|  | //===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Nate Begeman and is distributed under the | 
|  | // University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs a strength reduction on array references inside loops that | 
|  | // have as one or more of their components the loop induction variable.  This is | 
|  | // accomplished by creating a new Value to hold the initial value of the array | 
|  | // access for the first iteration, and then creating a new GEP instruction in | 
|  | // the loop to increment the value by the appropriate amount. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "loop-reduce" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumReduced , "Number of GEPs strength reduced"); | 
|  | STATISTIC(NumInserted, "Number of PHIs inserted"); | 
|  | STATISTIC(NumVariable, "Number of PHIs with variable strides"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct BasedUser; | 
|  |  | 
|  | /// IVStrideUse - Keep track of one use of a strided induction variable, where | 
|  | /// the stride is stored externally.  The Offset member keeps track of the | 
|  | /// offset from the IV, User is the actual user of the operand, and 'Operand' | 
|  | /// is the operand # of the User that is the use. | 
|  | struct VISIBILITY_HIDDEN IVStrideUse { | 
|  | SCEVHandle Offset; | 
|  | Instruction *User; | 
|  | Value *OperandValToReplace; | 
|  |  | 
|  | // isUseOfPostIncrementedValue - True if this should use the | 
|  | // post-incremented version of this IV, not the preincremented version. | 
|  | // This can only be set in special cases, such as the terminating setcc | 
|  | // instruction for a loop or uses dominated by the loop. | 
|  | bool isUseOfPostIncrementedValue; | 
|  |  | 
|  | IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O) | 
|  | : Offset(Offs), User(U), OperandValToReplace(O), | 
|  | isUseOfPostIncrementedValue(false) {} | 
|  | }; | 
|  |  | 
|  | /// IVUsersOfOneStride - This structure keeps track of all instructions that | 
|  | /// have an operand that is based on the trip count multiplied by some stride. | 
|  | /// The stride for all of these users is common and kept external to this | 
|  | /// structure. | 
|  | struct VISIBILITY_HIDDEN IVUsersOfOneStride { | 
|  | /// Users - Keep track of all of the users of this stride as well as the | 
|  | /// initial value and the operand that uses the IV. | 
|  | std::vector<IVStrideUse> Users; | 
|  |  | 
|  | void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) { | 
|  | Users.push_back(IVStrideUse(Offset, User, Operand)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// IVInfo - This structure keeps track of one IV expression inserted during | 
|  | /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as | 
|  | /// well as the PHI node and increment value created for rewrite. | 
|  | struct VISIBILITY_HIDDEN IVExpr { | 
|  | SCEVHandle  Stride; | 
|  | SCEVHandle  Base; | 
|  | PHINode    *PHI; | 
|  | Value      *IncV; | 
|  |  | 
|  | IVExpr() | 
|  | : Stride(SCEVUnknown::getIntegerSCEV(0, Type::Int32Ty)), | 
|  | Base  (SCEVUnknown::getIntegerSCEV(0, Type::Int32Ty)) {} | 
|  | IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi, | 
|  | Value *incv) | 
|  | : Stride(stride), Base(base), PHI(phi), IncV(incv) {} | 
|  | }; | 
|  |  | 
|  | /// IVsOfOneStride - This structure keeps track of all IV expression inserted | 
|  | /// during StrengthReduceStridedIVUsers for a particular stride of the IV. | 
|  | struct VISIBILITY_HIDDEN IVsOfOneStride { | 
|  | std::vector<IVExpr> IVs; | 
|  |  | 
|  | void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI, | 
|  | Value *IncV) { | 
|  | IVs.push_back(IVExpr(Stride, Base, PHI, IncV)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass { | 
|  | LoopInfo *LI; | 
|  | DominatorTree *DT; | 
|  | ScalarEvolution *SE; | 
|  | const TargetData *TD; | 
|  | const Type *UIntPtrTy; | 
|  | bool Changed; | 
|  |  | 
|  | /// IVUsesByStride - Keep track of all uses of induction variables that we | 
|  | /// are interested in.  The key of the map is the stride of the access. | 
|  | std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride; | 
|  |  | 
|  | /// IVsByStride - Keep track of all IVs that have been inserted for a | 
|  | /// particular stride. | 
|  | std::map<SCEVHandle, IVsOfOneStride> IVsByStride; | 
|  |  | 
|  | /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable: | 
|  | /// We use this to iterate over the IVUsesByStride collection without being | 
|  | /// dependent on random ordering of pointers in the process. | 
|  | std::vector<SCEVHandle> StrideOrder; | 
|  |  | 
|  | /// CastedValues - As we need to cast values to uintptr_t, this keeps track | 
|  | /// of the casted version of each value.  This is accessed by | 
|  | /// getCastedVersionOf. | 
|  | std::map<Value*, Value*> CastedPointers; | 
|  |  | 
|  | /// DeadInsts - Keep track of instructions we may have made dead, so that | 
|  | /// we can remove them after we are done working. | 
|  | std::set<Instruction*> DeadInsts; | 
|  |  | 
|  | /// TLI - Keep a pointer of a TargetLowering to consult for determining | 
|  | /// transformation profitability. | 
|  | const TargetLowering *TLI; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  | explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : | 
|  | LoopPass((intptr_t)&ID), TLI(tli) { | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | // We split critical edges, so we change the CFG.  However, we do update | 
|  | // many analyses if they are around. | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | AU.addPreserved<LoopInfo>(); | 
|  | AU.addPreserved<DominanceFrontier>(); | 
|  | AU.addPreserved<DominatorTree>(); | 
|  |  | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<LoopInfo>(); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addRequired<TargetData>(); | 
|  | AU.addRequired<ScalarEvolution>(); | 
|  | } | 
|  |  | 
|  | /// getCastedVersionOf - Return the specified value casted to uintptr_t. | 
|  | /// | 
|  | Value *getCastedVersionOf(Instruction::CastOps opcode, Value *V); | 
|  | private: | 
|  | bool AddUsersIfInteresting(Instruction *I, Loop *L, | 
|  | std::set<Instruction*> &Processed); | 
|  | SCEVHandle GetExpressionSCEV(Instruction *E, Loop *L); | 
|  |  | 
|  | void OptimizeIndvars(Loop *L); | 
|  | bool FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse, | 
|  | const SCEVHandle *&CondStride); | 
|  |  | 
|  | unsigned CheckForIVReuse(const SCEVHandle&, IVExpr&, const Type*, | 
|  | const std::vector<BasedUser>& UsersToProcess); | 
|  |  | 
|  | bool ValidStride(int64_t, const std::vector<BasedUser>& UsersToProcess); | 
|  |  | 
|  | void StrengthReduceStridedIVUsers(const SCEVHandle &Stride, | 
|  | IVUsersOfOneStride &Uses, | 
|  | Loop *L, bool isOnlyStride); | 
|  | void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts); | 
|  | }; | 
|  | char LoopStrengthReduce::ID = 0; | 
|  | RegisterPass<LoopStrengthReduce> X("loop-reduce", "Loop Strength Reduction"); | 
|  | } | 
|  |  | 
|  | LoopPass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { | 
|  | return new LoopStrengthReduce(TLI); | 
|  | } | 
|  |  | 
|  | /// getCastedVersionOf - Return the specified value casted to uintptr_t. This | 
|  | /// assumes that the Value* V is of integer or pointer type only. | 
|  | /// | 
|  | Value *LoopStrengthReduce::getCastedVersionOf(Instruction::CastOps opcode, | 
|  | Value *V) { | 
|  | if (V->getType() == UIntPtrTy) return V; | 
|  | if (Constant *CB = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getCast(opcode, CB, UIntPtrTy); | 
|  |  | 
|  | Value *&New = CastedPointers[V]; | 
|  | if (New) return New; | 
|  |  | 
|  | New = SCEVExpander::InsertCastOfTo(opcode, V, UIntPtrTy); | 
|  | DeadInsts.insert(cast<Instruction>(New)); | 
|  | return New; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// DeleteTriviallyDeadInstructions - If any of the instructions is the | 
|  | /// specified set are trivially dead, delete them and see if this makes any of | 
|  | /// their operands subsequently dead. | 
|  | void LoopStrengthReduce:: | 
|  | DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) { | 
|  | while (!Insts.empty()) { | 
|  | Instruction *I = *Insts.begin(); | 
|  | Insts.erase(Insts.begin()); | 
|  | if (isInstructionTriviallyDead(I)) { | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i))) | 
|  | Insts.insert(U); | 
|  | SE->deleteValueFromRecords(I); | 
|  | I->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// GetExpressionSCEV - Compute and return the SCEV for the specified | 
|  | /// instruction. | 
|  | SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp, Loop *L) { | 
|  | // Pointer to pointer bitcast instructions return the same value as their | 
|  | // operand. | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(Exp)) { | 
|  | if (SE->hasSCEV(BCI) || !isa<Instruction>(BCI->getOperand(0))) | 
|  | return SE->getSCEV(BCI); | 
|  | SCEVHandle R = GetExpressionSCEV(cast<Instruction>(BCI->getOperand(0)), L); | 
|  | SE->setSCEV(BCI, R); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions. | 
|  | // If this is a GEP that SE doesn't know about, compute it now and insert it. | 
|  | // If this is not a GEP, or if we have already done this computation, just let | 
|  | // SE figure it out. | 
|  | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp); | 
|  | if (!GEP || SE->hasSCEV(GEP)) | 
|  | return SE->getSCEV(Exp); | 
|  |  | 
|  | // Analyze all of the subscripts of this getelementptr instruction, looking | 
|  | // for uses that are determined by the trip count of L.  First, skip all | 
|  | // operands the are not dependent on the IV. | 
|  |  | 
|  | // Build up the base expression.  Insert an LLVM cast of the pointer to | 
|  | // uintptr_t first. | 
|  | SCEVHandle GEPVal = SCEVUnknown::get( | 
|  | getCastedVersionOf(Instruction::PtrToInt, GEP->getOperand(0))); | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  |  | 
|  | for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | // If this is a use of a recurrence that we can analyze, and it comes before | 
|  | // Op does in the GEP operand list, we will handle this when we process this | 
|  | // operand. | 
|  | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | const StructLayout *SL = TD->getStructLayout(STy); | 
|  | unsigned Idx = cast<ConstantInt>(GEP->getOperand(i))->getZExtValue(); | 
|  | uint64_t Offset = SL->getElementOffset(Idx); | 
|  | GEPVal = SCEVAddExpr::get(GEPVal, | 
|  | SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy)); | 
|  | } else { | 
|  | unsigned GEPOpiBits = | 
|  | GEP->getOperand(i)->getType()->getPrimitiveSizeInBits(); | 
|  | unsigned IntPtrBits = UIntPtrTy->getPrimitiveSizeInBits(); | 
|  | Instruction::CastOps opcode = (GEPOpiBits < IntPtrBits ? | 
|  | Instruction::SExt : (GEPOpiBits > IntPtrBits ? Instruction::Trunc : | 
|  | Instruction::BitCast)); | 
|  | Value *OpVal = getCastedVersionOf(opcode, GEP->getOperand(i)); | 
|  | SCEVHandle Idx = SE->getSCEV(OpVal); | 
|  |  | 
|  | uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType()); | 
|  | if (TypeSize != 1) | 
|  | Idx = SCEVMulExpr::get(Idx, | 
|  | SCEVConstant::get(ConstantInt::get(UIntPtrTy, | 
|  | TypeSize))); | 
|  | GEPVal = SCEVAddExpr::get(GEPVal, Idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | SE->setSCEV(GEP, GEPVal); | 
|  | return GEPVal; | 
|  | } | 
|  |  | 
|  | /// getSCEVStartAndStride - Compute the start and stride of this expression, | 
|  | /// returning false if the expression is not a start/stride pair, or true if it | 
|  | /// is.  The stride must be a loop invariant expression, but the start may be | 
|  | /// a mix of loop invariant and loop variant expressions. | 
|  | static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L, | 
|  | SCEVHandle &Start, SCEVHandle &Stride) { | 
|  | SCEVHandle TheAddRec = Start;   // Initialize to zero. | 
|  |  | 
|  | // If the outer level is an AddExpr, the operands are all start values except | 
|  | // for a nested AddRecExpr. | 
|  | if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) { | 
|  | for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i) | 
|  | if (SCEVAddRecExpr *AddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) { | 
|  | if (AddRec->getLoop() == L) | 
|  | TheAddRec = SCEVAddExpr::get(AddRec, TheAddRec); | 
|  | else | 
|  | return false;  // Nested IV of some sort? | 
|  | } else { | 
|  | Start = SCEVAddExpr::get(Start, AE->getOperand(i)); | 
|  | } | 
|  |  | 
|  | } else if (isa<SCEVAddRecExpr>(SH)) { | 
|  | TheAddRec = SH; | 
|  | } else { | 
|  | return false;  // not analyzable. | 
|  | } | 
|  |  | 
|  | SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec); | 
|  | if (!AddRec || AddRec->getLoop() != L) return false; | 
|  |  | 
|  | // FIXME: Generalize to non-affine IV's. | 
|  | if (!AddRec->isAffine()) return false; | 
|  |  | 
|  | Start = SCEVAddExpr::get(Start, AddRec->getOperand(0)); | 
|  |  | 
|  | if (!isa<SCEVConstant>(AddRec->getOperand(1))) | 
|  | DOUT << "[" << L->getHeader()->getName() | 
|  | << "] Variable stride: " << *AddRec << "\n"; | 
|  |  | 
|  | Stride = AddRec->getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression | 
|  | /// and now we need to decide whether the user should use the preinc or post-inc | 
|  | /// value.  If this user should use the post-inc version of the IV, return true. | 
|  | /// | 
|  | /// Choosing wrong here can break dominance properties (if we choose to use the | 
|  | /// post-inc value when we cannot) or it can end up adding extra live-ranges to | 
|  | /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we | 
|  | /// should use the post-inc value). | 
|  | static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV, | 
|  | Loop *L, DominatorTree *DT, Pass *P) { | 
|  | // If the user is in the loop, use the preinc value. | 
|  | if (L->contains(User->getParent())) return false; | 
|  |  | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  |  | 
|  | // Ok, the user is outside of the loop.  If it is dominated by the latch | 
|  | // block, use the post-inc value. | 
|  | if (DT->dominates(LatchBlock, User->getParent())) | 
|  | return true; | 
|  |  | 
|  | // There is one case we have to be careful of: PHI nodes.  These little guys | 
|  | // can live in blocks that do not dominate the latch block, but (since their | 
|  | // uses occur in the predecessor block, not the block the PHI lives in) should | 
|  | // still use the post-inc value.  Check for this case now. | 
|  | PHINode *PN = dyn_cast<PHINode>(User); | 
|  | if (!PN) return false;  // not a phi, not dominated by latch block. | 
|  |  | 
|  | // Look at all of the uses of IV by the PHI node.  If any use corresponds to | 
|  | // a block that is not dominated by the latch block, give up and use the | 
|  | // preincremented value. | 
|  | unsigned NumUses = 0; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == IV) { | 
|  | ++NumUses; | 
|  | if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Okay, all uses of IV by PN are in predecessor blocks that really are | 
|  | // dominated by the latch block.  Split the critical edges and use the | 
|  | // post-incremented value. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == IV) { | 
|  | SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P, | 
|  | true); | 
|  | // Splitting the critical edge can reduce the number of entries in this | 
|  | // PHI. | 
|  | e = PN->getNumIncomingValues(); | 
|  | if (--NumUses == 0) break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// AddUsersIfInteresting - Inspect the specified instruction.  If it is a | 
|  | /// reducible SCEV, recursively add its users to the IVUsesByStride set and | 
|  | /// return true.  Otherwise, return false. | 
|  | bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L, | 
|  | std::set<Instruction*> &Processed) { | 
|  | if (!I->getType()->isInteger() && !isa<PointerType>(I->getType())) | 
|  | return false;   // Void and FP expressions cannot be reduced. | 
|  | if (!Processed.insert(I).second) | 
|  | return true;    // Instruction already handled. | 
|  |  | 
|  | // Get the symbolic expression for this instruction. | 
|  | SCEVHandle ISE = GetExpressionSCEV(I, L); | 
|  | if (isa<SCEVCouldNotCompute>(ISE)) return false; | 
|  |  | 
|  | // Get the start and stride for this expression. | 
|  | SCEVHandle Start = SCEVUnknown::getIntegerSCEV(0, ISE->getType()); | 
|  | SCEVHandle Stride = Start; | 
|  | if (!getSCEVStartAndStride(ISE, L, Start, Stride)) | 
|  | return false;  // Non-reducible symbolic expression, bail out. | 
|  |  | 
|  | std::vector<Instruction *> IUsers; | 
|  | // Collect all I uses now because IVUseShouldUsePostIncValue may | 
|  | // invalidate use_iterator. | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) | 
|  | IUsers.push_back(cast<Instruction>(*UI)); | 
|  |  | 
|  | for (unsigned iused_index = 0, iused_size = IUsers.size(); | 
|  | iused_index != iused_size; ++iused_index) { | 
|  |  | 
|  | Instruction *User = IUsers[iused_index]; | 
|  |  | 
|  | // Do not infinitely recurse on PHI nodes. | 
|  | if (isa<PHINode>(User) && Processed.count(User)) | 
|  | continue; | 
|  |  | 
|  | // If this is an instruction defined in a nested loop, or outside this loop, | 
|  | // don't recurse into it. | 
|  | bool AddUserToIVUsers = false; | 
|  | if (LI->getLoopFor(User->getParent()) != L) { | 
|  | DOUT << "FOUND USER in other loop: " << *User | 
|  | << "   OF SCEV: " << *ISE << "\n"; | 
|  | AddUserToIVUsers = true; | 
|  | } else if (!AddUsersIfInteresting(User, L, Processed)) { | 
|  | DOUT << "FOUND USER: " << *User | 
|  | << "   OF SCEV: " << *ISE << "\n"; | 
|  | AddUserToIVUsers = true; | 
|  | } | 
|  |  | 
|  | if (AddUserToIVUsers) { | 
|  | IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride]; | 
|  | if (StrideUses.Users.empty())     // First occurance of this stride? | 
|  | StrideOrder.push_back(Stride); | 
|  |  | 
|  | // Okay, we found a user that we cannot reduce.  Analyze the instruction | 
|  | // and decide what to do with it.  If we are a use inside of the loop, use | 
|  | // the value before incrementation, otherwise use it after incrementation. | 
|  | if (IVUseShouldUsePostIncValue(User, I, L, DT, this)) { | 
|  | // The value used will be incremented by the stride more than we are | 
|  | // expecting, so subtract this off. | 
|  | SCEVHandle NewStart = SCEV::getMinusSCEV(Start, Stride); | 
|  | StrideUses.addUser(NewStart, User, I); | 
|  | StrideUses.Users.back().isUseOfPostIncrementedValue = true; | 
|  | DOUT << "   USING POSTINC SCEV, START=" << *NewStart<< "\n"; | 
|  | } else { | 
|  | StrideUses.addUser(Start, User, I); | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// BasedUser - For a particular base value, keep information about how we've | 
|  | /// partitioned the expression so far. | 
|  | struct BasedUser { | 
|  | /// Base - The Base value for the PHI node that needs to be inserted for | 
|  | /// this use.  As the use is processed, information gets moved from this | 
|  | /// field to the Imm field (below).  BasedUser values are sorted by this | 
|  | /// field. | 
|  | SCEVHandle Base; | 
|  |  | 
|  | /// Inst - The instruction using the induction variable. | 
|  | Instruction *Inst; | 
|  |  | 
|  | /// OperandValToReplace - The operand value of Inst to replace with the | 
|  | /// EmittedBase. | 
|  | Value *OperandValToReplace; | 
|  |  | 
|  | /// Imm - The immediate value that should be added to the base immediately | 
|  | /// before Inst, because it will be folded into the imm field of the | 
|  | /// instruction. | 
|  | SCEVHandle Imm; | 
|  |  | 
|  | /// EmittedBase - The actual value* to use for the base value of this | 
|  | /// operation.  This is null if we should just use zero so far. | 
|  | Value *EmittedBase; | 
|  |  | 
|  | // isUseOfPostIncrementedValue - True if this should use the | 
|  | // post-incremented version of this IV, not the preincremented version. | 
|  | // This can only be set in special cases, such as the terminating setcc | 
|  | // instruction for a loop and uses outside the loop that are dominated by | 
|  | // the loop. | 
|  | bool isUseOfPostIncrementedValue; | 
|  |  | 
|  | BasedUser(IVStrideUse &IVSU) | 
|  | : Base(IVSU.Offset), Inst(IVSU.User), | 
|  | OperandValToReplace(IVSU.OperandValToReplace), | 
|  | Imm(SCEVUnknown::getIntegerSCEV(0, Base->getType())), EmittedBase(0), | 
|  | isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {} | 
|  |  | 
|  | // Once we rewrite the code to insert the new IVs we want, update the | 
|  | // operands of Inst to use the new expression 'NewBase', with 'Imm' added | 
|  | // to it. | 
|  | void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase, | 
|  | SCEVExpander &Rewriter, Loop *L, | 
|  | Pass *P); | 
|  |  | 
|  | Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, | 
|  | SCEVExpander &Rewriter, | 
|  | Instruction *IP, Loop *L); | 
|  | void dump() const; | 
|  | }; | 
|  | } | 
|  |  | 
|  | void BasedUser::dump() const { | 
|  | cerr << " Base=" << *Base; | 
|  | cerr << " Imm=" << *Imm; | 
|  | if (EmittedBase) | 
|  | cerr << "  EB=" << *EmittedBase; | 
|  |  | 
|  | cerr << "   Inst: " << *Inst; | 
|  | } | 
|  |  | 
|  | Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, | 
|  | SCEVExpander &Rewriter, | 
|  | Instruction *IP, Loop *L) { | 
|  | // Figure out where we *really* want to insert this code.  In particular, if | 
|  | // the user is inside of a loop that is nested inside of L, we really don't | 
|  | // want to insert this expression before the user, we'd rather pull it out as | 
|  | // many loops as possible. | 
|  | LoopInfo &LI = Rewriter.getLoopInfo(); | 
|  | Instruction *BaseInsertPt = IP; | 
|  |  | 
|  | // Figure out the most-nested loop that IP is in. | 
|  | Loop *InsertLoop = LI.getLoopFor(IP->getParent()); | 
|  |  | 
|  | // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out | 
|  | // the preheader of the outer-most loop where NewBase is not loop invariant. | 
|  | while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) { | 
|  | BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator(); | 
|  | InsertLoop = InsertLoop->getParentLoop(); | 
|  | } | 
|  |  | 
|  | // If there is no immediate value, skip the next part. | 
|  | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm)) | 
|  | if (SC->getValue()->isZero()) | 
|  | return Rewriter.expandCodeFor(NewBase, BaseInsertPt); | 
|  |  | 
|  | Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt); | 
|  |  | 
|  | // If we are inserting the base and imm values in the same block, make sure to | 
|  | // adjust the IP position if insertion reused a result. | 
|  | if (IP == BaseInsertPt) | 
|  | IP = Rewriter.getInsertionPoint(); | 
|  |  | 
|  | // Always emit the immediate (if non-zero) into the same block as the user. | 
|  | SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(Base), Imm); | 
|  | return Rewriter.expandCodeFor(NewValSCEV, IP); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | // Once we rewrite the code to insert the new IVs we want, update the | 
|  | // operands of Inst to use the new expression 'NewBase', with 'Imm' added | 
|  | // to it. | 
|  | void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase, | 
|  | SCEVExpander &Rewriter, | 
|  | Loop *L, Pass *P) { | 
|  | if (!isa<PHINode>(Inst)) { | 
|  | // By default, insert code at the user instruction. | 
|  | BasicBlock::iterator InsertPt = Inst; | 
|  |  | 
|  | // However, if the Operand is itself an instruction, the (potentially | 
|  | // complex) inserted code may be shared by many users.  Because of this, we | 
|  | // want to emit code for the computation of the operand right before its old | 
|  | // computation.  This is usually safe, because we obviously used to use the | 
|  | // computation when it was computed in its current block.  However, in some | 
|  | // cases (e.g. use of a post-incremented induction variable) the NewBase | 
|  | // value will be pinned to live somewhere after the original computation. | 
|  | // In this case, we have to back off. | 
|  | if (!isUseOfPostIncrementedValue) { | 
|  | if (Instruction *OpInst = dyn_cast<Instruction>(OperandValToReplace)) { | 
|  | InsertPt = OpInst; | 
|  | while (isa<PHINode>(InsertPt)) ++InsertPt; | 
|  | } | 
|  | } | 
|  | Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L); | 
|  | // Adjust the type back to match the Inst. Note that we can't use InsertPt | 
|  | // here because the SCEVExpander may have inserted the instructions after | 
|  | // that point, in its efforts to avoid inserting redundant expressions. | 
|  | if (isa<PointerType>(OperandValToReplace->getType())) { | 
|  | NewVal = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, | 
|  | NewVal, | 
|  | OperandValToReplace->getType()); | 
|  | } | 
|  | // Replace the use of the operand Value with the new Phi we just created. | 
|  | Inst->replaceUsesOfWith(OperandValToReplace, NewVal); | 
|  | DOUT << "    CHANGED: IMM =" << *Imm; | 
|  | DOUT << "  \tNEWBASE =" << *NewBase; | 
|  | DOUT << "  \tInst = " << *Inst; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm | 
|  | // expression into each operand block that uses it.  Note that PHI nodes can | 
|  | // have multiple entries for the same predecessor.  We use a map to make sure | 
|  | // that a PHI node only has a single Value* for each predecessor (which also | 
|  | // prevents us from inserting duplicate code in some blocks). | 
|  | std::map<BasicBlock*, Value*> InsertedCode; | 
|  | PHINode *PN = cast<PHINode>(Inst); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | if (PN->getIncomingValue(i) == OperandValToReplace) { | 
|  | // If this is a critical edge, split the edge so that we do not insert the | 
|  | // code on all predecessor/successor paths.  We do this unless this is the | 
|  | // canonical backedge for this loop, as this can make some inserted code | 
|  | // be in an illegal position. | 
|  | BasicBlock *PHIPred = PN->getIncomingBlock(i); | 
|  | if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 && | 
|  | (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) { | 
|  |  | 
|  | // First step, split the critical edge. | 
|  | SplitCriticalEdge(PHIPred, PN->getParent(), P, true); | 
|  |  | 
|  | // Next step: move the basic block.  In particular, if the PHI node | 
|  | // is outside of the loop, and PredTI is in the loop, we want to | 
|  | // move the block to be immediately before the PHI block, not | 
|  | // immediately after PredTI. | 
|  | if (L->contains(PHIPred) && !L->contains(PN->getParent())) { | 
|  | BasicBlock *NewBB = PN->getIncomingBlock(i); | 
|  | NewBB->moveBefore(PN->getParent()); | 
|  | } | 
|  |  | 
|  | // Splitting the edge can reduce the number of PHI entries we have. | 
|  | e = PN->getNumIncomingValues(); | 
|  | } | 
|  |  | 
|  | Value *&Code = InsertedCode[PN->getIncomingBlock(i)]; | 
|  | if (!Code) { | 
|  | // Insert the code into the end of the predecessor block. | 
|  | Instruction *InsertPt = PN->getIncomingBlock(i)->getTerminator(); | 
|  | Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L); | 
|  |  | 
|  | // Adjust the type back to match the PHI. Note that we can't use | 
|  | // InsertPt here because the SCEVExpander may have inserted its | 
|  | // instructions after that point, in its efforts to avoid inserting | 
|  | // redundant expressions. | 
|  | if (isa<PointerType>(PN->getType())) { | 
|  | Code = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, | 
|  | Code, | 
|  | PN->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the use of the operand Value with the new Phi we just created. | 
|  | PN->setIncomingValue(i, Code); | 
|  | Rewriter.clear(); | 
|  | } | 
|  | } | 
|  | DOUT << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isTargetConstant - Return true if the following can be referenced by the | 
|  | /// immediate field of a target instruction. | 
|  | static bool isTargetConstant(const SCEVHandle &V, const Type *UseTy, | 
|  | const TargetLowering *TLI) { | 
|  | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { | 
|  | int64_t VC = SC->getValue()->getSExtValue(); | 
|  | if (TLI) { | 
|  | TargetLowering::AddrMode AM; | 
|  | AM.BaseOffs = VC; | 
|  | return TLI->isLegalAddressingMode(AM, UseTy); | 
|  | } else { | 
|  | // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field. | 
|  | return (VC > -(1 << 16) && VC < (1 << 16)-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue())) | 
|  | if (TLI && CE->getOpcode() == Instruction::PtrToInt) { | 
|  | Constant *Op0 = CE->getOperand(0); | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(Op0)) { | 
|  | TargetLowering::AddrMode AM; | 
|  | AM.BaseGV = GV; | 
|  | return TLI->isLegalAddressingMode(AM, UseTy); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MoveLoopVariantsToImediateField - Move any subexpressions from Val that are | 
|  | /// loop varying to the Imm operand. | 
|  | static void MoveLoopVariantsToImediateField(SCEVHandle &Val, SCEVHandle &Imm, | 
|  | Loop *L) { | 
|  | if (Val->isLoopInvariant(L)) return;  // Nothing to do. | 
|  |  | 
|  | if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { | 
|  | std::vector<SCEVHandle> NewOps; | 
|  | NewOps.reserve(SAE->getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0; i != SAE->getNumOperands(); ++i) | 
|  | if (!SAE->getOperand(i)->isLoopInvariant(L)) { | 
|  | // If this is a loop-variant expression, it must stay in the immediate | 
|  | // field of the expression. | 
|  | Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i)); | 
|  | } else { | 
|  | NewOps.push_back(SAE->getOperand(i)); | 
|  | } | 
|  |  | 
|  | if (NewOps.empty()) | 
|  | Val = SCEVUnknown::getIntegerSCEV(0, Val->getType()); | 
|  | else | 
|  | Val = SCEVAddExpr::get(NewOps); | 
|  | } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { | 
|  | // Try to pull immediates out of the start value of nested addrec's. | 
|  | SCEVHandle Start = SARE->getStart(); | 
|  | MoveLoopVariantsToImediateField(Start, Imm, L); | 
|  |  | 
|  | std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end()); | 
|  | Ops[0] = Start; | 
|  | Val = SCEVAddRecExpr::get(Ops, SARE->getLoop()); | 
|  | } else { | 
|  | // Otherwise, all of Val is variant, move the whole thing over. | 
|  | Imm = SCEVAddExpr::get(Imm, Val); | 
|  | Val = SCEVUnknown::getIntegerSCEV(0, Val->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// MoveImmediateValues - Look at Val, and pull out any additions of constants | 
|  | /// that can fit into the immediate field of instructions in the target. | 
|  | /// Accumulate these immediate values into the Imm value. | 
|  | static void MoveImmediateValues(const TargetLowering *TLI, | 
|  | Instruction *User, | 
|  | SCEVHandle &Val, SCEVHandle &Imm, | 
|  | bool isAddress, Loop *L) { | 
|  | const Type *UseTy = User->getType(); | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(User)) | 
|  | UseTy = SI->getOperand(0)->getType(); | 
|  |  | 
|  | if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { | 
|  | std::vector<SCEVHandle> NewOps; | 
|  | NewOps.reserve(SAE->getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0; i != SAE->getNumOperands(); ++i) { | 
|  | SCEVHandle NewOp = SAE->getOperand(i); | 
|  | MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L); | 
|  |  | 
|  | if (!NewOp->isLoopInvariant(L)) { | 
|  | // If this is a loop-variant expression, it must stay in the immediate | 
|  | // field of the expression. | 
|  | Imm = SCEVAddExpr::get(Imm, NewOp); | 
|  | } else { | 
|  | NewOps.push_back(NewOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewOps.empty()) | 
|  | Val = SCEVUnknown::getIntegerSCEV(0, Val->getType()); | 
|  | else | 
|  | Val = SCEVAddExpr::get(NewOps); | 
|  | return; | 
|  | } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { | 
|  | // Try to pull immediates out of the start value of nested addrec's. | 
|  | SCEVHandle Start = SARE->getStart(); | 
|  | MoveImmediateValues(TLI, User, Start, Imm, isAddress, L); | 
|  |  | 
|  | if (Start != SARE->getStart()) { | 
|  | std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end()); | 
|  | Ops[0] = Start; | 
|  | Val = SCEVAddRecExpr::get(Ops, SARE->getLoop()); | 
|  | } | 
|  | return; | 
|  | } else if (SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) { | 
|  | // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field. | 
|  | if (isAddress && isTargetConstant(SME->getOperand(0), UseTy, TLI) && | 
|  | SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) { | 
|  |  | 
|  | SCEVHandle SubImm = SCEVUnknown::getIntegerSCEV(0, Val->getType()); | 
|  | SCEVHandle NewOp = SME->getOperand(1); | 
|  | MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L); | 
|  |  | 
|  | // If we extracted something out of the subexpressions, see if we can | 
|  | // simplify this! | 
|  | if (NewOp != SME->getOperand(1)) { | 
|  | // Scale SubImm up by "8".  If the result is a target constant, we are | 
|  | // good. | 
|  | SubImm = SCEVMulExpr::get(SubImm, SME->getOperand(0)); | 
|  | if (isTargetConstant(SubImm, UseTy, TLI)) { | 
|  | // Accumulate the immediate. | 
|  | Imm = SCEVAddExpr::get(Imm, SubImm); | 
|  |  | 
|  | // Update what is left of 'Val'. | 
|  | Val = SCEVMulExpr::get(SME->getOperand(0), NewOp); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop-variant expressions must stay in the immediate field of the | 
|  | // expression. | 
|  | if ((isAddress && isTargetConstant(Val, UseTy, TLI)) || | 
|  | !Val->isLoopInvariant(L)) { | 
|  | Imm = SCEVAddExpr::get(Imm, Val); | 
|  | Val = SCEVUnknown::getIntegerSCEV(0, Val->getType()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, no immediates to move. | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are | 
|  | /// added together.  This is used to reassociate common addition subexprs | 
|  | /// together for maximal sharing when rewriting bases. | 
|  | static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs, | 
|  | SCEVHandle Expr) { | 
|  | if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) { | 
|  | for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j) | 
|  | SeparateSubExprs(SubExprs, AE->getOperand(j)); | 
|  | } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) { | 
|  | SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Expr->getType()); | 
|  | if (SARE->getOperand(0) == Zero) { | 
|  | SubExprs.push_back(Expr); | 
|  | } else { | 
|  | // Compute the addrec with zero as its base. | 
|  | std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end()); | 
|  | Ops[0] = Zero;   // Start with zero base. | 
|  | SubExprs.push_back(SCEVAddRecExpr::get(Ops, SARE->getLoop())); | 
|  |  | 
|  |  | 
|  | SeparateSubExprs(SubExprs, SARE->getOperand(0)); | 
|  | } | 
|  | } else if (!isa<SCEVConstant>(Expr) || | 
|  | !cast<SCEVConstant>(Expr)->getValue()->isZero()) { | 
|  | // Do not add zero. | 
|  | SubExprs.push_back(Expr); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// RemoveCommonExpressionsFromUseBases - Look through all of the uses in Bases, | 
|  | /// removing any common subexpressions from it.  Anything truly common is | 
|  | /// removed, accumulated, and returned.  This looks for things like (a+b+c) and | 
|  | /// (a+c+d) -> (a+c).  The common expression is *removed* from the Bases. | 
|  | static SCEVHandle | 
|  | RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses) { | 
|  | unsigned NumUses = Uses.size(); | 
|  |  | 
|  | // Only one use?  Use its base, regardless of what it is! | 
|  | SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Uses[0].Base->getType()); | 
|  | SCEVHandle Result = Zero; | 
|  | if (NumUses == 1) { | 
|  | std::swap(Result, Uses[0].Base); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // To find common subexpressions, count how many of Uses use each expression. | 
|  | // If any subexpressions are used Uses.size() times, they are common. | 
|  | std::map<SCEVHandle, unsigned> SubExpressionUseCounts; | 
|  |  | 
|  | // UniqueSubExprs - Keep track of all of the subexpressions we see in the | 
|  | // order we see them. | 
|  | std::vector<SCEVHandle> UniqueSubExprs; | 
|  |  | 
|  | std::vector<SCEVHandle> SubExprs; | 
|  | for (unsigned i = 0; i != NumUses; ++i) { | 
|  | // If the base is zero (which is common), return zero now, there are no | 
|  | // CSEs we can find. | 
|  | if (Uses[i].Base == Zero) return Zero; | 
|  |  | 
|  | // Split the expression into subexprs. | 
|  | SeparateSubExprs(SubExprs, Uses[i].Base); | 
|  | // Add one to SubExpressionUseCounts for each subexpr present. | 
|  | for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) | 
|  | if (++SubExpressionUseCounts[SubExprs[j]] == 1) | 
|  | UniqueSubExprs.push_back(SubExprs[j]); | 
|  | SubExprs.clear(); | 
|  | } | 
|  |  | 
|  | // Now that we know how many times each is used, build Result.  Iterate over | 
|  | // UniqueSubexprs so that we have a stable ordering. | 
|  | for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) { | 
|  | std::map<SCEVHandle, unsigned>::iterator I = | 
|  | SubExpressionUseCounts.find(UniqueSubExprs[i]); | 
|  | assert(I != SubExpressionUseCounts.end() && "Entry not found?"); | 
|  | if (I->second == NumUses) {  // Found CSE! | 
|  | Result = SCEVAddExpr::get(Result, I->first); | 
|  | } else { | 
|  | // Remove non-cse's from SubExpressionUseCounts. | 
|  | SubExpressionUseCounts.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found no CSE's, return now. | 
|  | if (Result == Zero) return Result; | 
|  |  | 
|  | // Otherwise, remove all of the CSE's we found from each of the base values. | 
|  | for (unsigned i = 0; i != NumUses; ++i) { | 
|  | // Split the expression into subexprs. | 
|  | SeparateSubExprs(SubExprs, Uses[i].Base); | 
|  |  | 
|  | // Remove any common subexpressions. | 
|  | for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) | 
|  | if (SubExpressionUseCounts.count(SubExprs[j])) { | 
|  | SubExprs.erase(SubExprs.begin()+j); | 
|  | --j; --e; | 
|  | } | 
|  |  | 
|  | // Finally, the non-shared expressions together. | 
|  | if (SubExprs.empty()) | 
|  | Uses[i].Base = Zero; | 
|  | else | 
|  | Uses[i].Base = SCEVAddExpr::get(SubExprs); | 
|  | SubExprs.clear(); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// isZero - returns true if the scalar evolution expression is zero. | 
|  | /// | 
|  | static bool isZero(SCEVHandle &V) { | 
|  | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) | 
|  | return SC->getValue()->isZero(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ValidStride - Check whether the given Scale is valid for all loads and | 
|  | /// stores in UsersToProcess. | 
|  | /// | 
|  | bool LoopStrengthReduce::ValidStride(int64_t Scale, | 
|  | const std::vector<BasedUser>& UsersToProcess) { | 
|  | for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) { | 
|  | // If this is a load or other access, pass the type of the access in. | 
|  | const Type *AccessTy = Type::VoidTy; | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst)) | 
|  | AccessTy = SI->getOperand(0)->getType(); | 
|  | else if (LoadInst *LI = dyn_cast<LoadInst>(UsersToProcess[i].Inst)) | 
|  | AccessTy = LI->getType(); | 
|  |  | 
|  | TargetLowering::AddrMode AM; | 
|  | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) | 
|  | AM.BaseOffs = SC->getValue()->getSExtValue(); | 
|  | AM.Scale = Scale; | 
|  |  | 
|  | // If load[imm+r*scale] is illegal, bail out. | 
|  | if (!TLI->isLegalAddressingMode(AM, AccessTy)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CheckForIVReuse - Returns the multiple if the stride is the multiple | 
|  | /// of a previous stride and it is a legal value for the target addressing | 
|  | /// mode scale component. This allows the users of this stride to be rewritten | 
|  | /// as prev iv * factor. It returns 0 if no reuse is possible. | 
|  | unsigned LoopStrengthReduce::CheckForIVReuse(const SCEVHandle &Stride, | 
|  | IVExpr &IV, const Type *Ty, | 
|  | const std::vector<BasedUser>& UsersToProcess) { | 
|  | if (!TLI) return 0; | 
|  |  | 
|  | if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) { | 
|  | int64_t SInt = SC->getValue()->getSExtValue(); | 
|  | if (SInt == 1) return 0; | 
|  |  | 
|  | for (std::map<SCEVHandle, IVsOfOneStride>::iterator SI= IVsByStride.begin(), | 
|  | SE = IVsByStride.end(); SI != SE; ++SI) { | 
|  | int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); | 
|  | if (SInt != -SSInt && | 
|  | (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0)) | 
|  | continue; | 
|  | int64_t Scale = SInt / SSInt; | 
|  | // Check that this stride is valid for all the types used for loads and | 
|  | // stores; if it can be used for some and not others, we might as well use | 
|  | // the original stride everywhere, since we have to create the IV for it | 
|  | // anyway. | 
|  | if (ValidStride(Scale, UsersToProcess)) | 
|  | for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), | 
|  | IE = SI->second.IVs.end(); II != IE; ++II) | 
|  | // FIXME: Only handle base == 0 for now. | 
|  | // Only reuse previous IV if it would not require a type conversion. | 
|  | if (isZero(II->Base) && II->Base->getType() == Ty) { | 
|  | IV = *II; | 
|  | return Scale; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that | 
|  | /// returns true if Val's isUseOfPostIncrementedValue is true. | 
|  | static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) { | 
|  | return Val.isUseOfPostIncrementedValue; | 
|  | } | 
|  |  | 
|  | /// isNonConstantNegative - REturn true if the specified scev is negated, but | 
|  | /// not a constant. | 
|  | static bool isNonConstantNegative(const SCEVHandle &Expr) { | 
|  | SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr); | 
|  | if (!Mul) return false; | 
|  |  | 
|  | // If there is a constant factor, it will be first. | 
|  | SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); | 
|  | if (!SC) return false; | 
|  |  | 
|  | // Return true if the value is negative, this matches things like (-42 * V). | 
|  | return SC->getValue()->getValue().isNegative(); | 
|  | } | 
|  |  | 
|  | /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single | 
|  | /// stride of IV.  All of the users may have different starting values, and this | 
|  | /// may not be the only stride (we know it is if isOnlyStride is true). | 
|  | void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride, | 
|  | IVUsersOfOneStride &Uses, | 
|  | Loop *L, | 
|  | bool isOnlyStride) { | 
|  | // Transform our list of users and offsets to a bit more complex table.  In | 
|  | // this new vector, each 'BasedUser' contains 'Base' the base of the | 
|  | // strided accessas well as the old information from Uses.  We progressively | 
|  | // move information from the Base field to the Imm field, until we eventually | 
|  | // have the full access expression to rewrite the use. | 
|  | std::vector<BasedUser> UsersToProcess; | 
|  | UsersToProcess.reserve(Uses.Users.size()); | 
|  | for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) { | 
|  | UsersToProcess.push_back(Uses.Users[i]); | 
|  |  | 
|  | // Move any loop invariant operands from the offset field to the immediate | 
|  | // field of the use, so that we don't try to use something before it is | 
|  | // computed. | 
|  | MoveLoopVariantsToImediateField(UsersToProcess.back().Base, | 
|  | UsersToProcess.back().Imm, L); | 
|  | assert(UsersToProcess.back().Base->isLoopInvariant(L) && | 
|  | "Base value is not loop invariant!"); | 
|  | } | 
|  |  | 
|  | // We now have a whole bunch of uses of like-strided induction variables, but | 
|  | // they might all have different bases.  We want to emit one PHI node for this | 
|  | // stride which we fold as many common expressions (between the IVs) into as | 
|  | // possible.  Start by identifying the common expressions in the base values | 
|  | // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find | 
|  | // "A+B"), emit it to the preheader, then remove the expression from the | 
|  | // UsersToProcess base values. | 
|  | SCEVHandle CommonExprs = | 
|  | RemoveCommonExpressionsFromUseBases(UsersToProcess); | 
|  |  | 
|  | // Next, figure out what we can represent in the immediate fields of | 
|  | // instructions.  If we can represent anything there, move it to the imm | 
|  | // fields of the BasedUsers.  We do this so that it increases the commonality | 
|  | // of the remaining uses. | 
|  | for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { | 
|  | // If the user is not in the current loop, this means it is using the exit | 
|  | // value of the IV.  Do not put anything in the base, make sure it's all in | 
|  | // the immediate field to allow as much factoring as possible. | 
|  | if (!L->contains(UsersToProcess[i].Inst->getParent())) { | 
|  | UsersToProcess[i].Imm = SCEVAddExpr::get(UsersToProcess[i].Imm, | 
|  | UsersToProcess[i].Base); | 
|  | UsersToProcess[i].Base = | 
|  | SCEVUnknown::getIntegerSCEV(0, UsersToProcess[i].Base->getType()); | 
|  | } else { | 
|  |  | 
|  | // Addressing modes can be folded into loads and stores.  Be careful that | 
|  | // the store is through the expression, not of the expression though. | 
|  | bool isAddress = isa<LoadInst>(UsersToProcess[i].Inst); | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst)) { | 
|  | if (SI->getOperand(1) == UsersToProcess[i].OperandValToReplace) | 
|  | isAddress = true; | 
|  | } else if (IntrinsicInst *II = | 
|  | dyn_cast<IntrinsicInst>(UsersToProcess[i].Inst)) { | 
|  | // Addressing modes can also be folded into prefetches. | 
|  | if (II->getIntrinsicID() == Intrinsic::prefetch && | 
|  | II->getOperand(1) == UsersToProcess[i].OperandValToReplace) | 
|  | isAddress = true; | 
|  | } | 
|  |  | 
|  | MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base, | 
|  | UsersToProcess[i].Imm, isAddress, L); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if it is possible to reuse a IV with stride that is factor of this | 
|  | // stride. And the multiple is a number that can be encoded in the scale | 
|  | // field of the target addressing mode.  And we will have a valid | 
|  | // instruction after this substition, including the immediate field, if any. | 
|  | PHINode *NewPHI = NULL; | 
|  | Value   *IncV   = NULL; | 
|  | IVExpr   ReuseIV; | 
|  | unsigned RewriteFactor = CheckForIVReuse(Stride, ReuseIV, | 
|  | CommonExprs->getType(), | 
|  | UsersToProcess); | 
|  | if (RewriteFactor != 0) { | 
|  | DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride | 
|  | << " and BASE " << *ReuseIV.Base << " :\n"; | 
|  | NewPHI = ReuseIV.PHI; | 
|  | IncV   = ReuseIV.IncV; | 
|  | } | 
|  |  | 
|  | const Type *ReplacedTy = CommonExprs->getType(); | 
|  |  | 
|  | // Now that we know what we need to do, insert the PHI node itself. | 
|  | // | 
|  | DOUT << "INSERTING IV of TYPE " << *ReplacedTy << " of STRIDE " | 
|  | << *Stride << " and BASE " << *CommonExprs << ": "; | 
|  |  | 
|  | SCEVExpander Rewriter(*SE, *LI); | 
|  | SCEVExpander PreheaderRewriter(*SE, *LI); | 
|  |  | 
|  | BasicBlock  *Preheader = L->getLoopPreheader(); | 
|  | Instruction *PreInsertPt = Preheader->getTerminator(); | 
|  | Instruction *PhiInsertBefore = L->getHeader()->begin(); | 
|  |  | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  |  | 
|  |  | 
|  | // Emit the initial base value into the loop preheader. | 
|  | Value *CommonBaseV | 
|  | = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt); | 
|  |  | 
|  | if (RewriteFactor == 0) { | 
|  | // Create a new Phi for this base, and stick it in the loop header. | 
|  | NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore); | 
|  | ++NumInserted; | 
|  |  | 
|  | // Add common base to the new Phi node. | 
|  | NewPHI->addIncoming(CommonBaseV, Preheader); | 
|  |  | 
|  | // If the stride is negative, insert a sub instead of an add for the | 
|  | // increment. | 
|  | bool isNegative = isNonConstantNegative(Stride); | 
|  | SCEVHandle IncAmount = Stride; | 
|  | if (isNegative) | 
|  | IncAmount = SCEV::getNegativeSCEV(Stride); | 
|  |  | 
|  | // Insert the stride into the preheader. | 
|  | Value *StrideV = PreheaderRewriter.expandCodeFor(IncAmount, PreInsertPt); | 
|  | if (!isa<ConstantInt>(StrideV)) ++NumVariable; | 
|  |  | 
|  | // Emit the increment of the base value before the terminator of the loop | 
|  | // latch block, and add it to the Phi node. | 
|  | SCEVHandle IncExp = SCEVUnknown::get(StrideV); | 
|  | if (isNegative) | 
|  | IncExp = SCEV::getNegativeSCEV(IncExp); | 
|  | IncExp = SCEVAddExpr::get(SCEVUnknown::get(NewPHI), IncExp); | 
|  |  | 
|  | IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator()); | 
|  | IncV->setName(NewPHI->getName()+".inc"); | 
|  | NewPHI->addIncoming(IncV, LatchBlock); | 
|  |  | 
|  | // Remember this in case a later stride is multiple of this. | 
|  | IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV); | 
|  |  | 
|  | DOUT << " IV=%" << NewPHI->getNameStr() << " INC=%" << IncV->getNameStr(); | 
|  | } else { | 
|  | Constant *C = dyn_cast<Constant>(CommonBaseV); | 
|  | if (!C || | 
|  | (!C->isNullValue() && | 
|  | !isTargetConstant(SCEVUnknown::get(CommonBaseV), ReplacedTy, TLI))) | 
|  | // We want the common base emitted into the preheader! This is just | 
|  | // using cast as a copy so BitCast (no-op cast) is appropriate | 
|  | CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), | 
|  | "commonbase", PreInsertPt); | 
|  | } | 
|  | DOUT << "\n"; | 
|  |  | 
|  | // We want to emit code for users inside the loop first.  To do this, we | 
|  | // rearrange BasedUser so that the entries at the end have | 
|  | // isUseOfPostIncrementedValue = false, because we pop off the end of the | 
|  | // vector (so we handle them first). | 
|  | std::partition(UsersToProcess.begin(), UsersToProcess.end(), | 
|  | PartitionByIsUseOfPostIncrementedValue); | 
|  |  | 
|  | // Sort this by base, so that things with the same base are handled | 
|  | // together.  By partitioning first and stable-sorting later, we are | 
|  | // guaranteed that within each base we will pop off users from within the | 
|  | // loop before users outside of the loop with a particular base. | 
|  | // | 
|  | // We would like to use stable_sort here, but we can't.  The problem is that | 
|  | // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so | 
|  | // we don't have anything to do a '<' comparison on.  Because we think the | 
|  | // number of uses is small, do a horrible bubble sort which just relies on | 
|  | // ==. | 
|  | for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { | 
|  | // Get a base value. | 
|  | SCEVHandle Base = UsersToProcess[i].Base; | 
|  |  | 
|  | // Compact everything with this base to be consequetive with this one. | 
|  | for (unsigned j = i+1; j != e; ++j) { | 
|  | if (UsersToProcess[j].Base == Base) { | 
|  | std::swap(UsersToProcess[i+1], UsersToProcess[j]); | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process all the users now.  This outer loop handles all bases, the inner | 
|  | // loop handles all users of a particular base. | 
|  | while (!UsersToProcess.empty()) { | 
|  | SCEVHandle Base = UsersToProcess.back().Base; | 
|  |  | 
|  | // Emit the code for Base into the preheader. | 
|  | Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt); | 
|  |  | 
|  | DOUT << "  INSERTING code for BASE = " << *Base << ":"; | 
|  | if (BaseV->hasName()) | 
|  | DOUT << " Result value name = %" << BaseV->getNameStr(); | 
|  | DOUT << "\n"; | 
|  |  | 
|  | // If BaseV is a constant other than 0, make sure that it gets inserted into | 
|  | // the preheader, instead of being forward substituted into the uses.  We do | 
|  | // this by forcing a BitCast (noop cast) to be inserted into the preheader | 
|  | // in this case. | 
|  | if (Constant *C = dyn_cast<Constant>(BaseV)) { | 
|  | if (!C->isNullValue() && !isTargetConstant(Base, ReplacedTy, TLI)) { | 
|  | // We want this constant emitted into the preheader! This is just | 
|  | // using cast as a copy so BitCast (no-op cast) is appropriate | 
|  | BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert", | 
|  | PreInsertPt); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the code to add the immediate offset to the Phi value, just before | 
|  | // the instructions that we identified as using this stride and base. | 
|  | do { | 
|  | // FIXME: Use emitted users to emit other users. | 
|  | BasedUser &User = UsersToProcess.back(); | 
|  |  | 
|  | // If this instruction wants to use the post-incremented value, move it | 
|  | // after the post-inc and use its value instead of the PHI. | 
|  | Value *RewriteOp = NewPHI; | 
|  | if (User.isUseOfPostIncrementedValue) { | 
|  | RewriteOp = IncV; | 
|  |  | 
|  | // If this user is in the loop, make sure it is the last thing in the | 
|  | // loop to ensure it is dominated by the increment. | 
|  | if (L->contains(User.Inst->getParent())) | 
|  | User.Inst->moveBefore(LatchBlock->getTerminator()); | 
|  | } | 
|  | if (RewriteOp->getType() != ReplacedTy) { | 
|  | Instruction::CastOps opcode = Instruction::Trunc; | 
|  | if (ReplacedTy->getPrimitiveSizeInBits() == | 
|  | RewriteOp->getType()->getPrimitiveSizeInBits()) | 
|  | opcode = Instruction::BitCast; | 
|  | RewriteOp = SCEVExpander::InsertCastOfTo(opcode, RewriteOp, ReplacedTy); | 
|  | } | 
|  |  | 
|  | SCEVHandle RewriteExpr = SCEVUnknown::get(RewriteOp); | 
|  |  | 
|  | // Clear the SCEVExpander's expression map so that we are guaranteed | 
|  | // to have the code emitted where we expect it. | 
|  | Rewriter.clear(); | 
|  |  | 
|  | // If we are reusing the iv, then it must be multiplied by a constant | 
|  | // factor take advantage of addressing mode scale component. | 
|  | if (RewriteFactor != 0) { | 
|  | RewriteExpr = | 
|  | SCEVMulExpr::get(SCEVUnknown::getIntegerSCEV(RewriteFactor, | 
|  | RewriteExpr->getType()), | 
|  | RewriteExpr); | 
|  |  | 
|  | // The common base is emitted in the loop preheader. But since we | 
|  | // are reusing an IV, it has not been used to initialize the PHI node. | 
|  | // Add it to the expression used to rewrite the uses. | 
|  | if (!isa<ConstantInt>(CommonBaseV) || | 
|  | !cast<ConstantInt>(CommonBaseV)->isZero()) | 
|  | RewriteExpr = SCEVAddExpr::get(RewriteExpr, | 
|  | SCEVUnknown::get(CommonBaseV)); | 
|  | } | 
|  |  | 
|  | // Now that we know what we need to do, insert code before User for the | 
|  | // immediate and any loop-variant expressions. | 
|  | if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isZero()) | 
|  | // Add BaseV to the PHI value if needed. | 
|  | RewriteExpr = SCEVAddExpr::get(RewriteExpr, SCEVUnknown::get(BaseV)); | 
|  |  | 
|  | User.RewriteInstructionToUseNewBase(RewriteExpr, Rewriter, L, this); | 
|  |  | 
|  | // Mark old value we replaced as possibly dead, so that it is elminated | 
|  | // if we just replaced the last use of that value. | 
|  | DeadInsts.insert(cast<Instruction>(User.OperandValToReplace)); | 
|  |  | 
|  | UsersToProcess.pop_back(); | 
|  | ++NumReduced; | 
|  |  | 
|  | // If there are any more users to process with the same base, process them | 
|  | // now.  We sorted by base above, so we just have to check the last elt. | 
|  | } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base); | 
|  | // TODO: Next, find out which base index is the most common, pull it out. | 
|  | } | 
|  |  | 
|  | // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but | 
|  | // different starting values, into different PHIs. | 
|  | } | 
|  |  | 
|  | /// FindIVForUser - If Cond has an operand that is an expression of an IV, | 
|  | /// set the IV user and stride information and return true, otherwise return | 
|  | /// false. | 
|  | bool LoopStrengthReduce::FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse, | 
|  | const SCEVHandle *&CondStride) { | 
|  | for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse; | 
|  | ++Stride) { | 
|  | std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = | 
|  | IVUsesByStride.find(StrideOrder[Stride]); | 
|  | assert(SI != IVUsesByStride.end() && "Stride doesn't exist!"); | 
|  |  | 
|  | for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(), | 
|  | E = SI->second.Users.end(); UI != E; ++UI) | 
|  | if (UI->User == Cond) { | 
|  | // NOTE: we could handle setcc instructions with multiple uses here, but | 
|  | // InstCombine does it as well for simple uses, it's not clear that it | 
|  | // occurs enough in real life to handle. | 
|  | CondUse = &*UI; | 
|  | CondStride = &SI->first; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar | 
|  | // uses in the loop, look to see if we can eliminate some, in favor of using | 
|  | // common indvars for the different uses. | 
|  | void LoopStrengthReduce::OptimizeIndvars(Loop *L) { | 
|  | // TODO: implement optzns here. | 
|  |  | 
|  | // Finally, get the terminating condition for the loop if possible.  If we | 
|  | // can, we want to change it to use a post-incremented version of its | 
|  | // induction variable, to allow coalescing the live ranges for the IV into | 
|  | // one register value. | 
|  | PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin()); | 
|  | BasicBlock  *Preheader = L->getLoopPreheader(); | 
|  | BasicBlock *LatchBlock = | 
|  | SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader); | 
|  | BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator()); | 
|  | if (!TermBr || TermBr->isUnconditional() || | 
|  | !isa<ICmpInst>(TermBr->getCondition())) | 
|  | return; | 
|  | ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); | 
|  |  | 
|  | // Search IVUsesByStride to find Cond's IVUse if there is one. | 
|  | IVStrideUse *CondUse = 0; | 
|  | const SCEVHandle *CondStride = 0; | 
|  |  | 
|  | if (!FindIVForUser(Cond, CondUse, CondStride)) | 
|  | return; // setcc doesn't use the IV. | 
|  |  | 
|  |  | 
|  | // It's possible for the setcc instruction to be anywhere in the loop, and | 
|  | // possible for it to have multiple users.  If it is not immediately before | 
|  | // the latch block branch, move it. | 
|  | if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) { | 
|  | if (Cond->hasOneUse()) {   // Condition has a single use, just move it. | 
|  | Cond->moveBefore(TermBr); | 
|  | } else { | 
|  | // Otherwise, clone the terminating condition and insert into the loopend. | 
|  | Cond = cast<ICmpInst>(Cond->clone()); | 
|  | Cond->setName(L->getHeader()->getName() + ".termcond"); | 
|  | LatchBlock->getInstList().insert(TermBr, Cond); | 
|  |  | 
|  | // Clone the IVUse, as the old use still exists! | 
|  | IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond, | 
|  | CondUse->OperandValToReplace); | 
|  | CondUse = &IVUsesByStride[*CondStride].Users.back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we get to here, we know that we can transform the setcc instruction to | 
|  | // use the post-incremented version of the IV, allowing us to coalesce the | 
|  | // live ranges for the IV correctly. | 
|  | CondUse->Offset = SCEV::getMinusSCEV(CondUse->Offset, *CondStride); | 
|  | CondUse->isUseOfPostIncrementedValue = true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Constant strides come first which in turns are sorted by their absolute | 
|  | // values. If absolute values are the same, then positive strides comes first. | 
|  | // e.g. | 
|  | // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X | 
|  | struct StrideCompare { | 
|  | bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) { | 
|  | SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS); | 
|  | SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); | 
|  | if (LHSC && RHSC) { | 
|  | int64_t  LV = LHSC->getValue()->getSExtValue(); | 
|  | int64_t  RV = RHSC->getValue()->getSExtValue(); | 
|  | uint64_t ALV = (LV < 0) ? -LV : LV; | 
|  | uint64_t ARV = (RV < 0) ? -RV : RV; | 
|  | if (ALV == ARV) | 
|  | return LV > RV; | 
|  | else | 
|  | return ALV < ARV; | 
|  | } | 
|  | return (LHSC && !RHSC); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) { | 
|  |  | 
|  | LI = &getAnalysis<LoopInfo>(); | 
|  | DT = &getAnalysis<DominatorTree>(); | 
|  | SE = &getAnalysis<ScalarEvolution>(); | 
|  | TD = &getAnalysis<TargetData>(); | 
|  | UIntPtrTy = TD->getIntPtrType(); | 
|  |  | 
|  | // Find all uses of induction variables in this loop, and catagorize | 
|  | // them by stride.  Start by finding all of the PHI nodes in the header for | 
|  | // this loop.  If they are induction variables, inspect their uses. | 
|  | std::set<Instruction*> Processed;   // Don't reprocess instructions. | 
|  | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) | 
|  | AddUsersIfInteresting(I, L, Processed); | 
|  |  | 
|  | // If we have nothing to do, return. | 
|  | if (IVUsesByStride.empty()) return false; | 
|  |  | 
|  | // Optimize induction variables.  Some indvar uses can be transformed to use | 
|  | // strides that will be needed for other purposes.  A common example of this | 
|  | // is the exit test for the loop, which can often be rewritten to use the | 
|  | // computation of some other indvar to decide when to terminate the loop. | 
|  | OptimizeIndvars(L); | 
|  |  | 
|  |  | 
|  | // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of | 
|  | // doing computation in byte values, promote to 32-bit values if safe. | 
|  |  | 
|  | // FIXME: Attempt to reuse values across multiple IV's.  In particular, we | 
|  | // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be | 
|  | // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.  Need | 
|  | // to be careful that IV's are all the same type.  Only works for intptr_t | 
|  | // indvars. | 
|  |  | 
|  | // If we only have one stride, we can more aggressively eliminate some things. | 
|  | bool HasOneStride = IVUsesByStride.size() == 1; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | DOUT << "\nLSR on "; | 
|  | DEBUG(L->dump()); | 
|  | #endif | 
|  |  | 
|  | // IVsByStride keeps IVs for one particular loop. | 
|  | IVsByStride.clear(); | 
|  |  | 
|  | // Sort the StrideOrder so we process larger strides first. | 
|  | std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare()); | 
|  |  | 
|  | // Note: this processes each stride/type pair individually.  All users passed | 
|  | // into StrengthReduceStridedIVUsers have the same type AND stride.  Also, | 
|  | // node that we iterate over IVUsesByStride indirectly by using StrideOrder. | 
|  | // This extra layer of indirection makes the ordering of strides deterministic | 
|  | // - not dependent on map order. | 
|  | for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) { | 
|  | std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = | 
|  | IVUsesByStride.find(StrideOrder[Stride]); | 
|  | assert(SI != IVUsesByStride.end() && "Stride doesn't exist!"); | 
|  | StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride); | 
|  | } | 
|  |  | 
|  | // Clean up after ourselves | 
|  | if (!DeadInsts.empty()) { | 
|  | DeleteTriviallyDeadInstructions(DeadInsts); | 
|  |  | 
|  | BasicBlock::iterator I = L->getHeader()->begin(); | 
|  | PHINode *PN; | 
|  | while ((PN = dyn_cast<PHINode>(I))) { | 
|  | ++I;  // Preincrement iterator to avoid invalidating it when deleting PN. | 
|  |  | 
|  | // At this point, we know that we have killed one or more GEP | 
|  | // instructions.  It is worth checking to see if the cann indvar is also | 
|  | // dead, so that we can remove it as well.  The requirements for the cann | 
|  | // indvar to be considered dead are: | 
|  | // 1. the cann indvar has one use | 
|  | // 2. the use is an add instruction | 
|  | // 3. the add has one use | 
|  | // 4. the add is used by the cann indvar | 
|  | // If all four cases above are true, then we can remove both the add and | 
|  | // the cann indvar. | 
|  | // FIXME: this needs to eliminate an induction variable even if it's being | 
|  | // compared against some value to decide loop termination. | 
|  | if (PN->hasOneUse()) { | 
|  | Instruction *BO = dyn_cast<Instruction>(*PN->use_begin()); | 
|  | if (BO && (isa<BinaryOperator>(BO) || isa<CmpInst>(BO))) { | 
|  | if (BO->hasOneUse() && PN == *(BO->use_begin())) { | 
|  | DeadInsts.insert(BO); | 
|  | // Break the cycle, then delete the PHI. | 
|  | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
|  | SE->deleteValueFromRecords(PN); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | DeleteTriviallyDeadInstructions(DeadInsts); | 
|  | } | 
|  |  | 
|  | CastedPointers.clear(); | 
|  | IVUsesByStride.clear(); | 
|  | StrideOrder.clear(); | 
|  | return false; | 
|  | } |