|  | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the TargetLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace llvm { | 
|  | TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) { | 
|  | bool isLocal = GV->hasLocalLinkage(); | 
|  | bool isDeclaration = GV->isDeclaration(); | 
|  | // FIXME: what should we do for protected and internal visibility? | 
|  | // For variables, is internal different from hidden? | 
|  | bool isHidden = GV->hasHiddenVisibility(); | 
|  |  | 
|  | if (reloc == Reloc::PIC_) { | 
|  | if (isLocal || isHidden) | 
|  | return TLSModel::LocalDynamic; | 
|  | else | 
|  | return TLSModel::GeneralDynamic; | 
|  | } else { | 
|  | if (!isDeclaration || isHidden) | 
|  | return TLSModel::LocalExec; | 
|  | else | 
|  | return TLSModel::InitialExec; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InitLibcallNames - Set default libcall names. | 
|  | /// | 
|  | static void InitLibcallNames(const char **Names) { | 
|  | Names[RTLIB::SHL_I16] = "__ashlhi3"; | 
|  | Names[RTLIB::SHL_I32] = "__ashlsi3"; | 
|  | Names[RTLIB::SHL_I64] = "__ashldi3"; | 
|  | Names[RTLIB::SHL_I128] = "__ashlti3"; | 
|  | Names[RTLIB::SRL_I16] = "__lshrhi3"; | 
|  | Names[RTLIB::SRL_I32] = "__lshrsi3"; | 
|  | Names[RTLIB::SRL_I64] = "__lshrdi3"; | 
|  | Names[RTLIB::SRL_I128] = "__lshrti3"; | 
|  | Names[RTLIB::SRA_I16] = "__ashrhi3"; | 
|  | Names[RTLIB::SRA_I32] = "__ashrsi3"; | 
|  | Names[RTLIB::SRA_I64] = "__ashrdi3"; | 
|  | Names[RTLIB::SRA_I128] = "__ashrti3"; | 
|  | Names[RTLIB::MUL_I8] = "__mulqi3"; | 
|  | Names[RTLIB::MUL_I16] = "__mulhi3"; | 
|  | Names[RTLIB::MUL_I32] = "__mulsi3"; | 
|  | Names[RTLIB::MUL_I64] = "__muldi3"; | 
|  | Names[RTLIB::MUL_I128] = "__multi3"; | 
|  | Names[RTLIB::SDIV_I8] = "__divqi3"; | 
|  | Names[RTLIB::SDIV_I16] = "__divhi3"; | 
|  | Names[RTLIB::SDIV_I32] = "__divsi3"; | 
|  | Names[RTLIB::SDIV_I64] = "__divdi3"; | 
|  | Names[RTLIB::SDIV_I128] = "__divti3"; | 
|  | Names[RTLIB::UDIV_I8] = "__udivqi3"; | 
|  | Names[RTLIB::UDIV_I16] = "__udivhi3"; | 
|  | Names[RTLIB::UDIV_I32] = "__udivsi3"; | 
|  | Names[RTLIB::UDIV_I64] = "__udivdi3"; | 
|  | Names[RTLIB::UDIV_I128] = "__udivti3"; | 
|  | Names[RTLIB::SREM_I8] = "__modqi3"; | 
|  | Names[RTLIB::SREM_I16] = "__modhi3"; | 
|  | Names[RTLIB::SREM_I32] = "__modsi3"; | 
|  | Names[RTLIB::SREM_I64] = "__moddi3"; | 
|  | Names[RTLIB::SREM_I128] = "__modti3"; | 
|  | Names[RTLIB::UREM_I8] = "__umodqi3"; | 
|  | Names[RTLIB::UREM_I16] = "__umodhi3"; | 
|  | Names[RTLIB::UREM_I32] = "__umodsi3"; | 
|  | Names[RTLIB::UREM_I64] = "__umoddi3"; | 
|  | Names[RTLIB::UREM_I128] = "__umodti3"; | 
|  |  | 
|  | // These are generally not available. | 
|  | Names[RTLIB::SDIVREM_I8] = 0; | 
|  | Names[RTLIB::SDIVREM_I16] = 0; | 
|  | Names[RTLIB::SDIVREM_I32] = 0; | 
|  | Names[RTLIB::SDIVREM_I64] = 0; | 
|  | Names[RTLIB::SDIVREM_I128] = 0; | 
|  | Names[RTLIB::UDIVREM_I8] = 0; | 
|  | Names[RTLIB::UDIVREM_I16] = 0; | 
|  | Names[RTLIB::UDIVREM_I32] = 0; | 
|  | Names[RTLIB::UDIVREM_I64] = 0; | 
|  | Names[RTLIB::UDIVREM_I128] = 0; | 
|  |  | 
|  | Names[RTLIB::NEG_I32] = "__negsi2"; | 
|  | Names[RTLIB::NEG_I64] = "__negdi2"; | 
|  | Names[RTLIB::ADD_F32] = "__addsf3"; | 
|  | Names[RTLIB::ADD_F64] = "__adddf3"; | 
|  | Names[RTLIB::ADD_F80] = "__addxf3"; | 
|  | Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; | 
|  | Names[RTLIB::SUB_F32] = "__subsf3"; | 
|  | Names[RTLIB::SUB_F64] = "__subdf3"; | 
|  | Names[RTLIB::SUB_F80] = "__subxf3"; | 
|  | Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; | 
|  | Names[RTLIB::MUL_F32] = "__mulsf3"; | 
|  | Names[RTLIB::MUL_F64] = "__muldf3"; | 
|  | Names[RTLIB::MUL_F80] = "__mulxf3"; | 
|  | Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; | 
|  | Names[RTLIB::DIV_F32] = "__divsf3"; | 
|  | Names[RTLIB::DIV_F64] = "__divdf3"; | 
|  | Names[RTLIB::DIV_F80] = "__divxf3"; | 
|  | Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; | 
|  | Names[RTLIB::REM_F32] = "fmodf"; | 
|  | Names[RTLIB::REM_F64] = "fmod"; | 
|  | Names[RTLIB::REM_F80] = "fmodl"; | 
|  | Names[RTLIB::REM_PPCF128] = "fmodl"; | 
|  | Names[RTLIB::POWI_F32] = "__powisf2"; | 
|  | Names[RTLIB::POWI_F64] = "__powidf2"; | 
|  | Names[RTLIB::POWI_F80] = "__powixf2"; | 
|  | Names[RTLIB::POWI_PPCF128] = "__powitf2"; | 
|  | Names[RTLIB::SQRT_F32] = "sqrtf"; | 
|  | Names[RTLIB::SQRT_F64] = "sqrt"; | 
|  | Names[RTLIB::SQRT_F80] = "sqrtl"; | 
|  | Names[RTLIB::SQRT_PPCF128] = "sqrtl"; | 
|  | Names[RTLIB::LOG_F32] = "logf"; | 
|  | Names[RTLIB::LOG_F64] = "log"; | 
|  | Names[RTLIB::LOG_F80] = "logl"; | 
|  | Names[RTLIB::LOG_PPCF128] = "logl"; | 
|  | Names[RTLIB::LOG2_F32] = "log2f"; | 
|  | Names[RTLIB::LOG2_F64] = "log2"; | 
|  | Names[RTLIB::LOG2_F80] = "log2l"; | 
|  | Names[RTLIB::LOG2_PPCF128] = "log2l"; | 
|  | Names[RTLIB::LOG10_F32] = "log10f"; | 
|  | Names[RTLIB::LOG10_F64] = "log10"; | 
|  | Names[RTLIB::LOG10_F80] = "log10l"; | 
|  | Names[RTLIB::LOG10_PPCF128] = "log10l"; | 
|  | Names[RTLIB::EXP_F32] = "expf"; | 
|  | Names[RTLIB::EXP_F64] = "exp"; | 
|  | Names[RTLIB::EXP_F80] = "expl"; | 
|  | Names[RTLIB::EXP_PPCF128] = "expl"; | 
|  | Names[RTLIB::EXP2_F32] = "exp2f"; | 
|  | Names[RTLIB::EXP2_F64] = "exp2"; | 
|  | Names[RTLIB::EXP2_F80] = "exp2l"; | 
|  | Names[RTLIB::EXP2_PPCF128] = "exp2l"; | 
|  | Names[RTLIB::SIN_F32] = "sinf"; | 
|  | Names[RTLIB::SIN_F64] = "sin"; | 
|  | Names[RTLIB::SIN_F80] = "sinl"; | 
|  | Names[RTLIB::SIN_PPCF128] = "sinl"; | 
|  | Names[RTLIB::COS_F32] = "cosf"; | 
|  | Names[RTLIB::COS_F64] = "cos"; | 
|  | Names[RTLIB::COS_F80] = "cosl"; | 
|  | Names[RTLIB::COS_PPCF128] = "cosl"; | 
|  | Names[RTLIB::POW_F32] = "powf"; | 
|  | Names[RTLIB::POW_F64] = "pow"; | 
|  | Names[RTLIB::POW_F80] = "powl"; | 
|  | Names[RTLIB::POW_PPCF128] = "powl"; | 
|  | Names[RTLIB::CEIL_F32] = "ceilf"; | 
|  | Names[RTLIB::CEIL_F64] = "ceil"; | 
|  | Names[RTLIB::CEIL_F80] = "ceill"; | 
|  | Names[RTLIB::CEIL_PPCF128] = "ceill"; | 
|  | Names[RTLIB::TRUNC_F32] = "truncf"; | 
|  | Names[RTLIB::TRUNC_F64] = "trunc"; | 
|  | Names[RTLIB::TRUNC_F80] = "truncl"; | 
|  | Names[RTLIB::TRUNC_PPCF128] = "truncl"; | 
|  | Names[RTLIB::RINT_F32] = "rintf"; | 
|  | Names[RTLIB::RINT_F64] = "rint"; | 
|  | Names[RTLIB::RINT_F80] = "rintl"; | 
|  | Names[RTLIB::RINT_PPCF128] = "rintl"; | 
|  | Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; | 
|  | Names[RTLIB::NEARBYINT_F64] = "nearbyint"; | 
|  | Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; | 
|  | Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; | 
|  | Names[RTLIB::FLOOR_F32] = "floorf"; | 
|  | Names[RTLIB::FLOOR_F64] = "floor"; | 
|  | Names[RTLIB::FLOOR_F80] = "floorl"; | 
|  | Names[RTLIB::FLOOR_PPCF128] = "floorl"; | 
|  | Names[RTLIB::COPYSIGN_F32] = "copysignf"; | 
|  | Names[RTLIB::COPYSIGN_F64] = "copysign"; | 
|  | Names[RTLIB::COPYSIGN_F80] = "copysignl"; | 
|  | Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; | 
|  | Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; | 
|  | Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; | 
|  | Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; | 
|  | Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; | 
|  | Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; | 
|  | Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; | 
|  | Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; | 
|  | Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; | 
|  | Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; | 
|  | Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; | 
|  | Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; | 
|  | Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; | 
|  | Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; | 
|  | Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; | 
|  | Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; | 
|  | Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; | 
|  | Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; | 
|  | Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; | 
|  | Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; | 
|  | Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; | 
|  | Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; | 
|  | Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; | 
|  | Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; | 
|  | Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; | 
|  | Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; | 
|  | Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; | 
|  | Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; | 
|  | Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; | 
|  | Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; | 
|  | Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; | 
|  | Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; | 
|  | Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; | 
|  | Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; | 
|  | Names[RTLIB::OEQ_F32] = "__eqsf2"; | 
|  | Names[RTLIB::OEQ_F64] = "__eqdf2"; | 
|  | Names[RTLIB::UNE_F32] = "__nesf2"; | 
|  | Names[RTLIB::UNE_F64] = "__nedf2"; | 
|  | Names[RTLIB::OGE_F32] = "__gesf2"; | 
|  | Names[RTLIB::OGE_F64] = "__gedf2"; | 
|  | Names[RTLIB::OLT_F32] = "__ltsf2"; | 
|  | Names[RTLIB::OLT_F64] = "__ltdf2"; | 
|  | Names[RTLIB::OLE_F32] = "__lesf2"; | 
|  | Names[RTLIB::OLE_F64] = "__ledf2"; | 
|  | Names[RTLIB::OGT_F32] = "__gtsf2"; | 
|  | Names[RTLIB::OGT_F64] = "__gtdf2"; | 
|  | Names[RTLIB::UO_F32] = "__unordsf2"; | 
|  | Names[RTLIB::UO_F64] = "__unorddf2"; | 
|  | Names[RTLIB::O_F32] = "__unordsf2"; | 
|  | Names[RTLIB::O_F64] = "__unorddf2"; | 
|  | Names[RTLIB::MEMCPY] = "memcpy"; | 
|  | Names[RTLIB::MEMMOVE] = "memmove"; | 
|  | Names[RTLIB::MEMSET] = "memset"; | 
|  | Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; | 
|  | } | 
|  |  | 
|  | /// InitLibcallCallingConvs - Set default libcall CallingConvs. | 
|  | /// | 
|  | static void InitLibcallCallingConvs(CallingConv::ID *CCs) { | 
|  | for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { | 
|  | CCs[i] = CallingConv::C; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getFPEXT - Return the FPEXT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::f64) | 
|  | return FPEXT_F32_F64; | 
|  | } | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPROUND - Return the FPROUND_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { | 
|  | if (RetVT == MVT::f32) { | 
|  | if (OpVT == MVT::f64) | 
|  | return FPROUND_F64_F32; | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F32; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F32; | 
|  | } else if (RetVT == MVT::f64) { | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F64; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F64; | 
|  | } | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOSINT_F32_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOSINT_F32_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F32_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F32_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F32_I128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOSINT_F64_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOSINT_F64_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F64_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F64_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F64_I128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F80_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F80_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F80_I128; | 
|  | } else if (OpVT == MVT::ppcf128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_PPCF128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_PPCF128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_PPCF128_I128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOUINT_F32_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOUINT_F32_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F32_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F32_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F32_I128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOUINT_F64_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOUINT_F64_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F64_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F64_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F64_I128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F80_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F80_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F80_I128; | 
|  | } else if (OpVT == MVT::ppcf128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_PPCF128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_PPCF128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_PPCF128_I128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::i32) { | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I32_F32; | 
|  | else if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I32_F64; | 
|  | else if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I32_F80; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I32_PPCF128; | 
|  | } else if (OpVT == MVT::i64) { | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I64_F32; | 
|  | else if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I64_F64; | 
|  | else if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I64_F80; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I64_PPCF128; | 
|  | } else if (OpVT == MVT::i128) { | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I128_F32; | 
|  | else if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I128_F64; | 
|  | else if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I128_F80; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I128_PPCF128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::i32) { | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I32_F32; | 
|  | else if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I32_F64; | 
|  | else if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I32_F80; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I32_PPCF128; | 
|  | } else if (OpVT == MVT::i64) { | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I64_F32; | 
|  | else if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I64_F64; | 
|  | else if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I64_F80; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I64_PPCF128; | 
|  | } else if (OpVT == MVT::i128) { | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I128_F32; | 
|  | else if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I128_F64; | 
|  | else if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I128_F80; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I128_PPCF128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// InitCmpLibcallCCs - Set default comparison libcall CC. | 
|  | /// | 
|  | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | 
|  | memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); | 
|  | CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | 
|  | CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | 
|  | CCs[RTLIB::UNE_F32] = ISD::SETNE; | 
|  | CCs[RTLIB::UNE_F64] = ISD::SETNE; | 
|  | CCs[RTLIB::OGE_F32] = ISD::SETGE; | 
|  | CCs[RTLIB::OGE_F64] = ISD::SETGE; | 
|  | CCs[RTLIB::OLT_F32] = ISD::SETLT; | 
|  | CCs[RTLIB::OLT_F64] = ISD::SETLT; | 
|  | CCs[RTLIB::OLE_F32] = ISD::SETLE; | 
|  | CCs[RTLIB::OLE_F64] = ISD::SETLE; | 
|  | CCs[RTLIB::OGT_F32] = ISD::SETGT; | 
|  | CCs[RTLIB::OGT_F64] = ISD::SETGT; | 
|  | CCs[RTLIB::UO_F32] = ISD::SETNE; | 
|  | CCs[RTLIB::UO_F64] = ISD::SETNE; | 
|  | CCs[RTLIB::O_F32] = ISD::SETEQ; | 
|  | CCs[RTLIB::O_F64] = ISD::SETEQ; | 
|  | } | 
|  |  | 
|  | /// NOTE: The constructor takes ownership of TLOF. | 
|  | TargetLowering::TargetLowering(const TargetMachine &tm, | 
|  | const TargetLoweringObjectFile *tlof) | 
|  | : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) { | 
|  | // All operations default to being supported. | 
|  | memset(OpActions, 0, sizeof(OpActions)); | 
|  | memset(LoadExtActions, 0, sizeof(LoadExtActions)); | 
|  | memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); | 
|  | memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); | 
|  | memset(CondCodeActions, 0, sizeof(CondCodeActions)); | 
|  |  | 
|  | // Set default actions for various operations. | 
|  | for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { | 
|  | // Default all indexed load / store to expand. | 
|  | for (unsigned IM = (unsigned)ISD::PRE_INC; | 
|  | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
|  | setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); | 
|  | setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | // These operations default to expand. | 
|  | setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); | 
|  | setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | // Most targets ignore the @llvm.prefetch intrinsic. | 
|  | setOperationAction(ISD::PREFETCH, MVT::Other, Expand); | 
|  |  | 
|  | // ConstantFP nodes default to expand.  Targets can either change this to | 
|  | // Legal, in which case all fp constants are legal, or use isFPImmLegal() | 
|  | // to optimize expansions for certain constants. | 
|  | setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f80, Expand); | 
|  |  | 
|  | // These library functions default to expand. | 
|  | setOperationAction(ISD::FLOG , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FLOG10,MVT::f64, Expand); | 
|  | setOperationAction(ISD::FEXP , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FLOG , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FLOG2, MVT::f32, Expand); | 
|  | setOperationAction(ISD::FLOG10,MVT::f32, Expand); | 
|  | setOperationAction(ISD::FEXP , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FEXP2, MVT::f32, Expand); | 
|  |  | 
|  | // Default ISD::TRAP to expand (which turns it into abort). | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Expand); | 
|  |  | 
|  | IsLittleEndian = TD->isLittleEndian(); | 
|  | PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); | 
|  | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); | 
|  | memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); | 
|  | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; | 
|  | maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize | 
|  | = maxStoresPerMemmoveOptSize = 4; | 
|  | benefitFromCodePlacementOpt = false; | 
|  | UseUnderscoreSetJmp = false; | 
|  | UseUnderscoreLongJmp = false; | 
|  | SelectIsExpensive = false; | 
|  | IntDivIsCheap = false; | 
|  | Pow2DivIsCheap = false; | 
|  | JumpIsExpensive = false; | 
|  | StackPointerRegisterToSaveRestore = 0; | 
|  | ExceptionPointerRegister = 0; | 
|  | ExceptionSelectorRegister = 0; | 
|  | BooleanContents = UndefinedBooleanContent; | 
|  | SchedPreferenceInfo = Sched::Latency; | 
|  | JumpBufSize = 0; | 
|  | JumpBufAlignment = 0; | 
|  | MinFunctionAlignment = 0; | 
|  | PrefFunctionAlignment = 0; | 
|  | PrefLoopAlignment = 0; | 
|  | MinStackArgumentAlignment = 1; | 
|  | ShouldFoldAtomicFences = false; | 
|  |  | 
|  | InitLibcallNames(LibcallRoutineNames); | 
|  | InitCmpLibcallCCs(CmpLibcallCCs); | 
|  | InitLibcallCallingConvs(LibcallCallingConvs); | 
|  | } | 
|  |  | 
|  | TargetLowering::~TargetLowering() { | 
|  | delete &TLOF; | 
|  | } | 
|  |  | 
|  | MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { | 
|  | return MVT::getIntegerVT(8*TD->getPointerSize()); | 
|  | } | 
|  |  | 
|  | /// canOpTrap - Returns true if the operation can trap for the value type. | 
|  | /// VT must be a legal type. | 
|  | bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { | 
|  | assert(isTypeLegal(VT)); | 
|  | switch (Op) { | 
|  | default: | 
|  | return false; | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, | 
|  | EVT &RegisterVT, | 
|  | TargetLowering *TLI) { | 
|  | // Figure out the right, legal destination reg to copy into. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | MVT EltTy = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumVectorRegs = 1; | 
|  |  | 
|  | // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we | 
|  | // could break down into LHS/RHS like LegalizeDAG does. | 
|  | if (!isPowerOf2_32(NumElts)) { | 
|  | NumVectorRegs = NumElts; | 
|  | NumElts = 1; | 
|  | } | 
|  |  | 
|  | // Divide the input until we get to a supported size.  This will always | 
|  | // end with a scalar if the target doesn't support vectors. | 
|  | while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { | 
|  | NumElts >>= 1; | 
|  | NumVectorRegs <<= 1; | 
|  | } | 
|  |  | 
|  | NumIntermediates = NumVectorRegs; | 
|  |  | 
|  | MVT NewVT = MVT::getVectorVT(EltTy, NumElts); | 
|  | if (!TLI->isTypeLegal(NewVT)) | 
|  | NewVT = EltTy; | 
|  | IntermediateVT = NewVT; | 
|  |  | 
|  | EVT DestVT = TLI->getRegisterType(NewVT); | 
|  | RegisterVT = DestVT; | 
|  | if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16. | 
|  | return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); | 
|  |  | 
|  | // Otherwise, promotion or legal types use the same number of registers as | 
|  | // the vector decimated to the appropriate level. | 
|  | return NumVectorRegs; | 
|  | } | 
|  |  | 
|  | /// isLegalRC - Return true if the value types that can be represented by the | 
|  | /// specified register class are all legal. | 
|  | bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { | 
|  | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
|  | I != E; ++I) { | 
|  | if (isTypeLegal(*I)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// hasLegalSuperRegRegClasses - Return true if the specified register class | 
|  | /// has one or more super-reg register classes that are legal. | 
|  | bool | 
|  | TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{ | 
|  | if (*RC->superregclasses_begin() == 0) | 
|  | return false; | 
|  | for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), | 
|  | E = RC->superregclasses_end(); I != E; ++I) { | 
|  | const TargetRegisterClass *RRC = *I; | 
|  | if (isLegalRC(RRC)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findRepresentativeClass - Return the largest legal super-reg register class | 
|  | /// of the register class for the specified type and its associated "cost". | 
|  | std::pair<const TargetRegisterClass*, uint8_t> | 
|  | TargetLowering::findRepresentativeClass(EVT VT) const { | 
|  | const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; | 
|  | if (!RC) | 
|  | return std::make_pair(RC, 0); | 
|  | const TargetRegisterClass *BestRC = RC; | 
|  | for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), | 
|  | E = RC->superregclasses_end(); I != E; ++I) { | 
|  | const TargetRegisterClass *RRC = *I; | 
|  | if (RRC->isASubClass() || !isLegalRC(RRC)) | 
|  | continue; | 
|  | if (!hasLegalSuperRegRegClasses(RRC)) | 
|  | return std::make_pair(RRC, 1); | 
|  | BestRC = RRC; | 
|  | } | 
|  | return std::make_pair(BestRC, 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// computeRegisterProperties - Once all of the register classes are added, | 
|  | /// this allows us to compute derived properties we expose. | 
|  | void TargetLowering::computeRegisterProperties() { | 
|  | assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && | 
|  | "Too many value types for ValueTypeActions to hold!"); | 
|  |  | 
|  | // Everything defaults to needing one register. | 
|  | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
|  | NumRegistersForVT[i] = 1; | 
|  | RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; | 
|  | } | 
|  | // ...except isVoid, which doesn't need any registers. | 
|  | NumRegistersForVT[MVT::isVoid] = 0; | 
|  |  | 
|  | // Find the largest integer register class. | 
|  | unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; | 
|  | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) | 
|  | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | 
|  |  | 
|  | // Every integer value type larger than this largest register takes twice as | 
|  | // many registers to represent as the previous ValueType. | 
|  | for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { | 
|  | EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg; | 
|  | if (!ExpandedVT.isInteger()) | 
|  | break; | 
|  | NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; | 
|  | RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; | 
|  | TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); | 
|  | ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger); | 
|  | } | 
|  |  | 
|  | // Inspect all of the ValueType's smaller than the largest integer | 
|  | // register to see which ones need promotion. | 
|  | unsigned LegalIntReg = LargestIntReg; | 
|  | for (unsigned IntReg = LargestIntReg - 1; | 
|  | IntReg >= (unsigned)MVT::i1; --IntReg) { | 
|  | EVT IVT = (MVT::SimpleValueType)IntReg; | 
|  | if (isTypeLegal(IVT)) { | 
|  | LegalIntReg = IntReg; | 
|  | } else { | 
|  | RegisterTypeForVT[IntReg] = TransformToType[IntReg] = | 
|  | (MVT::SimpleValueType)LegalIntReg; | 
|  | ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ppcf128 type is really two f64's. | 
|  | if (!isTypeLegal(MVT::ppcf128)) { | 
|  | NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; | 
|  | RegisterTypeForVT[MVT::ppcf128] = MVT::f64; | 
|  | TransformToType[MVT::ppcf128] = MVT::f64; | 
|  | ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f64. If the target does not have native f64 support, | 
|  | // expand it to i64 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f64)) { | 
|  | NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; | 
|  | RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; | 
|  | TransformToType[MVT::f64] = MVT::i64; | 
|  | ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f32. If the target does not have native support for | 
|  | // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. | 
|  | if (!isTypeLegal(MVT::f32)) { | 
|  | if (isTypeLegal(MVT::f64)) { | 
|  | NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; | 
|  | RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; | 
|  | TransformToType[MVT::f32] = MVT::f64; | 
|  | ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); | 
|  | } else { | 
|  | NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; | 
|  | RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; | 
|  | TransformToType[MVT::f32] = MVT::i32; | 
|  | ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the vector value types to see which need transformations. | 
|  | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType)i; | 
|  | if (isTypeLegal(VT)) continue; | 
|  |  | 
|  | // Determine if there is a legal wider type.  If so, we should promote to | 
|  | // that wider vector type. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NElts = VT.getVectorNumElements(); | 
|  | if (NElts != 1) { | 
|  | bool IsLegalWiderType = false; | 
|  | for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | 
|  | EVT SVT = (MVT::SimpleValueType)nVT; | 
|  | if (SVT.getVectorElementType() == EltVT && | 
|  | SVT.getVectorNumElements() > NElts && | 
|  | isTypeLegal(SVT)) { | 
|  | TransformToType[i] = SVT; | 
|  | RegisterTypeForVT[i] = SVT; | 
|  | NumRegistersForVT[i] = 1; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | IsLegalWiderType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (IsLegalWiderType) continue; | 
|  | } | 
|  |  | 
|  | MVT IntermediateVT; | 
|  | EVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | NumRegistersForVT[i] = | 
|  | getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, | 
|  | RegisterVT, this); | 
|  | RegisterTypeForVT[i] = RegisterVT; | 
|  |  | 
|  | EVT NVT = VT.getPow2VectorType(); | 
|  | if (NVT == VT) { | 
|  | // Type is already a power of 2.  The default action is to split. | 
|  | TransformToType[i] = MVT::Other; | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | ValueTypeActions.setTypeAction(VT, | 
|  | NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); | 
|  | } else { | 
|  | TransformToType[i] = NVT; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the 'representative' register class for each value type. | 
|  | // An representative register class is the largest (meaning one which is | 
|  | // not a sub-register class / subreg register class) legal register class for | 
|  | // a group of value types. For example, on i386, i8, i16, and i32 | 
|  | // representative would be GR32; while on x86_64 it's GR64. | 
|  | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
|  | const TargetRegisterClass* RRC; | 
|  | uint8_t Cost; | 
|  | tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i); | 
|  | RepRegClassForVT[i] = RRC; | 
|  | RepRegClassCostForVT[i] = Cost; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const { | 
|  | return PointerTy.SimpleTy; | 
|  | } | 
|  |  | 
|  | MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { | 
|  | return MVT::i32; // return the default value | 
|  | } | 
|  |  | 
|  | /// getVectorTypeBreakdown - Vector types are broken down into some number of | 
|  | /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32 | 
|  | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | 
|  | /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. | 
|  | /// | 
|  | /// This method returns the number of registers needed, and the VT for each | 
|  | /// register.  It also returns the VT and quantity of the intermediate values | 
|  | /// before they are promoted/expanded. | 
|  | /// | 
|  | unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, | 
|  | EVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, | 
|  | EVT &RegisterVT) const { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | // If there is a wider vector type with the same element type as this one, | 
|  | // we should widen to that legal vector type.  This handles things like | 
|  | // <2 x float> -> <4 x float>. | 
|  | if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) { | 
|  | RegisterVT = getTypeToTransformTo(Context, VT); | 
|  | if (isTypeLegal(RegisterVT)) { | 
|  | IntermediateVT = RegisterVT; | 
|  | NumIntermediates = 1; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out the right, legal destination reg to copy into. | 
|  | EVT EltTy = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumVectorRegs = 1; | 
|  |  | 
|  | // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we | 
|  | // could break down into LHS/RHS like LegalizeDAG does. | 
|  | if (!isPowerOf2_32(NumElts)) { | 
|  | NumVectorRegs = NumElts; | 
|  | NumElts = 1; | 
|  | } | 
|  |  | 
|  | // Divide the input until we get to a supported size.  This will always | 
|  | // end with a scalar if the target doesn't support vectors. | 
|  | while (NumElts > 1 && !isTypeLegal( | 
|  | EVT::getVectorVT(Context, EltTy, NumElts))) { | 
|  | NumElts >>= 1; | 
|  | NumVectorRegs <<= 1; | 
|  | } | 
|  |  | 
|  | NumIntermediates = NumVectorRegs; | 
|  |  | 
|  | EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); | 
|  | if (!isTypeLegal(NewVT)) | 
|  | NewVT = EltTy; | 
|  | IntermediateVT = NewVT; | 
|  |  | 
|  | EVT DestVT = getRegisterType(Context, NewVT); | 
|  | RegisterVT = DestVT; | 
|  | if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16. | 
|  | return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); | 
|  |  | 
|  | // Otherwise, promotion or legal types use the same number of registers as | 
|  | // the vector decimated to the appropriate level. | 
|  | return NumVectorRegs; | 
|  | } | 
|  |  | 
|  | /// Get the EVTs and ArgFlags collections that represent the legalized return | 
|  | /// type of the given function.  This does not require a DAG or a return value, | 
|  | /// and is suitable for use before any DAGs for the function are constructed. | 
|  | /// TODO: Move this out of TargetLowering.cpp. | 
|  | void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr, | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const TargetLowering &TLI, | 
|  | SmallVectorImpl<uint64_t> *Offsets) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, ReturnType, ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) return; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
|  | EVT VT = ValueVTs[j]; | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (attr & Attribute::SExt) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (attr & Attribute::ZExt) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | // FIXME: C calling convention requires the return type to be promoted to | 
|  | // at least 32-bit. But this is not necessary for non-C calling | 
|  | // conventions. The frontend should mark functions whose return values | 
|  | // require promoting with signext or zeroext attributes. | 
|  | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | 
|  | EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); | 
|  | if (VT.bitsLT(MinVT)) | 
|  | VT = MinVT; | 
|  | } | 
|  |  | 
|  | unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); | 
|  | EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); | 
|  | unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( | 
|  | PartVT.getTypeForEVT(ReturnType->getContext())); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (attr & Attribute::InReg) | 
|  | Flags.setInReg(); | 
|  |  | 
|  | // Propagate extension type if any | 
|  | if (attr & Attribute::SExt) | 
|  | Flags.setSExt(); | 
|  | else if (attr & Attribute::ZExt) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true)); | 
|  | if (Offsets) { | 
|  | Offsets->push_back(Offset); | 
|  | Offset += PartSize; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area.  This is the actual | 
|  | /// alignment, not its logarithm. | 
|  | unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const { | 
|  | return TD->getCallFrameTypeAlignment(Ty); | 
|  | } | 
|  |  | 
|  | /// getJumpTableEncoding - Return the entry encoding for a jump table in the | 
|  | /// current function.  The returned value is a member of the | 
|  | /// MachineJumpTableInfo::JTEntryKind enum. | 
|  | unsigned TargetLowering::getJumpTableEncoding() const { | 
|  | // In non-pic modes, just use the address of a block. | 
|  | if (getTargetMachine().getRelocationModel() != Reloc::PIC_) | 
|  | return MachineJumpTableInfo::EK_BlockAddress; | 
|  |  | 
|  | // In PIC mode, if the target supports a GPRel32 directive, use it. | 
|  | if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) | 
|  | return MachineJumpTableInfo::EK_GPRel32BlockAddress; | 
|  |  | 
|  | // Otherwise, use a label difference. | 
|  | return MachineJumpTableInfo::EK_LabelDifference32; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | // If our PIC model is GP relative, use the global offset table as the base. | 
|  | if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress) | 
|  | return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the | 
|  | /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an | 
|  | /// MCExpr. | 
|  | const MCExpr * | 
|  | TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, | 
|  | unsigned JTI,MCContext &Ctx) const{ | 
|  | // The normal PIC reloc base is the label at the start of the jump table. | 
|  | return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | // Assume that everything is safe in static mode. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::Static) | 
|  | return true; | 
|  |  | 
|  | // In dynamic-no-pic mode, assume that known defined values are safe. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && | 
|  | GA && | 
|  | !GA->getGlobal()->isDeclaration() && | 
|  | !GA->getGlobal()->isWeakForLinker()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise assume nothing is safe. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Optimization Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ShrinkDemandedConstant - Check to see if the specified operand of the | 
|  | /// specified instruction is a constant integer.  If so, check to see if there | 
|  | /// are any bits set in the constant that are not demanded.  If so, shrink the | 
|  | /// constant and return true. | 
|  | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, | 
|  | const APInt &Demanded) { | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // FIXME: ISD::SELECT, ISD::SELECT_CC | 
|  | switch (Op.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::XOR: | 
|  | case ISD::AND: | 
|  | case ISD::OR: { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (!C) return false; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::XOR && | 
|  | (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) | 
|  | return false; | 
|  |  | 
|  | // if we can expand it to have all bits set, do it | 
|  | if (C->getAPIntValue().intersects(~Demanded)) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), | 
|  | DAG.getConstant(Demanded & | 
|  | C->getAPIntValue(), | 
|  | VT)); | 
|  | return CombineTo(Op, New); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the | 
|  | /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening | 
|  | /// cast, but it could be generalized for targets with other types of | 
|  | /// implicit widening casts. | 
|  | bool | 
|  | TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, | 
|  | unsigned BitWidth, | 
|  | const APInt &Demanded, | 
|  | DebugLoc dl) { | 
|  | assert(Op.getNumOperands() == 2 && | 
|  | "ShrinkDemandedOp only supports binary operators!"); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "ShrinkDemandedOp only supports nodes with one result!"); | 
|  |  | 
|  | // Don't do this if the node has another user, which may require the | 
|  | // full value. | 
|  | if (!Op.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Search for the smallest integer type with free casts to and from | 
|  | // Op's type. For expedience, just check power-of-2 integer types. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros(); | 
|  | if (!isPowerOf2_32(SmallVTBits)) | 
|  | SmallVTBits = NextPowerOf2(SmallVTBits); | 
|  | for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { | 
|  | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); | 
|  | if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && | 
|  | TLI.isZExtFree(SmallVT, Op.getValueType())) { | 
|  | // We found a type with free casts. | 
|  | SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, | 
|  | DAG.getNode(ISD::TRUNCATE, dl, SmallVT, | 
|  | Op.getNode()->getOperand(0)), | 
|  | DAG.getNode(ISD::TRUNCATE, dl, SmallVT, | 
|  | Op.getNode()->getOperand(1))); | 
|  | SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X); | 
|  | return CombineTo(Op, Z); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the | 
|  | /// DemandedMask bits of the result of Op are ever used downstream.  If we can | 
|  | /// use this information to simplify Op, create a new simplified DAG node and | 
|  | /// return true, returning the original and new nodes in Old and New. Otherwise, | 
|  | /// analyze the expression and return a mask of KnownOne and KnownZero bits for | 
|  | /// the expression (used to simplify the caller).  The KnownZero/One bits may | 
|  | /// only be accurate for those bits in the DemandedMask. | 
|  | bool TargetLowering::SimplifyDemandedBits(SDValue Op, | 
|  | const APInt &DemandedMask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | TargetLoweringOpt &TLO, | 
|  | unsigned Depth) const { | 
|  | unsigned BitWidth = DemandedMask.getBitWidth(); | 
|  | assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && | 
|  | "Mask size mismatches value type size!"); | 
|  | APInt NewMask = DemandedMask; | 
|  | DebugLoc dl = Op.getDebugLoc(); | 
|  |  | 
|  | // Don't know anything. | 
|  | KnownZero = KnownOne = APInt(BitWidth, 0); | 
|  |  | 
|  | // Other users may use these bits. | 
|  | if (!Op.getNode()->hasOneUse()) { | 
|  | if (Depth != 0) { | 
|  | // If not at the root, Just compute the KnownZero/KnownOne bits to | 
|  | // simplify things downstream. | 
|  | TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); | 
|  | return false; | 
|  | } | 
|  | // If this is the root being simplified, allow it to have multiple uses, | 
|  | // just set the NewMask to all bits. | 
|  | NewMask = APInt::getAllOnesValue(BitWidth); | 
|  | } else if (DemandedMask == 0) { | 
|  | // Not demanding any bits from Op. | 
|  | if (Op.getOpcode() != ISD::UNDEF) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); | 
|  | return false; | 
|  | } else if (Depth == 6) {        // Limit search depth. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::Constant: | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask; | 
|  | KnownZero = ~KnownOne & NewMask; | 
|  | return false;   // Don't fall through, will infinitely loop. | 
|  | case ISD::AND: | 
|  | // If the RHS is a constant, check to see if the LHS would be zero without | 
|  | // using the bits from the RHS.  Below, we use knowledge about the RHS to | 
|  | // simplify the LHS, here we're using information from the LHS to simplify | 
|  | // the RHS. | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | APInt LHSZero, LHSOne; | 
|  | // Do not increment Depth here; that can cause an infinite loop. | 
|  | TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask, | 
|  | LHSZero, LHSOne, Depth); | 
|  | // If the LHS already has zeros where RHSC does, this and is dead. | 
|  | if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | // If any of the set bits in the RHS are known zero on the LHS, shrink | 
|  | // the constant. | 
|  | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, | 
|  | KnownZero2, KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known one on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and'. | 
|  | if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | if ((NewMask & (KnownZero|KnownZero2)) == NewMask) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) | 
|  | return true; | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | KnownZero |= KnownZero2; | 
|  | break; | 
|  | case ISD::OR: | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, | 
|  | KnownZero2, KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'or'. | 
|  | if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If all of the potentially set bits on one side are known to be set on | 
|  | // the other side, just use the 'other' side. | 
|  | if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (TLO.ShrinkDemandedConstant(Op, NewMask)) | 
|  | return true; | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | KnownZero &= KnownZero2; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | KnownOne |= KnownOne2; | 
|  | break; | 
|  | case ISD::XOR: | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'xor'. | 
|  | if ((KnownZero & NewMask) == NewMask) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((KnownZero2 & NewMask) == NewMask) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  |  | 
|  | // If all of the unknown bits are known to be zero on one side or the other | 
|  | // (but not both) turn this into an *inclusive* or. | 
|  | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if ((NewMask & ~KnownZero & ~KnownZero2) == 0) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), | 
|  | Op.getOperand(0), | 
|  | Op.getOperand(1))); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  |  | 
|  | // If all of the demanded bits on one side are known, and all of the set | 
|  | // bits on that side are also known to be set on the other side, turn this | 
|  | // into an AND, as we know the bits will be cleared. | 
|  | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known | 
|  | if ((KnownOne & KnownOne2) == KnownOne) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, | 
|  | Op.getOperand(0), ANDC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | // for XOR, we prefer to force bits to 1 if they will make a -1. | 
|  | // if we can't force bits, try to shrink constant | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | APInt Expanded = C->getAPIntValue() | (~NewMask); | 
|  | // if we can expand it to have all bits set, do it | 
|  | if (Expanded.isAllOnesValue()) { | 
|  | if (Expanded != C->getAPIntValue()) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), | 
|  | TLO.DAG.getConstant(Expanded, VT)); | 
|  | return TLO.CombineTo(Op, New); | 
|  | } | 
|  | // if it already has all the bits set, nothing to change | 
|  | // but don't shrink either! | 
|  | } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | KnownZero = KnownZeroOut; | 
|  | KnownOne  = KnownOneOut; | 
|  | break; | 
|  | case ISD::SELECT: | 
|  | if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (TLO.ShrinkDemandedConstant(Op, NewMask)) | 
|  | return true; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | break; | 
|  | case ISD::SELECT_CC: | 
|  | if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (TLO.ShrinkDemandedConstant(Op, NewMask)) | 
|  | return true; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | break; | 
|  | case ISD::SHL: | 
|  | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | SDValue InOp = Op.getOperand(0); | 
|  |  | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (ShAmt >= BitWidth) | 
|  | break; | 
|  |  | 
|  | // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a | 
|  | // single shift.  We can do this if the bottom bits (which are shifted | 
|  | // out) are never demanded. | 
|  | if (InOp.getOpcode() == ISD::SRL && | 
|  | isa<ConstantSDNode>(InOp.getOperand(1))) { | 
|  | if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { | 
|  | unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); | 
|  | unsigned Opc = ISD::SHL; | 
|  | int Diff = ShAmt-C1; | 
|  | if (Diff < 0) { | 
|  | Diff = -Diff; | 
|  | Opc = ISD::SRL; | 
|  | } | 
|  |  | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); | 
|  | EVT VT = Op.getValueType(); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, | 
|  | InOp.getOperand(0), NewSA)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits | 
|  | // are not demanded. This will likely allow the anyext to be folded away. | 
|  | if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue InnerOp = InOp.getNode()->getOperand(0); | 
|  | EVT InnerVT = InnerOp.getValueType(); | 
|  | if ((APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - InnerVT.getSizeInBits()) & | 
|  | DemandedMask) == 0 && | 
|  | isTypeDesirableForOp(ISD::SHL, InnerVT)) { | 
|  | EVT ShTy = getShiftAmountTy(InnerVT); | 
|  | if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) | 
|  | ShTy = InnerVT; | 
|  | SDValue NarrowShl = | 
|  | TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, | 
|  | TLO.DAG.getConstant(ShAmt, ShTy)); | 
|  | return | 
|  | TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), | 
|  | NarrowShl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | KnownZero <<= SA->getZExtValue(); | 
|  | KnownOne  <<= SA->getZExtValue(); | 
|  | // low bits known zero. | 
|  | KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); | 
|  | } | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | unsigned VTSize = VT.getSizeInBits(); | 
|  | SDValue InOp = Op.getOperand(0); | 
|  |  | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (ShAmt >= BitWidth) | 
|  | break; | 
|  |  | 
|  | // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a | 
|  | // single shift.  We can do this if the top bits (which are shifted out) | 
|  | // are never demanded. | 
|  | if (InOp.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(InOp.getOperand(1))) { | 
|  | if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { | 
|  | unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); | 
|  | unsigned Opc = ISD::SRL; | 
|  | int Diff = ShAmt-C1; | 
|  | if (Diff < 0) { | 
|  | Diff = -Diff; | 
|  | Opc = ISD::SHL; | 
|  | } | 
|  |  | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, | 
|  | InOp.getOperand(0), NewSA)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the new bits that are at the top now. | 
|  | if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.lshr(ShAmt); | 
|  | KnownOne  = KnownOne.lshr(ShAmt); | 
|  |  | 
|  | APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); | 
|  | KnownZero |= HighBits;  // High bits known zero. | 
|  | } | 
|  | break; | 
|  | case ISD::SRA: | 
|  | // If this is an arithmetic shift right and only the low-bit is set, we can | 
|  | // always convert this into a logical shr, even if the shift amount is | 
|  | // variable.  The low bit of the shift cannot be an input sign bit unless | 
|  | // the shift amount is >= the size of the datatype, which is undefined. | 
|  | if (DemandedMask == 1) | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(1))); | 
|  |  | 
|  | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  |  | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (ShAmt >= BitWidth) | 
|  | break; | 
|  |  | 
|  | APInt InDemandedMask = (NewMask << ShAmt); | 
|  |  | 
|  | // If any of the demanded bits are produced by the sign extension, we also | 
|  | // demand the input sign bit. | 
|  | APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); | 
|  | if (HighBits.intersects(NewMask)) | 
|  | InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.lshr(ShAmt); | 
|  | KnownOne  = KnownOne.lshr(ShAmt); | 
|  |  | 
|  | // Handle the sign bit, adjusted to where it is now in the mask. | 
|  | APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); | 
|  |  | 
|  | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | // are demanded, turn this into an unsigned shift right. | 
|  | if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, | 
|  | Op.getOperand(0), | 
|  | Op.getOperand(1))); | 
|  | } else if (KnownOne.intersects(SignBit)) { // New bits are known one. | 
|  | KnownOne |= HighBits; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  |  | 
|  | // Sign extension.  Compute the demanded bits in the result that are not | 
|  | // present in the input. | 
|  | APInt NewBits = | 
|  | APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - EVT.getScalarType().getSizeInBits()); | 
|  |  | 
|  | // If none of the extended bits are demanded, eliminate the sextinreg. | 
|  | if ((NewBits & NewMask) == 0) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  |  | 
|  | APInt InSignBit = | 
|  | APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth); | 
|  | APInt InputDemandedBits = | 
|  | APInt::getLowBitsSet(BitWidth, | 
|  | EVT.getScalarType().getSizeInBits()) & | 
|  | NewMask; | 
|  |  | 
|  | // Since the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | InputDemandedBits |= InSignBit; | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  |  | 
|  | // If the input sign bit is known zero, convert this into a zero extension. | 
|  | if (KnownZero.intersects(InSignBit)) | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT)); | 
|  |  | 
|  | if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set | 
|  | KnownOne |= NewBits; | 
|  | KnownZero &= ~NewBits; | 
|  | } else {                       // Input sign bit unknown | 
|  | KnownZero &= ~NewBits; | 
|  | KnownOne &= ~NewBits; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ZERO_EXTEND: { | 
|  | unsigned OperandBitWidth = | 
|  | Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); | 
|  | APInt InMask = NewMask.trunc(OperandBitWidth); | 
|  |  | 
|  | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | APInt NewBits = | 
|  | APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; | 
|  | if (!NewBits.intersects(NewMask)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, | 
|  | Op.getValueType(), | 
|  | Op.getOperand(0))); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  | KnownZero |= NewBits; | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: { | 
|  | EVT InVT = Op.getOperand(0).getValueType(); | 
|  | unsigned InBits = InVT.getScalarType().getSizeInBits(); | 
|  | APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits); | 
|  | APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); | 
|  | APInt NewBits   = ~InMask & NewMask; | 
|  |  | 
|  | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | if (NewBits == 0) | 
|  | return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, | 
|  | Op.getValueType(), | 
|  | Op.getOperand(0))); | 
|  |  | 
|  | // Since some of the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | APInt InDemandedBits = InMask & NewMask; | 
|  | InDemandedBits |= InSignBit; | 
|  | InDemandedBits = InDemandedBits.trunc(InBits); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  |  | 
|  | // If the sign bit is known zero, convert this to a zero extend. | 
|  | if (KnownZero.intersects(InSignBit)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, | 
|  | Op.getValueType(), | 
|  | Op.getOperand(0))); | 
|  |  | 
|  | // If the sign bit is known one, the top bits match. | 
|  | if (KnownOne.intersects(InSignBit)) { | 
|  | KnownOne  |= NewBits; | 
|  | KnownZero &= ~NewBits; | 
|  | } else {   // Otherwise, top bits aren't known. | 
|  | KnownOne  &= ~NewBits; | 
|  | KnownZero &= ~NewBits; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ANY_EXTEND: { | 
|  | unsigned OperandBitWidth = | 
|  | Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); | 
|  | APInt InMask = NewMask.trunc(OperandBitWidth); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  | break; | 
|  | } | 
|  | case ISD::TRUNCATE: { | 
|  | // Simplify the input, using demanded bit information, and compute the known | 
|  | // zero/one bits live out. | 
|  | unsigned OperandBitWidth = | 
|  | Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); | 
|  | APInt TruncMask = NewMask.zext(OperandBitWidth); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | KnownZero = KnownZero.trunc(BitWidth); | 
|  | KnownOne = KnownOne.trunc(BitWidth); | 
|  |  | 
|  | // If the input is only used by this truncate, see if we can shrink it based | 
|  | // on the known demanded bits. | 
|  | if (Op.getOperand(0).getNode()->hasOneUse()) { | 
|  | SDValue In = Op.getOperand(0); | 
|  | switch (In.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SRL: | 
|  | // Shrink SRL by a constant if none of the high bits shifted in are | 
|  | // demanded. | 
|  | if (TLO.LegalTypes() && | 
|  | !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) | 
|  | // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is | 
|  | // undesirable. | 
|  | break; | 
|  | ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); | 
|  | if (!ShAmt) | 
|  | break; | 
|  | SDValue Shift = In.getOperand(1); | 
|  | if (TLO.LegalTypes()) { | 
|  | uint64_t ShVal = ShAmt->getZExtValue(); | 
|  | Shift = | 
|  | TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); | 
|  | } | 
|  |  | 
|  | APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, | 
|  | OperandBitWidth - BitWidth); | 
|  | HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); | 
|  |  | 
|  | if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { | 
|  | // None of the shifted in bits are needed.  Add a truncate of the | 
|  | // shift input, then shift it. | 
|  | SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, | 
|  | Op.getValueType(), | 
|  | In.getOperand(0)); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, | 
|  | Op.getValueType(), | 
|  | NewTrunc, | 
|  | Shift)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | case ISD::AssertZext: { | 
|  | // Demand all the bits of the input that are demanded in the output. | 
|  | // The low bits are obvious; the high bits are demanded because we're | 
|  | // asserting that they're zero here. | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), NewMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | APInt InMask = APInt::getLowBitsSet(BitWidth, | 
|  | VT.getSizeInBits()); | 
|  | KnownZero |= ~InMask & NewMask; | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: | 
|  | #if 0 | 
|  | // If this is an FP->Int bitcast and if the sign bit is the only thing that | 
|  | // is demanded, turn this into a FGETSIGN. | 
|  | if (NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && | 
|  | Op.getOperand(0).getValueType().isFloatingPoint() && | 
|  | !Op.getOperand(0).getValueType().isVector()) { | 
|  | // Only do this xform if FGETSIGN is valid or if before legalize. | 
|  | if (TLO.isBeforeLegalize() || | 
|  | isOperationLegal(ISD::FGETSIGN, Op.getValueType())) { | 
|  | // Make a FGETSIGN + SHL to move the sign bit into the appropriate | 
|  | // place.  We expect the SHL to be eliminated by other optimizations. | 
|  | SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Op.getValueType(), | 
|  | Op.getOperand(0)); | 
|  | unsigned ShVal = Op.getValueType().getSizeInBits()-1; | 
|  | SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy()); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, | 
|  | Op.getValueType(), | 
|  | Sign, ShAmt)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::SUB: { | 
|  | // Add, Sub, and Mul don't demand any bits in positions beyond that | 
|  | // of the highest bit demanded of them. | 
|  | APInt LoMask = APInt::getLowBitsSet(BitWidth, | 
|  | BitWidth - NewMask.countLeadingZeros()); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | // See if the operation should be performed at a smaller bit width. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  | } | 
|  | // FALL THROUGH | 
|  | default: | 
|  | // Just use ComputeMaskedBits to compute output bits. | 
|  | TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we know the value of all of the demanded bits, return this as a | 
|  | // constant. | 
|  | if ((NewMask & (KnownZero|KnownOne)) == NewMask) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// computeMaskedBitsForTargetNode - Determine which of the bits specified | 
|  | /// in Mask are known to be either zero or one and return them in the | 
|  | /// KnownZero/KnownOne bitsets. | 
|  | void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, | 
|  | const APInt &Mask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); | 
|  | } | 
|  |  | 
|  | /// ComputeNumSignBitsForTargetNode - This method can be implemented by | 
|  | /// targets that want to expose additional information about sign bits to the | 
|  | /// DAG Combiner. | 
|  | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use ComputeNumSignBits if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly | 
|  | /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to | 
|  | /// determine which bit is set. | 
|  | /// | 
|  | static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { | 
|  | // A left-shift of a constant one will have exactly one bit set, because | 
|  | // shifting the bit off the end is undefined. | 
|  | if (Val.getOpcode() == ISD::SHL) | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) | 
|  | if (C->getAPIntValue() == 1) | 
|  | return true; | 
|  |  | 
|  | // Similarly, a right-shift of a constant sign-bit will have exactly | 
|  | // one bit set. | 
|  | if (Val.getOpcode() == ISD::SRL) | 
|  | if (ConstantSDNode *C = | 
|  | dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) | 
|  | if (C->getAPIntValue().isSignBit()) | 
|  | return true; | 
|  |  | 
|  | // More could be done here, though the above checks are enough | 
|  | // to handle some common cases. | 
|  |  | 
|  | // Fall back to ComputeMaskedBits to catch other known cases. | 
|  | EVT OpVT = Val.getValueType(); | 
|  | unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); | 
|  | APInt Mask = APInt::getAllOnesValue(BitWidth); | 
|  | APInt KnownZero, KnownOne; | 
|  | DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne); | 
|  | return (KnownZero.countPopulation() == BitWidth - 1) && | 
|  | (KnownOne.countPopulation() == 1); | 
|  | } | 
|  |  | 
|  | /// SimplifySetCC - Try to simplify a setcc built with the specified operands | 
|  | /// and cc. If it is unable to simplify it, return a null SDValue. | 
|  | SDValue | 
|  | TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, bool foldBooleans, | 
|  | DAGCombinerInfo &DCI, DebugLoc dl) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // These setcc operations always fold. | 
|  | switch (Cond) { | 
|  | default: break; | 
|  | case ISD::SETFALSE: | 
|  | case ISD::SETFALSE2: return DAG.getConstant(0, VT); | 
|  | case ISD::SETTRUE: | 
|  | case ISD::SETTRUE2:  return DAG.getConstant(1, VT); | 
|  | } | 
|  |  | 
|  | // Ensure that the constant occurs on the RHS, and fold constant | 
|  | // comparisons. | 
|  | if (isa<ConstantSDNode>(N0.getNode())) | 
|  | return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); | 
|  |  | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { | 
|  | const APInt &C1 = N1C->getAPIntValue(); | 
|  |  | 
|  | // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an | 
|  | // equality comparison, then we're just comparing whether X itself is | 
|  | // zero. | 
|  | if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && | 
|  | N0.getOperand(0).getOpcode() == ISD::CTLZ && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | const APInt &ShAmt | 
|  | = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { | 
|  | if ((C1 == 0) == (Cond == ISD::SETEQ)) { | 
|  | // (srl (ctlz x), 5) == 0  -> X != 0 | 
|  | // (srl (ctlz x), 5) != 1  -> X != 0 | 
|  | Cond = ISD::SETNE; | 
|  | } else { | 
|  | // (srl (ctlz x), 5) != 0  -> X == 0 | 
|  | // (srl (ctlz x), 5) == 1  -> X == 0 | 
|  | Cond = ISD::SETEQ; | 
|  | } | 
|  | SDValue Zero = DAG.getConstant(0, N0.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), | 
|  | Zero, Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CTPOP = N0; | 
|  | // Look through truncs that don't change the value of a ctpop. | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) | 
|  | CTPOP = N0.getOperand(0); | 
|  |  | 
|  | if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && | 
|  | (N0 == CTPOP || N0.getValueType().getSizeInBits() > | 
|  | Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { | 
|  | EVT CTVT = CTPOP.getValueType(); | 
|  | SDValue CTOp = CTPOP.getOperand(0); | 
|  |  | 
|  | // (ctpop x) u< 2 -> (x & x-1) == 0 | 
|  | // (ctpop x) u> 1 -> (x & x-1) != 0 | 
|  | if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, | 
|  | DAG.getConstant(1, CTVT)); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); | 
|  | ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; | 
|  | return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); | 
|  | } | 
|  |  | 
|  | // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. | 
|  | } | 
|  |  | 
|  | // (zext x) == C --> x == (trunc C) | 
|  | if (DCI.isBeforeLegalize() && N0->hasOneUse() && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | unsigned MinBits = N0.getValueSizeInBits(); | 
|  | SDValue PreZExt; | 
|  | if (N0->getOpcode() == ISD::ZERO_EXTEND) { | 
|  | // ZExt | 
|  | MinBits = N0->getOperand(0).getValueSizeInBits(); | 
|  | PreZExt = N0->getOperand(0); | 
|  | } else if (N0->getOpcode() == ISD::AND) { | 
|  | // DAGCombine turns costly ZExts into ANDs | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) | 
|  | if ((C->getAPIntValue()+1).isPowerOf2()) { | 
|  | MinBits = C->getAPIntValue().countTrailingOnes(); | 
|  | PreZExt = N0->getOperand(0); | 
|  | } | 
|  | } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { | 
|  | // ZEXTLOAD | 
|  | if (LN0->getExtensionType() == ISD::ZEXTLOAD) { | 
|  | MinBits = LN0->getMemoryVT().getSizeInBits(); | 
|  | PreZExt = N0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we're not loosing bits from the constant. | 
|  | if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) { | 
|  | EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); | 
|  | if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { | 
|  | // Will get folded away. | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); | 
|  | SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); | 
|  | return DAG.getSetCC(dl, VT, Trunc, C, Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is '(and load, const)', the RHS is 0, | 
|  | // the test is for equality or unsigned, and all 1 bits of the const are | 
|  | // in the same partial word, see if we can shorten the load. | 
|  | if (DCI.isBeforeLegalize() && | 
|  | N0.getOpcode() == ISD::AND && C1 == 0 && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(0).getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | APInt bestMask; | 
|  | unsigned bestWidth = 0, bestOffset = 0; | 
|  | if (!Lod->isVolatile() && Lod->isUnindexed()) { | 
|  | unsigned origWidth = N0.getValueType().getSizeInBits(); | 
|  | unsigned maskWidth = origWidth; | 
|  | // We can narrow (e.g.) 16-bit extending loads on 32-bit target to | 
|  | // 8 bits, but have to be careful... | 
|  | if (Lod->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | origWidth = Lod->getMemoryVT().getSizeInBits(); | 
|  | const APInt &Mask = | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | for (unsigned width = origWidth / 2; width>=8; width /= 2) { | 
|  | APInt newMask = APInt::getLowBitsSet(maskWidth, width); | 
|  | for (unsigned offset=0; offset<origWidth/width; offset++) { | 
|  | if ((newMask & Mask) == Mask) { | 
|  | if (!TD->isLittleEndian()) | 
|  | bestOffset = (origWidth/width - offset - 1) * (width/8); | 
|  | else | 
|  | bestOffset = (uint64_t)offset * (width/8); | 
|  | bestMask = Mask.lshr(offset * (width/8) * 8); | 
|  | bestWidth = width; | 
|  | break; | 
|  | } | 
|  | newMask = newMask << width; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (bestWidth) { | 
|  | EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); | 
|  | if (newVT.isRound()) { | 
|  | EVT PtrType = Lod->getOperand(1).getValueType(); | 
|  | SDValue Ptr = Lod->getBasePtr(); | 
|  | if (bestOffset != 0) | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), | 
|  | DAG.getConstant(bestOffset, PtrType)); | 
|  | unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); | 
|  | SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, | 
|  | Lod->getPointerInfo().getWithOffset(bestOffset), | 
|  | false, false, NewAlign); | 
|  | return DAG.getSetCC(dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, newVT, NewLoad, | 
|  | DAG.getConstant(bestMask.trunc(bestWidth), | 
|  | newVT)), | 
|  | DAG.getConstant(0LL, newVT), Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); | 
|  |  | 
|  | // If the comparison constant has bits in the upper part, the | 
|  | // zero-extended value could never match. | 
|  | if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), | 
|  | C1.getBitWidth() - InSize))) { | 
|  | switch (Cond) { | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETEQ: return DAG.getConstant(0, VT); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETNE: return DAG.getConstant(1, VT); | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | // True if the sign bit of C1 is set. | 
|  | return DAG.getConstant(C1.isNegative(), VT); | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | // True if the sign bit of C1 isn't set. | 
|  | return DAG.getConstant(C1.isNonNegative(), VT); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can perform the comparison with the low bits. | 
|  | switch (Cond) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: { | 
|  | EVT newVT = N0.getOperand(0).getValueType(); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | (isOperationLegal(ISD::SETCC, newVT) && | 
|  | getCondCodeAction(Cond, newVT)==Legal)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(C1.trunc(InSize), newVT), | 
|  | Cond); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break;   // todo, be more careful with signed comparisons | 
|  | } | 
|  | } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); | 
|  | unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); | 
|  | EVT ExtDstTy = N0.getValueType(); | 
|  | unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); | 
|  |  | 
|  | // If the constant doesn't fit into the number of bits for the source of | 
|  | // the sign extension, it is impossible for both sides to be equal. | 
|  | if (C1.getMinSignedBits() > ExtSrcTyBits) | 
|  | return DAG.getConstant(Cond == ISD::SETNE, VT); | 
|  |  | 
|  | SDValue ZextOp; | 
|  | EVT Op0Ty = N0.getOperand(0).getValueType(); | 
|  | if (Op0Ty == ExtSrcTy) { | 
|  | ZextOp = N0.getOperand(0); | 
|  | } else { | 
|  | APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); | 
|  | ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), | 
|  | DAG.getConstant(Imm, Op0Ty)); | 
|  | } | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(ZextOp.getNode()); | 
|  | // Otherwise, make this a use of a zext. | 
|  | return DAG.getSetCC(dl, VT, ZextOp, | 
|  | DAG.getConstant(C1 & APInt::getLowBitsSet( | 
|  | ExtDstTyBits, | 
|  | ExtSrcTyBits), | 
|  | ExtDstTy), | 
|  | Cond); | 
|  | } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC | 
|  | if (N0.getOpcode() == ISD::SETCC && | 
|  | isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { | 
|  | bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); | 
|  | if (TrueWhenTrue) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); | 
|  | // Invert the condition. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | CC = ISD::getSetCCInverse(CC, | 
|  | N0.getOperand(0).getValueType().isInteger()); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); | 
|  | } | 
|  |  | 
|  | if ((N0.getOpcode() == ISD::XOR || | 
|  | (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::XOR && | 
|  | N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { | 
|  | // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We | 
|  | // can only do this if the top bits are known zero. | 
|  | unsigned BitWidth = N0.getValueSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N0, | 
|  | APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth-1))) { | 
|  | // Okay, get the un-inverted input value. | 
|  | SDValue Val; | 
|  | if (N0.getOpcode() == ISD::XOR) | 
|  | Val = N0.getOperand(0); | 
|  | else { | 
|  | assert(N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::XOR); | 
|  | // ((X^1)&1)^1 -> X & 1 | 
|  | Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), | 
|  | N0.getOperand(0).getOperand(0), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return DAG.getSetCC(dl, VT, Val, N1, | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | } else if (N1C->getAPIntValue() == 1 && | 
|  | (VT == MVT::i1 || | 
|  | getBooleanContents() == ZeroOrOneBooleanContent)) { | 
|  | SDValue Op0 = N0; | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  |  | 
|  | if ((Op0.getOpcode() == ISD::XOR) && | 
|  | Op0.getOperand(0).getOpcode() == ISD::SETCC && | 
|  | Op0.getOperand(1).getOpcode() == ISD::SETCC) { | 
|  | // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) | 
|  | Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; | 
|  | return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), | 
|  | Cond); | 
|  | } else if (Op0.getOpcode() == ISD::AND && | 
|  | isa<ConstantSDNode>(Op0.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { | 
|  | // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. | 
|  | if (Op0.getValueType().bitsGT(VT)) | 
|  | Op0 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), | 
|  | DAG.getConstant(1, VT)); | 
|  | else if (Op0.getValueType().bitsLT(VT)) | 
|  | Op0 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), | 
|  | DAG.getConstant(1, VT)); | 
|  |  | 
|  | return DAG.getSetCC(dl, VT, Op0, | 
|  | DAG.getConstant(0, Op0.getValueType()), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt MinVal, MaxVal; | 
|  | unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); | 
|  | if (ISD::isSignedIntSetCC(Cond)) { | 
|  | MinVal = APInt::getSignedMinValue(OperandBitSize); | 
|  | MaxVal = APInt::getSignedMaxValue(OperandBitSize); | 
|  | } else { | 
|  | MinVal = APInt::getMinValue(OperandBitSize); | 
|  | MaxVal = APInt::getMaxValue(OperandBitSize); | 
|  | } | 
|  |  | 
|  | // Canonicalize GE/LE comparisons to use GT/LT comparisons. | 
|  | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { | 
|  | if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true | 
|  | // X >= C0 --> X > (C0-1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(C1-1, N1.getValueType()), | 
|  | (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { | 
|  | if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true | 
|  | // X <= C0 --> X < (C0+1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(C1+1, N1.getValueType()), | 
|  | (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); | 
|  | } | 
|  |  | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) | 
|  | return DAG.getConstant(0, VT);      // X < MIN --> false | 
|  | if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) | 
|  | return DAG.getConstant(1, VT);      // X >= MIN --> true | 
|  | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) | 
|  | return DAG.getConstant(0, VT);      // X > MAX --> false | 
|  | if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) | 
|  | return DAG.getConstant(1, VT);      // X <= MAX --> true | 
|  |  | 
|  | // Canonicalize setgt X, Min --> setne X, Min | 
|  | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); | 
|  | // Canonicalize setlt X, Max --> setne X, Max | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); | 
|  |  | 
|  | // If we have setult X, 1, turn it into seteq X, 0 | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(MinVal, N0.getValueType()), | 
|  | ISD::SETEQ); | 
|  | // If we have setugt X, Max-1, turn it into seteq X, Max | 
|  | else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(MaxVal, N0.getValueType()), | 
|  | ISD::SETEQ); | 
|  |  | 
|  | // If we have "setcc X, C0", check to see if we can shrink the immediate | 
|  | // by changing cc. | 
|  |  | 
|  | // SETUGT X, SINTMAX  -> SETLT X, 0 | 
|  | if (Cond == ISD::SETUGT && | 
|  | C1 == APInt::getSignedMaxValue(OperandBitSize)) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(0, N1.getValueType()), | 
|  | ISD::SETLT); | 
|  |  | 
|  | // SETULT X, SINTMIN  -> SETGT X, -1 | 
|  | if (Cond == ISD::SETULT && | 
|  | C1 == APInt::getSignedMinValue(OperandBitSize)) { | 
|  | SDValue ConstMinusOne = | 
|  | DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), | 
|  | N1.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); | 
|  | } | 
|  |  | 
|  | // Fold bit comparisons when we can. | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | (VT == N0.getValueType() || | 
|  | (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && | 
|  | N0.getOpcode() == ISD::AND) | 
|  | if (ConstantSDNode *AndRHS = | 
|  | dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | EVT ShiftTy = DCI.isBeforeLegalize() ? | 
|  | getPointerTy() : getShiftAmountTy(N0.getValueType()); | 
|  | if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3 | 
|  | // Perform the xform if the AND RHS is a single bit. | 
|  | if (AndRHS->getAPIntValue().isPowerOf2()) { | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, | 
|  | DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); | 
|  | } | 
|  | } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { | 
|  | // (X & 8) == 8  -->  (X & 8) >> 3 | 
|  | // Perform the xform if C1 is a single bit. | 
|  | if (C1.isPowerOf2()) { | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, | 
|  | DAG.getConstant(C1.logBase2(), ShiftTy))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(N0.getNode())) { | 
|  | // Constant fold or commute setcc. | 
|  | SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); | 
|  | if (O.getNode()) return O; | 
|  | } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { | 
|  | // If the RHS of an FP comparison is a constant, simplify it away in | 
|  | // some cases. | 
|  | if (CFP->getValueAPF().isNaN()) { | 
|  | // If an operand is known to be a nan, we can fold it. | 
|  | switch (ISD::getUnorderedFlavor(Cond)) { | 
|  | default: llvm_unreachable("Unknown flavor!"); | 
|  | case 0:  // Known false. | 
|  | return DAG.getConstant(0, VT); | 
|  | case 1:  // Known true. | 
|  | return DAG.getConstant(1, VT); | 
|  | case 2:  // Undefined. | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the | 
|  | // constant if knowing that the operand is non-nan is enough.  We prefer to | 
|  | // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to | 
|  | // materialize 0.0. | 
|  | if (Cond == ISD::SETO || Cond == ISD::SETUO) | 
|  | return DAG.getSetCC(dl, VT, N0, N0, Cond); | 
|  |  | 
|  | // If the condition is not legal, see if we can find an equivalent one | 
|  | // which is legal. | 
|  | if (!isCondCodeLegal(Cond, N0.getValueType())) { | 
|  | // If the comparison was an awkward floating-point == or != and one of | 
|  | // the comparison operands is infinity or negative infinity, convert the | 
|  | // condition to a less-awkward <= or >=. | 
|  | if (CFP->getValueAPF().isInfinity()) { | 
|  | if (CFP->getValueAPF().isNegative()) { | 
|  | if (Cond == ISD::SETOEQ && | 
|  | isCondCodeLegal(ISD::SETOLE, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); | 
|  | if (Cond == ISD::SETUEQ && | 
|  | isCondCodeLegal(ISD::SETOLE, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); | 
|  | if (Cond == ISD::SETUNE && | 
|  | isCondCodeLegal(ISD::SETUGT, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); | 
|  | if (Cond == ISD::SETONE && | 
|  | isCondCodeLegal(ISD::SETUGT, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); | 
|  | } else { | 
|  | if (Cond == ISD::SETOEQ && | 
|  | isCondCodeLegal(ISD::SETOGE, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); | 
|  | if (Cond == ISD::SETUEQ && | 
|  | isCondCodeLegal(ISD::SETOGE, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); | 
|  | if (Cond == ISD::SETUNE && | 
|  | isCondCodeLegal(ISD::SETULT, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); | 
|  | if (Cond == ISD::SETONE && | 
|  | isCondCodeLegal(ISD::SETULT, N0.getValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0 == N1) { | 
|  | // We can always fold X == X for integer setcc's. | 
|  | if (N0.getValueType().isInteger()) | 
|  | return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); | 
|  | unsigned UOF = ISD::getUnorderedFlavor(Cond); | 
|  | if (UOF == 2)   // FP operators that are undefined on NaNs. | 
|  | return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); | 
|  | if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) | 
|  | return DAG.getConstant(UOF, VT); | 
|  | // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO | 
|  | // if it is not already. | 
|  | ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; | 
|  | if (NewCond != Cond) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, NewCond); | 
|  | } | 
|  |  | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | N0.getValueType().isInteger()) { | 
|  | if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || | 
|  | N0.getOpcode() == ISD::XOR) { | 
|  | // Simplify (X+Y) == (X+Z) -->  Y == Z | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | if (N0.getOperand(0) == N1.getOperand(0)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); | 
|  | if (N0.getOperand(1) == N1.getOperand(1)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); | 
|  | if (DAG.isCommutativeBinOp(N0.getOpcode())) { | 
|  | // If X op Y == Y op X, try other combinations. | 
|  | if (N0.getOperand(0) == N1.getOperand(1)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), | 
|  | Cond); | 
|  | if (N0.getOperand(1) == N1.getOperand(0)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), | 
|  | Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { | 
|  | if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | // Turn (X+C1) == C2 --> X == C2-C1 | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(RHSC->getAPIntValue()- | 
|  | LHSR->getAPIntValue(), | 
|  | N0.getValueType()), Cond); | 
|  | } | 
|  |  | 
|  | // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. | 
|  | if (N0.getOpcode() == ISD::XOR) | 
|  | // If we know that all of the inverted bits are zero, don't bother | 
|  | // performing the inversion. | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) | 
|  | return | 
|  | DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(LHSR->getAPIntValue() ^ | 
|  | RHSC->getAPIntValue(), | 
|  | N0.getValueType()), | 
|  | Cond); | 
|  | } | 
|  |  | 
|  | // Turn (C1-X) == C2 --> X == C1-C2 | 
|  | if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { | 
|  | if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { | 
|  | return | 
|  | DAG.getSetCC(dl, VT, N0.getOperand(1), | 
|  | DAG.getConstant(SUBC->getAPIntValue() - | 
|  | RHSC->getAPIntValue(), | 
|  | N0.getValueType()), | 
|  | Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify (X+Z) == X -->  Z == 0 | 
|  | if (N0.getOperand(0) == N1) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), | 
|  | DAG.getConstant(0, N0.getValueType()), Cond); | 
|  | if (N0.getOperand(1) == N1) { | 
|  | if (DAG.isCommutativeBinOp(N0.getOpcode())) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(0, N0.getValueType()), Cond); | 
|  | else if (N0.getNode()->hasOneUse()) { | 
|  | assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
|  | // (Z-X) == X  --> Z == X<<1 | 
|  | SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), | 
|  | N1, | 
|  | DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(SH.getNode()); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || | 
|  | N1.getOpcode() == ISD::XOR) { | 
|  | // Simplify  X == (X+Z) -->  Z == 0 | 
|  | if (N1.getOperand(0) == N0) { | 
|  | return DAG.getSetCC(dl, VT, N1.getOperand(1), | 
|  | DAG.getConstant(0, N1.getValueType()), Cond); | 
|  | } else if (N1.getOperand(1) == N0) { | 
|  | if (DAG.isCommutativeBinOp(N1.getOpcode())) { | 
|  | return DAG.getSetCC(dl, VT, N1.getOperand(0), | 
|  | DAG.getConstant(0, N1.getValueType()), Cond); | 
|  | } else if (N1.getNode()->hasOneUse()) { | 
|  | assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
|  | // X == (Z-X)  --> X<<1 == Z | 
|  | SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, | 
|  | DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(SH.getNode()); | 
|  | return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify x&y == y to x&y != 0 if y has exactly one bit set. | 
|  | // Note that where y is variable and is known to have at most | 
|  | // one bit set (for example, if it is z&1) we cannot do this; | 
|  | // the expressions are not equivalent when y==0. | 
|  | if (N0.getOpcode() == ISD::AND) | 
|  | if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { | 
|  | if (ValueHasExactlyOneBitSet(N1, DAG)) { | 
|  | Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); | 
|  | SDValue Zero = DAG.getConstant(0, N1.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0, Zero, Cond); | 
|  | } | 
|  | } | 
|  | if (N1.getOpcode() == ISD::AND) | 
|  | if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { | 
|  | if (ValueHasExactlyOneBitSet(N0, DAG)) { | 
|  | Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); | 
|  | SDValue Zero = DAG.getConstant(0, N0.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N1, Zero, Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold away ALL boolean setcc's. | 
|  | SDValue Temp; | 
|  | if (N0.getValueType() == MVT::i1 && foldBooleans) { | 
|  | switch (Cond) { | 
|  | default: llvm_unreachable("Unknown integer setcc!"); | 
|  | case ISD::SETEQ:  // X == Y  -> ~(X^Y) | 
|  | Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); | 
|  | N0 = DAG.getNOT(dl, Temp, MVT::i1); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETNE:  // X != Y   -->  (X^Y) | 
|  | N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); | 
|  | break; | 
|  | case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y | 
|  | case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y | 
|  | Temp = DAG.getNOT(dl, N0, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X | 
|  | case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X | 
|  | Temp = DAG.getNOT(dl, N1, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y | 
|  | case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y | 
|  | Temp = DAG.getNOT(dl, N0, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X | 
|  | case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X | 
|  | Temp = DAG.getNOT(dl, N1, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); | 
|  | break; | 
|  | } | 
|  | if (VT != MVT::i1) { | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(N0.getNode()); | 
|  | // FIXME: If running after legalize, we probably can't do this. | 
|  | N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); | 
|  | } | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // Could not fold it. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the | 
|  | /// node is a GlobalAddress + offset. | 
|  | bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, | 
|  | int64_t &Offset) const { | 
|  | if (isa<GlobalAddressSDNode>(N)) { | 
|  | GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); | 
|  | GA = GASD->getGlobal(); | 
|  | Offset += GASD->getOffset(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() == ISD::ADD) { | 
|  | SDValue N1 = N->getOperand(0); | 
|  | SDValue N2 = N->getOperand(1); | 
|  | if (isGAPlusOffset(N1.getNode(), GA, Offset)) { | 
|  | ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); | 
|  | if (V) { | 
|  | Offset += V->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { | 
|  | ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); | 
|  | if (V) { | 
|  | Offset += V->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue TargetLowering:: | 
|  | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | // Default implementation: no optimization. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Inline Assembler Implementation Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | TargetLowering::ConstraintType | 
|  | TargetLowering::getConstraintType(const std::string &Constraint) const { | 
|  | // FIXME: lots more standard ones to handle. | 
|  | if (Constraint.size() == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'r': return C_RegisterClass; | 
|  | case 'm':    // memory | 
|  | case 'o':    // offsetable | 
|  | case 'V':    // not offsetable | 
|  | return C_Memory; | 
|  | case 'i':    // Simple Integer or Relocatable Constant | 
|  | case 'n':    // Simple Integer | 
|  | case 'E':    // Floating Point Constant | 
|  | case 'F':    // Floating Point Constant | 
|  | case 's':    // Relocatable Constant | 
|  | case 'p':    // Address. | 
|  | case 'X':    // Allow ANY value. | 
|  | case 'I':    // Target registers. | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': | 
|  | case '<': | 
|  | case '>': | 
|  | return C_Other; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constraint.size() > 1 && Constraint[0] == '{' && | 
|  | Constraint[Constraint.size()-1] == '}') | 
|  | return C_Register; | 
|  | return C_Unknown; | 
|  | } | 
|  |  | 
|  | /// LowerXConstraint - try to replace an X constraint, which matches anything, | 
|  | /// with another that has more specific requirements based on the type of the | 
|  | /// corresponding operand. | 
|  | const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ | 
|  | if (ConstraintVT.isInteger()) | 
|  | return "r"; | 
|  | if (ConstraintVT.isFloatingPoint()) | 
|  | return "f";      // works for many targets | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | char ConstraintLetter, | 
|  | std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const { | 
|  | switch (ConstraintLetter) { | 
|  | default: break; | 
|  | case 'X':     // Allows any operand; labels (basic block) use this. | 
|  | if (Op.getOpcode() == ISD::BasicBlock) { | 
|  | Ops.push_back(Op); | 
|  | return; | 
|  | } | 
|  | // fall through | 
|  | case 'i':    // Simple Integer or Relocatable Constant | 
|  | case 'n':    // Simple Integer | 
|  | case 's': {  // Relocatable Constant | 
|  | // These operands are interested in values of the form (GV+C), where C may | 
|  | // be folded in as an offset of GV, or it may be explicitly added.  Also, it | 
|  | // is possible and fine if either GV or C are missing. | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); | 
|  |  | 
|  | // If we have "(add GV, C)", pull out GV/C | 
|  | if (Op.getOpcode() == ISD::ADD) { | 
|  | C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); | 
|  | if (C == 0 || GA == 0) { | 
|  | C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | 
|  | GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); | 
|  | } | 
|  | if (C == 0 || GA == 0) | 
|  | C = 0, GA = 0; | 
|  | } | 
|  |  | 
|  | // If we find a valid operand, map to the TargetXXX version so that the | 
|  | // value itself doesn't get selected. | 
|  | if (GA) {   // Either &GV   or   &GV+C | 
|  | if (ConstraintLetter != 'n') { | 
|  | int64_t Offs = GA->getOffset(); | 
|  | if (C) Offs += C->getZExtValue(); | 
|  | Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), | 
|  | C ? C->getDebugLoc() : DebugLoc(), | 
|  | Op.getValueType(), Offs)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (C) {   // just C, no GV. | 
|  | // Simple constants are not allowed for 's'. | 
|  | if (ConstraintLetter != 's') { | 
|  | // gcc prints these as sign extended.  Sign extend value to 64 bits | 
|  | // now; without this it would get ZExt'd later in | 
|  | // ScheduleDAGSDNodes::EmitNode, which is very generic. | 
|  | Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), | 
|  | MVT::i64)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<unsigned> TargetLowering:: | 
|  | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
|  | EVT VT) const { | 
|  | return std::vector<unsigned>(); | 
|  | } | 
|  |  | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: | 
|  | getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | EVT VT) const { | 
|  | if (Constraint[0] != '{') | 
|  | return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); | 
|  | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); | 
|  |  | 
|  | // Remove the braces from around the name. | 
|  | StringRef RegName(Constraint.data()+1, Constraint.size()-2); | 
|  |  | 
|  | // Figure out which register class contains this reg. | 
|  | const TargetRegisterInfo *RI = TM.getRegisterInfo(); | 
|  | for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), | 
|  | E = RI->regclass_end(); RCI != E; ++RCI) { | 
|  | const TargetRegisterClass *RC = *RCI; | 
|  |  | 
|  | // If none of the value types for this register class are valid, we | 
|  | // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
|  | bool isLegal = false; | 
|  | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
|  | I != E; ++I) { | 
|  | if (isTypeLegal(*I)) { | 
|  | isLegal = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isLegal) continue; | 
|  |  | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
|  | I != E; ++I) { | 
|  | if (RegName.equals_lower(RI->getName(*I))) | 
|  | return std::make_pair(*I, RC); | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constraint Selection. | 
|  |  | 
|  | /// isMatchingInputConstraint - Return true of this is an input operand that is | 
|  | /// a matching constraint like "4". | 
|  | bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { | 
|  | assert(!ConstraintCode.empty() && "No known constraint!"); | 
|  | return isdigit(ConstraintCode[0]); | 
|  | } | 
|  |  | 
|  | /// getMatchedOperand - If this is an input matching constraint, this method | 
|  | /// returns the output operand it matches. | 
|  | unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { | 
|  | assert(!ConstraintCode.empty() && "No known constraint!"); | 
|  | return atoi(ConstraintCode.c_str()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParseConstraints - Split up the constraint string from the inline | 
|  | /// assembly value into the specific constraints and their prefixes, | 
|  | /// and also tie in the associated operand values. | 
|  | /// If this returns an empty vector, and if the constraint string itself | 
|  | /// isn't empty, there was an error parsing. | 
|  | TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( | 
|  | ImmutableCallSite CS) const { | 
|  | /// ConstraintOperands - Information about all of the constraints. | 
|  | AsmOperandInfoVector ConstraintOperands; | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  | unsigned maCount = 0; // Largest number of multiple alternative constraints. | 
|  |  | 
|  | // Do a prepass over the constraints, canonicalizing them, and building up the | 
|  | // ConstraintOperands list. | 
|  | InlineAsm::ConstraintInfoVector | 
|  | ConstraintInfos = IA->ParseConstraints(); | 
|  |  | 
|  | unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
|  |  | 
|  | for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { | 
|  | ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); | 
|  | AsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | // Update multiple alternative constraint count. | 
|  | if (OpInfo.multipleAlternatives.size() > maCount) | 
|  | maCount = OpInfo.multipleAlternatives.size(); | 
|  |  | 
|  | OpInfo.ConstraintVT = MVT::Other; | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | // Indirect outputs just consume an argument. | 
|  | if (OpInfo.isIndirect) { | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(!CS.getType()->isVoidTy() && | 
|  | "Bad inline asm!"); | 
|  | if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpInfo.ConstraintVT = getValueType(CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | // Nothing to do. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OpInfo.CallOperandVal) { | 
|  | const llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); | 
|  | if (OpInfo.isIndirect) { | 
|  | const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); | 
|  | if (!PtrTy) | 
|  | report_fatal_error("Indirect operand for inline asm not a pointer!"); | 
|  | OpTy = PtrTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. | 
|  | if (const StructType *STy = dyn_cast<StructType>(OpTy)) | 
|  | if (STy->getNumElements() == 1) | 
|  | OpTy = STy->getElementType(0); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = TD->getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpInfo.ConstraintVT = | 
|  | EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true); | 
|  | break; | 
|  | } | 
|  | } else if (dyn_cast<PointerType>(OpTy)) { | 
|  | OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize()); | 
|  | } else { | 
|  | OpInfo.ConstraintVT = EVT::getEVT(OpTy, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have multiple alternative constraints, select the best alternative. | 
|  | if (ConstraintInfos.size()) { | 
|  | if (maCount) { | 
|  | unsigned bestMAIndex = 0; | 
|  | int bestWeight = -1; | 
|  | // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match. | 
|  | int weight = -1; | 
|  | unsigned maIndex; | 
|  | // Compute the sums of the weights for each alternative, keeping track | 
|  | // of the best (highest weight) one so far. | 
|  | for (maIndex = 0; maIndex < maCount; ++maIndex) { | 
|  | int weightSum = 0; | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; | 
|  | if (OpInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, | 
|  | // look up the matching input. If their types mismatch, e.g. one | 
|  | // is an integer, the other is floating point, or their sizes are | 
|  | // different, flag it as an maCantMatch. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (OpInfo.ConstraintVT.getSizeInBits() != | 
|  | Input.ConstraintVT.getSizeInBits())) { | 
|  | weightSum = -1;  // Can't match. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); | 
|  | if (weight == -1) { | 
|  | weightSum = -1; | 
|  | break; | 
|  | } | 
|  | weightSum += weight; | 
|  | } | 
|  | // Update best. | 
|  | if (weightSum > bestWeight) { | 
|  | bestWeight = weightSum; | 
|  | bestMAIndex = maIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now select chosen alternative in each constraint. | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; | 
|  | if (cInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  | cInfo.selectAlternative(bestMAIndex); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check and hook up tied operands, choose constraint code to use. | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input. If their types mismatch, e.g. one is an integer, the | 
|  | // other is floating point, or their sizes are different, flag it as an | 
|  | // error. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  |  | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (OpInfo.ConstraintVT.getSizeInBits() != | 
|  | Input.ConstraintVT.getSizeInBits())) { | 
|  | report_fatal_error("Unsupported asm: input constraint" | 
|  | " with a matching output constraint of" | 
|  | " incompatible type!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | return ConstraintOperands; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getConstraintGenerality - Return an integer indicating how general CT | 
|  | /// is. | 
|  | static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { | 
|  | switch (CT) { | 
|  | default: llvm_unreachable("Unknown constraint type!"); | 
|  | case TargetLowering::C_Other: | 
|  | case TargetLowering::C_Unknown: | 
|  | return 0; | 
|  | case TargetLowering::C_Register: | 
|  | return 1; | 
|  | case TargetLowering::C_RegisterClass: | 
|  | return 2; | 
|  | case TargetLowering::C_Memory: | 
|  | return 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | TargetLowering::getMultipleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, int maIndex) const { | 
|  | InlineAsm::ConstraintCodeVector *rCodes; | 
|  | if (maIndex >= (int)info.multipleAlternatives.size()) | 
|  | rCodes = &info.Codes; | 
|  | else | 
|  | rCodes = &info.multipleAlternatives[maIndex].Codes; | 
|  | ConstraintWeight BestWeight = CW_Invalid; | 
|  |  | 
|  | // Loop over the options, keeping track of the most general one. | 
|  | for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { | 
|  | ConstraintWeight weight = | 
|  | getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); | 
|  | if (weight > BestWeight) | 
|  | BestWeight = weight; | 
|  | } | 
|  |  | 
|  | return BestWeight; | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (CallOperandVal == NULL) | 
|  | return CW_Default; | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | case 'i': // immediate integer. | 
|  | case 'n': // immediate integer with a known value. | 
|  | if (isa<ConstantInt>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 's': // non-explicit intregal immediate. | 
|  | if (isa<GlobalValue>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 'E': // immediate float if host format. | 
|  | case 'F': // immediate float. | 
|  | if (isa<ConstantFP>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case '<': // memory operand with autodecrement. | 
|  | case '>': // memory operand with autoincrement. | 
|  | case 'm': // memory operand. | 
|  | case 'o': // offsettable memory operand | 
|  | case 'V': // non-offsettable memory operand | 
|  | weight = CW_Memory; | 
|  | break; | 
|  | case 'r': // general register. | 
|  | case 'g': // general register, memory operand or immediate integer. | 
|  | // note: Clang converts "g" to "imr". | 
|  | if (CallOperandVal->getType()->isIntegerTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'X': // any operand. | 
|  | default: | 
|  | weight = CW_Default; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// ChooseConstraint - If there are multiple different constraints that we | 
|  | /// could pick for this operand (e.g. "imr") try to pick the 'best' one. | 
|  | /// This is somewhat tricky: constraints fall into four classes: | 
|  | ///    Other         -> immediates and magic values | 
|  | ///    Register      -> one specific register | 
|  | ///    RegisterClass -> a group of regs | 
|  | ///    Memory        -> memory | 
|  | /// Ideally, we would pick the most specific constraint possible: if we have | 
|  | /// something that fits into a register, we would pick it.  The problem here | 
|  | /// is that if we have something that could either be in a register or in | 
|  | /// memory that use of the register could cause selection of *other* | 
|  | /// operands to fail: they might only succeed if we pick memory.  Because of | 
|  | /// this the heuristic we use is: | 
|  | /// | 
|  | ///  1) If there is an 'other' constraint, and if the operand is valid for | 
|  | ///     that constraint, use it.  This makes us take advantage of 'i' | 
|  | ///     constraints when available. | 
|  | ///  2) Otherwise, pick the most general constraint present.  This prefers | 
|  | ///     'm' over 'r', for example. | 
|  | /// | 
|  | static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, | 
|  | const TargetLowering &TLI, | 
|  | SDValue Op, SelectionDAG *DAG) { | 
|  | assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); | 
|  | unsigned BestIdx = 0; | 
|  | TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; | 
|  | int BestGenerality = -1; | 
|  |  | 
|  | // Loop over the options, keeping track of the most general one. | 
|  | for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { | 
|  | TargetLowering::ConstraintType CType = | 
|  | TLI.getConstraintType(OpInfo.Codes[i]); | 
|  |  | 
|  | // If this is an 'other' constraint, see if the operand is valid for it. | 
|  | // For example, on X86 we might have an 'rI' constraint.  If the operand | 
|  | // is an integer in the range [0..31] we want to use I (saving a load | 
|  | // of a register), otherwise we must use 'r'. | 
|  | if (CType == TargetLowering::C_Other && Op.getNode()) { | 
|  | assert(OpInfo.Codes[i].size() == 1 && | 
|  | "Unhandled multi-letter 'other' constraint"); | 
|  | std::vector<SDValue> ResultOps; | 
|  | TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], | 
|  | ResultOps, *DAG); | 
|  | if (!ResultOps.empty()) { | 
|  | BestType = CType; | 
|  | BestIdx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Things with matching constraints can only be registers, per gcc | 
|  | // documentation.  This mainly affects "g" constraints. | 
|  | if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) | 
|  | continue; | 
|  |  | 
|  | // This constraint letter is more general than the previous one, use it. | 
|  | int Generality = getConstraintGenerality(CType); | 
|  | if (Generality > BestGenerality) { | 
|  | BestType = CType; | 
|  | BestIdx = i; | 
|  | BestGenerality = Generality; | 
|  | } | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; | 
|  | OpInfo.ConstraintType = BestType; | 
|  | } | 
|  |  | 
|  | /// ComputeConstraintToUse - Determines the constraint code and constraint | 
|  | /// type to use for the specific AsmOperandInfo, setting | 
|  | /// OpInfo.ConstraintCode and OpInfo.ConstraintType. | 
|  | void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, | 
|  | SDValue Op, | 
|  | SelectionDAG *DAG) const { | 
|  | assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); | 
|  |  | 
|  | // Single-letter constraints ('r') are very common. | 
|  | if (OpInfo.Codes.size() == 1) { | 
|  | OpInfo.ConstraintCode = OpInfo.Codes[0]; | 
|  | OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); | 
|  | } else { | 
|  | ChooseConstraint(OpInfo, *this, Op, DAG); | 
|  | } | 
|  |  | 
|  | // 'X' matches anything. | 
|  | if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { | 
|  | // Labels and constants are handled elsewhere ('X' is the only thing | 
|  | // that matches labels).  For Functions, the type here is the type of | 
|  | // the result, which is not what we want to look at; leave them alone. | 
|  | Value *v = OpInfo.CallOperandVal; | 
|  | if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { | 
|  | OpInfo.CallOperandVal = v; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, try to resolve it to something we know about by looking at | 
|  | // the actual operand type. | 
|  | if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { | 
|  | OpInfo.ConstraintCode = Repl; | 
|  | OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Loop Strength Reduction hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isLegalAddressingMode - Return true if the addressing mode represented | 
|  | /// by AM is legal for this target, for a load/store of the specified type. | 
|  | bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
|  | const Type *Ty) const { | 
|  | // The default implementation of this implements a conservative RISCy, r+r and | 
|  | // r+i addr mode. | 
|  |  | 
|  | // Allows a sign-extended 16-bit immediate field. | 
|  | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
|  | return false; | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // Only support r+r, | 
|  | switch (AM.Scale) { | 
|  | case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
|  | return false; | 
|  | // Otherwise we have r+r or r+i. | 
|  | break; | 
|  | case 2: | 
|  | if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
|  | return false; | 
|  | // Allow 2*r as r+r. | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number.  See: | 
|  | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, | 
|  | std::vector<SDNode*>* Created) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc dl= N->getDebugLoc(); | 
|  |  | 
|  | // Check to see if we can do this. | 
|  | // FIXME: We should be more aggressive here. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); | 
|  | APInt::ms magics = d.magic(); | 
|  |  | 
|  | // Multiply the numerator (operand 0) by the magic value | 
|  | // FIXME: We should support doing a MUL in a wider type | 
|  | SDValue Q; | 
|  | if (isOperationLegalOrCustom(ISD::MULHS, VT)) | 
|  | Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), | 
|  | DAG.getConstant(magics.m, VT)); | 
|  | else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) | 
|  | Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), | 
|  | N->getOperand(0), | 
|  | DAG.getConstant(magics.m, VT)).getNode(), 1); | 
|  | else | 
|  | return SDValue();       // No mulhs or equvialent | 
|  | // If d > 0 and m < 0, add the numerator | 
|  | if (d.isStrictlyPositive() && magics.m.isNegative()) { | 
|  | Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); | 
|  | if (Created) | 
|  | Created->push_back(Q.getNode()); | 
|  | } | 
|  | // If d < 0 and m > 0, subtract the numerator. | 
|  | if (d.isNegative() && magics.m.isStrictlyPositive()) { | 
|  | Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); | 
|  | if (Created) | 
|  | Created->push_back(Q.getNode()); | 
|  | } | 
|  | // Shift right algebraic if shift value is nonzero | 
|  | if (magics.s > 0) { | 
|  | Q = DAG.getNode(ISD::SRA, dl, VT, Q, | 
|  | DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); | 
|  | if (Created) | 
|  | Created->push_back(Q.getNode()); | 
|  | } | 
|  | // Extract the sign bit and add it to the quotient | 
|  | SDValue T = | 
|  | DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, | 
|  | getShiftAmountTy(Q.getValueType()))); | 
|  | if (Created) | 
|  | Created->push_back(T.getNode()); | 
|  | return DAG.getNode(ISD::ADD, dl, VT, Q, T); | 
|  | } | 
|  |  | 
|  | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number.  See: | 
|  | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, | 
|  | std::vector<SDNode*>* Created) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  |  | 
|  | // Check to see if we can do this. | 
|  | // FIXME: We should be more aggressive here. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: We should use a narrower constant when the upper | 
|  | // bits are known to be zero. | 
|  | const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); | 
|  | APInt::mu magics = N1C.magicu(); | 
|  |  | 
|  | SDValue Q = N->getOperand(0); | 
|  |  | 
|  | // If the divisor is even, we can avoid using the expensive fixup by shifting | 
|  | // the divided value upfront. | 
|  | if (magics.a != 0 && !N1C[0]) { | 
|  | unsigned Shift = N1C.countTrailingZeros(); | 
|  | Q = DAG.getNode(ISD::SRL, dl, VT, Q, | 
|  | DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); | 
|  | if (Created) | 
|  | Created->push_back(Q.getNode()); | 
|  |  | 
|  | // Get magic number for the shifted divisor. | 
|  | magics = N1C.lshr(Shift).magicu(Shift); | 
|  | assert(magics.a == 0 && "Should use cheap fixup now"); | 
|  | } | 
|  |  | 
|  | // Multiply the numerator (operand 0) by the magic value | 
|  | // FIXME: We should support doing a MUL in a wider type | 
|  | if (isOperationLegalOrCustom(ISD::MULHU, VT)) | 
|  | Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); | 
|  | else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) | 
|  | Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, | 
|  | DAG.getConstant(magics.m, VT)).getNode(), 1); | 
|  | else | 
|  | return SDValue();       // No mulhu or equvialent | 
|  | if (Created) | 
|  | Created->push_back(Q.getNode()); | 
|  |  | 
|  | if (magics.a == 0) { | 
|  | assert(magics.s < N1C.getBitWidth() && | 
|  | "We shouldn't generate an undefined shift!"); | 
|  | return DAG.getNode(ISD::SRL, dl, VT, Q, | 
|  | DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); | 
|  | } else { | 
|  | SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); | 
|  | if (Created) | 
|  | Created->push_back(NPQ.getNode()); | 
|  | NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, | 
|  | DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); | 
|  | if (Created) | 
|  | Created->push_back(NPQ.getNode()); | 
|  | NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); | 
|  | if (Created) | 
|  | Created->push_back(NPQ.getNode()); | 
|  | return DAG.getNode(ISD::SRL, dl, VT, NPQ, | 
|  | DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); | 
|  | } | 
|  | } |