &DestNodes, | 
|  | SetVector<SUnit *> &Exclude, | 
|  | SmallPtrSet<SUnit *, 8> &Visited) { | 
|  | if (Cur->isBoundaryNode()) | 
|  | return false; | 
|  | if (Exclude.count(Cur) != 0) | 
|  | return false; | 
|  | if (DestNodes.count(Cur) != 0) | 
|  | return true; | 
|  | if (!Visited.insert(Cur).second) | 
|  | return Path.count(Cur) != 0; | 
|  | bool FoundPath = false; | 
|  | for (auto &SI : Cur->Succs) | 
|  | FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | for (auto &PI : Cur->Preds) | 
|  | if (PI.getKind() == SDep::Anti) | 
|  | FoundPath |= | 
|  | computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | if (FoundPath) | 
|  | Path.insert(Cur); | 
|  | return FoundPath; | 
|  | } | 
|  |  | 
|  | /// Return true if Set1 is a subset of Set2. | 
|  | template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { | 
|  | for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) | 
|  | if (Set2.count(*I) == 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Compute the live-out registers for the instructions in a node-set. | 
|  | /// The live-out registers are those that are defined in the node-set, | 
|  | /// but not used. Except for use operands of Phis. | 
|  | static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, | 
|  | NodeSet &NS) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | SmallVector<RegisterMaskPair, 8> LiveOutRegs; | 
|  | SmallSet<unsigned, 4> Uses; | 
|  | for (SUnit *SU : NS) { | 
|  | const MachineInstr *MI = SU->getInstr(); | 
|  | if (MI->isPHI()) | 
|  | continue; | 
|  | for (const MachineOperand &MO : MI->operands()) | 
|  | if (MO.isReg() && MO.isUse()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | Uses.insert(Reg); | 
|  | else if (MRI.isAllocatable(Reg)) | 
|  | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) | 
|  | Uses.insert(*Units); | 
|  | } | 
|  | } | 
|  | for (SUnit *SU : NS) | 
|  | for (const MachineOperand &MO : SU->getInstr()->operands()) | 
|  | if (MO.isReg() && MO.isDef() && !MO.isDead()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | if (!Uses.count(Reg)) | 
|  | LiveOutRegs.push_back(RegisterMaskPair(Reg, | 
|  | LaneBitmask::getNone())); | 
|  | } else if (MRI.isAllocatable(Reg)) { | 
|  | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) | 
|  | if (!Uses.count(*Units)) | 
|  | LiveOutRegs.push_back(RegisterMaskPair(*Units, | 
|  | LaneBitmask::getNone())); | 
|  | } | 
|  | } | 
|  | RPTracker.addLiveRegs(LiveOutRegs); | 
|  | } | 
|  |  | 
|  | /// A heuristic to filter nodes in recurrent node-sets if the register | 
|  | /// pressure of a set is too high. | 
|  | void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { | 
|  | for (auto &NS : NodeSets) { | 
|  | // Skip small node-sets since they won't cause register pressure problems. | 
|  | if (NS.size() <= 2) | 
|  | continue; | 
|  | IntervalPressure RecRegPressure; | 
|  | RegPressureTracker RecRPTracker(RecRegPressure); | 
|  | RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); | 
|  | computeLiveOuts(MF, RecRPTracker, NS); | 
|  | RecRPTracker.closeBottom(); | 
|  |  | 
|  | std::vector<SUnit *> SUnits(NS.begin(), NS.end()); | 
|  | llvm::sort(SUnits.begin(), SUnits.end(), | 
|  | [](const SUnit *A, const SUnit *B) { | 
|  | return A->NodeNum > B->NodeNum; | 
|  | }); | 
|  |  | 
|  | for (auto &SU : SUnits) { | 
|  | // Since we're computing the register pressure for a subset of the | 
|  | // instructions in a block, we need to set the tracker for each | 
|  | // instruction in the node-set. The tracker is set to the instruction | 
|  | // just after the one we're interested in. | 
|  | MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); | 
|  | RecRPTracker.setPos(std::next(CurInstI)); | 
|  |  | 
|  | RegPressureDelta RPDelta; | 
|  | ArrayRef<PressureChange> CriticalPSets; | 
|  | RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, | 
|  | CriticalPSets, | 
|  | RecRegPressure.MaxSetPressure); | 
|  | if (RPDelta.Excess.isValid()) { | 
|  | DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " | 
|  | << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) | 
|  | << ":" << RPDelta.Excess.getUnitInc()); | 
|  | NS.setExceedPressure(SU); | 
|  | break; | 
|  | } | 
|  | RecRPTracker.recede(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A heuristic to colocate node sets that have the same set of | 
|  | /// successors. | 
|  | void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { | 
|  | unsigned Colocate = 0; | 
|  | for (int i = 0, e = NodeSets.size(); i < e; ++i) { | 
|  | NodeSet &N1 = NodeSets[i]; | 
|  | SmallSetVector<SUnit *, 8> S1; | 
|  | if (N1.empty() || !succ_L(N1, S1)) | 
|  | continue; | 
|  | for (int j = i + 1; j < e; ++j) { | 
|  | NodeSet &N2 = NodeSets[j]; | 
|  | if (N1.compareRecMII(N2) != 0) | 
|  | continue; | 
|  | SmallSetVector<SUnit *, 8> S2; | 
|  | if (N2.empty() || !succ_L(N2, S2)) | 
|  | continue; | 
|  | if (isSubset(S1, S2) && S1.size() == S2.size()) { | 
|  | N1.setColocate(++Colocate); | 
|  | N2.setColocate(Colocate); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if the existing node-sets are profitable. If not, then ignore the | 
|  | /// recurrent node-sets, and attempt to schedule all nodes together. This is | 
|  | /// a heuristic. If the MII is large and all the recurrent node-sets are small, | 
|  | /// then it's best to try to schedule all instructions together instead of | 
|  | /// starting with the recurrent node-sets. | 
|  | void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { | 
|  | // Look for loops with a large MII. | 
|  | if (MII < 17) | 
|  | return; | 
|  | // Check if the node-set contains only a simple add recurrence. | 
|  | for (auto &NS : NodeSets) { | 
|  | if (NS.getRecMII() > 2) | 
|  | return; | 
|  | if (NS.getMaxDepth() > MII) | 
|  | return; | 
|  | } | 
|  | NodeSets.clear(); | 
|  | DEBUG(dbgs() << "Clear recurrence node-sets\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /// Add the nodes that do not belong to a recurrence set into groups | 
|  | /// based upon connected componenets. | 
|  | void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { | 
|  | SetVector<SUnit *> NodesAdded; | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | // Add the nodes that are on a path between the previous node sets and | 
|  | // the current node set. | 
|  | for (NodeSet &I : NodeSets) { | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | // Add the nodes from the current node set to the previous node set. | 
|  | if (succ_L(I, N)) { | 
|  | SetVector<SUnit *> Path; | 
|  | for (SUnit *NI : N) { | 
|  | Visited.clear(); | 
|  | computePath(NI, Path, NodesAdded, I, Visited); | 
|  | } | 
|  | if (!Path.empty()) | 
|  | I.insert(Path.begin(), Path.end()); | 
|  | } | 
|  | // Add the nodes from the previous node set to the current node set. | 
|  | N.clear(); | 
|  | if (succ_L(NodesAdded, N)) { | 
|  | SetVector<SUnit *> Path; | 
|  | for (SUnit *NI : N) { | 
|  | Visited.clear(); | 
|  | computePath(NI, Path, I, NodesAdded, Visited); | 
|  | } | 
|  | if (!Path.empty()) | 
|  | I.insert(Path.begin(), Path.end()); | 
|  | } | 
|  | NodesAdded.insert(I.begin(), I.end()); | 
|  | } | 
|  |  | 
|  | // Create a new node set with the connected nodes of any successor of a node | 
|  | // in a recurrent set. | 
|  | NodeSet NewSet; | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (succ_L(NodesAdded, N)) | 
|  | for (SUnit *I : N) | 
|  | addConnectedNodes(I, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  |  | 
|  | // Create a new node set with the connected nodes of any predecessor of a node | 
|  | // in a recurrent set. | 
|  | NewSet.clear(); | 
|  | if (pred_L(NodesAdded, N)) | 
|  | for (SUnit *I : N) | 
|  | addConnectedNodes(I, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  |  | 
|  | // Create new nodes sets with the connected nodes any remaining node that | 
|  | // has no predecessor. | 
|  | for (unsigned i = 0; i < SUnits.size(); ++i) { | 
|  | SUnit *SU = &SUnits[i]; | 
|  | if (NodesAdded.count(SU) == 0) { | 
|  | NewSet.clear(); | 
|  | addConnectedNodes(SU, NewSet, NodesAdded); | 
|  | if (!NewSet.empty()) | 
|  | NodeSets.push_back(NewSet); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add the node to the set, and add all is its connected nodes to the set. | 
|  | void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, | 
|  | SetVector<SUnit *> &NodesAdded) { | 
|  | NewSet.insert(SU); | 
|  | NodesAdded.insert(SU); | 
|  | for (auto &SI : SU->Succs) { | 
|  | SUnit *Successor = SI.getSUnit(); | 
|  | if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) | 
|  | addConnectedNodes(Successor, NewSet, NodesAdded); | 
|  | } | 
|  | for (auto &PI : SU->Preds) { | 
|  | SUnit *Predecessor = PI.getSUnit(); | 
|  | if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) | 
|  | addConnectedNodes(Predecessor, NewSet, NodesAdded); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if Set1 contains elements in Set2. The elements in common | 
|  | /// are returned in a different container. | 
|  | static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, | 
|  | SmallSetVector<SUnit *, 8> &Result) { | 
|  | Result.clear(); | 
|  | for (unsigned i = 0, e = Set1.size(); i != e; ++i) { | 
|  | SUnit *SU = Set1[i]; | 
|  | if (Set2.count(SU) != 0) | 
|  | Result.insert(SU); | 
|  | } | 
|  | return !Result.empty(); | 
|  | } | 
|  |  | 
|  | /// Merge the recurrence node sets that have the same initial node. | 
|  | void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { | 
|  | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | ++I) { | 
|  | NodeSet &NI = *I; | 
|  | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | NodeSet &NJ = *J; | 
|  | if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { | 
|  | if (NJ.compareRecMII(NI) > 0) | 
|  | NI.setRecMII(NJ.getRecMII()); | 
|  | for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; | 
|  | ++NII) | 
|  | I->insert(*NII); | 
|  | NodeSets.erase(J); | 
|  | E = NodeSets.end(); | 
|  | } else { | 
|  | ++J; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove nodes that have been scheduled in previous NodeSets. | 
|  | void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { | 
|  | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | ++I) | 
|  | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); | 
|  |  | 
|  | if (J->empty()) { | 
|  | NodeSets.erase(J); | 
|  | E = NodeSets.end(); | 
|  | } else { | 
|  | ++J; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compute an ordered list of the dependence graph nodes, which | 
|  | /// indicates the order that the nodes will be scheduled.  This is a | 
|  | /// two-level algorithm. First, a partial order is created, which | 
|  | /// consists of a list of sets ordered from highest to lowest priority. | 
|  | void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { | 
|  | SmallSetVector<SUnit *, 8> R; | 
|  | NodeOrder.clear(); | 
|  |  | 
|  | for (auto &Nodes : NodeSets) { | 
|  | DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); | 
|  | OrderKind Order; | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { | 
|  | R.insert(N.begin(), N.end()); | 
|  | Order = BottomUp; | 
|  | DEBUG(dbgs() << "  Bottom up (preds) "); | 
|  | } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { | 
|  | R.insert(N.begin(), N.end()); | 
|  | Order = TopDown; | 
|  | DEBUG(dbgs() << "  Top down (succs) "); | 
|  | } else if (isIntersect(N, Nodes, R)) { | 
|  | // If some of the successors are in the existing node-set, then use the | 
|  | // top-down ordering. | 
|  | Order = TopDown; | 
|  | DEBUG(dbgs() << "  Top down (intersect) "); | 
|  | } else if (NodeSets.size() == 1) { | 
|  | for (auto &N : Nodes) | 
|  | if (N->Succs.size() == 0) | 
|  | R.insert(N); | 
|  | Order = BottomUp; | 
|  | DEBUG(dbgs() << "  Bottom up (all) "); | 
|  | } else { | 
|  | // Find the node with the highest ASAP. | 
|  | SUnit *maxASAP = nullptr; | 
|  | for (SUnit *SU : Nodes) { | 
|  | if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || | 
|  | (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) | 
|  | maxASAP = SU; | 
|  | } | 
|  | R.insert(maxASAP); | 
|  | Order = BottomUp; | 
|  | DEBUG(dbgs() << "  Bottom up (default) "); | 
|  | } | 
|  |  | 
|  | while (!R.empty()) { | 
|  | if (Order == TopDown) { | 
|  | // Choose the node with the maximum height.  If more than one, choose | 
|  | // the node wiTH the maximum ZeroLatencyHeight. If still more than one, | 
|  | // choose the node with the lowest MOV. | 
|  | while (!R.empty()) { | 
|  | SUnit *maxHeight = nullptr; | 
|  | for (SUnit *I : R) { | 
|  | if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) | 
|  | maxHeight = I; | 
|  | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) | 
|  | maxHeight = I; | 
|  | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | getZeroLatencyHeight(I) == | 
|  | getZeroLatencyHeight(maxHeight) && | 
|  | getMOV(I) < getMOV(maxHeight)) | 
|  | maxHeight = I; | 
|  | } | 
|  | NodeOrder.insert(maxHeight); | 
|  | DEBUG(dbgs() << maxHeight->NodeNum << " "); | 
|  | R.remove(maxHeight); | 
|  | for (const auto &I : maxHeight->Succs) { | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | if (ignoreDependence(I, false)) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const auto &I : maxHeight->Preds) { | 
|  | if (I.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | } | 
|  | Order = BottomUp; | 
|  | DEBUG(dbgs() << "\n   Switching order to bottom up "); | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (pred_L(NodeOrder, N, &Nodes)) | 
|  | R.insert(N.begin(), N.end()); | 
|  | } else { | 
|  | // Choose the node with the maximum depth.  If more than one, choose | 
|  | // the node with the maximum ZeroLatencyDepth. If still more than one, | 
|  | // choose the node with the lowest MOV. | 
|  | while (!R.empty()) { | 
|  | SUnit *maxDepth = nullptr; | 
|  | for (SUnit *I : R) { | 
|  | if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) | 
|  | maxDepth = I; | 
|  | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) | 
|  | maxDepth = I; | 
|  | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && | 
|  | getMOV(I) < getMOV(maxDepth)) | 
|  | maxDepth = I; | 
|  | } | 
|  | NodeOrder.insert(maxDepth); | 
|  | DEBUG(dbgs() << maxDepth->NodeNum << " "); | 
|  | R.remove(maxDepth); | 
|  | if (Nodes.isExceedSU(maxDepth)) { | 
|  | Order = TopDown; | 
|  | R.clear(); | 
|  | R.insert(Nodes.getNode(0)); | 
|  | break; | 
|  | } | 
|  | for (const auto &I : maxDepth->Preds) { | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | // Back-edges are predecessors with an anti-dependence. | 
|  | for (const auto &I : maxDepth->Succs) { | 
|  | if (I.getKind() != SDep::Anti) | 
|  | continue; | 
|  | if (Nodes.count(I.getSUnit()) == 0) | 
|  | continue; | 
|  | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | continue; | 
|  | R.insert(I.getSUnit()); | 
|  | } | 
|  | } | 
|  | Order = TopDown; | 
|  | DEBUG(dbgs() << "\n   Switching order to top down "); | 
|  | SmallSetVector<SUnit *, 8> N; | 
|  | if (succ_L(NodeOrder, N, &Nodes)) | 
|  | R.insert(N.begin(), N.end()); | 
|  | } | 
|  | } | 
|  | DEBUG(dbgs() << "\nDone with Nodeset\n"); | 
|  | } | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << "Node order: "; | 
|  | for (SUnit *I : NodeOrder) | 
|  | dbgs() << " " << I->NodeNum << " "; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Process the nodes in the computed order and create the pipelined schedule | 
|  | /// of the instructions, if possible. Return true if a schedule is found. | 
|  | bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { | 
|  | if (NodeOrder.empty()) | 
|  | return false; | 
|  |  | 
|  | bool scheduleFound = false; | 
|  | // Keep increasing II until a valid schedule is found. | 
|  | for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { | 
|  | Schedule.reset(); | 
|  | Schedule.setInitiationInterval(II); | 
|  | DEBUG(dbgs() << "Try to schedule with " << II << "\n"); | 
|  |  | 
|  | SetVector<SUnit *>::iterator NI = NodeOrder.begin(); | 
|  | SetVector<SUnit *>::iterator NE = NodeOrder.end(); | 
|  | do { | 
|  | SUnit *SU = *NI; | 
|  |  | 
|  | // Compute the schedule time for the instruction, which is based | 
|  | // upon the scheduled time for any predecessors/successors. | 
|  | int EarlyStart = INT_MIN; | 
|  | int LateStart = INT_MAX; | 
|  | // These values are set when the size of the schedule window is limited | 
|  | // due to chain dependences. | 
|  | int SchedEnd = INT_MAX; | 
|  | int SchedStart = INT_MIN; | 
|  | Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, | 
|  | II, this); | 
|  | DEBUG({ | 
|  | dbgs() << "Inst (" << SU->NodeNum << ") "; | 
|  | SU->getInstr()->dump(); | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | DEBUG({ | 
|  | dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart | 
|  | << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; | 
|  | }); | 
|  |  | 
|  | if (EarlyStart > LateStart || SchedEnd < EarlyStart || | 
|  | SchedStart > LateStart) | 
|  | scheduleFound = false; | 
|  | else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { | 
|  | SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); | 
|  | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { | 
|  | SchedStart = std::max(SchedStart, LateStart - (int)II + 1); | 
|  | scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); | 
|  | } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { | 
|  | SchedEnd = | 
|  | std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); | 
|  | // When scheduling a Phi it is better to start at the late cycle and go | 
|  | // backwards. The default order may insert the Phi too far away from | 
|  | // its first dependence. | 
|  | if (SU->getInstr()->isPHI()) | 
|  | scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); | 
|  | else | 
|  | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | } else { | 
|  | int FirstCycle = Schedule.getFirstCycle(); | 
|  | scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), | 
|  | FirstCycle + getASAP(SU) + II - 1, II); | 
|  | } | 
|  | // Even if we find a schedule, make sure the schedule doesn't exceed the | 
|  | // allowable number of stages. We keep trying if this happens. | 
|  | if (scheduleFound) | 
|  | if (SwpMaxStages > -1 && | 
|  | Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) | 
|  | scheduleFound = false; | 
|  |  | 
|  | DEBUG({ | 
|  | if (!scheduleFound) | 
|  | dbgs() << "\tCan't schedule\n"; | 
|  | }); | 
|  | } while (++NI != NE && scheduleFound); | 
|  |  | 
|  | // If a schedule is found, check if it is a valid schedule too. | 
|  | if (scheduleFound) | 
|  | scheduleFound = Schedule.isValidSchedule(this); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); | 
|  |  | 
|  | if (scheduleFound) | 
|  | Schedule.finalizeSchedule(this); | 
|  | else | 
|  | Schedule.reset(); | 
|  |  | 
|  | return scheduleFound && Schedule.getMaxStageCount() > 0; | 
|  | } | 
|  |  | 
|  | /// Given a schedule for the loop, generate a new version of the loop, | 
|  | /// and replace the old version.  This function generates a prolog | 
|  | /// that contains the initial iterations in the pipeline, and kernel | 
|  | /// loop, and the epilogue that contains the code for the final | 
|  | /// iterations. | 
|  | void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { | 
|  | // Create a new basic block for the kernel and add it to the CFG. | 
|  | MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  |  | 
|  | unsigned MaxStageCount = Schedule.getMaxStageCount(); | 
|  |  | 
|  | // Remember the registers that are used in different stages. The index is | 
|  | // the iteration, or stage, that the instruction is scheduled in.  This is | 
|  | // a map between register names in the orignal block and the names created | 
|  | // in each stage of the pipelined loop. | 
|  | ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; | 
|  | InstrMapTy InstrMap; | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> PrologBBs; | 
|  | // Generate the prolog instructions that set up the pipeline. | 
|  | generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); | 
|  | MF.insert(BB->getIterator(), KernelBB); | 
|  |  | 
|  | // Rearrange the instructions to generate the new, pipelined loop, | 
|  | // and update register names as needed. | 
|  | for (int Cycle = Schedule.getFirstCycle(), | 
|  | LastCycle = Schedule.getFinalCycle(); | 
|  | Cycle <= LastCycle; ++Cycle) { | 
|  | std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); | 
|  | // This inner loop schedules each instruction in the cycle. | 
|  | for (SUnit *CI : CycleInstrs) { | 
|  | if (CI->getInstr()->isPHI()) | 
|  | continue; | 
|  | unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); | 
|  | MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); | 
|  | updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); | 
|  | KernelBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = CI->getInstr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy any terminator instructions to the new kernel, and update | 
|  | // names as needed. | 
|  | for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), | 
|  | E = BB->instr_end(); | 
|  | I != E; ++I) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(&*I); | 
|  | updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); | 
|  | KernelBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = &*I; | 
|  | } | 
|  |  | 
|  | KernelBB->transferSuccessors(BB); | 
|  | KernelBB->replaceSuccessor(BB, KernelBB); | 
|  |  | 
|  | generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, | 
|  | VRMap, InstrMap, MaxStageCount, MaxStageCount, false); | 
|  | generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, | 
|  | InstrMap, MaxStageCount, MaxStageCount, false); | 
|  |  | 
|  | DEBUG(dbgs() << "New block\n"; KernelBB->dump();); | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> EpilogBBs; | 
|  | // Generate the epilog instructions to complete the pipeline. | 
|  | generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, | 
|  | PrologBBs); | 
|  |  | 
|  | // We need this step because the register allocation doesn't handle some | 
|  | // situations well, so we insert copies to help out. | 
|  | splitLifetimes(KernelBB, EpilogBBs, Schedule); | 
|  |  | 
|  | // Remove dead instructions due to loop induction variables. | 
|  | removeDeadInstructions(KernelBB, EpilogBBs); | 
|  |  | 
|  | // Add branches between prolog and epilog blocks. | 
|  | addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); | 
|  |  | 
|  | // Remove the original loop since it's no longer referenced. | 
|  | for (auto &I : *BB) | 
|  | LIS.RemoveMachineInstrFromMaps(I); | 
|  | BB->clear(); | 
|  | BB->eraseFromParent(); | 
|  |  | 
|  | delete[] VRMap; | 
|  | } | 
|  |  | 
|  | /// Generate the pipeline prolog code. | 
|  | void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, | 
|  | MachineBasicBlock *KernelBB, | 
|  | ValueMapTy *VRMap, | 
|  | MBBVectorTy &PrologBBs) { | 
|  | MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); | 
|  | assert(PreheaderBB != nullptr && | 
|  | "Need to add code to handle loops w/o preheader"); | 
|  | MachineBasicBlock *PredBB = PreheaderBB; | 
|  | InstrMapTy InstrMap; | 
|  |  | 
|  | // Generate a basic block for each stage, not including the last stage, | 
|  | // which will be generated in the kernel. Each basic block may contain | 
|  | // instructions from multiple stages/iterations. | 
|  | for (unsigned i = 0; i < LastStage; ++i) { | 
|  | // Create and insert the prolog basic block prior to the original loop | 
|  | // basic block.  The original loop is removed later. | 
|  | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  | PrologBBs.push_back(NewBB); | 
|  | MF.insert(BB->getIterator(), NewBB); | 
|  | NewBB->transferSuccessors(PredBB); | 
|  | PredBB->addSuccessor(NewBB); | 
|  | PredBB = NewBB; | 
|  |  | 
|  | // Generate instructions for each appropriate stage. Process instructions | 
|  | // in original program order. | 
|  | for (int StageNum = i; StageNum >= 0; --StageNum) { | 
|  | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), | 
|  | BBE = BB->getFirstTerminator(); | 
|  | BBI != BBE; ++BBI) { | 
|  | if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { | 
|  | if (BBI->isPHI()) | 
|  | continue; | 
|  | MachineInstr *NewMI = | 
|  | cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); | 
|  | updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, | 
|  | VRMap); | 
|  | NewBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = &*BBI; | 
|  | } | 
|  | } | 
|  | } | 
|  | rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); | 
|  | DEBUG({ | 
|  | dbgs() << "prolog:\n"; | 
|  | NewBB->dump(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | PredBB->replaceSuccessor(BB, KernelBB); | 
|  |  | 
|  | // Check if we need to remove the branch from the preheader to the original | 
|  | // loop, and replace it with a branch to the new loop. | 
|  | unsigned numBranches = TII->removeBranch(*PreheaderBB); | 
|  | if (numBranches) { | 
|  | SmallVector<MachineOperand, 0> Cond; | 
|  | TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate the pipeline epilog code. The epilog code finishes the iterations | 
|  | /// that were started in either the prolog or the kernel.  We create a basic | 
|  | /// block for each stage that needs to complete. | 
|  | void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, | 
|  | MachineBasicBlock *KernelBB, | 
|  | ValueMapTy *VRMap, | 
|  | MBBVectorTy &EpilogBBs, | 
|  | MBBVectorTy &PrologBBs) { | 
|  | // We need to change the branch from the kernel to the first epilog block, so | 
|  | // this call to analyze branch uses the kernel rather than the original BB. | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); | 
|  | assert(!checkBranch && "generateEpilog must be able to analyze the branch"); | 
|  | if (checkBranch) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); | 
|  | if (*LoopExitI == KernelBB) | 
|  | ++LoopExitI; | 
|  | assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); | 
|  | MachineBasicBlock *LoopExitBB = *LoopExitI; | 
|  |  | 
|  | MachineBasicBlock *PredBB = KernelBB; | 
|  | MachineBasicBlock *EpilogStart = LoopExitBB; | 
|  | InstrMapTy InstrMap; | 
|  |  | 
|  | // Generate a basic block for each stage, not including the last stage, | 
|  | // which was generated for the kernel.  Each basic block may contain | 
|  | // instructions from multiple stages/iterations. | 
|  | int EpilogStage = LastStage + 1; | 
|  | for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { | 
|  | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); | 
|  | EpilogBBs.push_back(NewBB); | 
|  | MF.insert(BB->getIterator(), NewBB); | 
|  |  | 
|  | PredBB->replaceSuccessor(LoopExitBB, NewBB); | 
|  | NewBB->addSuccessor(LoopExitBB); | 
|  |  | 
|  | if (EpilogStart == LoopExitBB) | 
|  | EpilogStart = NewBB; | 
|  |  | 
|  | // Add instructions to the epilog depending on the current block. | 
|  | // Process instructions in original program order. | 
|  | for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { | 
|  | for (auto &BBI : *BB) { | 
|  | if (BBI.isPHI()) | 
|  | continue; | 
|  | MachineInstr *In = &BBI; | 
|  | if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { | 
|  | // Instructions with memoperands in the epilog are updated with | 
|  | // conservative values. | 
|  | MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); | 
|  | updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); | 
|  | NewBB->push_back(NewMI); | 
|  | InstrMap[NewMI] = In; | 
|  | } | 
|  | } | 
|  | } | 
|  | generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, | 
|  | VRMap, InstrMap, LastStage, EpilogStage, i == 1); | 
|  | generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, | 
|  | InstrMap, LastStage, EpilogStage, i == 1); | 
|  | PredBB = NewBB; | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << "epilog:\n"; | 
|  | NewBB->dump(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Fix any Phi nodes in the loop exit block. | 
|  | for (MachineInstr &MI : *LoopExitBB) { | 
|  | if (!MI.isPHI()) | 
|  | break; | 
|  | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.getMBB() == BB) | 
|  | MO.setMBB(PredBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a branch to the new epilog from the kernel. | 
|  | // Remove the original branch and add a new branch to the epilog. | 
|  | TII->removeBranch(*KernelBB); | 
|  | TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); | 
|  | // Add a branch to the loop exit. | 
|  | if (EpilogBBs.size() > 0) { | 
|  | MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); | 
|  | SmallVector<MachineOperand, 4> Cond1; | 
|  | TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Replace all uses of FromReg that appear outside the specified | 
|  | /// basic block with ToReg. | 
|  | static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineRegisterInfo &MRI, | 
|  | LiveIntervals &LIS) { | 
|  | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), | 
|  | E = MRI.use_end(); | 
|  | I != E;) { | 
|  | MachineOperand &O = *I; | 
|  | ++I; | 
|  | if (O.getParent()->getParent() != MBB) | 
|  | O.setReg(ToReg); | 
|  | } | 
|  | if (!LIS.hasInterval(ToReg)) | 
|  | LIS.createEmptyInterval(ToReg); | 
|  | } | 
|  |  | 
|  | /// Return true if the register has a use that occurs outside the | 
|  | /// specified loop. | 
|  | static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, | 
|  | MachineRegisterInfo &MRI) { | 
|  | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), | 
|  | E = MRI.use_end(); | 
|  | I != E; ++I) | 
|  | if (I->getParent()->getParent() != BB) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Generate Phis for the specific block in the generated pipelined code. | 
|  | /// This function looks at the Phis from the original code to guide the | 
|  | /// creation of new Phis. | 
|  | void SwingSchedulerDAG::generateExistingPhis( | 
|  | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, | 
|  | MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, | 
|  | bool IsLast) { | 
|  | // Compute the stage number for the initial value of the Phi, which | 
|  | // comes from the prolog. The prolog to use depends on to which kernel/ | 
|  | // epilog that we're adding the Phi. | 
|  | unsigned PrologStage = 0; | 
|  | unsigned PrevStage = 0; | 
|  | bool InKernel = (LastStageNum == CurStageNum); | 
|  | if (InKernel) { | 
|  | PrologStage = LastStageNum - 1; | 
|  | PrevStage = CurStageNum; | 
|  | } else { | 
|  | PrologStage = LastStageNum - (CurStageNum - LastStageNum); | 
|  | PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; | 
|  | } | 
|  |  | 
|  | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), | 
|  | BBE = BB->getFirstNonPHI(); | 
|  | BBI != BBE; ++BBI) { | 
|  | unsigned Def = BBI->getOperand(0).getReg(); | 
|  |  | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(*BBI, BB, InitVal, LoopVal); | 
|  |  | 
|  | unsigned PhiOp1 = 0; | 
|  | // The Phi value from the loop body typically is defined in the loop, but | 
|  | // not always. So, we need to check if the value is defined in the loop. | 
|  | unsigned PhiOp2 = LoopVal; | 
|  | if (VRMap[LastStageNum].count(LoopVal)) | 
|  | PhiOp2 = VRMap[LastStageNum][LoopVal]; | 
|  |  | 
|  | int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); | 
|  | int LoopValStage = | 
|  | Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); | 
|  | unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); | 
|  | if (NumStages == 0) { | 
|  | // We don't need to generate a Phi anymore, but we need to rename any uses | 
|  | // of the Phi value. | 
|  | unsigned NewReg = VRMap[PrevStage][LoopVal]; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, | 
|  | Def, InitVal, NewReg); | 
|  | if (VRMap[CurStageNum].count(LoopVal)) | 
|  | VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; | 
|  | } | 
|  | // Adjust the number of Phis needed depending on the number of prologs left, | 
|  | // and the distance from where the Phi is first scheduled. The number of | 
|  | // Phis cannot exceed the number of prolog stages. Each stage can | 
|  | // potentially define two values. | 
|  | unsigned MaxPhis = PrologStage + 2; | 
|  | if (!InKernel && (int)PrologStage <= LoopValStage) | 
|  | MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); | 
|  | unsigned NumPhis = std::min(NumStages, MaxPhis); | 
|  |  | 
|  | unsigned NewReg = 0; | 
|  | unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; | 
|  | // In the epilog, we may need to look back one stage to get the correct | 
|  | // Phi name because the epilog and prolog blocks execute the same stage. | 
|  | // The correct name is from the previous block only when the Phi has | 
|  | // been completely scheduled prior to the epilog, and Phi value is not | 
|  | // needed in multiple stages. | 
|  | int StageDiff = 0; | 
|  | if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && | 
|  | NumPhis == 1) | 
|  | StageDiff = 1; | 
|  | // Adjust the computations below when the phi and the loop definition | 
|  | // are scheduled in different stages. | 
|  | if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) | 
|  | StageDiff = StageScheduled - LoopValStage; | 
|  | for (unsigned np = 0; np < NumPhis; ++np) { | 
|  | // If the Phi hasn't been scheduled, then use the initial Phi operand | 
|  | // value. Otherwise, use the scheduled version of the instruction. This | 
|  | // is a little complicated when a Phi references another Phi. | 
|  | if (np > PrologStage || StageScheduled >= (int)LastStageNum) | 
|  | PhiOp1 = InitVal; | 
|  | // Check if the Phi has already been scheduled in a prolog stage. | 
|  | else if (PrologStage >= AccessStage + StageDiff + np && | 
|  | VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) | 
|  | PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; | 
|  | // Check if the Phi has already been scheduled, but the loop intruction | 
|  | // is either another Phi, or doesn't occur in the loop. | 
|  | else if (PrologStage >= AccessStage + StageDiff + np) { | 
|  | // If the Phi references another Phi, we need to examine the other | 
|  | // Phi to get the correct value. | 
|  | PhiOp1 = LoopVal; | 
|  | MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); | 
|  | int Indirects = 1; | 
|  | while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { | 
|  | int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); | 
|  | if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, BB); | 
|  | else | 
|  | PhiOp1 = getLoopPhiReg(*InstOp1, BB); | 
|  | InstOp1 = MRI.getVRegDef(PhiOp1); | 
|  | int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); | 
|  | int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); | 
|  | if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && | 
|  | VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { | 
|  | PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; | 
|  | break; | 
|  | } | 
|  | ++Indirects; | 
|  | } | 
|  | } else | 
|  | PhiOp1 = InitVal; | 
|  | // If this references a generated Phi in the kernel, get the Phi operand | 
|  | // from the incoming block. | 
|  | if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) | 
|  | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); | 
|  |  | 
|  | MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); | 
|  | bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); | 
|  | // In the epilog, a map lookup is needed to get the value from the kernel, | 
|  | // or previous epilog block. How is does this depends on if the | 
|  | // instruction is scheduled in the previous block. | 
|  | if (!InKernel) { | 
|  | int StageDiffAdj = 0; | 
|  | if (LoopValStage != -1 && StageScheduled > LoopValStage) | 
|  | StageDiffAdj = StageScheduled - LoopValStage; | 
|  | // Use the loop value defined in the kernel, unless the kernel | 
|  | // contains the last definition of the Phi. | 
|  | if (np == 0 && PrevStage == LastStageNum && | 
|  | (StageScheduled != 0 || LoopValStage != 0) && | 
|  | VRMap[PrevStage - StageDiffAdj].count(LoopVal)) | 
|  | PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; | 
|  | // Use the value defined by the Phi. We add one because we switch | 
|  | // from looking at the loop value to the Phi definition. | 
|  | else if (np > 0 && PrevStage == LastStageNum && | 
|  | VRMap[PrevStage - np + 1].count(Def)) | 
|  | PhiOp2 = VRMap[PrevStage - np + 1][Def]; | 
|  | // Use the loop value defined in the kernel. | 
|  | else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && | 
|  | VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) | 
|  | PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; | 
|  | // Use the value defined by the Phi, unless we're generating the first | 
|  | // epilog and the Phi refers to a Phi in a different stage. | 
|  | else if (VRMap[PrevStage - np].count(Def) && | 
|  | (!LoopDefIsPhi || PrevStage != LastStageNum)) | 
|  | PhiOp2 = VRMap[PrevStage - np][Def]; | 
|  | } | 
|  |  | 
|  | // Check if we can reuse an existing Phi. This occurs when a Phi | 
|  | // references another Phi, and the other Phi is scheduled in an | 
|  | // earlier stage. We can try to reuse an existing Phi up until the last | 
|  | // stage of the current Phi. | 
|  | if (LoopDefIsPhi && (int)(PrologStage - np) >= StageScheduled) { | 
|  | int LVNumStages = Schedule.getStagesForPhi(LoopVal); | 
|  | int StageDiff = (StageScheduled - LoopValStage); | 
|  | LVNumStages -= StageDiff; | 
|  | // Make sure the loop value Phi has been processed already. | 
|  | if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { | 
|  | NewReg = PhiOp2; | 
|  | unsigned ReuseStage = CurStageNum; | 
|  | if (Schedule.isLoopCarried(this, *PhiInst)) | 
|  | ReuseStage -= LVNumStages; | 
|  | // Check if the Phi to reuse has been generated yet. If not, then | 
|  | // there is nothing to reuse. | 
|  | if (VRMap[ReuseStage - np].count(LoopVal)) { | 
|  | NewReg = VRMap[ReuseStage - np][LoopVal]; | 
|  |  | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, Def, NewReg); | 
|  | // Update the map with the new Phi name. | 
|  | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | PhiOp2 = NewReg; | 
|  | if (VRMap[LastStageNum - np - 1].count(LoopVal)) | 
|  | PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; | 
|  |  | 
|  | if (IsLast && np == NumPhis - 1) | 
|  | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | continue; | 
|  | } | 
|  | } else if (InKernel && StageDiff > 0 && | 
|  | VRMap[CurStageNum - StageDiff - np].count(LoopVal)) | 
|  | PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Def); | 
|  | NewReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MachineInstrBuilder NewPhi = | 
|  | BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), | 
|  | TII->get(TargetOpcode::PHI), NewReg); | 
|  | NewPhi.addReg(PhiOp1).addMBB(BB1); | 
|  | NewPhi.addReg(PhiOp2).addMBB(BB2); | 
|  | if (np == 0) | 
|  | InstrMap[NewPhi] = &*BBI; | 
|  |  | 
|  | // We define the Phis after creating the new pipelined code, so | 
|  | // we need to rename the Phi values in scheduled instructions. | 
|  |  | 
|  | unsigned PrevReg = 0; | 
|  | if (InKernel && VRMap[PrevStage - np].count(LoopVal)) | 
|  | PrevReg = VRMap[PrevStage - np][LoopVal]; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, | 
|  | Def, NewReg, PrevReg); | 
|  | // If the Phi has been scheduled, use the new name for rewriting. | 
|  | if (VRMap[CurStageNum - np].count(Def)) { | 
|  | unsigned R = VRMap[CurStageNum - np][Def]; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, | 
|  | R, NewReg); | 
|  | } | 
|  |  | 
|  | // Check if we need to rename any uses that occurs after the loop. The | 
|  | // register to replace depends on whether the Phi is scheduled in the | 
|  | // epilog. | 
|  | if (IsLast && np == NumPhis - 1) | 
|  | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  |  | 
|  | // In the kernel, a dependent Phi uses the value from this Phi. | 
|  | if (InKernel) | 
|  | PhiOp2 = NewReg; | 
|  |  | 
|  | // Update the map with the new Phi name. | 
|  | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | } | 
|  |  | 
|  | while (NumPhis++ < NumStages) { | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, | 
|  | &*BBI, Def, NewReg, 0); | 
|  | } | 
|  |  | 
|  | // Check if we need to rename a Phi that has been eliminated due to | 
|  | // scheduling. | 
|  | if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) | 
|  | replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Generate Phis for the specified block in the generated pipelined code. | 
|  | /// These are new Phis needed because the definition is scheduled after the | 
|  | /// use in the pipelened sequence. | 
|  | void SwingSchedulerDAG::generatePhis( | 
|  | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, | 
|  | MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, | 
|  | bool IsLast) { | 
|  | // Compute the stage number that contains the initial Phi value, and | 
|  | // the Phi from the previous stage. | 
|  | unsigned PrologStage = 0; | 
|  | unsigned PrevStage = 0; | 
|  | unsigned StageDiff = CurStageNum - LastStageNum; | 
|  | bool InKernel = (StageDiff == 0); | 
|  | if (InKernel) { | 
|  | PrologStage = LastStageNum - 1; | 
|  | PrevStage = CurStageNum; | 
|  | } else { | 
|  | PrologStage = LastStageNum - StageDiff; | 
|  | PrevStage = LastStageNum + StageDiff - 1; | 
|  | } | 
|  |  | 
|  | for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), | 
|  | BBE = BB->instr_end(); | 
|  | BBI != BBE; ++BBI) { | 
|  | for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = BBI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef() || | 
|  | !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); | 
|  | assert(StageScheduled != -1 && "Expecting scheduled instruction."); | 
|  | unsigned Def = MO.getReg(); | 
|  | unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); | 
|  | // An instruction scheduled in stage 0 and is used after the loop | 
|  | // requires a phi in the epilog for the last definition from either | 
|  | // the kernel or prolog. | 
|  | if (!InKernel && NumPhis == 0 && StageScheduled == 0 && | 
|  | hasUseAfterLoop(Def, BB, MRI)) | 
|  | NumPhis = 1; | 
|  | if (!InKernel && (unsigned)StageScheduled > PrologStage) | 
|  | continue; | 
|  |  | 
|  | unsigned PhiOp2 = VRMap[PrevStage][Def]; | 
|  | if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) | 
|  | if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) | 
|  | PhiOp2 = getLoopPhiReg(*InstOp2, BB2); | 
|  | // The number of Phis can't exceed the number of prolog stages. The | 
|  | // prolog stage number is zero based. | 
|  | if (NumPhis > PrologStage + 1 - StageScheduled) | 
|  | NumPhis = PrologStage + 1 - StageScheduled; | 
|  | for (unsigned np = 0; np < NumPhis; ++np) { | 
|  | unsigned PhiOp1 = VRMap[PrologStage][Def]; | 
|  | if (np <= PrologStage) | 
|  | PhiOp1 = VRMap[PrologStage - np][Def]; | 
|  | if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { | 
|  | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); | 
|  | if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) | 
|  | PhiOp1 = getInitPhiReg(*InstOp1, NewBB); | 
|  | } | 
|  | if (!InKernel) | 
|  | PhiOp2 = VRMap[PrevStage - np][Def]; | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Def); | 
|  | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | MachineInstrBuilder NewPhi = | 
|  | BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), | 
|  | TII->get(TargetOpcode::PHI), NewReg); | 
|  | NewPhi.addReg(PhiOp1).addMBB(BB1); | 
|  | NewPhi.addReg(PhiOp2).addMBB(BB2); | 
|  | if (np == 0) | 
|  | InstrMap[NewPhi] = &*BBI; | 
|  |  | 
|  | // Rewrite uses and update the map. The actions depend upon whether | 
|  | // we generating code for the kernel or epilog blocks. | 
|  | if (InKernel) { | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, PhiOp1, NewReg); | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, PhiOp2, NewReg); | 
|  |  | 
|  | PhiOp2 = NewReg; | 
|  | VRMap[PrevStage - np - 1][Def] = NewReg; | 
|  | } else { | 
|  | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | if (np == NumPhis - 1) | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | &*BBI, Def, NewReg); | 
|  | } | 
|  | if (IsLast && np == NumPhis - 1) | 
|  | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove instructions that generate values with no uses. | 
|  | /// Typically, these are induction variable operations that generate values | 
|  | /// used in the loop itself.  A dead instruction has a definition with | 
|  | /// no uses, or uses that occur in the original loop only. | 
|  | void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs) { | 
|  | // For each epilog block, check that the value defined by each instruction | 
|  | // is used.  If not, delete it. | 
|  | for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), | 
|  | MBE = EpilogBBs.rend(); | 
|  | MBB != MBE; ++MBB) | 
|  | for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), | 
|  | ME = (*MBB)->instr_rend(); | 
|  | MI != ME;) { | 
|  | // From DeadMachineInstructionElem. Don't delete inline assembly. | 
|  | if (MI->isInlineAsm()) { | 
|  | ++MI; | 
|  | continue; | 
|  | } | 
|  | bool SawStore = false; | 
|  | // Check if it's safe to remove the instruction due to side effects. | 
|  | // We can, and want to, remove Phis here. | 
|  | if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { | 
|  | ++MI; | 
|  | continue; | 
|  | } | 
|  | bool used = true; | 
|  | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | MOE = MI->operands_end(); | 
|  | MOI != MOE; ++MOI) { | 
|  | if (!MOI->isReg() || !MOI->isDef()) | 
|  | continue; | 
|  | unsigned reg = MOI->getReg(); | 
|  | // Assume physical registers are used, unless they are marked dead. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(reg)) { | 
|  | used = !MOI->isDead(); | 
|  | if (used) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | unsigned realUses = 0; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), | 
|  | EI = MRI.use_end(); | 
|  | UI != EI; ++UI) { | 
|  | // Check if there are any uses that occur only in the original | 
|  | // loop.  If so, that's not a real use. | 
|  | if (UI->getParent()->getParent() != BB) { | 
|  | realUses++; | 
|  | used = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (realUses > 0) | 
|  | break; | 
|  | used = false; | 
|  | } | 
|  | if (!used) { | 
|  | LIS.RemoveMachineInstrFromMaps(*MI); | 
|  | MI++->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  | ++MI; | 
|  | } | 
|  | // In the kernel block, check if we can remove a Phi that generates a value | 
|  | // used in an instruction removed in the epilog block. | 
|  | for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), | 
|  | BBE = KernelBB->getFirstNonPHI(); | 
|  | BBI != BBE;) { | 
|  | MachineInstr *MI = &*BBI; | 
|  | ++BBI; | 
|  | unsigned reg = MI->getOperand(0).getReg(); | 
|  | if (MRI.use_begin(reg) == MRI.use_end()) { | 
|  | LIS.RemoveMachineInstrFromMaps(*MI); | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For loop carried definitions, we split the lifetime of a virtual register | 
|  | /// that has uses past the definition in the next iteration. A copy with a new | 
|  | /// virtual register is inserted before the definition, which helps with | 
|  | /// generating a better register assignment. | 
|  | /// | 
|  | ///   v1 = phi(a, v2)     v1 = phi(a, v2) | 
|  | ///   v2 = phi(b, v3)     v2 = phi(b, v3) | 
|  | ///   v3 = ..             v4 = copy v1 | 
|  | ///   .. = V1             v3 = .. | 
|  | ///                       .. = v4 | 
|  | void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs, | 
|  | SMSchedule &Schedule) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | for (auto &PHI : KernelBB->phis()) { | 
|  | unsigned Def = PHI.getOperand(0).getReg(); | 
|  | // Check for any Phi definition that used as an operand of another Phi | 
|  | // in the same block. | 
|  | for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), | 
|  | E = MRI.use_instr_end(); | 
|  | I != E; ++I) { | 
|  | if (I->isPHI() && I->getParent() == KernelBB) { | 
|  | // Get the loop carried definition. | 
|  | unsigned LCDef = getLoopPhiReg(PHI, KernelBB); | 
|  | if (!LCDef) | 
|  | continue; | 
|  | MachineInstr *MI = MRI.getVRegDef(LCDef); | 
|  | if (!MI || MI->getParent() != KernelBB || MI->isPHI()) | 
|  | continue; | 
|  | // Search through the rest of the block looking for uses of the Phi | 
|  | // definition. If one occurs, then split the lifetime. | 
|  | unsigned SplitReg = 0; | 
|  | for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), | 
|  | KernelBB->instr_end())) | 
|  | if (BBJ.readsRegister(Def)) { | 
|  | // We split the lifetime when we find the first use. | 
|  | if (SplitReg == 0) { | 
|  | SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); | 
|  | BuildMI(*KernelBB, MI, MI->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), SplitReg) | 
|  | .addReg(Def); | 
|  | } | 
|  | BBJ.substituteRegister(Def, SplitReg, 0, *TRI); | 
|  | } | 
|  | if (!SplitReg) | 
|  | continue; | 
|  | // Search through each of the epilog blocks for any uses to be renamed. | 
|  | for (auto &Epilog : EpilogBBs) | 
|  | for (auto &I : *Epilog) | 
|  | if (I.readsRegister(Def)) | 
|  | I.substituteRegister(Def, SplitReg, 0, *TRI); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove the incoming block from the Phis in a basic block. | 
|  | static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { | 
|  | for (MachineInstr &MI : *BB) { | 
|  | if (!MI.isPHI()) | 
|  | break; | 
|  | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) | 
|  | if (MI.getOperand(i + 1).getMBB() == Incoming) { | 
|  | MI.RemoveOperand(i + 1); | 
|  | MI.RemoveOperand(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create branches from each prolog basic block to the appropriate epilog | 
|  | /// block.  These edges are needed if the loop ends before reaching the | 
|  | /// kernel. | 
|  | void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, | 
|  | MachineBasicBlock *KernelBB, | 
|  | MBBVectorTy &EpilogBBs, | 
|  | SMSchedule &Schedule, ValueMapTy *VRMap) { | 
|  | assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); | 
|  | MachineInstr *IndVar = Pass.LI.LoopInductionVar; | 
|  | MachineInstr *Cmp = Pass.LI.LoopCompare; | 
|  | MachineBasicBlock *LastPro = KernelBB; | 
|  | MachineBasicBlock *LastEpi = KernelBB; | 
|  |  | 
|  | // Start from the blocks connected to the kernel and work "out" | 
|  | // to the first prolog and the last epilog blocks. | 
|  | SmallVector<MachineInstr *, 4> PrevInsts; | 
|  | unsigned MaxIter = PrologBBs.size() - 1; | 
|  | unsigned LC = UINT_MAX; | 
|  | unsigned LCMin = UINT_MAX; | 
|  | for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { | 
|  | // Add branches to the prolog that go to the corresponding | 
|  | // epilog, and the fall-thru prolog/kernel block. | 
|  | MachineBasicBlock *Prolog = PrologBBs[j]; | 
|  | MachineBasicBlock *Epilog = EpilogBBs[i]; | 
|  | // We've executed one iteration, so decrement the loop count and check for | 
|  | // the loop end. | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | // Check if the LOOP0 has already been removed. If so, then there is no need | 
|  | // to reduce the trip count. | 
|  | if (LC != 0) | 
|  | LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, | 
|  | MaxIter); | 
|  |  | 
|  | // Record the value of the first trip count, which is used to determine if | 
|  | // branches and blocks can be removed for constant trip counts. | 
|  | if (LCMin == UINT_MAX) | 
|  | LCMin = LC; | 
|  |  | 
|  | unsigned numAdded = 0; | 
|  | if (TargetRegisterInfo::isVirtualRegister(LC)) { | 
|  | Prolog->addSuccessor(Epilog); | 
|  | numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); | 
|  | } else if (j >= LCMin) { | 
|  | Prolog->addSuccessor(Epilog); | 
|  | Prolog->removeSuccessor(LastPro); | 
|  | LastEpi->removeSuccessor(Epilog); | 
|  | numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); | 
|  | removePhis(Epilog, LastEpi); | 
|  | // Remove the blocks that are no longer referenced. | 
|  | if (LastPro != LastEpi) { | 
|  | LastEpi->clear(); | 
|  | LastEpi->eraseFromParent(); | 
|  | } | 
|  | LastPro->clear(); | 
|  | LastPro->eraseFromParent(); | 
|  | } else { | 
|  | numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); | 
|  | removePhis(Epilog, Prolog); | 
|  | } | 
|  | LastPro = Prolog; | 
|  | LastEpi = Epilog; | 
|  | for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), | 
|  | E = Prolog->instr_rend(); | 
|  | I != E && numAdded > 0; ++I, --numAdded) | 
|  | updateInstruction(&*I, false, j, 0, Schedule, VRMap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if we can compute the amount the instruction changes | 
|  | /// during each iteration. Set Delta to the amount of the change. | 
|  | bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | unsigned BaseReg; | 
|  | int64_t Offset; | 
|  | if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) | 
|  | return false; | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | // Check if there is a Phi. If so, get the definition in the loop. | 
|  | MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); | 
|  | if (BaseDef && BaseDef->isPHI()) { | 
|  | BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); | 
|  | BaseDef = MRI.getVRegDef(BaseReg); | 
|  | } | 
|  | if (!BaseDef) | 
|  | return false; | 
|  |  | 
|  | int D = 0; | 
|  | if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) | 
|  | return false; | 
|  |  | 
|  | Delta = D; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Update the memory operand with a new offset when the pipeliner | 
|  | /// generates a new copy of the instruction that refers to a | 
|  | /// different memory location. | 
|  | void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, | 
|  | MachineInstr &OldMI, unsigned Num) { | 
|  | if (Num == 0) | 
|  | return; | 
|  | // If the instruction has memory operands, then adjust the offset | 
|  | // when the instruction appears in different stages. | 
|  | unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); | 
|  | if (NumRefs == 0) | 
|  | return; | 
|  | MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); | 
|  | unsigned Refs = 0; | 
|  | for (MachineMemOperand *MMO : NewMI.memoperands()) { | 
|  | if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || | 
|  | (!MMO->getValue())) { | 
|  | NewMemRefs[Refs++] = MMO; | 
|  | continue; | 
|  | } | 
|  | unsigned Delta; | 
|  | if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { | 
|  | int64_t AdjOffset = Delta * Num; | 
|  | NewMemRefs[Refs++] = | 
|  | MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); | 
|  | } else { | 
|  | NewMI.dropMemRefs(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); | 
|  | } | 
|  |  | 
|  | /// Clone the instruction for the new pipelined loop and update the | 
|  | /// memory operands, if needed. | 
|  | MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, | 
|  | unsigned CurStageNum, | 
|  | unsigned InstStageNum) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); | 
|  | // Check for tied operands in inline asm instructions. This should be handled | 
|  | // elsewhere, but I'm not sure of the best solution. | 
|  | if (OldMI->isInlineAsm()) | 
|  | for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { | 
|  | const auto &MO = OldMI->getOperand(i); | 
|  | if (MO.isReg() && MO.isUse()) | 
|  | break; | 
|  | unsigned UseIdx; | 
|  | if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) | 
|  | NewMI->tieOperands(i, UseIdx); | 
|  | } | 
|  | updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// Clone the instruction for the new pipelined loop. If needed, this | 
|  | /// function updates the instruction using the values saved in the | 
|  | /// InstrChanges structure. | 
|  | MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, | 
|  | unsigned CurStageNum, | 
|  | unsigned InstStageNum, | 
|  | SMSchedule &Schedule) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(getSUnit(OldMI)); | 
|  | if (It != InstrChanges.end()) { | 
|  | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) | 
|  | return nullptr; | 
|  | int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); | 
|  | MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); | 
|  | if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) | 
|  | NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | } | 
|  | updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// Update the machine instruction with new virtual registers.  This | 
|  | /// function may change the defintions and/or uses. | 
|  | void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, | 
|  | unsigned CurStageNum, | 
|  | unsigned InstrStageNum, | 
|  | SMSchedule &Schedule, | 
|  | ValueMapTy *VRMap) { | 
|  | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = NewMI->getOperand(i); | 
|  | if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue; | 
|  | unsigned reg = MO.getReg(); | 
|  | if (MO.isDef()) { | 
|  | // Create a new virtual register for the definition. | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(reg); | 
|  | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | MO.setReg(NewReg); | 
|  | VRMap[CurStageNum][reg] = NewReg; | 
|  | if (LastDef) | 
|  | replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); | 
|  | } else if (MO.isUse()) { | 
|  | MachineInstr *Def = MRI.getVRegDef(reg); | 
|  | // Compute the stage that contains the last definition for instruction. | 
|  | int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); | 
|  | unsigned StageNum = CurStageNum; | 
|  | if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { | 
|  | // Compute the difference in stages between the defintion and the use. | 
|  | unsigned StageDiff = (InstrStageNum - DefStageNum); | 
|  | // Make an adjustment to get the last definition. | 
|  | StageNum -= StageDiff; | 
|  | } | 
|  | if (VRMap[StageNum].count(reg)) | 
|  | MO.setReg(VRMap[StageNum][reg]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the instruction in the loop that defines the register. | 
|  | /// If the definition is a Phi, then follow the Phi operand to | 
|  | /// the instruction in the loop. | 
|  | MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { | 
|  | SmallPtrSet<MachineInstr *, 8> Visited; | 
|  | MachineInstr *Def = MRI.getVRegDef(Reg); | 
|  | while (Def->isPHI()) { | 
|  | if (!Visited.insert(Def).second) | 
|  | break; | 
|  | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) | 
|  | if (Def->getOperand(i + 1).getMBB() == BB) { | 
|  | Def = MRI.getVRegDef(Def->getOperand(i).getReg()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | /// Return the new name for the value from the previous stage. | 
|  | unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, | 
|  | unsigned LoopVal, unsigned LoopStage, | 
|  | ValueMapTy *VRMap, | 
|  | MachineBasicBlock *BB) { | 
|  | unsigned PrevVal = 0; | 
|  | if (StageNum > PhiStage) { | 
|  | MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); | 
|  | if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) | 
|  | // The name is defined in the previous stage. | 
|  | PrevVal = VRMap[StageNum - 1][LoopVal]; | 
|  | else if (VRMap[StageNum].count(LoopVal)) | 
|  | // The previous name is defined in the current stage when the instruction | 
|  | // order is swapped. | 
|  | PrevVal = VRMap[StageNum][LoopVal]; | 
|  | else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) | 
|  | // The loop value hasn't yet been scheduled. | 
|  | PrevVal = LoopVal; | 
|  | else if (StageNum == PhiStage + 1) | 
|  | // The loop value is another phi, which has not been scheduled. | 
|  | PrevVal = getInitPhiReg(*LoopInst, BB); | 
|  | else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) | 
|  | // The loop value is another phi, which has been scheduled. | 
|  | PrevVal = | 
|  | getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), | 
|  | LoopStage, VRMap, BB); | 
|  | } | 
|  | return PrevVal; | 
|  | } | 
|  |  | 
|  | /// Rewrite the Phi values in the specified block to use the mappings | 
|  | /// from the initial operand. Once the Phi is scheduled, we switch | 
|  | /// to using the loop value instead of the Phi value, so those names | 
|  | /// do not need to be rewritten. | 
|  | void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, | 
|  | unsigned StageNum, | 
|  | SMSchedule &Schedule, | 
|  | ValueMapTy *VRMap, | 
|  | InstrMapTy &InstrMap) { | 
|  | for (auto &PHI : BB->phis()) { | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(PHI, BB, InitVal, LoopVal); | 
|  | unsigned PhiDef = PHI.getOperand(0).getReg(); | 
|  |  | 
|  | unsigned PhiStage = | 
|  | (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); | 
|  | unsigned LoopStage = | 
|  | (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); | 
|  | unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); | 
|  | if (NumPhis > StageNum) | 
|  | NumPhis = StageNum; | 
|  | for (unsigned np = 0; np <= NumPhis; ++np) { | 
|  | unsigned NewVal = | 
|  | getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); | 
|  | if (!NewVal) | 
|  | NewVal = InitVal; | 
|  | rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, | 
|  | PhiDef, NewVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Rewrite a previously scheduled instruction to use the register value | 
|  | /// from the new instruction. Make sure the instruction occurs in the | 
|  | /// basic block, and we don't change the uses in the new instruction. | 
|  | void SwingSchedulerDAG::rewriteScheduledInstr( | 
|  | MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, | 
|  | unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, | 
|  | unsigned NewReg, unsigned PrevReg) { | 
|  | bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); | 
|  | int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; | 
|  | // Rewrite uses that have been scheduled already to use the new | 
|  | // Phi register. | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), | 
|  | EI = MRI.use_end(); | 
|  | UI != EI;) { | 
|  | MachineOperand &UseOp = *UI; | 
|  | MachineInstr *UseMI = UseOp.getParent(); | 
|  | ++UI; | 
|  | if (UseMI->getParent() != BB) | 
|  | continue; | 
|  | if (UseMI->isPHI()) { | 
|  | if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) | 
|  | continue; | 
|  | if (getLoopPhiReg(*UseMI, BB) != OldReg) | 
|  | continue; | 
|  | } | 
|  | InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); | 
|  | assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); | 
|  | SUnit *OrigMISU = getSUnit(OrigInstr->second); | 
|  | int StageSched = Schedule.stageScheduled(OrigMISU); | 
|  | int CycleSched = Schedule.cycleScheduled(OrigMISU); | 
|  | unsigned ReplaceReg = 0; | 
|  | // This is the stage for the scheduled instruction. | 
|  | if (StagePhi == StageSched && Phi->isPHI()) { | 
|  | int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); | 
|  | if (PrevReg && InProlog) | 
|  | ReplaceReg = PrevReg; | 
|  | else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && | 
|  | (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) | 
|  | ReplaceReg = PrevReg; | 
|  | else | 
|  | ReplaceReg = NewReg; | 
|  | } | 
|  | // The scheduled instruction occurs before the scheduled Phi, and the | 
|  | // Phi is not loop carried. | 
|  | if (!InProlog && StagePhi + 1 == StageSched && | 
|  | !Schedule.isLoopCarried(this, *Phi)) | 
|  | ReplaceReg = NewReg; | 
|  | if (StagePhi > StageSched && Phi->isPHI()) | 
|  | ReplaceReg = NewReg; | 
|  | if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) | 
|  | ReplaceReg = NewReg; | 
|  | if (ReplaceReg) { | 
|  | MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); | 
|  | UseOp.setReg(ReplaceReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if we can change the instruction to use an offset value from the | 
|  | /// previous iteration. If so, return true and set the base and offset values | 
|  | /// so that we can rewrite the load, if necessary. | 
|  | ///   v1 = Phi(v0, v3) | 
|  | ///   v2 = load v1, 0 | 
|  | ///   v3 = post_store v1, 4, x | 
|  | /// This function enables the load to be rewritten as v2 = load v3, 4. | 
|  | bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, | 
|  | unsigned &BasePos, | 
|  | unsigned &OffsetPos, | 
|  | unsigned &NewBase, | 
|  | int64_t &Offset) { | 
|  | // Get the load instruction. | 
|  | if (TII->isPostIncrement(*MI)) | 
|  | return false; | 
|  | unsigned BasePosLd, OffsetPosLd; | 
|  | if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) | 
|  | return false; | 
|  | unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); | 
|  |  | 
|  | // Look for the Phi instruction. | 
|  | MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); | 
|  | MachineInstr *Phi = MRI.getVRegDef(BaseReg); | 
|  | if (!Phi || !Phi->isPHI()) | 
|  | return false; | 
|  | // Get the register defined in the loop block. | 
|  | unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); | 
|  | if (!PrevReg) | 
|  | return false; | 
|  |  | 
|  | // Check for the post-increment load/store instruction. | 
|  | MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); | 
|  | if (!PrevDef || PrevDef == MI) | 
|  | return false; | 
|  |  | 
|  | if (!TII->isPostIncrement(*PrevDef)) | 
|  | return false; | 
|  |  | 
|  | unsigned BasePos1 = 0, OffsetPos1 = 0; | 
|  | if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the instructions do not access the same memory location in | 
|  | // the next iteration. | 
|  | int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); | 
|  | int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); | 
|  | bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); | 
|  | MF.DeleteMachineInstr(NewMI); | 
|  | if (!Disjoint) | 
|  | return false; | 
|  |  | 
|  | // Set the return value once we determine that we return true. | 
|  | BasePos = BasePosLd; | 
|  | OffsetPos = OffsetPosLd; | 
|  | NewBase = PrevReg; | 
|  | Offset = StoreOffset; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Apply changes to the instruction if needed. The changes are need | 
|  | /// to improve the scheduling and depend up on the final schedule. | 
|  | void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, | 
|  | SMSchedule &Schedule) { | 
|  | SUnit *SU = getSUnit(MI); | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) { | 
|  | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
|  | return; | 
|  | unsigned BaseReg = MI->getOperand(BasePos).getReg(); | 
|  | MachineInstr *LoopDef = findDefInLoop(BaseReg); | 
|  | int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); | 
|  | int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); | 
|  | int BaseStageNum = Schedule.stageScheduled(SU); | 
|  | int BaseCycleNum = Schedule.cycleScheduled(SU); | 
|  | if (BaseStageNum < DefStageNum) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | int OffsetDiff = DefStageNum - BaseStageNum; | 
|  | if (DefCycleNum < BaseCycleNum) { | 
|  | NewMI->getOperand(BasePos).setReg(RegAndOffset.first); | 
|  | if (OffsetDiff > 0) | 
|  | --OffsetDiff; | 
|  | } | 
|  | int64_t NewOffset = | 
|  | MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | SU->setInstr(NewMI); | 
|  | MISUnitMap[NewMI] = SU; | 
|  | NewMIs.insert(NewMI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true for an order or output dependence that is loop carried | 
|  | /// potentially. A dependence is loop carried if the destination defines a valu | 
|  | /// that may be used or defined by the source in a subsequent iteration. | 
|  | bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, | 
|  | bool isSucc) { | 
|  | if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || | 
|  | Dep.isArtificial()) | 
|  | return false; | 
|  |  | 
|  | if (!SwpPruneLoopCarried) | 
|  | return true; | 
|  |  | 
|  | if (Dep.getKind() == SDep::Output) | 
|  | return true; | 
|  |  | 
|  | MachineInstr *SI = Source->getInstr(); | 
|  | MachineInstr *DI = Dep.getSUnit()->getInstr(); | 
|  | if (!isSucc) | 
|  | std::swap(SI, DI); | 
|  | assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); | 
|  |  | 
|  | // Assume ordered loads and stores may have a loop carried dependence. | 
|  | if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || | 
|  | SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) | 
|  | return true; | 
|  |  | 
|  | // Only chain dependences between a load and store can be loop carried. | 
|  | if (!DI->mayStore() || !SI->mayLoad()) | 
|  | return false; | 
|  |  | 
|  | unsigned DeltaS, DeltaD; | 
|  | if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) | 
|  | return true; | 
|  |  | 
|  | unsigned BaseRegS, BaseRegD; | 
|  | int64_t OffsetS, OffsetD; | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || | 
|  | !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) | 
|  | return true; | 
|  |  | 
|  | if (BaseRegS != BaseRegD) | 
|  | return true; | 
|  |  | 
|  | // Check that the base register is incremented by a constant value for each | 
|  | // iteration. | 
|  | MachineInstr *Def = MRI.getVRegDef(BaseRegS); | 
|  | if (!Def || !Def->isPHI()) | 
|  | return true; | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(*Def, BB, InitVal, LoopVal); | 
|  | MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); | 
|  | int D = 0; | 
|  | if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) | 
|  | return true; | 
|  |  | 
|  | uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); | 
|  | uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); | 
|  |  | 
|  | // This is the main test, which checks the offset values and the loop | 
|  | // increment value to determine if the accesses may be loop carried. | 
|  | if (OffsetS >= OffsetD) | 
|  | return OffsetS + AccessSizeS > DeltaS; | 
|  | else | 
|  | return OffsetD + AccessSizeD > DeltaD; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SwingSchedulerDAG::postprocessDAG() { | 
|  | for (auto &M : Mutations) | 
|  | M->apply(this); | 
|  | } | 
|  |  | 
|  | /// Try to schedule the node at the specified StartCycle and continue | 
|  | /// until the node is schedule or the EndCycle is reached.  This function | 
|  | /// returns true if the node is scheduled.  This routine may search either | 
|  | /// forward or backward for a place to insert the instruction based upon | 
|  | /// the relative values of StartCycle and EndCycle. | 
|  | bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { | 
|  | bool forward = true; | 
|  | if (StartCycle > EndCycle) | 
|  | forward = false; | 
|  |  | 
|  | // The terminating condition depends on the direction. | 
|  | int termCycle = forward ? EndCycle + 1 : EndCycle - 1; | 
|  | for (int curCycle = StartCycle; curCycle != termCycle; | 
|  | forward ? ++curCycle : --curCycle) { | 
|  |  | 
|  | // Add the already scheduled instructions at the specified cycle to the DFA. | 
|  | Resources->clearResources(); | 
|  | for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); | 
|  | checkCycle <= LastCycle; checkCycle += II) { | 
|  | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; | 
|  |  | 
|  | for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), | 
|  | E = cycleInstrs.end(); | 
|  | I != E; ++I) { | 
|  | if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) | 
|  | continue; | 
|  | assert(Resources->canReserveResources(*(*I)->getInstr()) && | 
|  | "These instructions have already been scheduled."); | 
|  | Resources->reserveResources(*(*I)->getInstr()); | 
|  | } | 
|  | } | 
|  | if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || | 
|  | Resources->canReserveResources(*SU->getInstr())) { | 
|  | DEBUG({ | 
|  | dbgs() << "\tinsert at cycle " << curCycle << " "; | 
|  | SU->getInstr()->dump(); | 
|  | }); | 
|  |  | 
|  | ScheduledInstrs[curCycle].push_back(SU); | 
|  | InstrToCycle.insert(std::make_pair(SU, curCycle)); | 
|  | if (curCycle > LastCycle) | 
|  | LastCycle = curCycle; | 
|  | if (curCycle < FirstCycle) | 
|  | FirstCycle = curCycle; | 
|  | return true; | 
|  | } | 
|  | DEBUG({ | 
|  | dbgs() << "\tfailed to insert at cycle " << curCycle << " "; | 
|  | SU->getInstr()->dump(); | 
|  | }); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return the cycle of the earliest scheduled instruction in the chain. | 
|  | int SMSchedule::earliestCycleInChain(const SDep &Dep) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SDep, 8> Worklist; | 
|  | Worklist.push_back(Dep); | 
|  | int EarlyCycle = INT_MAX; | 
|  | while (!Worklist.empty()) { | 
|  | const SDep &Cur = Worklist.pop_back_val(); | 
|  | SUnit *PrevSU = Cur.getSUnit(); | 
|  | if (Visited.count(PrevSU)) | 
|  | continue; | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); | 
|  | if (it == InstrToCycle.end()) | 
|  | continue; | 
|  | EarlyCycle = std::min(EarlyCycle, it->second); | 
|  | for (const auto &PI : PrevSU->Preds) | 
|  | if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) | 
|  | Worklist.push_back(PI); | 
|  | Visited.insert(PrevSU); | 
|  | } | 
|  | return EarlyCycle; | 
|  | } | 
|  |  | 
|  | // Return the cycle of the latest scheduled instruction in the chain. | 
|  | int SMSchedule::latestCycleInChain(const SDep &Dep) { | 
|  | SmallPtrSet<SUnit *, 8> Visited; | 
|  | SmallVector<SDep, 8> Worklist; | 
|  | Worklist.push_back(Dep); | 
|  | int LateCycle = INT_MIN; | 
|  | while (!Worklist.empty()) { | 
|  | const SDep &Cur = Worklist.pop_back_val(); | 
|  | SUnit *SuccSU = Cur.getSUnit(); | 
|  | if (Visited.count(SuccSU)) | 
|  | continue; | 
|  | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); | 
|  | if (it == InstrToCycle.end()) | 
|  | continue; | 
|  | LateCycle = std::max(LateCycle, it->second); | 
|  | for (const auto &SI : SuccSU->Succs) | 
|  | if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) | 
|  | Worklist.push_back(SI); | 
|  | Visited.insert(SuccSU); | 
|  | } | 
|  | return LateCycle; | 
|  | } | 
|  |  | 
|  | /// If an instruction has a use that spans multiple iterations, then | 
|  | /// return true. These instructions are characterized by having a back-ege | 
|  | /// to a Phi, which contains a reference to another Phi. | 
|  | static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { | 
|  | for (auto &P : SU->Preds) | 
|  | if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) | 
|  | for (auto &S : P.getSUnit()->Succs) | 
|  | if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) | 
|  | return P.getSUnit(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Compute the scheduling start slot for the instruction.  The start slot | 
|  | /// depends on any predecessor or successor nodes scheduled already. | 
|  | void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, | 
|  | int *MinEnd, int *MaxStart, int II, | 
|  | SwingSchedulerDAG *DAG) { | 
|  | // Iterate over each instruction that has been scheduled already.  The start | 
|  | // slot computuation depends on whether the previously scheduled instruction | 
|  | // is a predecessor or successor of the specified instruction. | 
|  | for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { | 
|  |  | 
|  | // Iterate over each instruction in the current cycle. | 
|  | for (SUnit *I : getInstructions(cycle)) { | 
|  | // Because we're processing a DAG for the dependences, we recognize | 
|  | // the back-edge in recurrences by anti dependences. | 
|  | for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { | 
|  | const SDep &Dep = SU->Preds[i]; | 
|  | if (Dep.getSUnit() == I) { | 
|  | if (!DAG->isBackedge(SU, Dep)) { | 
|  | int EarlyStart = cycle + Dep.getLatency() - | 
|  | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | if (DAG->isLoopCarriedDep(SU, Dep, false)) { | 
|  | int End = earliestCycleInChain(Dep) + (II - 1); | 
|  | *MinEnd = std::min(*MinEnd, End); | 
|  | } | 
|  | } else { | 
|  | int LateStart = cycle - Dep.getLatency() + | 
|  | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | } | 
|  | } | 
|  | // For instruction that requires multiple iterations, make sure that | 
|  | // the dependent instruction is not scheduled past the definition. | 
|  | SUnit *BE = multipleIterations(I, DAG); | 
|  | if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && | 
|  | !SU->isPred(I)) | 
|  | *MinLateStart = std::min(*MinLateStart, cycle); | 
|  | } | 
|  | for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { | 
|  | if (SU->Succs[i].getSUnit() == I) { | 
|  | const SDep &Dep = SU->Succs[i]; | 
|  | if (!DAG->isBackedge(SU, Dep)) { | 
|  | int LateStart = cycle - Dep.getLatency() + | 
|  | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | if (DAG->isLoopCarriedDep(SU, Dep)) { | 
|  | int Start = latestCycleInChain(Dep) + 1 - II; | 
|  | *MaxStart = std::max(*MaxStart, Start); | 
|  | } | 
|  | } else { | 
|  | int EarlyStart = cycle + Dep.getLatency() - | 
|  | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Order the instructions within a cycle so that the definitions occur | 
|  | /// before the uses. Returns true if the instruction is added to the start | 
|  | /// of the list, or false if added to the end. | 
|  | void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, | 
|  | std::deque<SUnit *> &Insts) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | bool OrderBeforeUse = false; | 
|  | bool OrderAfterDef = false; | 
|  | bool OrderBeforeDef = false; | 
|  | unsigned MoveDef = 0; | 
|  | unsigned MoveUse = 0; | 
|  | int StageInst1 = stageScheduled(SU); | 
|  |  | 
|  | unsigned Pos = 0; | 
|  | for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; | 
|  | ++I, ++Pos) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | unsigned BasePos, OffsetPos; | 
|  | if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
|  | if (MI->getOperand(BasePos).getReg() == Reg) | 
|  | if (unsigned NewReg = SSD->getInstrBaseReg(SU)) | 
|  | Reg = NewReg; | 
|  | bool Reads, Writes; | 
|  | std::tie(Reads, Writes) = | 
|  | (*I)->getInstr()->readsWritesVirtualRegister(Reg); | 
|  | if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { | 
|  | // Add the instruction after the scheduled instruction. | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { | 
|  | if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | if (MoveUse != 0) { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos - 1; | 
|  | } | 
|  | } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { | 
|  | // Add the instruction before the scheduled instruction. | 
|  | OrderBeforeUse = true; | 
|  | if (MoveUse == 0) | 
|  | MoveUse = Pos; | 
|  | } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && | 
|  | isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { | 
|  | if (MoveUse == 0) { | 
|  | OrderBeforeDef = true; | 
|  | MoveUse = Pos; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Check for order dependences between instructions. Make sure the source | 
|  | // is ordered before the destination. | 
|  | for (auto &S : SU->Succs) { | 
|  | if (S.getSUnit() != *I) | 
|  | continue; | 
|  | if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | OrderBeforeUse = true; | 
|  | if (Pos < MoveUse) | 
|  | MoveUse = Pos; | 
|  | } | 
|  | } | 
|  | for (auto &P : SU->Preds) { | 
|  | if (P.getSUnit() != *I) | 
|  | continue; | 
|  | if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | OrderAfterDef = true; | 
|  | MoveDef = Pos; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // A circular dependence. | 
|  | if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) | 
|  | OrderBeforeUse = false; | 
|  |  | 
|  | // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due | 
|  | // to a loop-carried dependence. | 
|  | if (OrderBeforeDef) | 
|  | OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); | 
|  |  | 
|  | // The uncommon case when the instruction order needs to be updated because | 
|  | // there is both a use and def. | 
|  | if (OrderBeforeUse && OrderAfterDef) { | 
|  | SUnit *UseSU = Insts.at(MoveUse); | 
|  | SUnit *DefSU = Insts.at(MoveDef); | 
|  | if (MoveUse > MoveDef) { | 
|  | Insts.erase(Insts.begin() + MoveUse); | 
|  | Insts.erase(Insts.begin() + MoveDef); | 
|  | } else { | 
|  | Insts.erase(Insts.begin() + MoveDef); | 
|  | Insts.erase(Insts.begin() + MoveUse); | 
|  | } | 
|  | orderDependence(SSD, UseSU, Insts); | 
|  | orderDependence(SSD, SU, Insts); | 
|  | orderDependence(SSD, DefSU, Insts); | 
|  | return; | 
|  | } | 
|  | // Put the new instruction first if there is a use in the list. Otherwise, | 
|  | // put it at the end of the list. | 
|  | if (OrderBeforeUse) | 
|  | Insts.push_front(SU); | 
|  | else | 
|  | Insts.push_back(SU); | 
|  | } | 
|  |  | 
|  | /// Return true if the scheduled Phi has a loop carried operand. | 
|  | bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { | 
|  | if (!Phi.isPHI()) | 
|  | return false; | 
|  | assert(Phi.isPHI() && "Expecing a Phi."); | 
|  | SUnit *DefSU = SSD->getSUnit(&Phi); | 
|  | unsigned DefCycle = cycleScheduled(DefSU); | 
|  | int DefStage = stageScheduled(DefSU); | 
|  |  | 
|  | unsigned InitVal = 0; | 
|  | unsigned LoopVal = 0; | 
|  | getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); | 
|  | SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); | 
|  | if (!UseSU) | 
|  | return true; | 
|  | if (UseSU->getInstr()->isPHI()) | 
|  | return true; | 
|  | unsigned LoopCycle = cycleScheduled(UseSU); | 
|  | int LoopStage = stageScheduled(UseSU); | 
|  | return (LoopCycle > DefCycle) || (LoopStage <= DefStage); | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction is a definition that is loop carried | 
|  | /// and defines the use on the next iteration. | 
|  | ///        v1 = phi(v2, v3) | 
|  | ///  (Def) v3 = op v1 | 
|  | ///  (MO)   = v1 | 
|  | /// If MO appears before Def, then then v1 and v3 may get assigned to the same | 
|  | /// register. | 
|  | bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, | 
|  | MachineInstr *Def, MachineOperand &MO) { | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  | if (Def->isPHI()) | 
|  | return false; | 
|  | MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); | 
|  | if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) | 
|  | return false; | 
|  | if (!isLoopCarried(SSD, *Phi)) | 
|  | return false; | 
|  | unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); | 
|  | for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &DMO = Def->getOperand(i); | 
|  | if (!DMO.isReg() || !DMO.isDef()) | 
|  | continue; | 
|  | if (DMO.getReg() == LoopReg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the generated schedule is valid. This function checks if | 
|  | // an instruction that uses a physical register is scheduled in a | 
|  | // different stage than the definition. The pipeliner does not handle | 
|  | // physical register values that may cross a basic block boundary. | 
|  | bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { | 
|  | for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { | 
|  | SUnit &SU = SSD->SUnits[i]; | 
|  | if (!SU.hasPhysRegDefs) | 
|  | continue; | 
|  | int StageDef = stageScheduled(&SU); | 
|  | assert(StageDef != -1 && "Instruction should have been scheduled."); | 
|  | for (auto &SI : SU.Succs) | 
|  | if (SI.isAssignedRegDep()) | 
|  | if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) | 
|  | if (stageScheduled(SI.getSUnit()) != StageDef) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// A property of the node order in swing-modulo-scheduling is | 
|  | /// that for nodes outside circuits the following holds: | 
|  | /// none of them is scheduled after both a successor and a | 
|  | /// predecessor. | 
|  | /// The method below checks whether the property is met. | 
|  | /// If not, debug information is printed and statistics information updated. | 
|  | /// Note that we do not use an assert statement. | 
|  | /// The reason is that although an invalid node oder may prevent | 
|  | /// the pipeliner from finding a pipelined schedule for arbitrary II, | 
|  | /// it does not lead to the generation of incorrect code. | 
|  | void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { | 
|  |  | 
|  | // a sorted vector that maps each SUnit to its index in the NodeOrder | 
|  | typedef std::pair<SUnit *, unsigned> UnitIndex; | 
|  | std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); | 
|  |  | 
|  | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) | 
|  | Indices.push_back(std::make_pair(NodeOrder[i], i)); | 
|  |  | 
|  | auto CompareKey = [](UnitIndex i1, UnitIndex i2) { | 
|  | return std::get<0>(i1) < std::get<0>(i2); | 
|  | }; | 
|  |  | 
|  | // sort, so that we can perform a binary search | 
|  | llvm::sort(Indices.begin(), Indices.end(), CompareKey); | 
|  |  | 
|  | bool Valid = true; | 
|  | (void)Valid; | 
|  | // for each SUnit in the NodeOrder, check whether | 
|  | // it appears after both a successor and a predecessor | 
|  | // of the SUnit. If this is the case, and the SUnit | 
|  | // is not part of circuit, then the NodeOrder is not | 
|  | // valid. | 
|  | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { | 
|  | SUnit *SU = NodeOrder[i]; | 
|  | unsigned Index = i; | 
|  |  | 
|  | bool PredBefore = false; | 
|  | bool SuccBefore = false; | 
|  |  | 
|  | SUnit *Succ; | 
|  | SUnit *Pred; | 
|  | (void)Succ; | 
|  | (void)Pred; | 
|  |  | 
|  | for (SDep &PredEdge : SU->Preds) { | 
|  | SUnit *PredSU = PredEdge.getSUnit(); | 
|  | unsigned PredIndex = | 
|  | std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), | 
|  | std::make_pair(PredSU, 0), CompareKey)); | 
|  | if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { | 
|  | PredBefore = true; | 
|  | Pred = PredSU; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (SDep &SuccEdge : SU->Succs) { | 
|  | SUnit *SuccSU = SuccEdge.getSUnit(); | 
|  | unsigned SuccIndex = | 
|  | std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), | 
|  | std::make_pair(SuccSU, 0), CompareKey)); | 
|  | if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { | 
|  | SuccBefore = true; | 
|  | Succ = SuccSU; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { | 
|  | // instructions in circuits are allowed to be scheduled | 
|  | // after both a successor and predecessor. | 
|  | bool InCircuit = std::any_of( | 
|  | Circuits.begin(), Circuits.end(), | 
|  | [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); | 
|  | if (InCircuit) | 
|  | DEBUG(dbgs() << "In a circuit, predecessor ";); | 
|  | else { | 
|  | Valid = false; | 
|  | NumNodeOrderIssues++; | 
|  | DEBUG(dbgs() << "Predecessor ";); | 
|  | } | 
|  | DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum | 
|  | << " are scheduled before node " << SU->NodeNum << "\n";); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG({ | 
|  | if (!Valid) | 
|  | dbgs() << "Invalid node order found!\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Attempt to fix the degenerate cases when the instruction serialization | 
|  | /// causes the register lifetimes to overlap. For example, | 
|  | ///   p' = store_pi(p, b) | 
|  | ///      = load p, offset | 
|  | /// In this case p and p' overlap, which means that two registers are needed. | 
|  | /// Instead, this function changes the load to use p' and updates the offset. | 
|  | void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { | 
|  | unsigned OverlapReg = 0; | 
|  | unsigned NewBaseReg = 0; | 
|  | for (SUnit *SU : Instrs) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | // Look for an instruction that uses p. The instruction occurs in the | 
|  | // same cycle but occurs later in the serialized order. | 
|  | if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { | 
|  | // Check that the instruction appears in the InstrChanges structure, | 
|  | // which contains instructions that can have the offset updated. | 
|  | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | InstrChanges.find(SU); | 
|  | if (It != InstrChanges.end()) { | 
|  | unsigned BasePos, OffsetPos; | 
|  | // Update the base register and adjust the offset. | 
|  | if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { | 
|  | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | NewMI->getOperand(BasePos).setReg(NewBaseReg); | 
|  | int64_t NewOffset = | 
|  | MI->getOperand(OffsetPos).getImm() - It->second.second; | 
|  | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | SU->setInstr(NewMI); | 
|  | MISUnitMap[NewMI] = SU; | 
|  | NewMIs.insert(NewMI); | 
|  | } | 
|  | } | 
|  | OverlapReg = 0; | 
|  | NewBaseReg = 0; | 
|  | break; | 
|  | } | 
|  | // Look for an instruction of the form p' = op(p), which uses and defines | 
|  | // two virtual registers that get allocated to the same physical register. | 
|  | unsigned TiedUseIdx = 0; | 
|  | if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { | 
|  | // OverlapReg is p in the example above. | 
|  | OverlapReg = MI->getOperand(TiedUseIdx).getReg(); | 
|  | // NewBaseReg is p' in the example above. | 
|  | NewBaseReg = MI->getOperand(i).getReg(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// After the schedule has been formed, call this function to combine | 
|  | /// the instructions from the different stages/cycles.  That is, this | 
|  | /// function creates a schedule that represents a single iteration. | 
|  | void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { | 
|  | // Move all instructions to the first stage from later stages. | 
|  | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; | 
|  | ++stage) { | 
|  | std::deque<SUnit *> &cycleInstrs = | 
|  | ScheduledInstrs[cycle + (stage * InitiationInterval)]; | 
|  | for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), | 
|  | E = cycleInstrs.rend(); | 
|  | I != E; ++I) | 
|  | ScheduledInstrs[cycle].push_front(*I); | 
|  | } | 
|  | } | 
|  | // Iterate over the definitions in each instruction, and compute the | 
|  | // stage difference for each use.  Keep the maximum value. | 
|  | for (auto &I : InstrToCycle) { | 
|  | int DefStage = stageScheduled(I.first); | 
|  | MachineInstr *MI = I.first->getInstr(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!Op.isReg() || !Op.isDef()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = Op.getReg(); | 
|  | unsigned MaxDiff = 0; | 
|  | bool PhiIsSwapped = false; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), | 
|  | EI = MRI.use_end(); | 
|  | UI != EI; ++UI) { | 
|  | MachineOperand &UseOp = *UI; | 
|  | MachineInstr *UseMI = UseOp.getParent(); | 
|  | SUnit *SUnitUse = SSD->getSUnit(UseMI); | 
|  | int UseStage = stageScheduled(SUnitUse); | 
|  | unsigned Diff = 0; | 
|  | if (UseStage != -1 && UseStage >= DefStage) | 
|  | Diff = UseStage - DefStage; | 
|  | if (MI->isPHI()) { | 
|  | if (isLoopCarried(SSD, *MI)) | 
|  | ++Diff; | 
|  | else | 
|  | PhiIsSwapped = true; | 
|  | } | 
|  | MaxDiff = std::max(Diff, MaxDiff); | 
|  | } | 
|  | RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Erase all the elements in the later stages. Only one iteration should | 
|  | // remain in the scheduled list, and it contains all the instructions. | 
|  | for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) | 
|  | ScheduledInstrs.erase(cycle); | 
|  |  | 
|  | // Change the registers in instruction as specified in the InstrChanges | 
|  | // map. We need to use the new registers to create the correct order. | 
|  | for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { | 
|  | SUnit *SU = &SSD->SUnits[i]; | 
|  | SSD->applyInstrChange(SU->getInstr(), *this); | 
|  | } | 
|  |  | 
|  | // Reorder the instructions in each cycle to fix and improve the | 
|  | // generated code. | 
|  | for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { | 
|  | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; | 
|  | std::deque<SUnit *> newOrderPhi; | 
|  | for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { | 
|  | SUnit *SU = cycleInstrs[i]; | 
|  | if (SU->getInstr()->isPHI()) | 
|  | newOrderPhi.push_back(SU); | 
|  | } | 
|  | std::deque<SUnit *> newOrderI; | 
|  | for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { | 
|  | SUnit *SU = cycleInstrs[i]; | 
|  | if (!SU->getInstr()->isPHI()) | 
|  | orderDependence(SSD, SU, newOrderI); | 
|  | } | 
|  | // Replace the old order with the new order. | 
|  | cycleInstrs.swap(newOrderPhi); | 
|  | cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); | 
|  | SSD->fixupRegisterOverlaps(cycleInstrs); | 
|  | } | 
|  |  | 
|  | DEBUG(dump();); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | /// Print the schedule information to the given output. | 
|  | void SMSchedule::print(raw_ostream &os) const { | 
|  | // Iterate over each cycle. | 
|  | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | // Iterate over each instruction in the cycle. | 
|  | const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); | 
|  | for (SUnit *CI : cycleInstrs->second) { | 
|  | os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; | 
|  | os << "(" << CI->NodeNum << ") "; | 
|  | CI->getInstr()->print(os); | 
|  | os << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Utility function used for debugging to print the schedule. | 
|  | LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } | 
|  | #endif |