|  | //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines several CodeGen-specific LLVM IR analysis utilties. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence | 
|  | /// of insertvalue or extractvalue indices that identify a member, return | 
|  | /// the linearized index of the start of the member. | 
|  | /// | 
|  | unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, | 
|  | const unsigned *Indices, | 
|  | const unsigned *IndicesEnd, | 
|  | unsigned CurIndex) { | 
|  | // Base case: We're done. | 
|  | if (Indices && Indices == IndicesEnd) | 
|  | return CurIndex; | 
|  |  | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) { | 
|  | if (Indices && *Indices == unsigned(EI - EB)) | 
|  | return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); | 
|  | } | 
|  | return CurIndex; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | const Type *EltTy = ATy->getElementType(); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | 
|  | if (Indices && *Indices == i) | 
|  | return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); | 
|  | } | 
|  | return CurIndex; | 
|  | } | 
|  | // We haven't found the type we're looking for, so keep searching. | 
|  | return CurIndex + 1; | 
|  | } | 
|  |  | 
|  | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
|  | /// EVTs that represent all the individual underlying | 
|  | /// non-aggregate types that comprise it. | 
|  | /// | 
|  | /// If Offsets is non-null, it points to a vector to be filled in | 
|  | /// with the in-memory offsets of each of the individual values. | 
|  | /// | 
|  | void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, | 
|  | SmallVectorImpl<EVT> &ValueVTs, | 
|  | SmallVectorImpl<uint64_t> *Offsets, | 
|  | uint64_t StartingOffset) { | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) | 
|  | ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, | 
|  | StartingOffset + SL->getElementOffset(EI - EB)); | 
|  | return; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | const Type *EltTy = ATy->getElementType(); | 
|  | uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
|  | ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, | 
|  | StartingOffset + i * EltSize); | 
|  | return; | 
|  | } | 
|  | // Interpret void as zero return values. | 
|  | if (Ty->isVoidTy()) | 
|  | return; | 
|  | // Base case: we can get an EVT for this LLVM IR type. | 
|  | ValueVTs.push_back(TLI.getValueType(Ty)); | 
|  | if (Offsets) | 
|  | Offsets->push_back(StartingOffset); | 
|  | } | 
|  |  | 
|  | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
|  | GlobalVariable *llvm::ExtractTypeInfo(Value *V) { | 
|  | V = V->stripPointerCasts(); | 
|  | GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
|  |  | 
|  | if (GV && GV->getName() == ".llvm.eh.catch.all.value") { | 
|  | assert(GV->hasInitializer() && | 
|  | "The EH catch-all value must have an initializer"); | 
|  | Value *Init = GV->getInitializer(); | 
|  | GV = dyn_cast<GlobalVariable>(Init); | 
|  | if (!GV) V = cast<ConstantPointerNull>(Init); | 
|  | } | 
|  |  | 
|  | assert((GV || isa<ConstantPointerNull>(V)) && | 
|  | "TypeInfo must be a global variable or NULL"); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
|  | /// processed uses a memory 'm' constraint. | 
|  | bool | 
|  | llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, | 
|  | const TargetLowering &TLI) { | 
|  | for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
|  | InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
|  | for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
|  | TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
|  | if (CType == TargetLowering::C_Memory) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Indirect operand accesses access memory. | 
|  | if (CI.isIndirect) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR floating-point condition code.  This includes | 
|  | /// consideration of global floating-point math flags. | 
|  | /// | 
|  | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { | 
|  | ISD::CondCode FPC, FOC; | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
|  | case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
|  | case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
|  | case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
|  | case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
|  | case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
|  | case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
|  | case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break; | 
|  | case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break; | 
|  | case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
|  | case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
|  | case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
|  | case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
|  | case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
|  | case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
|  | case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
|  | default: | 
|  | llvm_unreachable("Invalid FCmp predicate opcode!"); | 
|  | FOC = FPC = ISD::SETFALSE; | 
|  | break; | 
|  | } | 
|  | if (FiniteOnlyFPMath()) | 
|  | return FOC; | 
|  | else | 
|  | return FPC; | 
|  | } | 
|  |  | 
|  | /// getICmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR integer condition code. | 
|  | /// | 
|  | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
|  | case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
|  | case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
|  | case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
|  | case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
|  | case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
|  | case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
|  | case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
|  | case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
|  | case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
|  | default: | 
|  | llvm_unreachable("Invalid ICmp predicate opcode!"); | 
|  | return ISD::SETNE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Test if the given instruction is in a position to be optimized | 
|  | /// with a tail-call. This roughly means that it's in a block with | 
|  | /// a return and there's nothing that needs to be scheduled | 
|  | /// between it and the return. | 
|  | /// | 
|  | /// This function only tests target-independent requirements. | 
|  | bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, | 
|  | const TargetLowering &TLI) { | 
|  | const Instruction *I = CS.getInstruction(); | 
|  | const BasicBlock *ExitBB = I->getParent(); | 
|  | const TerminatorInst *Term = ExitBB->getTerminator(); | 
|  | const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); | 
|  | const Function *F = ExitBB->getParent(); | 
|  |  | 
|  | // The block must end in a return statement or unreachable. | 
|  | // | 
|  | // FIXME: Decline tailcall if it's not guaranteed and if the block ends in | 
|  | // an unreachable, for now. The way tailcall optimization is currently | 
|  | // implemented means it will add an epilogue followed by a jump. That is | 
|  | // not profitable. Also, if the callee is a special function (e.g. | 
|  | // longjmp on x86), it can end up causing miscompilation that has not | 
|  | // been fully understood. | 
|  | if (!Ret && | 
|  | (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; | 
|  |  | 
|  | // If I will have a chain, make sure no other instruction that will have a | 
|  | // chain interposes between I and the return. | 
|  | if (I->mayHaveSideEffects() || I->mayReadFromMemory() || | 
|  | !I->isSafeToSpeculativelyExecute()) | 
|  | for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; | 
|  | --BBI) { | 
|  | if (&*BBI == I) | 
|  | break; | 
|  | // Debug info intrinsics do not get in the way of tail call optimization. | 
|  | if (isa<DbgInfoIntrinsic>(BBI)) | 
|  | continue; | 
|  | if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || | 
|  | !BBI->isSafeToSpeculativelyExecute()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with a void return or unreachable, it doesn't matter | 
|  | // what the call's return type is. | 
|  | if (!Ret || Ret->getNumOperands() == 0) return true; | 
|  |  | 
|  | // If the return value is undef, it doesn't matter what the call's | 
|  | // return type is. | 
|  | if (isa<UndefValue>(Ret->getOperand(0))) return true; | 
|  |  | 
|  | // Conservatively require the attributes of the call to match those of | 
|  | // the return. Ignore noalias because it doesn't affect the call sequence. | 
|  | unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); | 
|  | if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) | 
|  | return false; | 
|  |  | 
|  | // It's not safe to eliminate the sign / zero extension of the return value. | 
|  | if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, make sure the unmodified return value of I is the return value. | 
|  | for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; | 
|  | U = dyn_cast<Instruction>(U->getOperand(0))) { | 
|  | if (!U) | 
|  | return false; | 
|  | if (!U->hasOneUse()) | 
|  | return false; | 
|  | if (U == I) | 
|  | break; | 
|  | // Check for a truly no-op truncate. | 
|  | if (isa<TruncInst>(U) && | 
|  | TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) | 
|  | continue; | 
|  | // Check for a truly no-op bitcast. | 
|  | if (isa<BitCastInst>(U) && | 
|  | (U->getOperand(0)->getType() == U->getType() || | 
|  | (U->getOperand(0)->getType()->isPointerTy() && | 
|  | U->getType()->isPointerTy()))) | 
|  | continue; | 
|  | // Otherwise it's not a true no-op. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  |