|  | //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// \file | 
|  | /// | 
|  | /// This file provides internal interfaces used to implement the InstCombine. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H | 
|  | #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H | 
|  |  | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/TargetFolder.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | namespace llvm { | 
|  | class CallSite; | 
|  | class DataLayout; | 
|  | class DominatorTree; | 
|  | class TargetLibraryInfo; | 
|  | class DbgDeclareInst; | 
|  | class MemIntrinsic; | 
|  | class MemSetInst; | 
|  |  | 
|  | /// \brief Assign a complexity or rank value to LLVM Values. | 
|  | /// | 
|  | /// This routine maps IR values to various complexity ranks: | 
|  | ///   0 -> undef | 
|  | ///   1 -> Constants | 
|  | ///   2 -> Other non-instructions | 
|  | ///   3 -> Arguments | 
|  | ///   3 -> Unary operations | 
|  | ///   4 -> Other instructions | 
|  | static inline unsigned getComplexity(Value *V) { | 
|  | if (isa<Instruction>(V)) { | 
|  | if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) || | 
|  | BinaryOperator::isNot(V)) | 
|  | return 3; | 
|  | return 4; | 
|  | } | 
|  | if (isa<Argument>(V)) | 
|  | return 3; | 
|  | return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; | 
|  | } | 
|  |  | 
|  | /// \brief Add one to a Constant | 
|  | static inline Constant *AddOne(Constant *C) { | 
|  | return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); | 
|  | } | 
|  | /// \brief Subtract one from a Constant | 
|  | static inline Constant *SubOne(Constant *C) { | 
|  | return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); | 
|  | } | 
|  |  | 
|  | /// \brief Return true if the specified value is free to invert (apply ~ to). | 
|  | /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses | 
|  | /// is true, work under the assumption that the caller intends to remove all | 
|  | /// uses of V and only keep uses of ~V. | 
|  | /// | 
|  | static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) { | 
|  | // ~(~(X)) -> X. | 
|  | if (BinaryOperator::isNot(V)) | 
|  | return true; | 
|  |  | 
|  | // Constants can be considered to be not'ed values. | 
|  | if (isa<ConstantInt>(V)) | 
|  | return true; | 
|  |  | 
|  | // Compares can be inverted if all of their uses are being modified to use the | 
|  | // ~V. | 
|  | if (isa<CmpInst>(V)) | 
|  | return WillInvertAllUses; | 
|  |  | 
|  | // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1 | 
|  | // - Constant) - A` if we are willing to invert all of the uses. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) | 
|  | if (BO->getOpcode() == Instruction::Add || | 
|  | BO->getOpcode() == Instruction::Sub) | 
|  | if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1))) | 
|  | return WillInvertAllUses; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Specific patterns of overflow check idioms that we match. | 
|  | enum OverflowCheckFlavor { | 
|  | OCF_UNSIGNED_ADD, | 
|  | OCF_SIGNED_ADD, | 
|  | OCF_UNSIGNED_SUB, | 
|  | OCF_SIGNED_SUB, | 
|  | OCF_UNSIGNED_MUL, | 
|  | OCF_SIGNED_MUL, | 
|  |  | 
|  | OCF_INVALID | 
|  | }; | 
|  |  | 
|  | /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op | 
|  | /// intrinsic. | 
|  | static inline OverflowCheckFlavor | 
|  | IntrinsicIDToOverflowCheckFlavor(unsigned ID) { | 
|  | switch (ID) { | 
|  | default: | 
|  | return OCF_INVALID; | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | return OCF_UNSIGNED_ADD; | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | return OCF_SIGNED_ADD; | 
|  | case Intrinsic::usub_with_overflow: | 
|  | return OCF_UNSIGNED_SUB; | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | return OCF_SIGNED_SUB; | 
|  | case Intrinsic::umul_with_overflow: | 
|  | return OCF_UNSIGNED_MUL; | 
|  | case Intrinsic::smul_with_overflow: | 
|  | return OCF_SIGNED_MUL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief The core instruction combiner logic. | 
|  | /// | 
|  | /// This class provides both the logic to recursively visit instructions and | 
|  | /// combine them, as well as the pass infrastructure for running this as part | 
|  | /// of the LLVM pass pipeline. | 
|  | class LLVM_LIBRARY_VISIBILITY InstCombiner | 
|  | : public InstVisitor<InstCombiner, Instruction *> { | 
|  | // FIXME: These members shouldn't be public. | 
|  | public: | 
|  | /// \brief A worklist of the instructions that need to be simplified. | 
|  | InstCombineWorklist &Worklist; | 
|  |  | 
|  | /// \brief An IRBuilder that automatically inserts new instructions into the | 
|  | /// worklist. | 
|  | typedef IRBuilder<TargetFolder, IRBuilderCallbackInserter> BuilderTy; | 
|  | BuilderTy *Builder; | 
|  |  | 
|  | private: | 
|  | // Mode in which we are running the combiner. | 
|  | const bool MinimizeSize; | 
|  | /// Enable combines that trigger rarely but are costly in compiletime. | 
|  | const bool ExpensiveCombines; | 
|  |  | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | // Required analyses. | 
|  | AssumptionCache &AC; | 
|  | TargetLibraryInfo &TLI; | 
|  | DominatorTree &DT; | 
|  | const DataLayout &DL; | 
|  |  | 
|  | // Optional analyses. When non-null, these can both be used to do better | 
|  | // combining and will be updated to reflect any changes. | 
|  | LoopInfo *LI; | 
|  |  | 
|  | bool MadeIRChange; | 
|  |  | 
|  | public: | 
|  | InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder, | 
|  | bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA, | 
|  | AssumptionCache &AC, TargetLibraryInfo &TLI, | 
|  | DominatorTree &DT, const DataLayout &DL, LoopInfo *LI) | 
|  | : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize), | 
|  | ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT), | 
|  | DL(DL), LI(LI), MadeIRChange(false) {} | 
|  |  | 
|  | /// \brief Run the combiner over the entire worklist until it is empty. | 
|  | /// | 
|  | /// \returns true if the IR is changed. | 
|  | bool run(); | 
|  |  | 
|  | AssumptionCache &getAssumptionCache() const { return AC; } | 
|  |  | 
|  | const DataLayout &getDataLayout() const { return DL; } | 
|  |  | 
|  | DominatorTree &getDominatorTree() const { return DT; } | 
|  |  | 
|  | LoopInfo *getLoopInfo() const { return LI; } | 
|  |  | 
|  | TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } | 
|  |  | 
|  | // Visitation implementation - Implement instruction combining for different | 
|  | // instruction types.  The semantics are as follows: | 
|  | // Return Value: | 
|  | //    null        - No change was made | 
|  | //     I          - Change was made, I is still valid, I may be dead though | 
|  | //   otherwise    - Change was made, replace I with returned instruction | 
|  | // | 
|  | Instruction *visitAdd(BinaryOperator &I); | 
|  | Instruction *visitFAdd(BinaryOperator &I); | 
|  | Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); | 
|  | Instruction *visitSub(BinaryOperator &I); | 
|  | Instruction *visitFSub(BinaryOperator &I); | 
|  | Instruction *visitMul(BinaryOperator &I); | 
|  | Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C, | 
|  | Instruction *InsertBefore); | 
|  | Instruction *visitFMul(BinaryOperator &I); | 
|  | Instruction *visitURem(BinaryOperator &I); | 
|  | Instruction *visitSRem(BinaryOperator &I); | 
|  | Instruction *visitFRem(BinaryOperator &I); | 
|  | bool SimplifyDivRemOfSelect(BinaryOperator &I); | 
|  | Instruction *commonRemTransforms(BinaryOperator &I); | 
|  | Instruction *commonIRemTransforms(BinaryOperator &I); | 
|  | Instruction *commonDivTransforms(BinaryOperator &I); | 
|  | Instruction *commonIDivTransforms(BinaryOperator &I); | 
|  | Instruction *visitUDiv(BinaryOperator &I); | 
|  | Instruction *visitSDiv(BinaryOperator &I); | 
|  | Instruction *visitFDiv(BinaryOperator &I); | 
|  | Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted); | 
|  | Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS); | 
|  | Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS); | 
|  | Instruction *visitAnd(BinaryOperator &I); | 
|  | Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI); | 
|  | Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS); | 
|  | Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A, | 
|  | Value *B, Value *C); | 
|  | Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A, | 
|  | Value *B, Value *C); | 
|  | Instruction *visitOr(BinaryOperator &I); | 
|  | Instruction *visitXor(BinaryOperator &I); | 
|  | Instruction *visitShl(BinaryOperator &I); | 
|  | Instruction *visitAShr(BinaryOperator &I); | 
|  | Instruction *visitLShr(BinaryOperator &I); | 
|  | Instruction *commonShiftTransforms(BinaryOperator &I); | 
|  | Instruction *visitFCmpInst(FCmpInst &I); | 
|  | Instruction *visitICmpInst(ICmpInst &I); | 
|  | Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1, | 
|  | BinaryOperator &I); | 
|  | Instruction *commonCastTransforms(CastInst &CI); | 
|  | Instruction *commonPointerCastTransforms(CastInst &CI); | 
|  | Instruction *visitTrunc(TruncInst &CI); | 
|  | Instruction *visitZExt(ZExtInst &CI); | 
|  | Instruction *visitSExt(SExtInst &CI); | 
|  | Instruction *visitFPTrunc(FPTruncInst &CI); | 
|  | Instruction *visitFPExt(CastInst &CI); | 
|  | Instruction *visitFPToUI(FPToUIInst &FI); | 
|  | Instruction *visitFPToSI(FPToSIInst &FI); | 
|  | Instruction *visitUIToFP(CastInst &CI); | 
|  | Instruction *visitSIToFP(CastInst &CI); | 
|  | Instruction *visitPtrToInt(PtrToIntInst &CI); | 
|  | Instruction *visitIntToPtr(IntToPtrInst &CI); | 
|  | Instruction *visitBitCast(BitCastInst &CI); | 
|  | Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI); | 
|  | Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); | 
|  | Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *); | 
|  | Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, | 
|  | Value *A, Value *B, Instruction &Outer, | 
|  | SelectPatternFlavor SPF2, Value *C); | 
|  | Instruction *FoldItoFPtoI(Instruction &FI); | 
|  | Instruction *visitSelectInst(SelectInst &SI); | 
|  | Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); | 
|  | Instruction *visitCallInst(CallInst &CI); | 
|  | Instruction *visitInvokeInst(InvokeInst &II); | 
|  |  | 
|  | Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); | 
|  | Instruction *visitPHINode(PHINode &PN); | 
|  | Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); | 
|  | Instruction *visitAllocaInst(AllocaInst &AI); | 
|  | Instruction *visitAllocSite(Instruction &FI); | 
|  | Instruction *visitFree(CallInst &FI); | 
|  | Instruction *visitLoadInst(LoadInst &LI); | 
|  | Instruction *visitStoreInst(StoreInst &SI); | 
|  | Instruction *visitBranchInst(BranchInst &BI); | 
|  | Instruction *visitSwitchInst(SwitchInst &SI); | 
|  | Instruction *visitReturnInst(ReturnInst &RI); | 
|  | Instruction *visitInsertValueInst(InsertValueInst &IV); | 
|  | Instruction *visitInsertElementInst(InsertElementInst &IE); | 
|  | Instruction *visitExtractElementInst(ExtractElementInst &EI); | 
|  | Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); | 
|  | Instruction *visitExtractValueInst(ExtractValueInst &EV); | 
|  | Instruction *visitLandingPadInst(LandingPadInst &LI); | 
|  | Instruction *visitVAStartInst(VAStartInst &I); | 
|  | Instruction *visitVACopyInst(VACopyInst &I); | 
|  |  | 
|  | // visitInstruction - Specify what to return for unhandled instructions... | 
|  | Instruction *visitInstruction(Instruction &I) { return nullptr; } | 
|  |  | 
|  | // True when DB dominates all uses of DI execpt UI. | 
|  | // UI must be in the same block as DI. | 
|  | // The routine checks that the DI parent and DB are different. | 
|  | bool dominatesAllUses(const Instruction *DI, const Instruction *UI, | 
|  | const BasicBlock *DB) const; | 
|  |  | 
|  | // Replace select with select operand SIOpd in SI-ICmp sequence when possible | 
|  | bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, | 
|  | const unsigned SIOpd); | 
|  |  | 
|  | private: | 
|  | bool ShouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const; | 
|  | bool ShouldChangeType(Type *From, Type *To) const; | 
|  | Value *dyn_castNegVal(Value *V) const; | 
|  | Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const; | 
|  | Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset, | 
|  | SmallVectorImpl<Value *> &NewIndices); | 
|  | Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); | 
|  |  | 
|  | /// Classify whether a cast is worth optimizing. | 
|  | /// | 
|  | /// This is a helper to decide whether the simplification of | 
|  | /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed. | 
|  | /// | 
|  | /// \param CI The cast we are interested in. | 
|  | /// | 
|  | /// \return true if this cast actually results in any code being generated and | 
|  | /// if it cannot already be eliminated by some other transformation. | 
|  | bool shouldOptimizeCast(CastInst *CI); | 
|  |  | 
|  | /// \brief Try to optimize a sequence of instructions checking if an operation | 
|  | /// on LHS and RHS overflows. | 
|  | /// | 
|  | /// If this overflow check is done via one of the overflow check intrinsics, | 
|  | /// then CtxI has to be the call instruction calling that intrinsic.  If this | 
|  | /// overflow check is done by arithmetic followed by a compare, then CtxI has | 
|  | /// to be the arithmetic instruction. | 
|  | /// | 
|  | /// If a simplification is possible, stores the simplified result of the | 
|  | /// operation in OperationResult and result of the overflow check in | 
|  | /// OverflowResult, and return true.  If no simplification is possible, | 
|  | /// returns false. | 
|  | bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS, | 
|  | Instruction &CtxI, Value *&OperationResult, | 
|  | Constant *&OverflowResult); | 
|  |  | 
|  | Instruction *visitCallSite(CallSite CS); | 
|  | Instruction *tryOptimizeCall(CallInst *CI); | 
|  | bool transformConstExprCastCall(CallSite CS); | 
|  | Instruction *transformCallThroughTrampoline(CallSite CS, | 
|  | IntrinsicInst *Tramp); | 
|  |  | 
|  | /// Transform (zext icmp) to bitwise / integer operations in order to | 
|  | /// eliminate it. | 
|  | /// | 
|  | /// \param ICI The icmp of the (zext icmp) pair we are interested in. | 
|  | /// \parem CI The zext of the (zext icmp) pair we are interested in. | 
|  | /// \param DoTransform Pass false to just test whether the given (zext icmp) | 
|  | /// would be transformed. Pass true to actually perform the transformation. | 
|  | /// | 
|  | /// \return null if the transformation cannot be performed. If the | 
|  | /// transformation can be performed the new instruction that replaces the | 
|  | /// (zext icmp) pair will be returned (if \p DoTransform is false the | 
|  | /// unmodified \p ICI will be returned in this case). | 
|  | Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, | 
|  | bool DoTransform = true); | 
|  |  | 
|  | Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); | 
|  | bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI); | 
|  | bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI); | 
|  | bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI); | 
|  | bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI); | 
|  | Value *EmitGEPOffset(User *GEP); | 
|  | Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); | 
|  | Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask); | 
|  | Instruction *foldCastedBitwiseLogic(BinaryOperator &I); | 
|  |  | 
|  | /// Determine if a pair of casts can be replaced by a single cast. | 
|  | /// | 
|  | /// \param CI1 The first of a pair of casts. | 
|  | /// \param CI2 The second of a pair of casts. | 
|  | /// | 
|  | /// \return 0 if the cast pair cannot be eliminated, otherwise returns an | 
|  | /// Instruction::CastOps value for a cast that can replace the pair, casting | 
|  | /// CI1->getSrcTy() to CI2->getDstTy(). | 
|  | /// | 
|  | /// \see CastInst::isEliminableCastPair | 
|  | Instruction::CastOps isEliminableCastPair(const CastInst *CI1, | 
|  | const CastInst *CI2); | 
|  |  | 
|  | public: | 
|  | /// \brief Inserts an instruction \p New before instruction \p Old | 
|  | /// | 
|  | /// Also adds the new instruction to the worklist and returns \p New so that | 
|  | /// it is suitable for use as the return from the visitation patterns. | 
|  | Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { | 
|  | assert(New && !New->getParent() && | 
|  | "New instruction already inserted into a basic block!"); | 
|  | BasicBlock *BB = Old.getParent(); | 
|  | BB->getInstList().insert(Old.getIterator(), New); // Insert inst | 
|  | Worklist.Add(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// \brief Same as InsertNewInstBefore, but also sets the debug loc. | 
|  | Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { | 
|  | New->setDebugLoc(Old.getDebugLoc()); | 
|  | return InsertNewInstBefore(New, Old); | 
|  | } | 
|  |  | 
|  | /// \brief A combiner-aware RAUW-like routine. | 
|  | /// | 
|  | /// This method is to be used when an instruction is found to be dead, | 
|  | /// replaceable with another preexisting expression. Here we add all uses of | 
|  | /// I to the worklist, replace all uses of I with the new value, then return | 
|  | /// I, so that the inst combiner will know that I was modified. | 
|  | Instruction *replaceInstUsesWith(Instruction &I, Value *V) { | 
|  | // If there are no uses to replace, then we return nullptr to indicate that | 
|  | // no changes were made to the program. | 
|  | if (I.use_empty()) return nullptr; | 
|  |  | 
|  | Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. | 
|  |  | 
|  | // If we are replacing the instruction with itself, this must be in a | 
|  | // segment of unreachable code, so just clobber the instruction. | 
|  | if (&I == V) | 
|  | V = UndefValue::get(I.getType()); | 
|  |  | 
|  | DEBUG(dbgs() << "IC: Replacing " << I << "\n" | 
|  | << "    with " << *V << '\n'); | 
|  |  | 
|  | I.replaceAllUsesWith(V); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | /// Creates a result tuple for an overflow intrinsic \p II with a given | 
|  | /// \p Result and a constant \p Overflow value. | 
|  | Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result, | 
|  | Constant *Overflow) { | 
|  | Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; | 
|  | StructType *ST = cast<StructType>(II->getType()); | 
|  | Constant *Struct = ConstantStruct::get(ST, V); | 
|  | return InsertValueInst::Create(Struct, Result, 0); | 
|  | } | 
|  |  | 
|  | /// \brief Combiner aware instruction erasure. | 
|  | /// | 
|  | /// When dealing with an instruction that has side effects or produces a void | 
|  | /// value, we can't rely on DCE to delete the instruction. Instead, visit | 
|  | /// methods should return the value returned by this function. | 
|  | Instruction *eraseInstFromFunction(Instruction &I) { | 
|  | DEBUG(dbgs() << "IC: ERASE " << I << '\n'); | 
|  |  | 
|  | assert(I.use_empty() && "Cannot erase instruction that is used!"); | 
|  | // Make sure that we reprocess all operands now that we reduced their | 
|  | // use counts. | 
|  | if (I.getNumOperands() < 8) { | 
|  | for (Use &Operand : I.operands()) | 
|  | if (auto *Inst = dyn_cast<Instruction>(Operand)) | 
|  | Worklist.Add(Inst); | 
|  | } | 
|  | Worklist.Remove(&I); | 
|  | I.eraseFromParent(); | 
|  | MadeIRChange = true; | 
|  | return nullptr; // Don't do anything with FI | 
|  | } | 
|  |  | 
|  | void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, | 
|  | unsigned Depth, Instruction *CxtI) const { | 
|  | return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, &AC, CxtI, | 
|  | &DT); | 
|  | } | 
|  |  | 
|  | bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0, | 
|  | Instruction *CxtI = nullptr) const { | 
|  | return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); | 
|  | } | 
|  | unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0, | 
|  | Instruction *CxtI = nullptr) const { | 
|  | return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); | 
|  | } | 
|  | void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, | 
|  | unsigned Depth = 0, Instruction *CxtI = nullptr) const { | 
|  | return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, &AC, CxtI, | 
|  | &DT); | 
|  | } | 
|  | OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS, | 
|  | const Instruction *CxtI) { | 
|  | return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); | 
|  | } | 
|  | OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, | 
|  | const Instruction *CxtI) { | 
|  | return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// \brief Performs a few simplifications for operators which are associative | 
|  | /// or commutative. | 
|  | bool SimplifyAssociativeOrCommutative(BinaryOperator &I); | 
|  |  | 
|  | /// \brief Tries to simplify binary operations which some other binary | 
|  | /// operation distributes over. | 
|  | /// | 
|  | /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)" | 
|  | /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A | 
|  | /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified | 
|  | /// value, or null if it didn't simplify. | 
|  | Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); | 
|  |  | 
|  | /// \brief Attempts to replace V with a simpler value based on the demanded | 
|  | /// bits. | 
|  | Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero, | 
|  | APInt &KnownOne, unsigned Depth, | 
|  | Instruction *CxtI); | 
|  | bool SimplifyDemandedBits(Use &U, const APInt &DemandedMask, APInt &KnownZero, | 
|  | APInt &KnownOne, unsigned Depth = 0); | 
|  | /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded | 
|  | /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. | 
|  | Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl, | 
|  | const APInt &DemandedMask, APInt &KnownZero, | 
|  | APInt &KnownOne); | 
|  |  | 
|  | /// \brief Tries to simplify operands to an integer instruction based on its | 
|  | /// demanded bits. | 
|  | bool SimplifyDemandedInstructionBits(Instruction &Inst); | 
|  |  | 
|  | Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, | 
|  | APInt &UndefElts, unsigned Depth = 0); | 
|  |  | 
|  | Value *SimplifyVectorOp(BinaryOperator &Inst); | 
|  | Value *SimplifyBSwap(BinaryOperator &Inst); | 
|  |  | 
|  | // FoldOpIntoPhi - Given a binary operator, cast instruction, or select | 
|  | // which has a PHI node as operand #0, see if we can fold the instruction | 
|  | // into the PHI (which is only possible if all operands to the PHI are | 
|  | // constants). | 
|  | // | 
|  | Instruction *FoldOpIntoPhi(Instruction &I); | 
|  |  | 
|  | /// \brief Try to rotate an operation below a PHI node, using PHI nodes for | 
|  | /// its operands. | 
|  | Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); | 
|  | Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN); | 
|  |  | 
|  | Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, | 
|  | ICmpInst::Predicate Cond, Instruction &I); | 
|  | Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca, | 
|  | const Value *Other); | 
|  | Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, | 
|  | GlobalVariable *GV, CmpInst &ICI, | 
|  | ConstantInt *AndCst = nullptr); | 
|  | Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, | 
|  | Constant *RHSC); | 
|  | Instruction *foldICmpCstShrConst(ICmpInst &I, Value *Op, Value *A, | 
|  | ConstantInt *CI1, ConstantInt *CI2); | 
|  | Instruction *foldICmpCstShlConst(ICmpInst &I, Value *Op, Value *A, | 
|  | ConstantInt *CI1, ConstantInt *CI2); | 
|  | Instruction *foldICmpAddOpConst(Instruction &ICI, Value *X, ConstantInt *CI, | 
|  | ICmpInst::Predicate Pred); | 
|  | Instruction *foldICmpWithCastAndCast(ICmpInst &ICI); | 
|  | Instruction *foldICmpWithConstant(ICmpInst &Cmp); | 
|  |  | 
|  | Instruction *foldICmpTruncConstant(ICmpInst &Cmp, Instruction *Trunc, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, | 
|  | const APInt *C); | 
|  | Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, | 
|  | const APInt *C1); | 
|  | Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, | 
|  | const APInt *C1, const APInt *C2); | 
|  |  | 
|  | Instruction *foldICmpEqualityWithConstant(ICmpInst &ICI); | 
|  | Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI); | 
|  |  | 
|  | Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, | 
|  | ConstantInt *AndRHS, BinaryOperator &TheAnd); | 
|  |  | 
|  | Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, | 
|  | bool isSub, Instruction &I); | 
|  | Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, | 
|  | bool isSigned, bool Inside); | 
|  | Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); | 
|  | Instruction *MatchBSwap(BinaryOperator &I); | 
|  | bool SimplifyStoreAtEndOfBlock(StoreInst &SI); | 
|  | Instruction *SimplifyMemTransfer(MemIntrinsic *MI); | 
|  | Instruction *SimplifyMemSet(MemSetInst *MI); | 
|  |  | 
|  | Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); | 
|  |  | 
|  | /// \brief Returns a value X such that Val = X * Scale, or null if none. | 
|  | /// | 
|  | /// If the multiplication is known not to overflow then NoSignedWrap is set. | 
|  | Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm. | 
|  |  | 
|  | #undef DEBUG_TYPE | 
|  |  | 
|  | #endif |