|  | //===- InstCombineCalls.cpp -----------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visitCall and visitInvoke functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | STATISTIC(NumSimplified, "Number of library calls simplified"); | 
|  |  | 
|  | /// Return the specified type promoted as it would be to pass though a va_arg | 
|  | /// area. | 
|  | static Type *getPromotedType(Type *Ty) { | 
|  | if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { | 
|  | if (ITy->getBitWidth() < 32) | 
|  | return Type::getInt32Ty(Ty->getContext()); | 
|  | } | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// Given an aggregate type which ultimately holds a single scalar element, | 
|  | /// like {{{type}}} or [1 x type], return type. | 
|  | static Type *reduceToSingleValueType(Type *T) { | 
|  | while (!T->isSingleValueType()) { | 
|  | if (StructType *STy = dyn_cast<StructType>(T)) { | 
|  | if (STy->getNumElements() == 1) | 
|  | T = STy->getElementType(0); | 
|  | else | 
|  | break; | 
|  | } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) { | 
|  | if (ATy->getNumElements() == 1) | 
|  | T = ATy->getElementType(); | 
|  | else | 
|  | break; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return T; | 
|  | } | 
|  |  | 
|  | /// Return a constant boolean vector that has true elements in all positions | 
|  | /// where the input constant data vector has an element with the sign bit set. | 
|  | static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { | 
|  | SmallVector<Constant *, 32> BoolVec; | 
|  | IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); | 
|  | for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { | 
|  | Constant *Elt = V->getElementAsConstant(I); | 
|  | assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) && | 
|  | "Unexpected constant data vector element type"); | 
|  | bool Sign = V->getElementType()->isIntegerTy() | 
|  | ? cast<ConstantInt>(Elt)->isNegative() | 
|  | : cast<ConstantFP>(Elt)->isNegative(); | 
|  | BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); | 
|  | } | 
|  | return ConstantVector::get(BoolVec); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { | 
|  | unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, &AC, &DT); | 
|  | unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, &AC, &DT); | 
|  | unsigned MinAlign = std::min(DstAlign, SrcAlign); | 
|  | unsigned CopyAlign = MI->getAlignment(); | 
|  |  | 
|  | if (CopyAlign < MinAlign) { | 
|  | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false)); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with | 
|  | // load/store. | 
|  | ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2)); | 
|  | if (!MemOpLength) return nullptr; | 
|  |  | 
|  | // Source and destination pointer types are always "i8*" for intrinsic.  See | 
|  | // if the size is something we can handle with a single primitive load/store. | 
|  | // A single load+store correctly handles overlapping memory in the memmove | 
|  | // case. | 
|  | uint64_t Size = MemOpLength->getLimitedValue(); | 
|  | assert(Size && "0-sized memory transferring should be removed already."); | 
|  |  | 
|  | if (Size > 8 || (Size&(Size-1))) | 
|  | return nullptr;  // If not 1/2/4/8 bytes, exit. | 
|  |  | 
|  | // Use an integer load+store unless we can find something better. | 
|  | unsigned SrcAddrSp = | 
|  | cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); | 
|  | unsigned DstAddrSp = | 
|  | cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); | 
|  |  | 
|  | IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); | 
|  | Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); | 
|  | Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); | 
|  |  | 
|  | // Memcpy forces the use of i8* for the source and destination.  That means | 
|  | // that if you're using memcpy to move one double around, you'll get a cast | 
|  | // from double* to i8*.  We'd much rather use a double load+store rather than | 
|  | // an i64 load+store, here because this improves the odds that the source or | 
|  | // dest address will be promotable.  See if we can find a better type than the | 
|  | // integer datatype. | 
|  | Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts(); | 
|  | MDNode *CopyMD = nullptr; | 
|  | if (StrippedDest != MI->getArgOperand(0)) { | 
|  | Type *SrcETy = cast<PointerType>(StrippedDest->getType()) | 
|  | ->getElementType(); | 
|  | if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) { | 
|  | // The SrcETy might be something like {{{double}}} or [1 x double].  Rip | 
|  | // down through these levels if so. | 
|  | SrcETy = reduceToSingleValueType(SrcETy); | 
|  |  | 
|  | if (SrcETy->isSingleValueType()) { | 
|  | NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp); | 
|  | NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp); | 
|  |  | 
|  | // If the memcpy has metadata describing the members, see if we can | 
|  | // get the TBAA tag describing our copy. | 
|  | if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { | 
|  | if (M->getNumOperands() == 3 && M->getOperand(0) && | 
|  | mdconst::hasa<ConstantInt>(M->getOperand(0)) && | 
|  | mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() && | 
|  | M->getOperand(1) && | 
|  | mdconst::hasa<ConstantInt>(M->getOperand(1)) && | 
|  | mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == | 
|  | Size && | 
|  | M->getOperand(2) && isa<MDNode>(M->getOperand(2))) | 
|  | CopyMD = cast<MDNode>(M->getOperand(2)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the memcpy/memmove provides better alignment info than we can | 
|  | // infer, use it. | 
|  | SrcAlign = std::max(SrcAlign, CopyAlign); | 
|  | DstAlign = std::max(DstAlign, CopyAlign); | 
|  |  | 
|  | Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); | 
|  | Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); | 
|  | LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile()); | 
|  | L->setAlignment(SrcAlign); | 
|  | if (CopyMD) | 
|  | L->setMetadata(LLVMContext::MD_tbaa, CopyMD); | 
|  | MDNode *LoopMemParallelMD = | 
|  | MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); | 
|  | if (LoopMemParallelMD) | 
|  | L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); | 
|  |  | 
|  | StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile()); | 
|  | S->setAlignment(DstAlign); | 
|  | if (CopyMD) | 
|  | S->setMetadata(LLVMContext::MD_tbaa, CopyMD); | 
|  | if (LoopMemParallelMD) | 
|  | S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); | 
|  |  | 
|  | // Set the size of the copy to 0, it will be deleted on the next iteration. | 
|  | MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType())); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { | 
|  | unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); | 
|  | if (MI->getAlignment() < Alignment) { | 
|  | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), | 
|  | Alignment, false)); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // Extract the length and alignment and fill if they are constant. | 
|  | ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); | 
|  | if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) | 
|  | return nullptr; | 
|  | uint64_t Len = LenC->getLimitedValue(); | 
|  | Alignment = MI->getAlignment(); | 
|  | assert(Len && "0-sized memory setting should be removed already."); | 
|  |  | 
|  | // memset(s,c,n) -> store s, c (for n=1,2,4,8) | 
|  | if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { | 
|  | Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8. | 
|  |  | 
|  | Value *Dest = MI->getDest(); | 
|  | unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); | 
|  | Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); | 
|  | Dest = Builder->CreateBitCast(Dest, NewDstPtrTy); | 
|  |  | 
|  | // Alignment 0 is identity for alignment 1 for memset, but not store. | 
|  | if (Alignment == 0) Alignment = 1; | 
|  |  | 
|  | // Extract the fill value and store. | 
|  | uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; | 
|  | StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest, | 
|  | MI->isVolatile()); | 
|  | S->setAlignment(Alignment); | 
|  |  | 
|  | // Set the size of the copy to 0, it will be deleted on the next iteration. | 
|  | MI->setLength(Constant::getNullValue(LenC->getType())); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyX86immShift(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | bool LogicalShift = false; | 
|  | bool ShiftLeft = false; | 
|  |  | 
|  | switch (II.getIntrinsicID()) { | 
|  | default: | 
|  | return nullptr; | 
|  | case Intrinsic::x86_sse2_psra_d: | 
|  | case Intrinsic::x86_sse2_psra_w: | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_avx2_psra_d: | 
|  | case Intrinsic::x86_avx2_psra_w: | 
|  | case Intrinsic::x86_avx2_psrai_d: | 
|  | case Intrinsic::x86_avx2_psrai_w: | 
|  | LogicalShift = false; ShiftLeft = false; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psrl_d: | 
|  | case Intrinsic::x86_sse2_psrl_q: | 
|  | case Intrinsic::x86_sse2_psrl_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_avx2_psrl_d: | 
|  | case Intrinsic::x86_avx2_psrl_q: | 
|  | case Intrinsic::x86_avx2_psrl_w: | 
|  | case Intrinsic::x86_avx2_psrli_d: | 
|  | case Intrinsic::x86_avx2_psrli_q: | 
|  | case Intrinsic::x86_avx2_psrli_w: | 
|  | LogicalShift = true; ShiftLeft = false; | 
|  | break; | 
|  | case Intrinsic::x86_sse2_psll_d: | 
|  | case Intrinsic::x86_sse2_psll_q: | 
|  | case Intrinsic::x86_sse2_psll_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_avx2_psll_d: | 
|  | case Intrinsic::x86_avx2_psll_q: | 
|  | case Intrinsic::x86_avx2_psll_w: | 
|  | case Intrinsic::x86_avx2_pslli_d: | 
|  | case Intrinsic::x86_avx2_pslli_q: | 
|  | case Intrinsic::x86_avx2_pslli_w: | 
|  | LogicalShift = true; ShiftLeft = true; | 
|  | break; | 
|  | } | 
|  | assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); | 
|  |  | 
|  | // Simplify if count is constant. | 
|  | auto Arg1 = II.getArgOperand(1); | 
|  | auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1); | 
|  | auto CDV = dyn_cast<ConstantDataVector>(Arg1); | 
|  | auto CInt = dyn_cast<ConstantInt>(Arg1); | 
|  | if (!CAZ && !CDV && !CInt) | 
|  | return nullptr; | 
|  |  | 
|  | APInt Count(64, 0); | 
|  | if (CDV) { | 
|  | // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector | 
|  | // operand to compute the shift amount. | 
|  | auto VT = cast<VectorType>(CDV->getType()); | 
|  | unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); | 
|  | assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); | 
|  | unsigned NumSubElts = 64 / BitWidth; | 
|  |  | 
|  | // Concatenate the sub-elements to create the 64-bit value. | 
|  | for (unsigned i = 0; i != NumSubElts; ++i) { | 
|  | unsigned SubEltIdx = (NumSubElts - 1) - i; | 
|  | auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); | 
|  | Count = Count.shl(BitWidth); | 
|  | Count |= SubElt->getValue().zextOrTrunc(64); | 
|  | } | 
|  | } | 
|  | else if (CInt) | 
|  | Count = CInt->getValue(); | 
|  |  | 
|  | auto Vec = II.getArgOperand(0); | 
|  | auto VT = cast<VectorType>(Vec->getType()); | 
|  | auto SVT = VT->getElementType(); | 
|  | unsigned VWidth = VT->getNumElements(); | 
|  | unsigned BitWidth = SVT->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // If shift-by-zero then just return the original value. | 
|  | if (Count == 0) | 
|  | return Vec; | 
|  |  | 
|  | // Handle cases when Shift >= BitWidth. | 
|  | if (Count.uge(BitWidth)) { | 
|  | // If LogicalShift - just return zero. | 
|  | if (LogicalShift) | 
|  | return ConstantAggregateZero::get(VT); | 
|  |  | 
|  | // If ArithmeticShift - clamp Shift to (BitWidth - 1). | 
|  | Count = APInt(64, BitWidth - 1); | 
|  | } | 
|  |  | 
|  | // Get a constant vector of the same type as the first operand. | 
|  | auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); | 
|  | auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); | 
|  |  | 
|  | if (ShiftLeft) | 
|  | return Builder.CreateShl(Vec, ShiftVec); | 
|  |  | 
|  | if (LogicalShift) | 
|  | return Builder.CreateLShr(Vec, ShiftVec); | 
|  |  | 
|  | return Builder.CreateAShr(Vec, ShiftVec); | 
|  | } | 
|  |  | 
|  | // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. | 
|  | // Unlike the generic IR shifts, the intrinsics have defined behaviour for out | 
|  | // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). | 
|  | static Value *simplifyX86varShift(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | bool LogicalShift = false; | 
|  | bool ShiftLeft = false; | 
|  |  | 
|  | switch (II.getIntrinsicID()) { | 
|  | default: | 
|  | return nullptr; | 
|  | case Intrinsic::x86_avx2_psrav_d: | 
|  | case Intrinsic::x86_avx2_psrav_d_256: | 
|  | LogicalShift = false; | 
|  | ShiftLeft = false; | 
|  | break; | 
|  | case Intrinsic::x86_avx2_psrlv_d: | 
|  | case Intrinsic::x86_avx2_psrlv_d_256: | 
|  | case Intrinsic::x86_avx2_psrlv_q: | 
|  | case Intrinsic::x86_avx2_psrlv_q_256: | 
|  | LogicalShift = true; | 
|  | ShiftLeft = false; | 
|  | break; | 
|  | case Intrinsic::x86_avx2_psllv_d: | 
|  | case Intrinsic::x86_avx2_psllv_d_256: | 
|  | case Intrinsic::x86_avx2_psllv_q: | 
|  | case Intrinsic::x86_avx2_psllv_q_256: | 
|  | LogicalShift = true; | 
|  | ShiftLeft = true; | 
|  | break; | 
|  | } | 
|  | assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); | 
|  |  | 
|  | // Simplify if all shift amounts are constant/undef. | 
|  | auto *CShift = dyn_cast<Constant>(II.getArgOperand(1)); | 
|  | if (!CShift) | 
|  | return nullptr; | 
|  |  | 
|  | auto Vec = II.getArgOperand(0); | 
|  | auto VT = cast<VectorType>(II.getType()); | 
|  | auto SVT = VT->getVectorElementType(); | 
|  | int NumElts = VT->getNumElements(); | 
|  | int BitWidth = SVT->getIntegerBitWidth(); | 
|  |  | 
|  | // Collect each element's shift amount. | 
|  | // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. | 
|  | bool AnyOutOfRange = false; | 
|  | SmallVector<int, 8> ShiftAmts; | 
|  | for (int I = 0; I < NumElts; ++I) { | 
|  | auto *CElt = CShift->getAggregateElement(I); | 
|  | if (CElt && isa<UndefValue>(CElt)) { | 
|  | ShiftAmts.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto *COp = dyn_cast_or_null<ConstantInt>(CElt); | 
|  | if (!COp) | 
|  | return nullptr; | 
|  |  | 
|  | // Handle out of range shifts. | 
|  | // If LogicalShift - set to BitWidth (special case). | 
|  | // If ArithmeticShift - set to (BitWidth - 1) (sign splat). | 
|  | APInt ShiftVal = COp->getValue(); | 
|  | if (ShiftVal.uge(BitWidth)) { | 
|  | AnyOutOfRange = LogicalShift; | 
|  | ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ShiftAmts.push_back((int)ShiftVal.getZExtValue()); | 
|  | } | 
|  |  | 
|  | // If all elements out of range or UNDEF, return vector of zeros/undefs. | 
|  | // ArithmeticShift should only hit this if they are all UNDEF. | 
|  | auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; | 
|  | if (all_of(ShiftAmts, OutOfRange)) { | 
|  | SmallVector<Constant *, 8> ConstantVec; | 
|  | for (int Idx : ShiftAmts) { | 
|  | if (Idx < 0) { | 
|  | ConstantVec.push_back(UndefValue::get(SVT)); | 
|  | } else { | 
|  | assert(LogicalShift && "Logical shift expected"); | 
|  | ConstantVec.push_back(ConstantInt::getNullValue(SVT)); | 
|  | } | 
|  | } | 
|  | return ConstantVector::get(ConstantVec); | 
|  | } | 
|  |  | 
|  | // We can't handle only some out of range values with generic logical shifts. | 
|  | if (AnyOutOfRange) | 
|  | return nullptr; | 
|  |  | 
|  | // Build the shift amount constant vector. | 
|  | SmallVector<Constant *, 8> ShiftVecAmts; | 
|  | for (int Idx : ShiftAmts) { | 
|  | if (Idx < 0) | 
|  | ShiftVecAmts.push_back(UndefValue::get(SVT)); | 
|  | else | 
|  | ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); | 
|  | } | 
|  | auto ShiftVec = ConstantVector::get(ShiftVecAmts); | 
|  |  | 
|  | if (ShiftLeft) | 
|  | return Builder.CreateShl(Vec, ShiftVec); | 
|  |  | 
|  | if (LogicalShift) | 
|  | return Builder.CreateLShr(Vec, ShiftVec); | 
|  |  | 
|  | return Builder.CreateAShr(Vec, ShiftVec); | 
|  | } | 
|  |  | 
|  | static Value *simplifyX86movmsk(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *Arg = II.getArgOperand(0); | 
|  | Type *ResTy = II.getType(); | 
|  | Type *ArgTy = Arg->getType(); | 
|  |  | 
|  | // movmsk(undef) -> zero as we must ensure the upper bits are zero. | 
|  | if (isa<UndefValue>(Arg)) | 
|  | return Constant::getNullValue(ResTy); | 
|  |  | 
|  | // We can't easily peek through x86_mmx types. | 
|  | if (!ArgTy->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | auto *C = dyn_cast<Constant>(Arg); | 
|  | if (!C) | 
|  | return nullptr; | 
|  |  | 
|  | // Extract signbits of the vector input and pack into integer result. | 
|  | APInt Result(ResTy->getPrimitiveSizeInBits(), 0); | 
|  | for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) { | 
|  | auto *COp = C->getAggregateElement(I); | 
|  | if (!COp) | 
|  | return nullptr; | 
|  | if (isa<UndefValue>(COp)) | 
|  | continue; | 
|  |  | 
|  | auto *CInt = dyn_cast<ConstantInt>(COp); | 
|  | auto *CFp = dyn_cast<ConstantFP>(COp); | 
|  | if (!CInt && !CFp) | 
|  | return nullptr; | 
|  |  | 
|  | if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative())) | 
|  | Result.setBit(I); | 
|  | } | 
|  |  | 
|  | return Constant::getIntegerValue(ResTy, Result); | 
|  | } | 
|  |  | 
|  | static Value *simplifyX86insertps(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); | 
|  | if (!CInt) | 
|  | return nullptr; | 
|  |  | 
|  | VectorType *VecTy = cast<VectorType>(II.getType()); | 
|  | assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); | 
|  |  | 
|  | // The immediate permute control byte looks like this: | 
|  | //    [3:0] - zero mask for each 32-bit lane | 
|  | //    [5:4] - select one 32-bit destination lane | 
|  | //    [7:6] - select one 32-bit source lane | 
|  |  | 
|  | uint8_t Imm = CInt->getZExtValue(); | 
|  | uint8_t ZMask = Imm & 0xf; | 
|  | uint8_t DestLane = (Imm >> 4) & 0x3; | 
|  | uint8_t SourceLane = (Imm >> 6) & 0x3; | 
|  |  | 
|  | ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); | 
|  |  | 
|  | // If all zero mask bits are set, this was just a weird way to | 
|  | // generate a zero vector. | 
|  | if (ZMask == 0xf) | 
|  | return ZeroVector; | 
|  |  | 
|  | // Initialize by passing all of the first source bits through. | 
|  | uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; | 
|  |  | 
|  | // We may replace the second operand with the zero vector. | 
|  | Value *V1 = II.getArgOperand(1); | 
|  |  | 
|  | if (ZMask) { | 
|  | // If the zero mask is being used with a single input or the zero mask | 
|  | // overrides the destination lane, this is a shuffle with the zero vector. | 
|  | if ((II.getArgOperand(0) == II.getArgOperand(1)) || | 
|  | (ZMask & (1 << DestLane))) { | 
|  | V1 = ZeroVector; | 
|  | // We may still move 32-bits of the first source vector from one lane | 
|  | // to another. | 
|  | ShuffleMask[DestLane] = SourceLane; | 
|  | // The zero mask may override the previous insert operation. | 
|  | for (unsigned i = 0; i < 4; ++i) | 
|  | if ((ZMask >> i) & 0x1) | 
|  | ShuffleMask[i] = i + 4; | 
|  | } else { | 
|  | // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // Replace the selected destination lane with the selected source lane. | 
|  | ShuffleMask[DestLane] = SourceLane + 4; | 
|  | } | 
|  |  | 
|  | return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); | 
|  | } | 
|  |  | 
|  | /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding | 
|  | /// or conversion to a shuffle vector. | 
|  | static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, | 
|  | ConstantInt *CILength, ConstantInt *CIIndex, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto LowConstantHighUndef = [&](uint64_t Val) { | 
|  | Type *IntTy64 = Type::getInt64Ty(II.getContext()); | 
|  | Constant *Args[] = {ConstantInt::get(IntTy64, Val), | 
|  | UndefValue::get(IntTy64)}; | 
|  | return ConstantVector::get(Args); | 
|  | }; | 
|  |  | 
|  | // See if we're dealing with constant values. | 
|  | Constant *C0 = dyn_cast<Constant>(Op0); | 
|  | ConstantInt *CI0 = | 
|  | C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) | 
|  | : nullptr; | 
|  |  | 
|  | // Attempt to constant fold. | 
|  | if (CILength && CIIndex) { | 
|  | // From AMD documentation: "The bit index and field length are each six | 
|  | // bits in length other bits of the field are ignored." | 
|  | APInt APIndex = CIIndex->getValue().zextOrTrunc(6); | 
|  | APInt APLength = CILength->getValue().zextOrTrunc(6); | 
|  |  | 
|  | unsigned Index = APIndex.getZExtValue(); | 
|  |  | 
|  | // From AMD documentation: "a value of zero in the field length is | 
|  | // defined as length of 64". | 
|  | unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); | 
|  |  | 
|  | // From AMD documentation: "If the sum of the bit index + length field | 
|  | // is greater than 64, the results are undefined". | 
|  | unsigned End = Index + Length; | 
|  |  | 
|  | // Note that both field index and field length are 8-bit quantities. | 
|  | // Since variables 'Index' and 'Length' are unsigned values | 
|  | // obtained from zero-extending field index and field length | 
|  | // respectively, their sum should never wrap around. | 
|  | if (End > 64) | 
|  | return UndefValue::get(II.getType()); | 
|  |  | 
|  | // If we are inserting whole bytes, we can convert this to a shuffle. | 
|  | // Lowering can recognize EXTRQI shuffle masks. | 
|  | if ((Length % 8) == 0 && (Index % 8) == 0) { | 
|  | // Convert bit indices to byte indices. | 
|  | Length /= 8; | 
|  | Index /= 8; | 
|  |  | 
|  | Type *IntTy8 = Type::getInt8Ty(II.getContext()); | 
|  | Type *IntTy32 = Type::getInt32Ty(II.getContext()); | 
|  | VectorType *ShufTy = VectorType::get(IntTy8, 16); | 
|  |  | 
|  | SmallVector<Constant *, 16> ShuffleMask; | 
|  | for (int i = 0; i != (int)Length; ++i) | 
|  | ShuffleMask.push_back( | 
|  | Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); | 
|  | for (int i = Length; i != 8; ++i) | 
|  | ShuffleMask.push_back( | 
|  | Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); | 
|  | for (int i = 8; i != 16; ++i) | 
|  | ShuffleMask.push_back(UndefValue::get(IntTy32)); | 
|  |  | 
|  | Value *SV = Builder.CreateShuffleVector( | 
|  | Builder.CreateBitCast(Op0, ShufTy), | 
|  | ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); | 
|  | return Builder.CreateBitCast(SV, II.getType()); | 
|  | } | 
|  |  | 
|  | // Constant Fold - shift Index'th bit to lowest position and mask off | 
|  | // Length bits. | 
|  | if (CI0) { | 
|  | APInt Elt = CI0->getValue(); | 
|  | Elt = Elt.lshr(Index).zextOrTrunc(Length); | 
|  | return LowConstantHighUndef(Elt.getZExtValue()); | 
|  | } | 
|  |  | 
|  | // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. | 
|  | if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { | 
|  | Value *Args[] = {Op0, CILength, CIIndex}; | 
|  | Module *M = II.getModule(); | 
|  | Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); | 
|  | return Builder.CreateCall(F, Args); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Constant Fold - extraction from zero is always {zero, undef}. | 
|  | if (CI0 && CI0->equalsInt(0)) | 
|  | return LowConstantHighUndef(0); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant | 
|  | /// folding or conversion to a shuffle vector. | 
|  | static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, | 
|  | APInt APLength, APInt APIndex, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // From AMD documentation: "The bit index and field length are each six bits | 
|  | // in length other bits of the field are ignored." | 
|  | APIndex = APIndex.zextOrTrunc(6); | 
|  | APLength = APLength.zextOrTrunc(6); | 
|  |  | 
|  | // Attempt to constant fold. | 
|  | unsigned Index = APIndex.getZExtValue(); | 
|  |  | 
|  | // From AMD documentation: "a value of zero in the field length is | 
|  | // defined as length of 64". | 
|  | unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); | 
|  |  | 
|  | // From AMD documentation: "If the sum of the bit index + length field | 
|  | // is greater than 64, the results are undefined". | 
|  | unsigned End = Index + Length; | 
|  |  | 
|  | // Note that both field index and field length are 8-bit quantities. | 
|  | // Since variables 'Index' and 'Length' are unsigned values | 
|  | // obtained from zero-extending field index and field length | 
|  | // respectively, their sum should never wrap around. | 
|  | if (End > 64) | 
|  | return UndefValue::get(II.getType()); | 
|  |  | 
|  | // If we are inserting whole bytes, we can convert this to a shuffle. | 
|  | // Lowering can recognize INSERTQI shuffle masks. | 
|  | if ((Length % 8) == 0 && (Index % 8) == 0) { | 
|  | // Convert bit indices to byte indices. | 
|  | Length /= 8; | 
|  | Index /= 8; | 
|  |  | 
|  | Type *IntTy8 = Type::getInt8Ty(II.getContext()); | 
|  | Type *IntTy32 = Type::getInt32Ty(II.getContext()); | 
|  | VectorType *ShufTy = VectorType::get(IntTy8, 16); | 
|  |  | 
|  | SmallVector<Constant *, 16> ShuffleMask; | 
|  | for (int i = 0; i != (int)Index; ++i) | 
|  | ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); | 
|  | for (int i = 0; i != (int)Length; ++i) | 
|  | ShuffleMask.push_back( | 
|  | Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); | 
|  | for (int i = Index + Length; i != 8; ++i) | 
|  | ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); | 
|  | for (int i = 8; i != 16; ++i) | 
|  | ShuffleMask.push_back(UndefValue::get(IntTy32)); | 
|  |  | 
|  | Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), | 
|  | Builder.CreateBitCast(Op1, ShufTy), | 
|  | ConstantVector::get(ShuffleMask)); | 
|  | return Builder.CreateBitCast(SV, II.getType()); | 
|  | } | 
|  |  | 
|  | // See if we're dealing with constant values. | 
|  | Constant *C0 = dyn_cast<Constant>(Op0); | 
|  | Constant *C1 = dyn_cast<Constant>(Op1); | 
|  | ConstantInt *CI00 = | 
|  | C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) | 
|  | : nullptr; | 
|  | ConstantInt *CI10 = | 
|  | C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) | 
|  | : nullptr; | 
|  |  | 
|  | // Constant Fold - insert bottom Length bits starting at the Index'th bit. | 
|  | if (CI00 && CI10) { | 
|  | APInt V00 = CI00->getValue(); | 
|  | APInt V10 = CI10->getValue(); | 
|  | APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); | 
|  | V00 = V00 & ~Mask; | 
|  | V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); | 
|  | APInt Val = V00 | V10; | 
|  | Type *IntTy64 = Type::getInt64Ty(II.getContext()); | 
|  | Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), | 
|  | UndefValue::get(IntTy64)}; | 
|  | return ConstantVector::get(Args); | 
|  | } | 
|  |  | 
|  | // If we were an INSERTQ call, we'll save demanded elements if we convert to | 
|  | // INSERTQI. | 
|  | if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { | 
|  | Type *IntTy8 = Type::getInt8Ty(II.getContext()); | 
|  | Constant *CILength = ConstantInt::get(IntTy8, Length, false); | 
|  | Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); | 
|  |  | 
|  | Value *Args[] = {Op0, Op1, CILength, CIIndex}; | 
|  | Module *M = II.getModule(); | 
|  | Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); | 
|  | return Builder.CreateCall(F, Args); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Attempt to convert pshufb* to shufflevector if the mask is constant. | 
|  | static Value *simplifyX86pshufb(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | auto *VecTy = cast<VectorType>(II.getType()); | 
|  | auto *MaskEltTy = Type::getInt32Ty(II.getContext()); | 
|  | unsigned NumElts = VecTy->getNumElements(); | 
|  | assert((NumElts == 16 || NumElts == 32) && | 
|  | "Unexpected number of elements in shuffle mask!"); | 
|  |  | 
|  | // Construct a shuffle mask from constant integers or UNDEFs. | 
|  | Constant *Indexes[32] = {nullptr}; | 
|  |  | 
|  | // Each byte in the shuffle control mask forms an index to permute the | 
|  | // corresponding byte in the destination operand. | 
|  | for (unsigned I = 0; I < NumElts; ++I) { | 
|  | Constant *COp = V->getAggregateElement(I); | 
|  | if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) | 
|  | return nullptr; | 
|  |  | 
|  | if (isa<UndefValue>(COp)) { | 
|  | Indexes[I] = UndefValue::get(MaskEltTy); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue(); | 
|  |  | 
|  | // If the most significant bit (bit[7]) of each byte of the shuffle | 
|  | // control mask is set, then zero is written in the result byte. | 
|  | // The zero vector is in the right-hand side of the resulting | 
|  | // shufflevector. | 
|  |  | 
|  | // The value of each index for the high 128-bit lane is the least | 
|  | // significant 4 bits of the respective shuffle control byte. | 
|  | Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); | 
|  | Indexes[I] = ConstantInt::get(MaskEltTy, Index); | 
|  | } | 
|  |  | 
|  | auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); | 
|  | auto V1 = II.getArgOperand(0); | 
|  | auto V2 = Constant::getNullValue(VecTy); | 
|  | return Builder.CreateShuffleVector(V1, V2, ShuffleMask); | 
|  | } | 
|  |  | 
|  | /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. | 
|  | static Value *simplifyX86vpermilvar(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | auto *MaskEltTy = Type::getInt32Ty(II.getContext()); | 
|  | unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); | 
|  | assert(NumElts == 8 || NumElts == 4 || NumElts == 2); | 
|  |  | 
|  | // Construct a shuffle mask from constant integers or UNDEFs. | 
|  | Constant *Indexes[8] = {nullptr}; | 
|  |  | 
|  | // The intrinsics only read one or two bits, clear the rest. | 
|  | for (unsigned I = 0; I < NumElts; ++I) { | 
|  | Constant *COp = V->getAggregateElement(I); | 
|  | if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) | 
|  | return nullptr; | 
|  |  | 
|  | if (isa<UndefValue>(COp)) { | 
|  | Indexes[I] = UndefValue::get(MaskEltTy); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt Index = cast<ConstantInt>(COp)->getValue(); | 
|  | Index = Index.zextOrTrunc(32).getLoBits(2); | 
|  |  | 
|  | // The PD variants uses bit 1 to select per-lane element index, so | 
|  | // shift down to convert to generic shuffle mask index. | 
|  | if (II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd || | 
|  | II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) | 
|  | Index = Index.lshr(1); | 
|  |  | 
|  | // The _256 variants are a bit trickier since the mask bits always index | 
|  | // into the corresponding 128 half. In order to convert to a generic | 
|  | // shuffle, we have to make that explicit. | 
|  | if ((II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 || | 
|  | II.getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) && | 
|  | ((NumElts / 2) <= I)) { | 
|  | Index += APInt(32, NumElts / 2); | 
|  | } | 
|  |  | 
|  | Indexes[I] = ConstantInt::get(MaskEltTy, Index); | 
|  | } | 
|  |  | 
|  | auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); | 
|  | auto V1 = II.getArgOperand(0); | 
|  | auto V2 = UndefValue::get(V1->getType()); | 
|  | return Builder.CreateShuffleVector(V1, V2, ShuffleMask); | 
|  | } | 
|  |  | 
|  | /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. | 
|  | static Value *simplifyX86vpermv(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto *V = dyn_cast<Constant>(II.getArgOperand(1)); | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | auto *VecTy = cast<VectorType>(II.getType()); | 
|  | auto *MaskEltTy = Type::getInt32Ty(II.getContext()); | 
|  | unsigned Size = VecTy->getNumElements(); | 
|  | assert(Size == 8 && "Unexpected shuffle mask size"); | 
|  |  | 
|  | // Construct a shuffle mask from constant integers or UNDEFs. | 
|  | Constant *Indexes[8] = {nullptr}; | 
|  |  | 
|  | for (unsigned I = 0; I < Size; ++I) { | 
|  | Constant *COp = V->getAggregateElement(I); | 
|  | if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) | 
|  | return nullptr; | 
|  |  | 
|  | if (isa<UndefValue>(COp)) { | 
|  | Indexes[I] = UndefValue::get(MaskEltTy); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt Index = cast<ConstantInt>(COp)->getValue(); | 
|  | Index = Index.zextOrTrunc(32).getLoBits(3); | 
|  | Indexes[I] = ConstantInt::get(MaskEltTy, Index); | 
|  | } | 
|  |  | 
|  | auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); | 
|  | auto V1 = II.getArgOperand(0); | 
|  | auto V2 = UndefValue::get(VecTy); | 
|  | return Builder.CreateShuffleVector(V1, V2, ShuffleMask); | 
|  | } | 
|  |  | 
|  | /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit | 
|  | /// source vectors, unless a zero bit is set. If a zero bit is set, | 
|  | /// then ignore that half of the mask and clear that half of the vector. | 
|  | static Value *simplifyX86vperm2(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); | 
|  | if (!CInt) | 
|  | return nullptr; | 
|  |  | 
|  | VectorType *VecTy = cast<VectorType>(II.getType()); | 
|  | ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); | 
|  |  | 
|  | // The immediate permute control byte looks like this: | 
|  | //    [1:0] - select 128 bits from sources for low half of destination | 
|  | //    [2]   - ignore | 
|  | //    [3]   - zero low half of destination | 
|  | //    [5:4] - select 128 bits from sources for high half of destination | 
|  | //    [6]   - ignore | 
|  | //    [7]   - zero high half of destination | 
|  |  | 
|  | uint8_t Imm = CInt->getZExtValue(); | 
|  |  | 
|  | bool LowHalfZero = Imm & 0x08; | 
|  | bool HighHalfZero = Imm & 0x80; | 
|  |  | 
|  | // If both zero mask bits are set, this was just a weird way to | 
|  | // generate a zero vector. | 
|  | if (LowHalfZero && HighHalfZero) | 
|  | return ZeroVector; | 
|  |  | 
|  | // If 0 or 1 zero mask bits are set, this is a simple shuffle. | 
|  | unsigned NumElts = VecTy->getNumElements(); | 
|  | unsigned HalfSize = NumElts / 2; | 
|  | SmallVector<uint32_t, 8> ShuffleMask(NumElts); | 
|  |  | 
|  | // The high bit of the selection field chooses the 1st or 2nd operand. | 
|  | bool LowInputSelect = Imm & 0x02; | 
|  | bool HighInputSelect = Imm & 0x20; | 
|  |  | 
|  | // The low bit of the selection field chooses the low or high half | 
|  | // of the selected operand. | 
|  | bool LowHalfSelect = Imm & 0x01; | 
|  | bool HighHalfSelect = Imm & 0x10; | 
|  |  | 
|  | // Determine which operand(s) are actually in use for this instruction. | 
|  | Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); | 
|  | Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0); | 
|  |  | 
|  | // If needed, replace operands based on zero mask. | 
|  | V0 = LowHalfZero ? ZeroVector : V0; | 
|  | V1 = HighHalfZero ? ZeroVector : V1; | 
|  |  | 
|  | // Permute low half of result. | 
|  | unsigned StartIndex = LowHalfSelect ? HalfSize : 0; | 
|  | for (unsigned i = 0; i < HalfSize; ++i) | 
|  | ShuffleMask[i] = StartIndex + i; | 
|  |  | 
|  | // Permute high half of result. | 
|  | StartIndex = HighHalfSelect ? HalfSize : 0; | 
|  | StartIndex += NumElts; | 
|  | for (unsigned i = 0; i < HalfSize; ++i) | 
|  | ShuffleMask[i + HalfSize] = StartIndex + i; | 
|  |  | 
|  | return Builder.CreateShuffleVector(V0, V1, ShuffleMask); | 
|  | } | 
|  |  | 
|  | /// Decode XOP integer vector comparison intrinsics. | 
|  | static Value *simplifyX86vpcom(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder, | 
|  | bool IsSigned) { | 
|  | if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) { | 
|  | uint64_t Imm = CInt->getZExtValue() & 0x7; | 
|  | VectorType *VecTy = cast<VectorType>(II.getType()); | 
|  | CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; | 
|  |  | 
|  | switch (Imm) { | 
|  | case 0x0: | 
|  | Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | break; | 
|  | case 0x1: | 
|  | Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | 
|  | break; | 
|  | case 0x2: | 
|  | Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | break; | 
|  | case 0x3: | 
|  | Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | 
|  | break; | 
|  | case 0x4: | 
|  | Pred = ICmpInst::ICMP_EQ; break; | 
|  | case 0x5: | 
|  | Pred = ICmpInst::ICMP_NE; break; | 
|  | case 0x6: | 
|  | return ConstantInt::getSigned(VecTy, 0); // FALSE | 
|  | case 0x7: | 
|  | return ConstantInt::getSigned(VecTy, -1); // TRUE | 
|  | } | 
|  |  | 
|  | if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0), | 
|  | II.getArgOperand(1))) | 
|  | return Builder.CreateSExtOrTrunc(Cmp, VecTy); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) { | 
|  | Value *Arg0 = II.getArgOperand(0); | 
|  | Value *Arg1 = II.getArgOperand(1); | 
|  |  | 
|  | // fmin(x, x) -> x | 
|  | if (Arg0 == Arg1) | 
|  | return Arg0; | 
|  |  | 
|  | const auto *C1 = dyn_cast<ConstantFP>(Arg1); | 
|  |  | 
|  | // fmin(x, nan) -> x | 
|  | if (C1 && C1->isNaN()) | 
|  | return Arg0; | 
|  |  | 
|  | // This is the value because if undef were NaN, we would return the other | 
|  | // value and cannot return a NaN unless both operands are. | 
|  | // | 
|  | // fmin(undef, x) -> x | 
|  | if (isa<UndefValue>(Arg0)) | 
|  | return Arg1; | 
|  |  | 
|  | // fmin(x, undef) -> x | 
|  | if (isa<UndefValue>(Arg1)) | 
|  | return Arg0; | 
|  |  | 
|  | Value *X = nullptr; | 
|  | Value *Y = nullptr; | 
|  | if (II.getIntrinsicID() == Intrinsic::minnum) { | 
|  | // fmin(x, fmin(x, y)) -> fmin(x, y) | 
|  | // fmin(y, fmin(x, y)) -> fmin(x, y) | 
|  | if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) { | 
|  | if (Arg0 == X || Arg0 == Y) | 
|  | return Arg1; | 
|  | } | 
|  |  | 
|  | // fmin(fmin(x, y), x) -> fmin(x, y) | 
|  | // fmin(fmin(x, y), y) -> fmin(x, y) | 
|  | if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) { | 
|  | if (Arg1 == X || Arg1 == Y) | 
|  | return Arg0; | 
|  | } | 
|  |  | 
|  | // TODO: fmin(nnan x, inf) -> x | 
|  | // TODO: fmin(nnan ninf x, flt_max) -> x | 
|  | if (C1 && C1->isInfinity()) { | 
|  | // fmin(x, -inf) -> -inf | 
|  | if (C1->isNegative()) | 
|  | return Arg1; | 
|  | } | 
|  | } else { | 
|  | assert(II.getIntrinsicID() == Intrinsic::maxnum); | 
|  | // fmax(x, fmax(x, y)) -> fmax(x, y) | 
|  | // fmax(y, fmax(x, y)) -> fmax(x, y) | 
|  | if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) { | 
|  | if (Arg0 == X || Arg0 == Y) | 
|  | return Arg1; | 
|  | } | 
|  |  | 
|  | // fmax(fmax(x, y), x) -> fmax(x, y) | 
|  | // fmax(fmax(x, y), y) -> fmax(x, y) | 
|  | if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) { | 
|  | if (Arg1 == X || Arg1 == Y) | 
|  | return Arg0; | 
|  | } | 
|  |  | 
|  | // TODO: fmax(nnan x, -inf) -> x | 
|  | // TODO: fmax(nnan ninf x, -flt_max) -> x | 
|  | if (C1 && C1->isInfinity()) { | 
|  | // fmax(x, inf) -> inf | 
|  | if (!C1->isNegative()) | 
|  | return Arg1; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool maskIsAllOneOrUndef(Value *Mask) { | 
|  | auto *ConstMask = dyn_cast<Constant>(Mask); | 
|  | if (!ConstMask) | 
|  | return false; | 
|  | if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) | 
|  | return true; | 
|  | for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; | 
|  | ++I) { | 
|  | if (auto *MaskElt = ConstMask->getAggregateElement(I)) | 
|  | if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Value *simplifyMaskedLoad(const IntrinsicInst &II, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // If the mask is all ones or undefs, this is a plain vector load of the 1st | 
|  | // argument. | 
|  | if (maskIsAllOneOrUndef(II.getArgOperand(2))) { | 
|  | Value *LoadPtr = II.getArgOperand(0); | 
|  | unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue(); | 
|  | return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload"); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) { | 
|  | auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); | 
|  | if (!ConstMask) | 
|  | return nullptr; | 
|  |  | 
|  | // If the mask is all zeros, this instruction does nothing. | 
|  | if (ConstMask->isNullValue()) | 
|  | return IC.eraseInstFromFunction(II); | 
|  |  | 
|  | // If the mask is all ones, this is a plain vector store of the 1st argument. | 
|  | if (ConstMask->isAllOnesValue()) { | 
|  | Value *StorePtr = II.getArgOperand(1); | 
|  | unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue(); | 
|  | return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) { | 
|  | // If the mask is all zeros, return the "passthru" argument of the gather. | 
|  | auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2)); | 
|  | if (ConstMask && ConstMask->isNullValue()) | 
|  | return IC.replaceInstUsesWith(II, II.getArgOperand(3)); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) { | 
|  | // If the mask is all zeros, a scatter does nothing. | 
|  | auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); | 
|  | if (ConstMask && ConstMask->isNullValue()) | 
|  | return IC.eraseInstFromFunction(II); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { | 
|  | assert((II.getIntrinsicID() == Intrinsic::cttz || | 
|  | II.getIntrinsicID() == Intrinsic::ctlz) && | 
|  | "Expected cttz or ctlz intrinsic"); | 
|  | Value *Op0 = II.getArgOperand(0); | 
|  | // FIXME: Try to simplify vectors of integers. | 
|  | auto *IT = dyn_cast<IntegerType>(Op0->getType()); | 
|  | if (!IT) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned BitWidth = IT->getBitWidth(); | 
|  | APInt KnownZero(BitWidth, 0); | 
|  | APInt KnownOne(BitWidth, 0); | 
|  | IC.computeKnownBits(Op0, KnownZero, KnownOne, 0, &II); | 
|  |  | 
|  | // Create a mask for bits above (ctlz) or below (cttz) the first known one. | 
|  | bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; | 
|  | unsigned NumMaskBits = IsTZ ? KnownOne.countTrailingZeros() | 
|  | : KnownOne.countLeadingZeros(); | 
|  | APInt Mask = IsTZ ? APInt::getLowBitsSet(BitWidth, NumMaskBits) | 
|  | : APInt::getHighBitsSet(BitWidth, NumMaskBits); | 
|  |  | 
|  | // If all bits above (ctlz) or below (cttz) the first known one are known | 
|  | // zero, this value is constant. | 
|  | // FIXME: This should be in InstSimplify because we're replacing an | 
|  | // instruction with a constant. | 
|  | if ((Mask & KnownZero) == Mask) { | 
|  | auto *C = ConstantInt::get(IT, APInt(BitWidth, NumMaskBits)); | 
|  | return IC.replaceInstUsesWith(II, C); | 
|  | } | 
|  |  | 
|  | // If the input to cttz/ctlz is known to be non-zero, | 
|  | // then change the 'ZeroIsUndef' parameter to 'true' | 
|  | // because we know the zero behavior can't affect the result. | 
|  | if (KnownOne != 0 || isKnownNonZero(Op0, IC.getDataLayout())) { | 
|  | if (!match(II.getArgOperand(1), m_One())) { | 
|  | II.setOperand(1, IC.Builder->getTrue()); | 
|  | return &II; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // TODO: If the x86 backend knew how to convert a bool vector mask back to an | 
|  | // XMM register mask efficiently, we could transform all x86 masked intrinsics | 
|  | // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. | 
|  | static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { | 
|  | Value *Ptr = II.getOperand(0); | 
|  | Value *Mask = II.getOperand(1); | 
|  | Constant *ZeroVec = Constant::getNullValue(II.getType()); | 
|  |  | 
|  | // Special case a zero mask since that's not a ConstantDataVector. | 
|  | // This masked load instruction creates a zero vector. | 
|  | if (isa<ConstantAggregateZero>(Mask)) | 
|  | return IC.replaceInstUsesWith(II, ZeroVec); | 
|  |  | 
|  | auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); | 
|  | if (!ConstMask) | 
|  | return nullptr; | 
|  |  | 
|  | // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic | 
|  | // to allow target-independent optimizations. | 
|  |  | 
|  | // First, cast the x86 intrinsic scalar pointer to a vector pointer to match | 
|  | // the LLVM intrinsic definition for the pointer argument. | 
|  | unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); | 
|  | PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); | 
|  | Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec"); | 
|  |  | 
|  | // Second, convert the x86 XMM integer vector mask to a vector of bools based | 
|  | // on each element's most significant bit (the sign bit). | 
|  | Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); | 
|  |  | 
|  | // The pass-through vector for an x86 masked load is a zero vector. | 
|  | CallInst *NewMaskedLoad = | 
|  | IC.Builder->CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); | 
|  | return IC.replaceInstUsesWith(II, NewMaskedLoad); | 
|  | } | 
|  |  | 
|  | // TODO: If the x86 backend knew how to convert a bool vector mask back to an | 
|  | // XMM register mask efficiently, we could transform all x86 masked intrinsics | 
|  | // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. | 
|  | static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { | 
|  | Value *Ptr = II.getOperand(0); | 
|  | Value *Mask = II.getOperand(1); | 
|  | Value *Vec = II.getOperand(2); | 
|  |  | 
|  | // Special case a zero mask since that's not a ConstantDataVector: | 
|  | // this masked store instruction does nothing. | 
|  | if (isa<ConstantAggregateZero>(Mask)) { | 
|  | IC.eraseInstFromFunction(II); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The SSE2 version is too weird (eg, unaligned but non-temporal) to do | 
|  | // anything else at this level. | 
|  | if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) | 
|  | return false; | 
|  |  | 
|  | auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); | 
|  | if (!ConstMask) | 
|  | return false; | 
|  |  | 
|  | // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic | 
|  | // to allow target-independent optimizations. | 
|  |  | 
|  | // First, cast the x86 intrinsic scalar pointer to a vector pointer to match | 
|  | // the LLVM intrinsic definition for the pointer argument. | 
|  | unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); | 
|  | PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); | 
|  | Value *PtrCast = IC.Builder->CreateBitCast(Ptr, VecPtrTy, "castvec"); | 
|  |  | 
|  | // Second, convert the x86 XMM integer vector mask to a vector of bools based | 
|  | // on each element's most significant bit (the sign bit). | 
|  | Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); | 
|  |  | 
|  | IC.Builder->CreateMaskedStore(Vec, PtrCast, 1, BoolMask); | 
|  |  | 
|  | // 'Replace uses' doesn't work for stores. Erase the original masked store. | 
|  | IC.eraseInstFromFunction(II); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns true iff the 2 intrinsics have the same operands, limiting the | 
|  | // comparison to the first NumOperands. | 
|  | static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, | 
|  | unsigned NumOperands) { | 
|  | assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); | 
|  | assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); | 
|  | for (unsigned i = 0; i < NumOperands; i++) | 
|  | if (I.getArgOperand(i) != E.getArgOperand(i)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Remove trivially empty start/end intrinsic ranges, i.e. a start | 
|  | // immediately followed by an end (ignoring debuginfo or other | 
|  | // start/end intrinsics in between). As this handles only the most trivial | 
|  | // cases, tracking the nesting level is not needed: | 
|  | // | 
|  | //   call @llvm.foo.start(i1 0) ; &I | 
|  | //   call @llvm.foo.start(i1 0) | 
|  | //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed | 
|  | //   call @llvm.foo.end(i1 0) | 
|  | static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, | 
|  | unsigned EndID, InstCombiner &IC) { | 
|  | assert(I.getIntrinsicID() == StartID && | 
|  | "Start intrinsic does not have expected ID"); | 
|  | BasicBlock::iterator BI(I), BE(I.getParent()->end()); | 
|  | for (++BI; BI != BE; ++BI) { | 
|  | if (auto *E = dyn_cast<IntrinsicInst>(BI)) { | 
|  | if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID) | 
|  | continue; | 
|  | if (E->getIntrinsicID() == EndID && | 
|  | haveSameOperands(I, *E, E->getNumArgOperands())) { | 
|  | IC.eraseInstFromFunction(*E); | 
|  | IC.eraseInstFromFunction(I); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { | 
|  | removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { | 
|  | removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// CallInst simplification. This mostly only handles folding of intrinsic | 
|  | /// instructions. For normal calls, it allows visitCallSite to do the heavy | 
|  | /// lifting. | 
|  | Instruction *InstCombiner::visitCallInst(CallInst &CI) { | 
|  | auto Args = CI.arg_operands(); | 
|  | if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL, | 
|  | &TLI, &DT, &AC)) | 
|  | return replaceInstUsesWith(CI, V); | 
|  |  | 
|  | if (isFreeCall(&CI, &TLI)) | 
|  | return visitFree(CI); | 
|  |  | 
|  | // If the caller function is nounwind, mark the call as nounwind, even if the | 
|  | // callee isn't. | 
|  | if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { | 
|  | CI.setDoesNotThrow(); | 
|  | return &CI; | 
|  | } | 
|  |  | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); | 
|  | if (!II) return visitCallSite(&CI); | 
|  |  | 
|  | // Intrinsics cannot occur in an invoke, so handle them here instead of in | 
|  | // visitCallSite. | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // memmove/cpy/set of zero bytes is a noop. | 
|  | if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { | 
|  | if (NumBytes->isNullValue()) | 
|  | return eraseInstFromFunction(CI); | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) | 
|  | if (CI->getZExtValue() == 1) { | 
|  | // Replace the instruction with just byte operations.  We would | 
|  | // transform other cases to loads/stores, but we don't know if | 
|  | // alignment is sufficient. | 
|  | } | 
|  | } | 
|  |  | 
|  | // No other transformations apply to volatile transfers. | 
|  | if (MI->isVolatile()) | 
|  | return nullptr; | 
|  |  | 
|  | // If we have a memmove and the source operation is a constant global, | 
|  | // then the source and dest pointers can't alias, so we can change this | 
|  | // into a call to memcpy. | 
|  | if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { | 
|  | if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) | 
|  | if (GVSrc->isConstant()) { | 
|  | Module *M = CI.getModule(); | 
|  | Intrinsic::ID MemCpyID = Intrinsic::memcpy; | 
|  | Type *Tys[3] = { CI.getArgOperand(0)->getType(), | 
|  | CI.getArgOperand(1)->getType(), | 
|  | CI.getArgOperand(2)->getType() }; | 
|  | CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { | 
|  | // memmove(x,x,size) -> noop. | 
|  | if (MTI->getSource() == MTI->getDest()) | 
|  | return eraseInstFromFunction(CI); | 
|  | } | 
|  |  | 
|  | // If we can determine a pointer alignment that is bigger than currently | 
|  | // set, update the alignment. | 
|  | if (isa<MemTransferInst>(MI)) { | 
|  | if (Instruction *I = SimplifyMemTransfer(MI)) | 
|  | return I; | 
|  | } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { | 
|  | if (Instruction *I = SimplifyMemSet(MSI)) | 
|  | return I; | 
|  | } | 
|  |  | 
|  | if (Changed) return II; | 
|  | } | 
|  |  | 
|  | auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, | 
|  | unsigned DemandedWidth) { | 
|  | APInt UndefElts(Width, 0); | 
|  | APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); | 
|  | return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); | 
|  | }; | 
|  | auto SimplifyDemandedVectorEltsHigh = [this](Value *Op, unsigned Width, | 
|  | unsigned DemandedWidth) { | 
|  | APInt UndefElts(Width, 0); | 
|  | APInt DemandedElts = APInt::getHighBitsSet(Width, DemandedWidth); | 
|  | return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); | 
|  | }; | 
|  |  | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::objectsize: { | 
|  | uint64_t Size; | 
|  | if (getObjectSize(II->getArgOperand(0), Size, DL, &TLI)) { | 
|  | APInt APSize(II->getType()->getIntegerBitWidth(), Size); | 
|  | // Equality check to be sure that `Size` can fit in a value of type | 
|  | // `II->getType()` | 
|  | if (APSize == Size) | 
|  | return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), APSize)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::bswap: { | 
|  | Value *IIOperand = II->getArgOperand(0); | 
|  | Value *X = nullptr; | 
|  |  | 
|  | // bswap(bswap(x)) -> x | 
|  | if (match(IIOperand, m_BSwap(m_Value(X)))) | 
|  | return replaceInstUsesWith(CI, X); | 
|  |  | 
|  | // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) | 
|  | if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { | 
|  | unsigned C = X->getType()->getPrimitiveSizeInBits() - | 
|  | IIOperand->getType()->getPrimitiveSizeInBits(); | 
|  | Value *CV = ConstantInt::get(X->getType(), C); | 
|  | Value *V = Builder->CreateLShr(X, CV); | 
|  | return new TruncInst(V, IIOperand->getType()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::bitreverse: { | 
|  | Value *IIOperand = II->getArgOperand(0); | 
|  | Value *X = nullptr; | 
|  |  | 
|  | // bitreverse(bitreverse(x)) -> x | 
|  | if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X)))) | 
|  | return replaceInstUsesWith(CI, X); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::masked_load: | 
|  | if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, *Builder)) | 
|  | return replaceInstUsesWith(CI, SimplifiedMaskedOp); | 
|  | break; | 
|  | case Intrinsic::masked_store: | 
|  | return simplifyMaskedStore(*II, *this); | 
|  | case Intrinsic::masked_gather: | 
|  | return simplifyMaskedGather(*II, *this); | 
|  | case Intrinsic::masked_scatter: | 
|  | return simplifyMaskedScatter(*II, *this); | 
|  |  | 
|  | case Intrinsic::powi: | 
|  | if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { | 
|  | // powi(x, 0) -> 1.0 | 
|  | if (Power->isZero()) | 
|  | return replaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); | 
|  | // powi(x, 1) -> x | 
|  | if (Power->isOne()) | 
|  | return replaceInstUsesWith(CI, II->getArgOperand(0)); | 
|  | // powi(x, -1) -> 1/x | 
|  | if (Power->isAllOnesValue()) | 
|  | return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), | 
|  | II->getArgOperand(0)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::cttz: | 
|  | case Intrinsic::ctlz: | 
|  | if (auto *I = foldCttzCtlz(*II, *this)) | 
|  | return I; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: | 
|  | if (isa<Constant>(II->getArgOperand(0)) && | 
|  | !isa<Constant>(II->getArgOperand(1))) { | 
|  | // Canonicalize constants into the RHS. | 
|  | Value *LHS = II->getArgOperand(0); | 
|  | II->setArgOperand(0, II->getArgOperand(1)); | 
|  | II->setArgOperand(1, LHS); | 
|  | return II; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case Intrinsic::usub_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: { | 
|  | OverflowCheckFlavor OCF = | 
|  | IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID()); | 
|  | assert(OCF != OCF_INVALID && "unexpected!"); | 
|  |  | 
|  | Value *OperationResult = nullptr; | 
|  | Constant *OverflowResult = nullptr; | 
|  | if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1), | 
|  | *II, OperationResult, OverflowResult)) | 
|  | return CreateOverflowTuple(II, OperationResult, OverflowResult); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::minnum: | 
|  | case Intrinsic::maxnum: { | 
|  | Value *Arg0 = II->getArgOperand(0); | 
|  | Value *Arg1 = II->getArgOperand(1); | 
|  | // Canonicalize constants to the RHS. | 
|  | if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) { | 
|  | II->setArgOperand(0, Arg1); | 
|  | II->setArgOperand(1, Arg0); | 
|  | return II; | 
|  | } | 
|  | if (Value *V = simplifyMinnumMaxnum(*II)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::ppc_altivec_lvx: | 
|  | case Intrinsic::ppc_altivec_lvxl: | 
|  | // Turn PPC lvx -> load if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, | 
|  | &DT) >= 16) { | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), | 
|  | PointerType::getUnqual(II->getType())); | 
|  | return new LoadInst(Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_vsx_lxvw4x: | 
|  | case Intrinsic::ppc_vsx_lxvd2x: { | 
|  | // Turn PPC VSX loads into normal loads. | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), | 
|  | PointerType::getUnqual(II->getType())); | 
|  | return new LoadInst(Ptr, Twine(""), false, 1); | 
|  | } | 
|  | case Intrinsic::ppc_altivec_stvx: | 
|  | case Intrinsic::ppc_altivec_stvxl: | 
|  | // Turn stvx -> store if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, | 
|  | &DT) >= 16) { | 
|  | Type *OpPtrTy = | 
|  | PointerType::getUnqual(II->getArgOperand(0)->getType()); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); | 
|  | return new StoreInst(II->getArgOperand(0), Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_vsx_stxvw4x: | 
|  | case Intrinsic::ppc_vsx_stxvd2x: { | 
|  | // Turn PPC VSX stores into normal stores. | 
|  | Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); | 
|  | return new StoreInst(II->getArgOperand(0), Ptr, false, 1); | 
|  | } | 
|  | case Intrinsic::ppc_qpx_qvlfs: | 
|  | // Turn PPC QPX qvlfs -> load if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, | 
|  | &DT) >= 16) { | 
|  | Type *VTy = VectorType::get(Builder->getFloatTy(), | 
|  | II->getType()->getVectorNumElements()); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), | 
|  | PointerType::getUnqual(VTy)); | 
|  | Value *Load = Builder->CreateLoad(Ptr); | 
|  | return new FPExtInst(Load, II->getType()); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_qpx_qvlfd: | 
|  | // Turn PPC QPX qvlfd -> load if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC, | 
|  | &DT) >= 32) { | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), | 
|  | PointerType::getUnqual(II->getType())); | 
|  | return new LoadInst(Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_qpx_qvstfs: | 
|  | // Turn PPC QPX qvstfs -> store if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, | 
|  | &DT) >= 16) { | 
|  | Type *VTy = VectorType::get(Builder->getFloatTy(), | 
|  | II->getArgOperand(0)->getType()->getVectorNumElements()); | 
|  | Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy); | 
|  | Type *OpPtrTy = PointerType::getUnqual(VTy); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); | 
|  | return new StoreInst(TOp, Ptr); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_qpx_qvstfd: | 
|  | // Turn PPC QPX qvstfd -> store if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC, | 
|  | &DT) >= 32) { | 
|  | Type *OpPtrTy = | 
|  | PointerType::getUnqual(II->getArgOperand(0)->getType()); | 
|  | Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy); | 
|  | return new StoreInst(II->getArgOperand(0), Ptr); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_vcvtph2ps_128: | 
|  | case Intrinsic::x86_vcvtph2ps_256: { | 
|  | auto Arg = II->getArgOperand(0); | 
|  | auto ArgType = cast<VectorType>(Arg->getType()); | 
|  | auto RetType = cast<VectorType>(II->getType()); | 
|  | unsigned ArgWidth = ArgType->getNumElements(); | 
|  | unsigned RetWidth = RetType->getNumElements(); | 
|  | assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); | 
|  | assert(ArgType->isIntOrIntVectorTy() && | 
|  | ArgType->getScalarSizeInBits() == 16 && | 
|  | "CVTPH2PS input type should be 16-bit integer vector"); | 
|  | assert(RetType->getScalarType()->isFloatTy() && | 
|  | "CVTPH2PS output type should be 32-bit float vector"); | 
|  |  | 
|  | // Constant folding: Convert to generic half to single conversion. | 
|  | if (isa<ConstantAggregateZero>(Arg)) | 
|  | return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); | 
|  |  | 
|  | if (isa<ConstantDataVector>(Arg)) { | 
|  | auto VectorHalfAsShorts = Arg; | 
|  | if (RetWidth < ArgWidth) { | 
|  | SmallVector<uint32_t, 8> SubVecMask; | 
|  | for (unsigned i = 0; i != RetWidth; ++i) | 
|  | SubVecMask.push_back((int)i); | 
|  | VectorHalfAsShorts = Builder->CreateShuffleVector( | 
|  | Arg, UndefValue::get(ArgType), SubVecMask); | 
|  | } | 
|  |  | 
|  | auto VectorHalfType = | 
|  | VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); | 
|  | auto VectorHalfs = | 
|  | Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType); | 
|  | auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType); | 
|  | return replaceInstUsesWith(*II, VectorFloats); | 
|  | } | 
|  |  | 
|  | // We only use the lowest lanes of the argument. | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { | 
|  | II->setArgOperand(0, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse_cvtss2si: | 
|  | case Intrinsic::x86_sse_cvtss2si64: | 
|  | case Intrinsic::x86_sse_cvttss2si: | 
|  | case Intrinsic::x86_sse_cvttss2si64: | 
|  | case Intrinsic::x86_sse2_cvtsd2si: | 
|  | case Intrinsic::x86_sse2_cvtsd2si64: | 
|  | case Intrinsic::x86_sse2_cvttsd2si: | 
|  | case Intrinsic::x86_sse2_cvttsd2si64: { | 
|  | // These intrinsics only demand the 0th element of their input vectors. If | 
|  | // we can simplify the input based on that, do so now. | 
|  | Value *Arg = II->getArgOperand(0); | 
|  | unsigned VWidth = Arg->getType()->getVectorNumElements(); | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_mmx_pmovmskb: | 
|  | case Intrinsic::x86_sse_movmsk_ps: | 
|  | case Intrinsic::x86_sse2_movmsk_pd: | 
|  | case Intrinsic::x86_sse2_pmovmskb_128: | 
|  | case Intrinsic::x86_avx_movmsk_pd_256: | 
|  | case Intrinsic::x86_avx_movmsk_ps_256: | 
|  | case Intrinsic::x86_avx2_pmovmskb: { | 
|  | if (Value *V = simplifyX86movmsk(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: { | 
|  | // These intrinsics only demand the 0th element of their input vectors. If | 
|  | // we can simplify the input based on that, do so now. | 
|  | bool MadeChange = false; | 
|  | Value *Arg0 = II->getArgOperand(0); | 
|  | Value *Arg1 = II->getArgOperand(1); | 
|  | unsigned VWidth = Arg0->getType()->getVectorNumElements(); | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { | 
|  | II->setArgOperand(1, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (MadeChange) | 
|  | return II; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse_add_ss: | 
|  | case Intrinsic::x86_sse_sub_ss: | 
|  | case Intrinsic::x86_sse_mul_ss: | 
|  | case Intrinsic::x86_sse_div_ss: | 
|  | case Intrinsic::x86_sse_min_ss: | 
|  | case Intrinsic::x86_sse_max_ss: | 
|  | case Intrinsic::x86_sse_cmp_ss: | 
|  | case Intrinsic::x86_sse2_add_sd: | 
|  | case Intrinsic::x86_sse2_sub_sd: | 
|  | case Intrinsic::x86_sse2_mul_sd: | 
|  | case Intrinsic::x86_sse2_div_sd: | 
|  | case Intrinsic::x86_sse2_min_sd: | 
|  | case Intrinsic::x86_sse2_max_sd: | 
|  | case Intrinsic::x86_sse2_cmp_sd: { | 
|  | // These intrinsics only demand the lowest element of the second input | 
|  | // vector. | 
|  | Value *Arg1 = II->getArgOperand(1); | 
|  | unsigned VWidth = Arg1->getType()->getVectorNumElements(); | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { | 
|  | II->setArgOperand(1, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse41_round_ss: | 
|  | case Intrinsic::x86_sse41_round_sd: { | 
|  | // These intrinsics demand the upper elements of the first input vector and | 
|  | // the lowest element of the second input vector. | 
|  | bool MadeChange = false; | 
|  | Value *Arg0 = II->getArgOperand(0); | 
|  | Value *Arg1 = II->getArgOperand(1); | 
|  | unsigned VWidth = Arg0->getType()->getVectorNumElements(); | 
|  | if (Value *V = SimplifyDemandedVectorEltsHigh(Arg0, VWidth, VWidth - 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { | 
|  | II->setArgOperand(1, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (MadeChange) | 
|  | return II; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Constant fold ashr( <A x Bi>, Ci ). | 
|  | // Constant fold lshr( <A x Bi>, Ci ). | 
|  | // Constant fold shl( <A x Bi>, Ci ). | 
|  | case Intrinsic::x86_sse2_psrai_d: | 
|  | case Intrinsic::x86_sse2_psrai_w: | 
|  | case Intrinsic::x86_avx2_psrai_d: | 
|  | case Intrinsic::x86_avx2_psrai_w: | 
|  | case Intrinsic::x86_sse2_psrli_d: | 
|  | case Intrinsic::x86_sse2_psrli_q: | 
|  | case Intrinsic::x86_sse2_psrli_w: | 
|  | case Intrinsic::x86_avx2_psrli_d: | 
|  | case Intrinsic::x86_avx2_psrli_q: | 
|  | case Intrinsic::x86_avx2_psrli_w: | 
|  | case Intrinsic::x86_sse2_pslli_d: | 
|  | case Intrinsic::x86_sse2_pslli_q: | 
|  | case Intrinsic::x86_sse2_pslli_w: | 
|  | case Intrinsic::x86_avx2_pslli_d: | 
|  | case Intrinsic::x86_avx2_pslli_q: | 
|  | case Intrinsic::x86_avx2_pslli_w: | 
|  | if (Value *V = simplifyX86immShift(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse2_psra_d: | 
|  | case Intrinsic::x86_sse2_psra_w: | 
|  | case Intrinsic::x86_avx2_psra_d: | 
|  | case Intrinsic::x86_avx2_psra_w: | 
|  | case Intrinsic::x86_sse2_psrl_d: | 
|  | case Intrinsic::x86_sse2_psrl_q: | 
|  | case Intrinsic::x86_sse2_psrl_w: | 
|  | case Intrinsic::x86_avx2_psrl_d: | 
|  | case Intrinsic::x86_avx2_psrl_q: | 
|  | case Intrinsic::x86_avx2_psrl_w: | 
|  | case Intrinsic::x86_sse2_psll_d: | 
|  | case Intrinsic::x86_sse2_psll_q: | 
|  | case Intrinsic::x86_sse2_psll_w: | 
|  | case Intrinsic::x86_avx2_psll_d: | 
|  | case Intrinsic::x86_avx2_psll_q: | 
|  | case Intrinsic::x86_avx2_psll_w: { | 
|  | if (Value *V = simplifyX86immShift(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  |  | 
|  | // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector | 
|  | // operand to compute the shift amount. | 
|  | Value *Arg1 = II->getArgOperand(1); | 
|  | assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && | 
|  | "Unexpected packed shift size"); | 
|  | unsigned VWidth = Arg1->getType()->getVectorNumElements(); | 
|  |  | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { | 
|  | II->setArgOperand(1, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_avx2_psllv_d: | 
|  | case Intrinsic::x86_avx2_psllv_d_256: | 
|  | case Intrinsic::x86_avx2_psllv_q: | 
|  | case Intrinsic::x86_avx2_psllv_q_256: | 
|  | case Intrinsic::x86_avx2_psrav_d: | 
|  | case Intrinsic::x86_avx2_psrav_d_256: | 
|  | case Intrinsic::x86_avx2_psrlv_d: | 
|  | case Intrinsic::x86_avx2_psrlv_d_256: | 
|  | case Intrinsic::x86_avx2_psrlv_q: | 
|  | case Intrinsic::x86_avx2_psrlv_q_256: | 
|  | if (Value *V = simplifyX86varShift(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse41_insertps: | 
|  | if (Value *V = simplifyX86insertps(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse4a_extrq: { | 
|  | Value *Op0 = II->getArgOperand(0); | 
|  | Value *Op1 = II->getArgOperand(1); | 
|  | unsigned VWidth0 = Op0->getType()->getVectorNumElements(); | 
|  | unsigned VWidth1 = Op1->getType()->getVectorNumElements(); | 
|  | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && | 
|  | Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && | 
|  | VWidth1 == 16 && "Unexpected operand sizes"); | 
|  |  | 
|  | // See if we're dealing with constant values. | 
|  | Constant *C1 = dyn_cast<Constant>(Op1); | 
|  | ConstantInt *CILength = | 
|  | C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) | 
|  | : nullptr; | 
|  | ConstantInt *CIIndex = | 
|  | C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) | 
|  | : nullptr; | 
|  |  | 
|  | // Attempt to simplify to a constant, shuffle vector or EXTRQI call. | 
|  | if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  |  | 
|  | // EXTRQ only uses the lowest 64-bits of the first 128-bit vector | 
|  | // operands and the lowest 16-bits of the second. | 
|  | bool MadeChange = false; | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { | 
|  | II->setArgOperand(1, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (MadeChange) | 
|  | return II; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse4a_extrqi: { | 
|  | // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining | 
|  | // bits of the lower 64-bits. The upper 64-bits are undefined. | 
|  | Value *Op0 = II->getArgOperand(0); | 
|  | unsigned VWidth = Op0->getType()->getVectorNumElements(); | 
|  | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && | 
|  | "Unexpected operand size"); | 
|  |  | 
|  | // See if we're dealing with constant values. | 
|  | ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1)); | 
|  | ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2)); | 
|  |  | 
|  | // Attempt to simplify to a constant or shuffle vector. | 
|  | if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  |  | 
|  | // EXTRQI only uses the lowest 64-bits of the first 128-bit vector | 
|  | // operand. | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse4a_insertq: { | 
|  | Value *Op0 = II->getArgOperand(0); | 
|  | Value *Op1 = II->getArgOperand(1); | 
|  | unsigned VWidth = Op0->getType()->getVectorNumElements(); | 
|  | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && | 
|  | Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && | 
|  | Op1->getType()->getVectorNumElements() == 2 && | 
|  | "Unexpected operand size"); | 
|  |  | 
|  | // See if we're dealing with constant values. | 
|  | Constant *C1 = dyn_cast<Constant>(Op1); | 
|  | ConstantInt *CI11 = | 
|  | C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) | 
|  | : nullptr; | 
|  |  | 
|  | // Attempt to simplify to a constant, shuffle vector or INSERTQI call. | 
|  | if (CI11) { | 
|  | const APInt &V11 = CI11->getValue(); | 
|  | APInt Len = V11.zextOrTrunc(6); | 
|  | APInt Idx = V11.lshr(8).zextOrTrunc(6); | 
|  | if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | } | 
|  |  | 
|  | // INSERTQ only uses the lowest 64-bits of the first 128-bit vector | 
|  | // operand. | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse4a_insertqi: { | 
|  | // INSERTQI: Extract lowest Length bits from lower half of second source and | 
|  | // insert over first source starting at Index bit. The upper 64-bits are | 
|  | // undefined. | 
|  | Value *Op0 = II->getArgOperand(0); | 
|  | Value *Op1 = II->getArgOperand(1); | 
|  | unsigned VWidth0 = Op0->getType()->getVectorNumElements(); | 
|  | unsigned VWidth1 = Op1->getType()->getVectorNumElements(); | 
|  | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && | 
|  | Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && | 
|  | VWidth1 == 2 && "Unexpected operand sizes"); | 
|  |  | 
|  | // See if we're dealing with constant values. | 
|  | ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2)); | 
|  | ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3)); | 
|  |  | 
|  | // Attempt to simplify to a constant or shuffle vector. | 
|  | if (CILength && CIIndex) { | 
|  | APInt Len = CILength->getValue().zextOrTrunc(6); | 
|  | APInt Idx = CIIndex->getValue().zextOrTrunc(6); | 
|  | if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | } | 
|  |  | 
|  | // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector | 
|  | // operands. | 
|  | bool MadeChange = false; | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { | 
|  | II->setArgOperand(0, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { | 
|  | II->setArgOperand(1, V); | 
|  | MadeChange = true; | 
|  | } | 
|  | if (MadeChange) | 
|  | return II; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_sse41_pblendvb: | 
|  | case Intrinsic::x86_sse41_blendvps: | 
|  | case Intrinsic::x86_sse41_blendvpd: | 
|  | case Intrinsic::x86_avx_blendv_ps_256: | 
|  | case Intrinsic::x86_avx_blendv_pd_256: | 
|  | case Intrinsic::x86_avx2_pblendvb: { | 
|  | // Convert blendv* to vector selects if the mask is constant. | 
|  | // This optimization is convoluted because the intrinsic is defined as | 
|  | // getting a vector of floats or doubles for the ps and pd versions. | 
|  | // FIXME: That should be changed. | 
|  |  | 
|  | Value *Op0 = II->getArgOperand(0); | 
|  | Value *Op1 = II->getArgOperand(1); | 
|  | Value *Mask = II->getArgOperand(2); | 
|  |  | 
|  | // fold (blend A, A, Mask) -> A | 
|  | if (Op0 == Op1) | 
|  | return replaceInstUsesWith(CI, Op0); | 
|  |  | 
|  | // Zero Mask - select 1st argument. | 
|  | if (isa<ConstantAggregateZero>(Mask)) | 
|  | return replaceInstUsesWith(CI, Op0); | 
|  |  | 
|  | // Constant Mask - select 1st/2nd argument lane based on top bit of mask. | 
|  | if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) { | 
|  | Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); | 
|  | return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_ssse3_pshuf_b_128: | 
|  | case Intrinsic::x86_avx2_pshuf_b: | 
|  | if (Value *V = simplifyX86pshufb(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_avx_vpermilvar_ps: | 
|  | case Intrinsic::x86_avx_vpermilvar_ps_256: | 
|  | case Intrinsic::x86_avx_vpermilvar_pd: | 
|  | case Intrinsic::x86_avx_vpermilvar_pd_256: | 
|  | if (Value *V = simplifyX86vpermilvar(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_avx2_permd: | 
|  | case Intrinsic::x86_avx2_permps: | 
|  | if (Value *V = simplifyX86vpermv(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_avx_vperm2f128_pd_256: | 
|  | case Intrinsic::x86_avx_vperm2f128_ps_256: | 
|  | case Intrinsic::x86_avx_vperm2f128_si_256: | 
|  | case Intrinsic::x86_avx2_vperm2i128: | 
|  | if (Value *V = simplifyX86vperm2(*II, *Builder)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_avx_maskload_ps: | 
|  | case Intrinsic::x86_avx_maskload_pd: | 
|  | case Intrinsic::x86_avx_maskload_ps_256: | 
|  | case Intrinsic::x86_avx_maskload_pd_256: | 
|  | case Intrinsic::x86_avx2_maskload_d: | 
|  | case Intrinsic::x86_avx2_maskload_q: | 
|  | case Intrinsic::x86_avx2_maskload_d_256: | 
|  | case Intrinsic::x86_avx2_maskload_q_256: | 
|  | if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) | 
|  | return I; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_sse2_maskmov_dqu: | 
|  | case Intrinsic::x86_avx_maskstore_ps: | 
|  | case Intrinsic::x86_avx_maskstore_pd: | 
|  | case Intrinsic::x86_avx_maskstore_ps_256: | 
|  | case Intrinsic::x86_avx_maskstore_pd_256: | 
|  | case Intrinsic::x86_avx2_maskstore_d: | 
|  | case Intrinsic::x86_avx2_maskstore_q: | 
|  | case Intrinsic::x86_avx2_maskstore_d_256: | 
|  | case Intrinsic::x86_avx2_maskstore_q_256: | 
|  | if (simplifyX86MaskedStore(*II, *this)) | 
|  | return nullptr; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_xop_vpcomb: | 
|  | case Intrinsic::x86_xop_vpcomd: | 
|  | case Intrinsic::x86_xop_vpcomq: | 
|  | case Intrinsic::x86_xop_vpcomw: | 
|  | if (Value *V = simplifyX86vpcom(*II, *Builder, true)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::x86_xop_vpcomub: | 
|  | case Intrinsic::x86_xop_vpcomud: | 
|  | case Intrinsic::x86_xop_vpcomuq: | 
|  | case Intrinsic::x86_xop_vpcomuw: | 
|  | if (Value *V = simplifyX86vpcom(*II, *Builder, false)) | 
|  | return replaceInstUsesWith(*II, V); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::ppc_altivec_vperm: | 
|  | // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. | 
|  | // Note that ppc_altivec_vperm has a big-endian bias, so when creating | 
|  | // a vectorshuffle for little endian, we must undo the transformation | 
|  | // performed on vec_perm in altivec.h.  That is, we must complement | 
|  | // the permutation mask with respect to 31 and reverse the order of | 
|  | // V1 and V2. | 
|  | if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) { | 
|  | assert(Mask->getType()->getVectorNumElements() == 16 && | 
|  | "Bad type for intrinsic!"); | 
|  |  | 
|  | // Check that all of the elements are integer constants or undefs. | 
|  | bool AllEltsOk = true; | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | Constant *Elt = Mask->getAggregateElement(i); | 
|  | if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { | 
|  | AllEltsOk = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllEltsOk) { | 
|  | // Cast the input vectors to byte vectors. | 
|  | Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0), | 
|  | Mask->getType()); | 
|  | Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1), | 
|  | Mask->getType()); | 
|  | Value *Result = UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // Only extract each element once. | 
|  | Value *ExtractedElts[32]; | 
|  | memset(ExtractedElts, 0, sizeof(ExtractedElts)); | 
|  |  | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | if (isa<UndefValue>(Mask->getAggregateElement(i))) | 
|  | continue; | 
|  | unsigned Idx = | 
|  | cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); | 
|  | Idx &= 31;  // Match the hardware behavior. | 
|  | if (DL.isLittleEndian()) | 
|  | Idx = 31 - Idx; | 
|  |  | 
|  | if (!ExtractedElts[Idx]) { | 
|  | Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; | 
|  | Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; | 
|  | ExtractedElts[Idx] = | 
|  | Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, | 
|  | Builder->getInt32(Idx&15)); | 
|  | } | 
|  |  | 
|  | // Insert this value into the result vector. | 
|  | Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], | 
|  | Builder->getInt32(i)); | 
|  | } | 
|  | return CastInst::Create(Instruction::BitCast, Result, CI.getType()); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Intrinsic::arm_neon_vld1: | 
|  | case Intrinsic::arm_neon_vld2: | 
|  | case Intrinsic::arm_neon_vld3: | 
|  | case Intrinsic::arm_neon_vld4: | 
|  | case Intrinsic::arm_neon_vld2lane: | 
|  | case Intrinsic::arm_neon_vld3lane: | 
|  | case Intrinsic::arm_neon_vld4lane: | 
|  | case Intrinsic::arm_neon_vst1: | 
|  | case Intrinsic::arm_neon_vst2: | 
|  | case Intrinsic::arm_neon_vst3: | 
|  | case Intrinsic::arm_neon_vst4: | 
|  | case Intrinsic::arm_neon_vst2lane: | 
|  | case Intrinsic::arm_neon_vst3lane: | 
|  | case Intrinsic::arm_neon_vst4lane: { | 
|  | unsigned MemAlign = | 
|  | getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); | 
|  | unsigned AlignArg = II->getNumArgOperands() - 1; | 
|  | ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); | 
|  | if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { | 
|  | II->setArgOperand(AlignArg, | 
|  | ConstantInt::get(Type::getInt32Ty(II->getContext()), | 
|  | MemAlign, false)); | 
|  | return II; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::arm_neon_vmulls: | 
|  | case Intrinsic::arm_neon_vmullu: | 
|  | case Intrinsic::aarch64_neon_smull: | 
|  | case Intrinsic::aarch64_neon_umull: { | 
|  | Value *Arg0 = II->getArgOperand(0); | 
|  | Value *Arg1 = II->getArgOperand(1); | 
|  |  | 
|  | // Handle mul by zero first: | 
|  | if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { | 
|  | return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); | 
|  | } | 
|  |  | 
|  | // Check for constant LHS & RHS - in this case we just simplify. | 
|  | bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu || | 
|  | II->getIntrinsicID() == Intrinsic::aarch64_neon_umull); | 
|  | VectorType *NewVT = cast<VectorType>(II->getType()); | 
|  | if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { | 
|  | if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { | 
|  | CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); | 
|  | CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); | 
|  |  | 
|  | return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); | 
|  | } | 
|  |  | 
|  | // Couldn't simplify - canonicalize constant to the RHS. | 
|  | std::swap(Arg0, Arg1); | 
|  | } | 
|  |  | 
|  | // Handle mul by one: | 
|  | if (Constant *CV1 = dyn_cast<Constant>(Arg1)) | 
|  | if (ConstantInt *Splat = | 
|  | dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) | 
|  | if (Splat->isOne()) | 
|  | return CastInst::CreateIntegerCast(Arg0, II->getType(), | 
|  | /*isSigned=*/!Zext); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::amdgcn_rcp: { | 
|  | if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) { | 
|  | const APFloat &ArgVal = C->getValueAPF(); | 
|  | APFloat Val(ArgVal.getSemantics(), 1.0); | 
|  | APFloat::opStatus Status = Val.divide(ArgVal, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | // Only do this if it was exact and therefore not dependent on the | 
|  | // rounding mode. | 
|  | if (Status == APFloat::opOK) | 
|  | return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case Intrinsic::amdgcn_frexp_mant: | 
|  | case Intrinsic::amdgcn_frexp_exp: { | 
|  | Value *Src = II->getArgOperand(0); | 
|  | if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { | 
|  | int Exp; | 
|  | APFloat Significand = frexp(C->getValueAPF(), Exp, | 
|  | APFloat::rmNearestTiesToEven); | 
|  |  | 
|  | if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) { | 
|  | return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), | 
|  | Significand)); | 
|  | } | 
|  |  | 
|  | // Match instruction special case behavior. | 
|  | if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) | 
|  | Exp = 0; | 
|  |  | 
|  | return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(Src)) | 
|  | return replaceInstUsesWith(CI, UndefValue::get(II->getType())); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case Intrinsic::amdgcn_class: { | 
|  | enum  { | 
|  | S_NAN = 1 << 0,        // Signaling NaN | 
|  | Q_NAN = 1 << 1,        // Quiet NaN | 
|  | N_INFINITY = 1 << 2,   // Negative infinity | 
|  | N_NORMAL = 1 << 3,     // Negative normal | 
|  | N_SUBNORMAL = 1 << 4,  // Negative subnormal | 
|  | N_ZERO = 1 << 5,       // Negative zero | 
|  | P_ZERO = 1 << 6,       // Positive zero | 
|  | P_SUBNORMAL = 1 << 7,  // Positive subnormal | 
|  | P_NORMAL = 1 << 8,     // Positive normal | 
|  | P_INFINITY = 1 << 9    // Positive infinity | 
|  | }; | 
|  |  | 
|  | const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | | 
|  | N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; | 
|  |  | 
|  | Value *Src0 = II->getArgOperand(0); | 
|  | Value *Src1 = II->getArgOperand(1); | 
|  | const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); | 
|  | if (!CMask) { | 
|  | if (isa<UndefValue>(Src0)) | 
|  | return replaceInstUsesWith(*II, UndefValue::get(II->getType())); | 
|  |  | 
|  | if (isa<UndefValue>(Src1)) | 
|  | return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | uint32_t Mask = CMask->getZExtValue(); | 
|  |  | 
|  | // If all tests are made, it doesn't matter what the value is. | 
|  | if ((Mask & FullMask) == FullMask) | 
|  | return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true)); | 
|  |  | 
|  | if ((Mask & FullMask) == 0) | 
|  | return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); | 
|  |  | 
|  | if (Mask == (S_NAN | Q_NAN)) { | 
|  | // Equivalent of isnan. Replace with standard fcmp. | 
|  | Value *FCmp = Builder->CreateFCmpUNO(Src0, Src0); | 
|  | FCmp->takeName(II); | 
|  | return replaceInstUsesWith(*II, FCmp); | 
|  | } | 
|  |  | 
|  | const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0); | 
|  | if (!CVal) { | 
|  | if (isa<UndefValue>(Src0)) | 
|  | return replaceInstUsesWith(*II, UndefValue::get(II->getType())); | 
|  |  | 
|  | // Clamp mask to used bits | 
|  | if ((Mask & FullMask) != Mask) { | 
|  | CallInst *NewCall = Builder->CreateCall(II->getCalledFunction(), | 
|  | { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) } | 
|  | ); | 
|  |  | 
|  | NewCall->takeName(II); | 
|  | return replaceInstUsesWith(*II, NewCall); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | const APFloat &Val = CVal->getValueAPF(); | 
|  |  | 
|  | bool Result = | 
|  | ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || | 
|  | ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || | 
|  | ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || | 
|  | ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || | 
|  | ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || | 
|  | ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || | 
|  | ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || | 
|  | ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || | 
|  | ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || | 
|  | ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); | 
|  |  | 
|  | return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result)); | 
|  | } | 
|  | case Intrinsic::stackrestore: { | 
|  | // If the save is right next to the restore, remove the restore.  This can | 
|  | // happen when variable allocas are DCE'd. | 
|  | if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { | 
|  | if (SS->getIntrinsicID() == Intrinsic::stacksave) { | 
|  | if (&*++SS->getIterator() == II) | 
|  | return eraseInstFromFunction(CI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Scan down this block to see if there is another stack restore in the | 
|  | // same block without an intervening call/alloca. | 
|  | BasicBlock::iterator BI(II); | 
|  | TerminatorInst *TI = II->getParent()->getTerminator(); | 
|  | bool CannotRemove = false; | 
|  | for (++BI; &*BI != TI; ++BI) { | 
|  | if (isa<AllocaInst>(BI)) { | 
|  | CannotRemove = true; | 
|  | break; | 
|  | } | 
|  | if (CallInst *BCI = dyn_cast<CallInst>(BI)) { | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { | 
|  | // If there is a stackrestore below this one, remove this one. | 
|  | if (II->getIntrinsicID() == Intrinsic::stackrestore) | 
|  | return eraseInstFromFunction(CI); | 
|  |  | 
|  | // Bail if we cross over an intrinsic with side effects, such as | 
|  | // llvm.stacksave, llvm.read_register, or llvm.setjmp. | 
|  | if (II->mayHaveSideEffects()) { | 
|  | CannotRemove = true; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // If we found a non-intrinsic call, we can't remove the stack | 
|  | // restore. | 
|  | CannotRemove = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the stack restore is in a return, resume, or unwind block and if there | 
|  | // are no allocas or calls between the restore and the return, nuke the | 
|  | // restore. | 
|  | if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) | 
|  | return eraseInstFromFunction(CI); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::lifetime_start: | 
|  | // Asan needs to poison memory to detect invalid access which is possible | 
|  | // even for empty lifetime range. | 
|  | if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) | 
|  | break; | 
|  |  | 
|  | if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, | 
|  | Intrinsic::lifetime_end, *this)) | 
|  | return nullptr; | 
|  | break; | 
|  | case Intrinsic::assume: { | 
|  | Value *IIOperand = II->getArgOperand(0); | 
|  | // Remove an assume if it is immediately followed by an identical assume. | 
|  | if (match(II->getNextNode(), | 
|  | m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) | 
|  | return eraseInstFromFunction(CI); | 
|  |  | 
|  | // Canonicalize assume(a && b) -> assume(a); assume(b); | 
|  | // Note: New assumption intrinsics created here are registered by | 
|  | // the InstCombineIRInserter object. | 
|  | Value *AssumeIntrinsic = II->getCalledValue(), *A, *B; | 
|  | if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { | 
|  | Builder->CreateCall(AssumeIntrinsic, A, II->getName()); | 
|  | Builder->CreateCall(AssumeIntrinsic, B, II->getName()); | 
|  | return eraseInstFromFunction(*II); | 
|  | } | 
|  | // assume(!(a || b)) -> assume(!a); assume(!b); | 
|  | if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { | 
|  | Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A), | 
|  | II->getName()); | 
|  | Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B), | 
|  | II->getName()); | 
|  | return eraseInstFromFunction(*II); | 
|  | } | 
|  |  | 
|  | // assume( (load addr) != null ) -> add 'nonnull' metadata to load | 
|  | // (if assume is valid at the load) | 
|  | if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) { | 
|  | Value *LHS = ICmp->getOperand(0); | 
|  | Value *RHS = ICmp->getOperand(1); | 
|  | if (ICmpInst::ICMP_NE == ICmp->getPredicate() && | 
|  | isa<LoadInst>(LHS) && | 
|  | isa<Constant>(RHS) && | 
|  | RHS->getType()->isPointerTy() && | 
|  | cast<Constant>(RHS)->isNullValue()) { | 
|  | LoadInst* LI = cast<LoadInst>(LHS); | 
|  | if (isValidAssumeForContext(II, LI, &DT)) { | 
|  | MDNode *MD = MDNode::get(II->getContext(), None); | 
|  | LI->setMetadata(LLVMContext::MD_nonnull, MD); | 
|  | return eraseInstFromFunction(*II); | 
|  | } | 
|  | } | 
|  | // TODO: apply nonnull return attributes to calls and invokes | 
|  | // TODO: apply range metadata for range check patterns? | 
|  | } | 
|  | // If there is a dominating assume with the same condition as this one, | 
|  | // then this one is redundant, and should be removed. | 
|  | APInt KnownZero(1, 0), KnownOne(1, 0); | 
|  | computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II); | 
|  | if (KnownOne.isAllOnesValue()) | 
|  | return eraseInstFromFunction(*II); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case Intrinsic::experimental_gc_relocate: { | 
|  | // Translate facts known about a pointer before relocating into | 
|  | // facts about the relocate value, while being careful to | 
|  | // preserve relocation semantics. | 
|  | Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr(); | 
|  |  | 
|  | // Remove the relocation if unused, note that this check is required | 
|  | // to prevent the cases below from looping forever. | 
|  | if (II->use_empty()) | 
|  | return eraseInstFromFunction(*II); | 
|  |  | 
|  | // Undef is undef, even after relocation. | 
|  | // TODO: provide a hook for this in GCStrategy.  This is clearly legal for | 
|  | // most practical collectors, but there was discussion in the review thread | 
|  | // about whether it was legal for all possible collectors. | 
|  | if (isa<UndefValue>(DerivedPtr)) | 
|  | // Use undef of gc_relocate's type to replace it. | 
|  | return replaceInstUsesWith(*II, UndefValue::get(II->getType())); | 
|  |  | 
|  | if (auto *PT = dyn_cast<PointerType>(II->getType())) { | 
|  | // The relocation of null will be null for most any collector. | 
|  | // TODO: provide a hook for this in GCStrategy.  There might be some | 
|  | // weird collector this property does not hold for. | 
|  | if (isa<ConstantPointerNull>(DerivedPtr)) | 
|  | // Use null-pointer of gc_relocate's type to replace it. | 
|  | return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); | 
|  |  | 
|  | // isKnownNonNull -> nonnull attribute | 
|  | if (isKnownNonNullAt(DerivedPtr, II, &DT)) | 
|  | II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); | 
|  | } | 
|  |  | 
|  | // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) | 
|  | // Canonicalize on the type from the uses to the defs | 
|  |  | 
|  | // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return visitCallSite(II); | 
|  | } | 
|  |  | 
|  | // InvokeInst simplification | 
|  | // | 
|  | Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { | 
|  | return visitCallSite(&II); | 
|  | } | 
|  |  | 
|  | /// If this cast does not affect the value passed through the varargs area, we | 
|  | /// can eliminate the use of the cast. | 
|  | static bool isSafeToEliminateVarargsCast(const CallSite CS, | 
|  | const DataLayout &DL, | 
|  | const CastInst *const CI, | 
|  | const int ix) { | 
|  | if (!CI->isLosslessCast()) | 
|  | return false; | 
|  |  | 
|  | // If this is a GC intrinsic, avoid munging types.  We need types for | 
|  | // statepoint reconstruction in SelectionDAG. | 
|  | // TODO: This is probably something which should be expanded to all | 
|  | // intrinsics since the entire point of intrinsics is that | 
|  | // they are understandable by the optimizer. | 
|  | if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) | 
|  | return false; | 
|  |  | 
|  | // The size of ByVal or InAlloca arguments is derived from the type, so we | 
|  | // can't change to a type with a different size.  If the size were | 
|  | // passed explicitly we could avoid this check. | 
|  | if (!CS.isByValOrInAllocaArgument(ix)) | 
|  | return true; | 
|  |  | 
|  | Type* SrcTy = | 
|  | cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); | 
|  | Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); | 
|  | if (!SrcTy->isSized() || !DstTy->isSized()) | 
|  | return false; | 
|  | if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { | 
|  | if (!CI->getCalledFunction()) return nullptr; | 
|  |  | 
|  | auto InstCombineRAUW = [this](Instruction *From, Value *With) { | 
|  | replaceInstUsesWith(*From, With); | 
|  | }; | 
|  | LibCallSimplifier Simplifier(DL, &TLI, InstCombineRAUW); | 
|  | if (Value *With = Simplifier.optimizeCall(CI)) { | 
|  | ++NumSimplified; | 
|  | return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { | 
|  | // Strip off at most one level of pointer casts, looking for an alloca.  This | 
|  | // is good enough in practice and simpler than handling any number of casts. | 
|  | Value *Underlying = TrampMem->stripPointerCasts(); | 
|  | if (Underlying != TrampMem && | 
|  | (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) | 
|  | return nullptr; | 
|  | if (!isa<AllocaInst>(Underlying)) | 
|  | return nullptr; | 
|  |  | 
|  | IntrinsicInst *InitTrampoline = nullptr; | 
|  | for (User *U : TrampMem->users()) { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | 
|  | if (!II) | 
|  | return nullptr; | 
|  | if (II->getIntrinsicID() == Intrinsic::init_trampoline) { | 
|  | if (InitTrampoline) | 
|  | // More than one init_trampoline writes to this value.  Give up. | 
|  | return nullptr; | 
|  | InitTrampoline = II; | 
|  | continue; | 
|  | } | 
|  | if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) | 
|  | // Allow any number of calls to adjust.trampoline. | 
|  | continue; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // No call to init.trampoline found. | 
|  | if (!InitTrampoline) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that the alloca is being used in the expected way. | 
|  | if (InitTrampoline->getOperand(0) != TrampMem) | 
|  | return nullptr; | 
|  |  | 
|  | return InitTrampoline; | 
|  | } | 
|  |  | 
|  | static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, | 
|  | Value *TrampMem) { | 
|  | // Visit all the previous instructions in the basic block, and try to find a | 
|  | // init.trampoline which has a direct path to the adjust.trampoline. | 
|  | for (BasicBlock::iterator I = AdjustTramp->getIterator(), | 
|  | E = AdjustTramp->getParent()->begin(); | 
|  | I != E;) { | 
|  | Instruction *Inst = &*--I; | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | 
|  | if (II->getIntrinsicID() == Intrinsic::init_trampoline && | 
|  | II->getOperand(0) == TrampMem) | 
|  | return II; | 
|  | if (Inst->mayWriteToMemory()) | 
|  | return nullptr; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Given a call to llvm.adjust.trampoline, find and return the corresponding | 
|  | // call to llvm.init.trampoline if the call to the trampoline can be optimized | 
|  | // to a direct call to a function.  Otherwise return NULL. | 
|  | // | 
|  | static IntrinsicInst *findInitTrampoline(Value *Callee) { | 
|  | Callee = Callee->stripPointerCasts(); | 
|  | IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); | 
|  | if (!AdjustTramp || | 
|  | AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) | 
|  | return nullptr; | 
|  |  | 
|  | Value *TrampMem = AdjustTramp->getOperand(0); | 
|  |  | 
|  | if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) | 
|  | return IT; | 
|  | if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) | 
|  | return IT; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Improvements for call and invoke instructions. | 
|  | Instruction *InstCombiner::visitCallSite(CallSite CS) { | 
|  | if (isAllocLikeFn(CS.getInstruction(), &TLI)) | 
|  | return visitAllocSite(*CS.getInstruction()); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // Mark any parameters that are known to be non-null with the nonnull | 
|  | // attribute.  This is helpful for inlining calls to functions with null | 
|  | // checks on their arguments. | 
|  | SmallVector<unsigned, 4> Indices; | 
|  | unsigned ArgNo = 0; | 
|  |  | 
|  | for (Value *V : CS.args()) { | 
|  | if (V->getType()->isPointerTy() && | 
|  | !CS.paramHasAttr(ArgNo + 1, Attribute::NonNull) && | 
|  | isKnownNonNullAt(V, CS.getInstruction(), &DT)) | 
|  | Indices.push_back(ArgNo + 1); | 
|  | ArgNo++; | 
|  | } | 
|  |  | 
|  | assert(ArgNo == CS.arg_size() && "sanity check"); | 
|  |  | 
|  | if (!Indices.empty()) { | 
|  | AttributeSet AS = CS.getAttributes(); | 
|  | LLVMContext &Ctx = CS.getInstruction()->getContext(); | 
|  | AS = AS.addAttribute(Ctx, Indices, | 
|  | Attribute::get(Ctx, Attribute::NonNull)); | 
|  | CS.setAttributes(AS); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // If the callee is a pointer to a function, attempt to move any casts to the | 
|  | // arguments of the call/invoke. | 
|  | Value *Callee = CS.getCalledValue(); | 
|  | if (!isa<Function>(Callee) && transformConstExprCastCall(CS)) | 
|  | return nullptr; | 
|  |  | 
|  | if (Function *CalleeF = dyn_cast<Function>(Callee)) { | 
|  | // Remove the convergent attr on calls when the callee is not convergent. | 
|  | if (CS.isConvergent() && !CalleeF->isConvergent() && | 
|  | !CalleeF->isIntrinsic()) { | 
|  | DEBUG(dbgs() << "Removing convergent attr from instr " | 
|  | << CS.getInstruction() << "\n"); | 
|  | CS.setNotConvergent(); | 
|  | return CS.getInstruction(); | 
|  | } | 
|  |  | 
|  | // If the call and callee calling conventions don't match, this call must | 
|  | // be unreachable, as the call is undefined. | 
|  | if (CalleeF->getCallingConv() != CS.getCallingConv() && | 
|  | // Only do this for calls to a function with a body.  A prototype may | 
|  | // not actually end up matching the implementation's calling conv for a | 
|  | // variety of reasons (e.g. it may be written in assembly). | 
|  | !CalleeF->isDeclaration()) { | 
|  | Instruction *OldCall = CS.getInstruction(); | 
|  | new StoreInst(ConstantInt::getTrue(Callee->getContext()), | 
|  | UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), | 
|  | OldCall); | 
|  | // If OldCall does not return void then replaceAllUsesWith undef. | 
|  | // This allows ValueHandlers and custom metadata to adjust itself. | 
|  | if (!OldCall->getType()->isVoidTy()) | 
|  | replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); | 
|  | if (isa<CallInst>(OldCall)) | 
|  | return eraseInstFromFunction(*OldCall); | 
|  |  | 
|  | // We cannot remove an invoke, because it would change the CFG, just | 
|  | // change the callee to a null pointer. | 
|  | cast<InvokeInst>(OldCall)->setCalledFunction( | 
|  | Constant::getNullValue(CalleeF->getType())); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { | 
|  | // If CS does not return void then replaceAllUsesWith undef. | 
|  | // This allows ValueHandlers and custom metadata to adjust itself. | 
|  | if (!CS.getInstruction()->getType()->isVoidTy()) | 
|  | replaceInstUsesWith(*CS.getInstruction(), | 
|  | UndefValue::get(CS.getInstruction()->getType())); | 
|  |  | 
|  | if (isa<InvokeInst>(CS.getInstruction())) { | 
|  | // Can't remove an invoke because we cannot change the CFG. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // This instruction is not reachable, just remove it.  We insert a store to | 
|  | // undef so that we know that this code is not reachable, despite the fact | 
|  | // that we can't modify the CFG here. | 
|  | new StoreInst(ConstantInt::getTrue(Callee->getContext()), | 
|  | UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), | 
|  | CS.getInstruction()); | 
|  |  | 
|  | return eraseInstFromFunction(*CS.getInstruction()); | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = findInitTrampoline(Callee)) | 
|  | return transformCallThroughTrampoline(CS, II); | 
|  |  | 
|  | PointerType *PTy = cast<PointerType>(Callee->getType()); | 
|  | FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); | 
|  | if (FTy->isVarArg()) { | 
|  | int ix = FTy->getNumParams(); | 
|  | // See if we can optimize any arguments passed through the varargs area of | 
|  | // the call. | 
|  | for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(), | 
|  | E = CS.arg_end(); I != E; ++I, ++ix) { | 
|  | CastInst *CI = dyn_cast<CastInst>(*I); | 
|  | if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) { | 
|  | *I = CI->getOperand(0); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { | 
|  | // Inline asm calls cannot throw - mark them 'nounwind'. | 
|  | CS.setDoesNotThrow(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Try to optimize the call if possible, we require DataLayout for most of | 
|  | // this.  None of these calls are seen as possibly dead so go ahead and | 
|  | // delete the instruction now. | 
|  | if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { | 
|  | Instruction *I = tryOptimizeCall(CI); | 
|  | // If we changed something return the result, etc. Otherwise let | 
|  | // the fallthrough check. | 
|  | if (I) return eraseInstFromFunction(*I); | 
|  | } | 
|  |  | 
|  | return Changed ? CS.getInstruction() : nullptr; | 
|  | } | 
|  |  | 
|  | /// If the callee is a constexpr cast of a function, attempt to move the cast to | 
|  | /// the arguments of the call/invoke. | 
|  | bool InstCombiner::transformConstExprCastCall(CallSite CS) { | 
|  | auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); | 
|  | if (!Callee) | 
|  | return false; | 
|  |  | 
|  | // The prototype of a thunk is a lie. Don't directly call such a function. | 
|  | if (Callee->hasFnAttribute("thunk")) | 
|  | return false; | 
|  |  | 
|  | Instruction *Caller = CS.getInstruction(); | 
|  | const AttributeSet &CallerPAL = CS.getAttributes(); | 
|  |  | 
|  | // Okay, this is a cast from a function to a different type.  Unless doing so | 
|  | // would cause a type conversion of one of our arguments, change this call to | 
|  | // be a direct call with arguments casted to the appropriate types. | 
|  | // | 
|  | FunctionType *FT = Callee->getFunctionType(); | 
|  | Type *OldRetTy = Caller->getType(); | 
|  | Type *NewRetTy = FT->getReturnType(); | 
|  |  | 
|  | // Check to see if we are changing the return type... | 
|  | if (OldRetTy != NewRetTy) { | 
|  |  | 
|  | if (NewRetTy->isStructTy()) | 
|  | return false; // TODO: Handle multiple return values. | 
|  |  | 
|  | if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { | 
|  | if (Callee->isDeclaration()) | 
|  | return false;   // Cannot transform this return value. | 
|  |  | 
|  | if (!Caller->use_empty() && | 
|  | // void -> non-void is handled specially | 
|  | !NewRetTy->isVoidTy()) | 
|  | return false;   // Cannot transform this return value. | 
|  | } | 
|  |  | 
|  | if (!CallerPAL.isEmpty() && !Caller->use_empty()) { | 
|  | AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex); | 
|  | if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) | 
|  | return false;   // Attribute not compatible with transformed value. | 
|  | } | 
|  |  | 
|  | // If the callsite is an invoke instruction, and the return value is used by | 
|  | // a PHI node in a successor, we cannot change the return type of the call | 
|  | // because there is no place to put the cast instruction (without breaking | 
|  | // the critical edge).  Bail out in this case. | 
|  | if (!Caller->use_empty()) | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) | 
|  | for (User *U : II->users()) | 
|  | if (PHINode *PN = dyn_cast<PHINode>(U)) | 
|  | if (PN->getParent() == II->getNormalDest() || | 
|  | PN->getParent() == II->getUnwindDest()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned NumActualArgs = CS.arg_size(); | 
|  | unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); | 
|  |  | 
|  | // Prevent us turning: | 
|  | // declare void @takes_i32_inalloca(i32* inalloca) | 
|  | //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) | 
|  | // | 
|  | // into: | 
|  | //  call void @takes_i32_inalloca(i32* null) | 
|  | // | 
|  | //  Similarly, avoid folding away bitcasts of byval calls. | 
|  | if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || | 
|  | Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) | 
|  | return false; | 
|  |  | 
|  | CallSite::arg_iterator AI = CS.arg_begin(); | 
|  | for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { | 
|  | Type *ParamTy = FT->getParamType(i); | 
|  | Type *ActTy = (*AI)->getType(); | 
|  |  | 
|  | if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) | 
|  | return false;   // Cannot transform this parameter value. | 
|  |  | 
|  | if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1). | 
|  | overlaps(AttributeFuncs::typeIncompatible(ParamTy))) | 
|  | return false;   // Attribute not compatible with transformed value. | 
|  |  | 
|  | if (CS.isInAllocaArgument(i)) | 
|  | return false;   // Cannot transform to and from inalloca. | 
|  |  | 
|  | // If the parameter is passed as a byval argument, then we have to have a | 
|  | // sized type and the sized type has to have the same size as the old type. | 
|  | if (ParamTy != ActTy && | 
|  | CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1, | 
|  | Attribute::ByVal)) { | 
|  | PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); | 
|  | if (!ParamPTy || !ParamPTy->getElementType()->isSized()) | 
|  | return false; | 
|  |  | 
|  | Type *CurElTy = ActTy->getPointerElementType(); | 
|  | if (DL.getTypeAllocSize(CurElTy) != | 
|  | DL.getTypeAllocSize(ParamPTy->getElementType())) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Callee->isDeclaration()) { | 
|  | // Do not delete arguments unless we have a function body. | 
|  | if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) | 
|  | return false; | 
|  |  | 
|  | // If the callee is just a declaration, don't change the varargsness of the | 
|  | // call.  We don't want to introduce a varargs call where one doesn't | 
|  | // already exist. | 
|  | PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType()); | 
|  | if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) | 
|  | return false; | 
|  |  | 
|  | // If both the callee and the cast type are varargs, we still have to make | 
|  | // sure the number of fixed parameters are the same or we have the same | 
|  | // ABI issues as if we introduce a varargs call. | 
|  | if (FT->isVarArg() && | 
|  | cast<FunctionType>(APTy->getElementType())->isVarArg() && | 
|  | FT->getNumParams() != | 
|  | cast<FunctionType>(APTy->getElementType())->getNumParams()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && | 
|  | !CallerPAL.isEmpty()) | 
|  | // In this case we have more arguments than the new function type, but we | 
|  | // won't be dropping them.  Check that these extra arguments have attributes | 
|  | // that are compatible with being a vararg call argument. | 
|  | for (unsigned i = CallerPAL.getNumSlots(); i; --i) { | 
|  | unsigned Index = CallerPAL.getSlotIndex(i - 1); | 
|  | if (Index <= FT->getNumParams()) | 
|  | break; | 
|  |  | 
|  | // Check if it has an attribute that's incompatible with varargs. | 
|  | AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1); | 
|  | if (PAttrs.hasAttribute(Index, Attribute::StructRet)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Okay, we decided that this is a safe thing to do: go ahead and start | 
|  | // inserting cast instructions as necessary. | 
|  | std::vector<Value*> Args; | 
|  | Args.reserve(NumActualArgs); | 
|  | SmallVector<AttributeSet, 8> attrVec; | 
|  | attrVec.reserve(NumCommonArgs); | 
|  |  | 
|  | // Get any return attributes. | 
|  | AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex); | 
|  |  | 
|  | // If the return value is not being used, the type may not be compatible | 
|  | // with the existing attributes.  Wipe out any problematic attributes. | 
|  | RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); | 
|  |  | 
|  | // Add the new return attributes. | 
|  | if (RAttrs.hasAttributes()) | 
|  | attrVec.push_back(AttributeSet::get(Caller->getContext(), | 
|  | AttributeSet::ReturnIndex, RAttrs)); | 
|  |  | 
|  | AI = CS.arg_begin(); | 
|  | for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { | 
|  | Type *ParamTy = FT->getParamType(i); | 
|  |  | 
|  | if ((*AI)->getType() == ParamTy) { | 
|  | Args.push_back(*AI); | 
|  | } else { | 
|  | Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy)); | 
|  | } | 
|  |  | 
|  | // Add any parameter attributes. | 
|  | AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1); | 
|  | if (PAttrs.hasAttributes()) | 
|  | attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1, | 
|  | PAttrs)); | 
|  | } | 
|  |  | 
|  | // If the function takes more arguments than the call was taking, add them | 
|  | // now. | 
|  | for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) | 
|  | Args.push_back(Constant::getNullValue(FT->getParamType(i))); | 
|  |  | 
|  | // If we are removing arguments to the function, emit an obnoxious warning. | 
|  | if (FT->getNumParams() < NumActualArgs) { | 
|  | // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 | 
|  | if (FT->isVarArg()) { | 
|  | // Add all of the arguments in their promoted form to the arg list. | 
|  | for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { | 
|  | Type *PTy = getPromotedType((*AI)->getType()); | 
|  | if (PTy != (*AI)->getType()) { | 
|  | // Must promote to pass through va_arg area! | 
|  | Instruction::CastOps opcode = | 
|  | CastInst::getCastOpcode(*AI, false, PTy, false); | 
|  | Args.push_back(Builder->CreateCast(opcode, *AI, PTy)); | 
|  | } else { | 
|  | Args.push_back(*AI); | 
|  | } | 
|  |  | 
|  | // Add any parameter attributes. | 
|  | AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1); | 
|  | if (PAttrs.hasAttributes()) | 
|  | attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1, | 
|  | PAttrs)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | AttributeSet FnAttrs = CallerPAL.getFnAttributes(); | 
|  | if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex)) | 
|  | attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs)); | 
|  |  | 
|  | if (NewRetTy->isVoidTy()) | 
|  | Caller->setName("");   // Void type should not have a name. | 
|  |  | 
|  | const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(), | 
|  | attrVec); | 
|  |  | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | CS.getOperandBundlesAsDefs(OpBundles); | 
|  |  | 
|  | Instruction *NC; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args, OpBundles); | 
|  | NC->takeName(II); | 
|  | cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); | 
|  | cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); | 
|  | } else { | 
|  | CallInst *CI = cast<CallInst>(Caller); | 
|  | NC = Builder->CreateCall(Callee, Args, OpBundles); | 
|  | NC->takeName(CI); | 
|  | if (CI->isTailCall()) | 
|  | cast<CallInst>(NC)->setTailCall(); | 
|  | cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); | 
|  | cast<CallInst>(NC)->setAttributes(NewCallerPAL); | 
|  | } | 
|  |  | 
|  | // Insert a cast of the return type as necessary. | 
|  | Value *NV = NC; | 
|  | if (OldRetTy != NV->getType() && !Caller->use_empty()) { | 
|  | if (!NV->getType()->isVoidTy()) { | 
|  | NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); | 
|  | NC->setDebugLoc(Caller->getDebugLoc()); | 
|  |  | 
|  | // If this is an invoke instruction, we should insert it after the first | 
|  | // non-phi, instruction in the normal successor block. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); | 
|  | InsertNewInstBefore(NC, *I); | 
|  | } else { | 
|  | // Otherwise, it's a call, just insert cast right after the call. | 
|  | InsertNewInstBefore(NC, *Caller); | 
|  | } | 
|  | Worklist.AddUsersToWorkList(*Caller); | 
|  | } else { | 
|  | NV = UndefValue::get(Caller->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Caller->use_empty()) | 
|  | replaceInstUsesWith(*Caller, NV); | 
|  | else if (Caller->hasValueHandle()) { | 
|  | if (OldRetTy == NV->getType()) | 
|  | ValueHandleBase::ValueIsRAUWd(Caller, NV); | 
|  | else | 
|  | // We cannot call ValueIsRAUWd with a different type, and the | 
|  | // actual tracked value will disappear. | 
|  | ValueHandleBase::ValueIsDeleted(Caller); | 
|  | } | 
|  |  | 
|  | eraseInstFromFunction(*Caller); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Turn a call to a function created by init_trampoline / adjust_trampoline | 
|  | /// intrinsic pair into a direct call to the underlying function. | 
|  | Instruction * | 
|  | InstCombiner::transformCallThroughTrampoline(CallSite CS, | 
|  | IntrinsicInst *Tramp) { | 
|  | Value *Callee = CS.getCalledValue(); | 
|  | PointerType *PTy = cast<PointerType>(Callee->getType()); | 
|  | FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); | 
|  | const AttributeSet &Attrs = CS.getAttributes(); | 
|  |  | 
|  | // If the call already has the 'nest' attribute somewhere then give up - | 
|  | // otherwise 'nest' would occur twice after splicing in the chain. | 
|  | if (Attrs.hasAttrSomewhere(Attribute::Nest)) | 
|  | return nullptr; | 
|  |  | 
|  | assert(Tramp && | 
|  | "transformCallThroughTrampoline called with incorrect CallSite."); | 
|  |  | 
|  | Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts()); | 
|  | FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType()); | 
|  |  | 
|  | const AttributeSet &NestAttrs = NestF->getAttributes(); | 
|  | if (!NestAttrs.isEmpty()) { | 
|  | unsigned NestIdx = 1; | 
|  | Type *NestTy = nullptr; | 
|  | AttributeSet NestAttr; | 
|  |  | 
|  | // Look for a parameter marked with the 'nest' attribute. | 
|  | for (FunctionType::param_iterator I = NestFTy->param_begin(), | 
|  | E = NestFTy->param_end(); I != E; ++NestIdx, ++I) | 
|  | if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) { | 
|  | // Record the parameter type and any other attributes. | 
|  | NestTy = *I; | 
|  | NestAttr = NestAttrs.getParamAttributes(NestIdx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NestTy) { | 
|  | Instruction *Caller = CS.getInstruction(); | 
|  | std::vector<Value*> NewArgs; | 
|  | NewArgs.reserve(CS.arg_size() + 1); | 
|  |  | 
|  | SmallVector<AttributeSet, 8> NewAttrs; | 
|  | NewAttrs.reserve(Attrs.getNumSlots() + 1); | 
|  |  | 
|  | // Insert the nest argument into the call argument list, which may | 
|  | // mean appending it.  Likewise for attributes. | 
|  |  | 
|  | // Add any result attributes. | 
|  | if (Attrs.hasAttributes(AttributeSet::ReturnIndex)) | 
|  | NewAttrs.push_back(AttributeSet::get(Caller->getContext(), | 
|  | Attrs.getRetAttributes())); | 
|  |  | 
|  | { | 
|  | unsigned Idx = 1; | 
|  | CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); | 
|  | do { | 
|  | if (Idx == NestIdx) { | 
|  | // Add the chain argument and attributes. | 
|  | Value *NestVal = Tramp->getArgOperand(2); | 
|  | if (NestVal->getType() != NestTy) | 
|  | NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest"); | 
|  | NewArgs.push_back(NestVal); | 
|  | NewAttrs.push_back(AttributeSet::get(Caller->getContext(), | 
|  | NestAttr)); | 
|  | } | 
|  |  | 
|  | if (I == E) | 
|  | break; | 
|  |  | 
|  | // Add the original argument and attributes. | 
|  | NewArgs.push_back(*I); | 
|  | AttributeSet Attr = Attrs.getParamAttributes(Idx); | 
|  | if (Attr.hasAttributes(Idx)) { | 
|  | AttrBuilder B(Attr, Idx); | 
|  | NewAttrs.push_back(AttributeSet::get(Caller->getContext(), | 
|  | Idx + (Idx >= NestIdx), B)); | 
|  | } | 
|  |  | 
|  | ++Idx; | 
|  | ++I; | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | // Add any function attributes. | 
|  | if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) | 
|  | NewAttrs.push_back(AttributeSet::get(FTy->getContext(), | 
|  | Attrs.getFnAttributes())); | 
|  |  | 
|  | // The trampoline may have been bitcast to a bogus type (FTy). | 
|  | // Handle this by synthesizing a new function type, equal to FTy | 
|  | // with the chain parameter inserted. | 
|  |  | 
|  | std::vector<Type*> NewTypes; | 
|  | NewTypes.reserve(FTy->getNumParams()+1); | 
|  |  | 
|  | // Insert the chain's type into the list of parameter types, which may | 
|  | // mean appending it. | 
|  | { | 
|  | unsigned Idx = 1; | 
|  | FunctionType::param_iterator I = FTy->param_begin(), | 
|  | E = FTy->param_end(); | 
|  |  | 
|  | do { | 
|  | if (Idx == NestIdx) | 
|  | // Add the chain's type. | 
|  | NewTypes.push_back(NestTy); | 
|  |  | 
|  | if (I == E) | 
|  | break; | 
|  |  | 
|  | // Add the original type. | 
|  | NewTypes.push_back(*I); | 
|  |  | 
|  | ++Idx; | 
|  | ++I; | 
|  | } while (true); | 
|  | } | 
|  |  | 
|  | // Replace the trampoline call with a direct call.  Let the generic | 
|  | // code sort out any function type mismatches. | 
|  | FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, | 
|  | FTy->isVarArg()); | 
|  | Constant *NewCallee = | 
|  | NestF->getType() == PointerType::getUnqual(NewFTy) ? | 
|  | NestF : ConstantExpr::getBitCast(NestF, | 
|  | PointerType::getUnqual(NewFTy)); | 
|  | const AttributeSet &NewPAL = | 
|  | AttributeSet::get(FTy->getContext(), NewAttrs); | 
|  |  | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | CS.getOperandBundlesAsDefs(OpBundles); | 
|  |  | 
|  | Instruction *NewCaller; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { | 
|  | NewCaller = InvokeInst::Create(NewCallee, | 
|  | II->getNormalDest(), II->getUnwindDest(), | 
|  | NewArgs, OpBundles); | 
|  | cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); | 
|  | cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); | 
|  | } else { | 
|  | NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles); | 
|  | if (cast<CallInst>(Caller)->isTailCall()) | 
|  | cast<CallInst>(NewCaller)->setTailCall(); | 
|  | cast<CallInst>(NewCaller)-> | 
|  | setCallingConv(cast<CallInst>(Caller)->getCallingConv()); | 
|  | cast<CallInst>(NewCaller)->setAttributes(NewPAL); | 
|  | } | 
|  |  | 
|  | return NewCaller; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Replace the trampoline call with a direct call.  Since there is no 'nest' | 
|  | // parameter, there is no need to adjust the argument list.  Let the generic | 
|  | // code sort out any function type mismatches. | 
|  | Constant *NewCallee = | 
|  | NestF->getType() == PTy ? NestF : | 
|  | ConstantExpr::getBitCast(NestF, PTy); | 
|  | CS.setCalledFunction(NewCallee); | 
|  | return CS.getInstruction(); | 
|  | } |