|  | //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86ISelLowering.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/ADT/VectorExtras.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | // FIXME: temporary. | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, | 
|  | cl::desc("Enable fastcc on X86")); | 
|  |  | 
|  | X86TargetLowering::X86TargetLowering(TargetMachine &TM) | 
|  | : TargetLowering(TM) { | 
|  | Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
|  | X86ScalarSSE = Subtarget->hasSSE2(); | 
|  |  | 
|  | // Set up the TargetLowering object. | 
|  |  | 
|  | // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
|  | setShiftAmountType(MVT::i8); | 
|  | setSetCCResultType(MVT::i8); | 
|  | setSetCCResultContents(ZeroOrOneSetCCResult); | 
|  | setSchedulingPreference(SchedulingForRegPressure); | 
|  | setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0 | 
|  | setStackPointerRegisterToSaveRestore(X86::ESP); | 
|  |  | 
|  | if (!Subtarget->isTargetDarwin()) | 
|  | // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. | 
|  | setUseUnderscoreSetJmpLongJmp(true); | 
|  |  | 
|  | // Add legal addressing mode scale values. | 
|  | addLegalAddressScale(8); | 
|  | addLegalAddressScale(4); | 
|  | addLegalAddressScale(2); | 
|  | // Enter the ones which require both scale + index last. These are more | 
|  | // expensive. | 
|  | addLegalAddressScale(9); | 
|  | addLegalAddressScale(5); | 
|  | addLegalAddressScale(3); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, X86::R8RegisterClass); | 
|  | addRegisterClass(MVT::i16, X86::R16RegisterClass); | 
|  | addRegisterClass(MVT::i32, X86::R32RegisterClass); | 
|  |  | 
|  | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
|  | // operation. | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
|  |  | 
|  | if (X86ScalarSSE) | 
|  | // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Expand); | 
|  | else | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote); | 
|  |  | 
|  | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
|  | // SSE has no i16 to fp conversion, only i32 | 
|  | if (X86ScalarSSE) | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
|  | else { | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 | 
|  | // isn't legal. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i64  , Custom); | 
|  |  | 
|  | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
|  |  | 
|  | if (X86ScalarSSE) { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote); | 
|  | } else { | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | } | 
|  |  | 
|  | // Handle FP_TO_UINT by promoting the destination to a larger signed | 
|  | // conversion. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
|  |  | 
|  | if (X86ScalarSSE && !Subtarget->hasSSE3()) | 
|  | // Expand FP_TO_UINT into a select. | 
|  | // FIXME: We would like to use a Custom expander here eventually to do | 
|  | // the optimal thing for SSE vs. the default expansion in the legalizer. | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Expand); | 
|  | else | 
|  | // With SSE3 we can use fisttpll to convert to a signed i64. | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote); | 
|  |  | 
|  | setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::BRCOND           , MVT::Other, Custom); | 
|  | setOperationAction(ISD::BR_CC            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::BSWAP            , MVT::i16  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT           , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SELECT           , MVT::i8   , Promote); | 
|  |  | 
|  | // X86 wants to expand cmov itself. | 
|  | setOperationAction(ISD::SELECT          , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SELECT          , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SETCC           , MVT::f64  , Custom); | 
|  | // X86 ret instruction may pop stack. | 
|  | setOperationAction(ISD::RET             , MVT::Other, Custom); | 
|  | // Darwin ABI issue. | 
|  | setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::JumpTable       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom); | 
|  | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
|  | setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom); | 
|  | // X86 wants to expand memset / memcpy itself. | 
|  | setOperationAction(ISD::MEMSET          , MVT::Other, Custom); | 
|  | setOperationAction(ISD::MEMCPY          , MVT::Other, Custom); | 
|  |  | 
|  | // We don't have line number support yet. | 
|  | setOperationAction(ISD::LOCATION, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
|  | // FIXME - use subtarget debug flags | 
|  | if (!Subtarget->isTargetDarwin()) | 
|  | setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); | 
|  |  | 
|  | // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
|  | setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
|  |  | 
|  | // Use the default implementation. | 
|  | setOperationAction(ISD::VAARG             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VACOPY            , MVT::Other, Expand); | 
|  | setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); | 
|  |  | 
|  | if (X86ScalarSSE) { | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::FR64RegisterClass); | 
|  |  | 
|  | // SSE has no load+extend ops | 
|  | setOperationAction(ISD::EXTLOAD,  MVT::f32, Expand); | 
|  | setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); | 
|  |  | 
|  | // Use ANDPD to simulate FABS. | 
|  | setOperationAction(ISD::FABS , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Custom); | 
|  |  | 
|  | // Use XORP to simulate FNEG. | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Custom); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
|  |  | 
|  | // We don't support sin/cos/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f32, Expand); | 
|  |  | 
|  | // Expand FP immediates into loads from the stack, except for the special | 
|  | // cases we handle. | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | 
|  | addLegalFPImmediate(+0.0); // xorps / xorpd | 
|  | } else { | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, X86::RFPRegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::UNDEF, MVT::f64, Expand); | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
|  | addLegalFPImmediate(+0.0); // FLD0 | 
|  | addLegalFPImmediate(+1.0); // FLD1 | 
|  | addLegalFPImmediate(-0.0); // FLD0/FCHS | 
|  | addLegalFPImmediate(-1.0); // FLD1/FCHS | 
|  | } | 
|  |  | 
|  | // First set operation action for all vector types to expand. Then we | 
|  | // will selectively turn on ones that can be effectively codegen'd. | 
|  | for (unsigned VT = (unsigned)MVT::Vector + 1; | 
|  | VT != (unsigned)MVT::LAST_VALUETYPE; VT++) { | 
|  | setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasMMX()) { | 
|  | addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass); | 
|  | addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); | 
|  | addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); | 
|  |  | 
|  | // FIXME: add MMX packed arithmetics | 
|  | setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand); | 
|  | setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand); | 
|  | setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE1()) { | 
|  | addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::AND,                MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::OR,                 MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::XOR,                MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v4f32, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v4f32, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget->hasSSE2()) { | 
|  | addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); | 
|  | addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); | 
|  |  | 
|  | setOperationAction(ISD::ADD,                MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::ADD,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v16i8, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::SUB,                MVT::v4i32, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v8i16, Legal); | 
|  | setOperationAction(ISD::MUL,                MVT::v2f64, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom); | 
|  | // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones. | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom); | 
|  |  | 
|  | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. | 
|  | for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { | 
|  | setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom); | 
|  | } | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); | 
|  |  | 
|  | // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. | 
|  | for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { | 
|  | setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64); | 
|  | setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64); | 
|  | setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64); | 
|  | setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64); | 
|  | setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); | 
|  | AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); | 
|  | } | 
|  |  | 
|  | // Custom lower v2i64 and v2f64 selects. | 
|  | setOperationAction(ISD::LOAD,               MVT::v2f64, Legal); | 
|  | setOperationAction(ISD::LOAD,               MVT::v2i64, Legal); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2f64, Custom); | 
|  | setOperationAction(ISD::SELECT,             MVT::v2i64, Custom); | 
|  | } | 
|  |  | 
|  | // We want to custom lower some of our intrinsics. | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  |  | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | // FIXME: These should be based on subtarget info. Plus, the values should | 
|  | // be smaller when we are in optimizing for size mode. | 
|  | maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores | 
|  | maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores | 
|  | maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores | 
|  | allowUnalignedMemoryAccesses = true; // x86 supports it! | 
|  | } | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
|  | std::vector<SDOperand> Args = TargetLowering::LowerArguments(F, DAG); | 
|  |  | 
|  | FormalArgs.clear(); | 
|  | FormalArgLocs.clear(); | 
|  |  | 
|  | // This sets BytesToPopOnReturn, BytesCallerReserves, etc. which have to be set | 
|  | // before the rest of the function can be lowered. | 
|  | if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) | 
|  | PreprocessFastCCArguments(Args, F, DAG); | 
|  | else | 
|  | PreprocessCCCArguments(Args, F, DAG); | 
|  | return Args; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isVarArg, unsigned CallingConv, | 
|  | bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | assert((!isVarArg || CallingConv == CallingConv::C) && | 
|  | "Only C takes varargs!"); | 
|  |  | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call is) | 
|  | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); | 
|  | else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); | 
|  |  | 
|  | if (CallingConv == CallingConv::Fast && EnableFastCC) | 
|  | return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); | 
|  | return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    C Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// AddLiveIn - This helper function adds the specified physical register to the | 
|  | /// MachineFunction as a live in value.  It also creates a corresponding virtual | 
|  | /// register for it. | 
|  | static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, | 
|  | TargetRegisterClass *RC) { | 
|  | assert(RC->contains(PReg) && "Not the correct regclass!"); | 
|  | unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); | 
|  | MF.addLiveIn(PReg, VReg); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  | /// getFormalArgSize - Return the minimum size of the stack frame needed to store | 
|  | /// an object of the specified type. | 
|  | static unsigned getFormalArgSize(MVT::ValueType ObjectVT) { | 
|  | unsigned ObjSize = 0; | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  ObjSize = 1; break; | 
|  | case MVT::i16: ObjSize = 2; break; | 
|  | case MVT::i32: ObjSize = 4; break; | 
|  | case MVT::i64: ObjSize = 8; break; | 
|  | case MVT::f32: ObjSize = 4; break; | 
|  | case MVT::f64: ObjSize = 8; break; | 
|  | } | 
|  | return ObjSize; | 
|  | } | 
|  |  | 
|  | /// getFormalArgObjects - Returns itself if Op is a FORMAL_ARGUMENTS, otherwise | 
|  | /// returns the FORMAL_ARGUMENTS node(s) that made up parts of the node. | 
|  | static std::vector<SDOperand> getFormalArgObjects(SDOperand Op) { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | std::vector<SDOperand> Objs; | 
|  | if (Opc == ISD::TRUNCATE) { | 
|  | Op = Op.getOperand(0); | 
|  | assert(Op.getOpcode() == ISD::AssertSext || | 
|  | Op.getOpcode() == ISD::AssertZext); | 
|  | Objs.push_back(Op.getOperand(0)); | 
|  | } else if (Opc == ISD::FP_ROUND) { | 
|  | Objs.push_back(Op.getOperand(0)); | 
|  | } else if (Opc == ISD::BUILD_PAIR) { | 
|  | Objs.push_back(Op.getOperand(0)); | 
|  | Objs.push_back(Op.getOperand(1)); | 
|  | } else { | 
|  | Objs.push_back(Op); | 
|  | } | 
|  | return Objs; | 
|  | } | 
|  |  | 
|  | void X86TargetLowering::PreprocessCCCArguments(std::vector<SDOperand>Args, | 
|  | Function &F, SelectionDAG &DAG) { | 
|  | unsigned NumArgs = Args.size(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function on the X86, | 
|  | // the stack frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first argument (leftmost lexically) | 
|  | // [ESP + 8] -- second argument, if first argument is four bytes in size | 
|  | //    ... | 
|  | // | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | SDOperand Op = Args[i]; | 
|  | std::vector<SDOperand> Objs = getFormalArgObjects(Op); | 
|  | for (std::vector<SDOperand>::iterator I = Objs.begin(), E = Objs.end(); | 
|  | I != E; ++I) { | 
|  | SDOperand Obj = *I; | 
|  | MVT::ValueType ObjectVT = Obj.getValueType(); | 
|  | unsigned ArgIncrement = 4; | 
|  | unsigned ObjSize = getFormalArgSize(ObjectVT); | 
|  | if (ObjSize == 8) | 
|  | ArgIncrement = 8; | 
|  |  | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  | std::pair<FALocInfo, FALocInfo> Loc = | 
|  | std::make_pair(FALocInfo(FALocInfo::StackFrameLoc, FI), FALocInfo()); | 
|  | FormalArgLocs.push_back(Loc); | 
|  | ArgOffset += ArgIncrement;   // Move on to the next argument... | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (F.isVarArg()) | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); | 
|  | ReturnAddrIndex = 0;     // No return address slot generated yet. | 
|  | BytesToPopOnReturn = 0;  // Callee pops nothing. | 
|  | BytesCallerReserves = ArgOffset; | 
|  | } | 
|  |  | 
|  | void X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) { | 
|  | unsigned NumArgs = Op.Val->getNumValues(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | // Create the SelectionDAG nodes corresponding to a load from this parameter | 
|  | unsigned FI = FormalArgLocs[i].first.Loc; | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | SDOperand ArgValue = DAG.getLoad(Op.Val->getValueType(i),DAG.getEntryNode(), | 
|  | FIN, DAG.getSrcValue(NULL)); | 
|  | FormalArgs.push_back(ArgValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isVarArg, bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | // Count how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | if (Args.empty()) { | 
|  | // Save zero bytes. | 
|  | Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy())); | 
|  | } else { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_START(Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); | 
|  | std::vector<SDOperand> Stores; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  |  | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | // Promote the integer to 32 bits.  If the input type is signed use a | 
|  | // sign extend, otherwise use a zero extend. | 
|  | if (Args[i].second->isSigned()) | 
|  | Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); | 
|  | else | 
|  | Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); | 
|  |  | 
|  | // FALL THROUGH | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // The result values produced have to be legal.  Promote the result. | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | RetVals.push_back(RetTyVT); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) | 
|  | RetVals.push_back(MVT::f32); | 
|  | else | 
|  | RetVals.push_back(MVT::f64); | 
|  | break; | 
|  | case MVT::i64: | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // FIXME: Do not generate X86ISD::TAILCALL for now. | 
|  | Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); | 
|  | SDOperand InFlag = Chain.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); | 
|  | Ops.push_back(DAG.getConstant(0, getPointerTy())); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | SDOperand RetVal; | 
|  | if (RetTyVT != MVT::isVoid) { | 
|  | switch (RetTyVT) { | 
|  | default: assert(0 && "Unknown value type to return!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | if (RetTyVT == MVT::i1) | 
|  | RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); | 
|  | break; | 
|  | case MVT::i16: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i32: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i64: { | 
|  | SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, | 
|  | Lo.getValue(2)); | 
|  | RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); | 
|  | Chain = Hi.getValue(1); | 
|  | break; | 
|  | } | 
|  | case MVT::f32: | 
|  | case MVT::f64: { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(InFlag); | 
|  | RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); | 
|  | Chain  = RetVal.getValue(1); | 
|  | InFlag = RetVal.getValue(2); | 
|  | if (X86ScalarSSE) { | 
|  | // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(RetVal); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(RetTyVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
|  | RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | Chain = RetVal.getValue(1); | 
|  | } | 
|  |  | 
|  | if (RetTyVT == MVT::f32 && !X86ScalarSSE) | 
|  | // FIXME: we would really like to remember that this FP_ROUND | 
|  | // operation is okay to eliminate if we allow excess FP precision. | 
|  | RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::make_pair(RetVal, Chain); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The X86 'fast' calling convention passes up to two integer arguments in | 
|  | // registers (an appropriate portion of EAX/EDX), passes arguments in C order, | 
|  | // and requires that the callee pop its arguments off the stack (allowing proper | 
|  | // tail calls), and has the same return value conventions as C calling convs. | 
|  | // | 
|  | // This calling convention always arranges for the callee pop value to be 8n+4 | 
|  | // bytes, which is needed for tail recursion elimination and stack alignment | 
|  | // reasons. | 
|  | // | 
|  | // Note that this can be enhanced in the future to pass fp vals in registers | 
|  | // (when we have a global fp allocator) and do other tricks. | 
|  | // | 
|  |  | 
|  | // FASTCC_NUM_INT_ARGS_INREGS - This is the max number of integer arguments | 
|  | // to pass in registers.  0 is none, 1 is is "use EAX", 2 is "use EAX and | 
|  | // EDX".  Anything more is illegal. | 
|  | // | 
|  | // FIXME: The linscan register allocator currently has problem with | 
|  | // coalescing.  At the time of this writing, whenever it decides to coalesce | 
|  | // a physreg with a virtreg, this increases the size of the physreg's live | 
|  | // range, and the live range cannot ever be reduced.  This causes problems if | 
|  | // too many physregs are coaleced with virtregs, which can cause the register | 
|  | // allocator to wedge itself. | 
|  | // | 
|  | // This code triggers this problem more often if we pass args in registers, | 
|  | // so disable it until this is fixed. | 
|  | // | 
|  | // NOTE: this isn't marked const, so that GCC doesn't emit annoying warnings | 
|  | // about code being dead. | 
|  | // | 
|  | static unsigned FASTCC_NUM_INT_ARGS_INREGS = 0; | 
|  |  | 
|  |  | 
|  | static void | 
|  | HowToPassFastCCArgument(MVT::ValueType ObjectVT, unsigned NumIntRegs, | 
|  | unsigned &ObjSize, unsigned &ObjIntRegs) { | 
|  | ObjSize = 0; | 
|  | NumIntRegs = 0; | 
|  |  | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) | 
|  | ObjIntRegs = 1; | 
|  | else | 
|  | ObjSize = 1; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) | 
|  | ObjIntRegs = 1; | 
|  | else | 
|  | ObjSize = 2; | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) | 
|  | ObjIntRegs = 1; | 
|  | else | 
|  | ObjSize = 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | ObjIntRegs = 2; | 
|  | } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | ObjIntRegs = 1; | 
|  | ObjSize = 4; | 
|  | } else | 
|  | ObjSize = 8; | 
|  | case MVT::f32: | 
|  | ObjSize = 4; | 
|  | break; | 
|  | case MVT::f64: | 
|  | ObjSize = 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | X86TargetLowering::PreprocessFastCCArguments(std::vector<SDOperand>Args, | 
|  | Function &F, SelectionDAG &DAG) { | 
|  | unsigned NumArgs = Args.size(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function the stack | 
|  | // frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first nonreg argument (leftmost lexically) | 
|  | // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size | 
|  | //    ... | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  |  | 
|  | // Keep track of the number of integer regs passed so far.  This can be either | 
|  | // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
|  | // used). | 
|  | unsigned NumIntRegs = 0; | 
|  |  | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | SDOperand Op = Args[i]; | 
|  | std::vector<SDOperand> Objs = getFormalArgObjects(Op); | 
|  | for (std::vector<SDOperand>::iterator I = Objs.begin(), E = Objs.end(); | 
|  | I != E; ++I) { | 
|  | SDOperand Obj = *I; | 
|  | MVT::ValueType ObjectVT = Obj.getValueType(); | 
|  | unsigned ArgIncrement = 4; | 
|  | unsigned ObjSize = 0; | 
|  | unsigned ObjIntRegs = 0; | 
|  |  | 
|  | HowToPassFastCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs); | 
|  | if (ObjSize == 8) | 
|  | ArgIncrement = 8; | 
|  |  | 
|  | unsigned Reg; | 
|  | std::pair<FALocInfo,FALocInfo> Loc = std::make_pair(FALocInfo(), | 
|  | FALocInfo()); | 
|  | if (ObjIntRegs) { | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, | 
|  | X86::R8RegisterClass); | 
|  | Loc.first.Kind = FALocInfo::LiveInRegLoc; | 
|  | Loc.first.Loc = Reg; | 
|  | Loc.first.Typ = MVT::i8; | 
|  | break; | 
|  | case MVT::i16: | 
|  | Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, | 
|  | X86::R16RegisterClass); | 
|  | Loc.first.Kind = FALocInfo::LiveInRegLoc; | 
|  | Loc.first.Loc = Reg; | 
|  | Loc.first.Typ = MVT::i16; | 
|  | break; | 
|  | case MVT::i32: | 
|  | Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, | 
|  | X86::R32RegisterClass); | 
|  | Loc.first.Kind = FALocInfo::LiveInRegLoc; | 
|  | Loc.first.Loc = Reg; | 
|  | Loc.first.Typ = MVT::i32; | 
|  | break; | 
|  | case MVT::i64: | 
|  | Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, | 
|  | X86::R32RegisterClass); | 
|  | Loc.first.Kind = FALocInfo::LiveInRegLoc; | 
|  | Loc.first.Loc = Reg; | 
|  | Loc.first.Typ = MVT::i32; | 
|  | if (ObjIntRegs == 2) { | 
|  | Reg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
|  | Loc.second.Kind = FALocInfo::LiveInRegLoc; | 
|  | Loc.second.Loc = Reg; | 
|  | Loc.second.Typ = MVT::i32; | 
|  | } | 
|  | break; | 
|  | } | 
|  | NumIntRegs += ObjIntRegs; | 
|  | } | 
|  | if (ObjSize) { | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  | if (ObjectVT == MVT::i64 && ObjIntRegs) { | 
|  | Loc.second.Kind = FALocInfo::StackFrameLoc; | 
|  | Loc.second.Loc = FI; | 
|  | } else { | 
|  | Loc.first.Kind = FALocInfo::StackFrameLoc; | 
|  | Loc.first.Loc = FI; | 
|  | } | 
|  | ArgOffset += ArgIncrement;   // Move on to the next argument. | 
|  | } | 
|  |  | 
|  | FormalArgLocs.push_back(Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((ArgOffset & 7) == 0) | 
|  | ArgOffset += 4; | 
|  |  | 
|  | VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs. | 
|  | ReturnAddrIndex = 0;             // No return address slot generated yet. | 
|  | BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments. | 
|  | BytesCallerReserves = 0; | 
|  |  | 
|  | // Finally, inform the code generator which regs we return values in. | 
|  | switch (getValueType(F.getReturnType())) { | 
|  | default: assert(0 && "Unknown type!"); | 
|  | case MVT::isVoid: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | break; | 
|  | case MVT::i64: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | MF.addLiveOut(X86::EDX); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | MF.addLiveOut(X86::ST0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | void | 
|  | X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) { | 
|  | unsigned NumArgs = Op.Val->getNumValues(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumArgs; ++i) { | 
|  | MVT::ValueType VT = Op.Val->getValueType(i); | 
|  | std::pair<FALocInfo, FALocInfo> Loc = FormalArgLocs[i]; | 
|  | SDOperand ArgValue; | 
|  | if (Loc.first.Kind == FALocInfo::StackFrameLoc) { | 
|  | // Create the SelectionDAG nodes corresponding to a load from this parameter | 
|  | SDOperand FIN = DAG.getFrameIndex(Loc.first.Loc, MVT::i32); | 
|  | ArgValue = DAG.getLoad(Op.Val->getValueType(i),DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } else { | 
|  | // Must be a CopyFromReg | 
|  | ArgValue= DAG.getCopyFromReg(DAG.getRoot(), Loc.first.Loc, Loc.first.Typ); | 
|  | } | 
|  |  | 
|  | if (Loc.second.Kind != FALocInfo::None) { | 
|  | SDOperand ArgValue2; | 
|  | if (Loc.second.Kind == FALocInfo::StackFrameLoc) { | 
|  | // Create the SelectionDAG nodes corresponding to a load from this parameter | 
|  | SDOperand FIN = DAG.getFrameIndex(Loc.second.Loc, MVT::i32); | 
|  | ArgValue2 = DAG.getLoad(Op.Val->getValueType(i),DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } else { | 
|  | // Must be a CopyFromReg | 
|  | ArgValue2 = DAG.getCopyFromReg(DAG.getRoot(), | 
|  | Loc.second.Loc, Loc.second.Typ); | 
|  | } | 
|  | ArgValue = DAG.getNode(ISD::BUILD_PAIR, VT, ArgValue, ArgValue2); | 
|  | } | 
|  | FormalArgs.push_back(ArgValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isTailCall, SDOperand Callee, | 
|  | ArgListTy &Args, SelectionDAG &DAG) { | 
|  | // Count how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | // Keep track of the number of integer regs passed so far.  This can be either | 
|  | // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
|  | // used). | 
|  | unsigned NumIntRegs = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | // fall through | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | NumIntRegs += 2; | 
|  | break; | 
|  | } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | NumIntRegs = FASTCC_NUM_INT_ARGS_INREGS; | 
|  | NumBytes += 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // fall through | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((NumBytes & 7) == 0) | 
|  | NumBytes += 4; | 
|  |  | 
|  | Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); | 
|  | NumIntRegs = 0; | 
|  | std::vector<SDOperand> Stores; | 
|  | std::vector<SDOperand> RegValuesToPass; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first); | 
|  | // Fall through. | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | RegValuesToPass.push_back(Args[i].first); | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | // Fall through | 
|  | case MVT::f32: { | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | } | 
|  | case MVT::i64: | 
|  | // Can pass (at least) part of it in regs? | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(0, MVT::i32)); | 
|  | RegValuesToPass.push_back(Lo); | 
|  | ++NumIntRegs; | 
|  |  | 
|  | // Pass both parts in regs? | 
|  | if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { | 
|  | RegValuesToPass.push_back(Hi); | 
|  | ++NumIntRegs; | 
|  | } else { | 
|  | // Pass the high part in memory. | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Hi, PtrOff, DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Fall through | 
|  | case MVT::f64: | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Stores.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((ArgOffset & 7) == 0) | 
|  | ArgOffset += 4; | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  |  | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // The result values produced have to be legal.  Promote the result. | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | RetVals.push_back(RetTyVT); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) | 
|  | RetVals.push_back(MVT::f32); | 
|  | else | 
|  | RetVals.push_back(MVT::f64); | 
|  | break; | 
|  | case MVT::i64: | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into registers. | 
|  | SDOperand InFlag; | 
|  | for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { | 
|  | unsigned CCReg; | 
|  | SDOperand RegToPass = RegValuesToPass[i]; | 
|  | switch (RegToPass.getValueType()) { | 
|  | default: assert(0 && "Bad thing to pass in regs"); | 
|  | case MVT::i8: | 
|  | CCReg = (i == 0) ? X86::AL  : X86::DL; | 
|  | break; | 
|  | case MVT::i16: | 
|  | CCReg = (i == 0) ? X86::AX  : X86::DX; | 
|  | break; | 
|  | case MVT::i32: | 
|  | CCReg = (i == 0) ? X86::EAX : X86::EDX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | if (InFlag.Val) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | // FIXME: Do not generate X86ISD::TAILCALL for now. | 
|  | Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | NodeTys.clear(); | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
|  | Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | SDOperand RetVal; | 
|  | if (RetTyVT != MVT::isVoid) { | 
|  | switch (RetTyVT) { | 
|  | default: assert(0 && "Unknown value type to return!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | if (RetTyVT == MVT::i1) | 
|  | RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); | 
|  | break; | 
|  | case MVT::i16: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i32: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i64: { | 
|  | SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, | 
|  | Lo.getValue(2)); | 
|  | RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); | 
|  | Chain = Hi.getValue(1); | 
|  | break; | 
|  | } | 
|  | case MVT::f32: | 
|  | case MVT::f64: { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(InFlag); | 
|  | RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); | 
|  | Chain  = RetVal.getValue(1); | 
|  | InFlag = RetVal.getValue(2); | 
|  | if (X86ScalarSSE) { | 
|  | // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(RetVal); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(RetTyVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
|  | RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | Chain = RetVal.getValue(1); | 
|  | } | 
|  |  | 
|  | if (RetTyVT == MVT::f32 && !X86ScalarSSE) | 
|  | // FIXME: we would really like to remember that this FP_ROUND | 
|  | // operation is okay to eliminate if we allow excess FP precision. | 
|  | RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::make_pair(RetVal, Chain); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> X86TargetLowering:: | 
|  | LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, | 
|  | SelectionDAG &DAG) { | 
|  | SDOperand Result; | 
|  | if (Depth)        // Depths > 0 not supported yet! | 
|  | Result = DAG.getConstant(0, getPointerTy()); | 
|  | else { | 
|  | SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | if (!isFrameAddress) | 
|  | // Just load the return address | 
|  | Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, | 
|  | DAG.getSrcValue(NULL)); | 
|  | else | 
|  | Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  | } | 
|  | return std::make_pair(Result, Chain); | 
|  | } | 
|  |  | 
|  | /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode | 
|  | /// which corresponds to the condition code. | 
|  | static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: assert(0 && "Unknown X86 conditional code!"); | 
|  | case X86ISD::COND_A:  return X86::JA; | 
|  | case X86ISD::COND_AE: return X86::JAE; | 
|  | case X86ISD::COND_B:  return X86::JB; | 
|  | case X86ISD::COND_BE: return X86::JBE; | 
|  | case X86ISD::COND_E:  return X86::JE; | 
|  | case X86ISD::COND_G:  return X86::JG; | 
|  | case X86ISD::COND_GE: return X86::JGE; | 
|  | case X86ISD::COND_L:  return X86::JL; | 
|  | case X86ISD::COND_LE: return X86::JLE; | 
|  | case X86ISD::COND_NE: return X86::JNE; | 
|  | case X86ISD::COND_NO: return X86::JNO; | 
|  | case X86ISD::COND_NP: return X86::JNP; | 
|  | case X86ISD::COND_NS: return X86::JNS; | 
|  | case X86ISD::COND_O:  return X86::JO; | 
|  | case X86ISD::COND_P:  return X86::JP; | 
|  | case X86ISD::COND_S:  return X86::JS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 | 
|  | /// specific condition code. It returns a false if it cannot do a direct | 
|  | /// translation. X86CC is the translated CondCode. Flip is set to true if the | 
|  | /// the order of comparison operands should be flipped. | 
|  | static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, | 
|  | unsigned &X86CC, bool &Flip) { | 
|  | Flip = false; | 
|  | X86CC = X86ISD::COND_INVALID; | 
|  | if (!isFP) { | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETEQ:  X86CC = X86ISD::COND_E;  break; | 
|  | case ISD::SETGT:  X86CC = X86ISD::COND_G;  break; | 
|  | case ISD::SETGE:  X86CC = X86ISD::COND_GE; break; | 
|  | case ISD::SETLT:  X86CC = X86ISD::COND_L;  break; | 
|  | case ISD::SETLE:  X86CC = X86ISD::COND_LE; break; | 
|  | case ISD::SETNE:  X86CC = X86ISD::COND_NE; break; | 
|  | case ISD::SETULT: X86CC = X86ISD::COND_B;  break; | 
|  | case ISD::SETUGT: X86CC = X86ISD::COND_A;  break; | 
|  | case ISD::SETULE: X86CC = X86ISD::COND_BE; break; | 
|  | case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; | 
|  | } | 
|  | } else { | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ: X86CC = X86ISD::COND_E;  break; | 
|  | case ISD::SETOLT: Flip = true; // Fallthrough | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: X86CC = X86ISD::COND_A;  break; | 
|  | case ISD::SETOLE: Flip = true; // Fallthrough | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: X86CC = X86ISD::COND_AE; break; | 
|  | case ISD::SETUGT: Flip = true; // Fallthrough | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: X86CC = X86ISD::COND_B;  break; | 
|  | case ISD::SETUGE: Flip = true; // Fallthrough | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: X86CC = X86ISD::COND_BE; break; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE: X86CC = X86ISD::COND_NE; break; | 
|  | case ISD::SETUO: X86CC = X86ISD::COND_P;  break; | 
|  | case ISD::SETO:  X86CC = X86ISD::COND_NP; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return X86CC != X86ISD::COND_INVALID; | 
|  | } | 
|  |  | 
|  | static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC, | 
|  | bool &Flip) { | 
|  | return translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, Flip); | 
|  | } | 
|  |  | 
|  | /// hasFPCMov - is there a floating point cmov for the specific X86 condition | 
|  | /// code. Current x86 isa includes the following FP cmov instructions: | 
|  | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
|  | static bool hasFPCMov(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: | 
|  | return false; | 
|  | case X86ISD::COND_B: | 
|  | case X86ISD::COND_BE: | 
|  | case X86ISD::COND_E: | 
|  | case X86ISD::COND_P: | 
|  | case X86ISD::COND_A: | 
|  | case X86ISD::COND_AE: | 
|  | case X86ISD::COND_NE: | 
|  | case X86ISD::COND_NP: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: assert(false && "Unexpected instr type to insert"); | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: | 
|  | case X86::CMOV_V4F32: | 
|  | case X86::CMOV_V2F64: | 
|  | case X86::CMOV_V2I64: { | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the | 
|  | // diamond control-flow pattern.  The incoming instruction knows the | 
|  | // destination vreg to set, the condition code register to branch on, the | 
|  | // true/false values to select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | ilist<MachineBasicBlock>::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
|  | unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); | 
|  | BuildMI(BB, Opc, 1).addMBB(sinkMBB); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | F->getBasicBlockList().insert(It, copy0MBB); | 
|  | F->getBasicBlockList().insert(It, sinkMBB); | 
|  | // Update machine-CFG edges by first adding all successors of the current | 
|  | // block to the new block which will contain the Phi node for the select. | 
|  | for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), | 
|  | e = BB->succ_end(); i != e; ++i) | 
|  | sinkMBB->addSuccessor(*i); | 
|  | // Next, remove all successors of the current block, and add the true | 
|  | // and fallthrough blocks as its successors. | 
|  | while(!BB->succ_empty()) | 
|  | BB->removeSuccessor(BB->succ_begin()); | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | delete MI;   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | case X86::FP_TO_INT16_IN_MEM: | 
|  | case X86::FP_TO_INT32_IN_MEM: | 
|  | case X86::FP_TO_INT64_IN_MEM: { | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); | 
|  | addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned OldCW = | 
|  | F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass); | 
|  | addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); | 
|  |  | 
|  | // Get the X86 opcode to use. | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | default: assert(0 && "illegal opcode!"); | 
|  | case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; | 
|  | case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; | 
|  | case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | MachineOperand &Op = MI->getOperand(0); | 
|  | if (Op.isRegister()) { | 
|  | AM.BaseType = X86AddressMode::RegBase; | 
|  | AM.Base.Reg = Op.getReg(); | 
|  | } else { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = Op.getFrameIndex(); | 
|  | } | 
|  | Op = MI->getOperand(1); | 
|  | if (Op.isImmediate()) | 
|  | AM.Scale = Op.getImmedValue(); | 
|  | Op = MI->getOperand(2); | 
|  | if (Op.isImmediate()) | 
|  | AM.IndexReg = Op.getImmedValue(); | 
|  | Op = MI->getOperand(3); | 
|  | if (Op.isGlobalAddress()) { | 
|  | AM.GV = Op.getGlobal(); | 
|  | } else { | 
|  | AM.Disp = Op.getImmedValue(); | 
|  | } | 
|  | addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | delete MI;   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Custom Lowering Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// DarwinGVRequiresExtraLoad - true if accessing the GV requires an extra | 
|  | /// load. For Darwin, external and weak symbols are indirect, loading the value | 
|  | /// at address GV rather then the value of GV itself. This means that the | 
|  | /// GlobalAddress must be in the base or index register of the address, not the | 
|  | /// GV offset field. | 
|  | static bool DarwinGVRequiresExtraLoad(GlobalValue *GV) { | 
|  | return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || | 
|  | (GV->isExternal() && !GV->hasNotBeenReadFromBytecode())); | 
|  | } | 
|  |  | 
|  | /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return | 
|  | /// true if Op is undef or if its value falls within the specified range (L, H]. | 
|  | static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { | 
|  | if (Op.getOpcode() == ISD::UNDEF) | 
|  | return true; | 
|  |  | 
|  | unsigned Val = cast<ConstantSDNode>(Op)->getValue(); | 
|  | return (Val >= Low && Val < Hi); | 
|  | } | 
|  |  | 
|  | /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return | 
|  | /// true if Op is undef or if its value equal to the specified value. | 
|  | static bool isUndefOrEqual(SDOperand Op, unsigned Val) { | 
|  | if (Op.getOpcode() == ISD::UNDEF) | 
|  | return true; | 
|  | return cast<ConstantSDNode>(Op)->getValue() == Val; | 
|  | } | 
|  |  | 
|  | /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to PSHUFD. | 
|  | bool X86::isPSHUFDMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 4) | 
|  | return false; | 
|  |  | 
|  | // Check if the value doesn't reference the second vector. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | if (cast<ConstantSDNode>(Arg)->getValue() >= 4) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to PSHUFHW. | 
|  | bool X86::isPSHUFHWMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 8) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword copied in order. | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | if (cast<ConstantSDNode>(Arg)->getValue() != i) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Upper quadword shuffled. | 
|  | for (unsigned i = 4; i != 8; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val < 4 || Val > 7) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to PSHUFLW. | 
|  | bool X86::isPSHUFLWMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 8) | 
|  | return false; | 
|  |  | 
|  | // Upper quadword copied in order. | 
|  | for (unsigned i = 4; i != 8; ++i) | 
|  | if (!isUndefOrEqual(N->getOperand(i), i)) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword shuffled. | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | if (!isUndefOrInRange(N->getOperand(i), 0, 4)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to SHUFP*. | 
|  | static bool isSHUFPMask(std::vector<SDOperand> &N) { | 
|  | unsigned NumElems = N.size(); | 
|  | if (NumElems != 2 && NumElems != 4) return false; | 
|  |  | 
|  | unsigned Half = NumElems / 2; | 
|  | for (unsigned i = 0; i < Half; ++i) | 
|  | if (!isUndefOrInRange(N[i], 0, NumElems)) | 
|  | return false; | 
|  | for (unsigned i = Half; i < NumElems; ++i) | 
|  | if (!isUndefOrInRange(N[i], NumElems, NumElems*2)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isSHUFPMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | return ::isSHUFPMask(Ops); | 
|  | } | 
|  |  | 
|  | /// isCommutedSHUFP - Returns true if the shuffle mask is except | 
|  | /// the reverse of what x86 shuffles want. x86 shuffles requires the lower | 
|  | /// half elements to come from vector 1 (which would equal the dest.) and | 
|  | /// the upper half to come from vector 2. | 
|  | static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) { | 
|  | unsigned NumElems = Ops.size(); | 
|  | if (NumElems != 2 && NumElems != 4) return false; | 
|  |  | 
|  | unsigned Half = NumElems / 2; | 
|  | for (unsigned i = 0; i < Half; ++i) | 
|  | if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2)) | 
|  | return false; | 
|  | for (unsigned i = Half; i < NumElems; ++i) | 
|  | if (!isUndefOrInRange(Ops[i], 0, NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCommutedSHUFP(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | return isCommutedSHUFP(Ops); | 
|  | } | 
|  |  | 
|  | /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVHLPS. | 
|  | bool X86::isMOVHLPSMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 | 
|  | return isUndefOrEqual(N->getOperand(0), 6) && | 
|  | isUndefOrEqual(N->getOperand(1), 7) && | 
|  | isUndefOrEqual(N->getOperand(2), 2) && | 
|  | isUndefOrEqual(N->getOperand(3), 3); | 
|  | } | 
|  |  | 
|  | /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. | 
|  | bool X86::isMOVLPMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | unsigned NumElems = N->getNumOperands(); | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = NumElems/2; i < NumElems; ++i) | 
|  | if (!isUndefOrEqual(N->getOperand(i), i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} | 
|  | /// and MOVLHPS. | 
|  | bool X86::isMOVHPMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | unsigned NumElems = N->getNumOperands(); | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) | 
|  | if (!isUndefOrEqual(N->getOperand(i), i)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < NumElems/2; ++i) { | 
|  | SDOperand Arg = N->getOperand(i + NumElems/2); | 
|  | if (!isUndefOrEqual(Arg, i + NumElems)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKL. | 
|  | bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) { | 
|  | unsigned NumElems = N.size(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { | 
|  | SDOperand BitI  = N[i]; | 
|  | SDOperand BitI1 = N[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (V2IsSplat) { | 
|  | if (isUndefOrEqual(BitI1, NumElems)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(BitI1, j + NumElems)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | return ::isUNPCKLMask(Ops, V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to UNPCKH. | 
|  | bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) { | 
|  | unsigned NumElems = N.size(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { | 
|  | SDOperand BitI  = N[i]; | 
|  | SDOperand BitI1 = N[i+1]; | 
|  | if (!isUndefOrEqual(BitI, j + NumElems/2)) | 
|  | return false; | 
|  | if (V2IsSplat) { | 
|  | if (isUndefOrEqual(BitI1, NumElems)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | return ::isUNPCKHMask(Ops, V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form | 
|  | /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, | 
|  | /// <0, 0, 1, 1> | 
|  | bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | unsigned NumElems = N->getNumOperands(); | 
|  | if (NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { | 
|  | SDOperand BitI  = N->getOperand(i); | 
|  | SDOperand BitI1 = N->getOperand(i+1); | 
|  |  | 
|  | if (!isUndefOrEqual(BitI, j)) | 
|  | return false; | 
|  | if (!isUndefOrEqual(BitI1, j)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSS, | 
|  | /// MOVSD, and MOVD, i.e. setting the lowest element. | 
|  | static bool isMOVLMask(std::vector<SDOperand> &N) { | 
|  | unsigned NumElems = N.size(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | if (!isUndefOrEqual(N[0], NumElems)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 1; i < NumElems; ++i) { | 
|  | SDOperand Arg = N[i]; | 
|  | if (!isUndefOrEqual(Arg, i)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86::isMOVLMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | return ::isMOVLMask(Ops); | 
|  | } | 
|  |  | 
|  | /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse | 
|  | /// of what x86 movss want. X86 movs requires the lowest  element to be lowest | 
|  | /// element of vector 2 and the other elements to come from vector 1 in order. | 
|  | static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false) { | 
|  | unsigned NumElems = Ops.size(); | 
|  | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) | 
|  | return false; | 
|  |  | 
|  | if (!isUndefOrEqual(Ops[0], 0)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 1; i < NumElems; ++i) { | 
|  | SDOperand Arg = Ops[i]; | 
|  | if (V2IsSplat) { | 
|  | if (!isUndefOrEqual(Arg, NumElems)) | 
|  | return false; | 
|  | } else { | 
|  | if (!isUndefOrEqual(Arg, i+NumElems)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | return isCommutedMOVL(Ops, V2IsSplat); | 
|  | } | 
|  |  | 
|  | /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. | 
|  | bool X86::isMOVSHDUPMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect 1, 1, 3, 3 | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val != 1) return false; | 
|  | } | 
|  |  | 
|  | bool HasHi = false; | 
|  | for (unsigned i = 2; i < 4; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val != 3) return false; | 
|  | HasHi = true; | 
|  | } | 
|  |  | 
|  | // Don't use movshdup if it can be done with a shufps. | 
|  | return HasHi; | 
|  | } | 
|  |  | 
|  | /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. | 
|  | bool X86::isMOVSLDUPMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 4) | 
|  | return false; | 
|  |  | 
|  | // Expect 0, 0, 2, 2 | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val != 0) return false; | 
|  | } | 
|  |  | 
|  | bool HasHi = false; | 
|  | for (unsigned i = 2; i < 4; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val != 2) return false; | 
|  | HasHi = true; | 
|  | } | 
|  |  | 
|  | // Don't use movshdup if it can be done with a shufps. | 
|  | return HasHi; | 
|  | } | 
|  |  | 
|  | /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies | 
|  | /// a splat of a single element. | 
|  | static bool isSplatMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | // This is a splat operation if each element of the permute is the same, and | 
|  | // if the value doesn't reference the second vector. | 
|  | unsigned NumElems = N->getNumOperands(); | 
|  | SDOperand ElementBase; | 
|  | unsigned i = 0; | 
|  | for (; i != NumElems; ++i) { | 
|  | SDOperand Elt = N->getOperand(i); | 
|  | if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) { | 
|  | ElementBase = Elt; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ElementBase.Val) | 
|  | return false; | 
|  |  | 
|  | for (; i != NumElems; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | if (Arg != ElementBase) return false; | 
|  | } | 
|  |  | 
|  | // Make sure it is a splat of the first vector operand. | 
|  | return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; | 
|  | } | 
|  |  | 
|  | /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies | 
|  | /// a splat of a single element and it's a 2 or 4 element mask. | 
|  | bool X86::isSplatMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | // We can only splat 64-bit, and 32-bit quantities with a single instruction. | 
|  | if (N->getNumOperands() != 4 && N->getNumOperands() != 2) | 
|  | return false; | 
|  | return ::isSplatMask(N); | 
|  | } | 
|  |  | 
|  | /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* | 
|  | /// instructions. | 
|  | unsigned X86::getShuffleSHUFImmediate(SDNode *N) { | 
|  | unsigned NumOperands = N->getNumOperands(); | 
|  | unsigned Shift = (NumOperands == 4) ? 2 : 1; | 
|  | unsigned Mask = 0; | 
|  | for (unsigned i = 0; i < NumOperands; ++i) { | 
|  | unsigned Val = 0; | 
|  | SDOperand Arg = N->getOperand(NumOperands-i-1); | 
|  | if (Arg.getOpcode() != ISD::UNDEF) | 
|  | Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val >= NumOperands) Val -= NumOperands; | 
|  | Mask |= Val; | 
|  | if (i != NumOperands - 1) | 
|  | Mask <<= Shift; | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW | 
|  | /// instructions. | 
|  | unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { | 
|  | unsigned Mask = 0; | 
|  | // 8 nodes, but we only care about the last 4. | 
|  | for (unsigned i = 7; i >= 4; --i) { | 
|  | unsigned Val = 0; | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() != ISD::UNDEF) | 
|  | Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | Mask |= (Val - 4); | 
|  | if (i != 4) | 
|  | Mask <<= 2; | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle | 
|  | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW | 
|  | /// instructions. | 
|  | unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { | 
|  | unsigned Mask = 0; | 
|  | // 8 nodes, but we only care about the first 4. | 
|  | for (int i = 3; i >= 0; --i) { | 
|  | unsigned Val = 0; | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() != ISD::UNDEF) | 
|  | Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | Mask |= Val; | 
|  | if (i != 0) | 
|  | Mask <<= 2; | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a 8 element shuffle that can be broken into a pair of | 
|  | /// PSHUFHW and PSHUFLW. | 
|  | static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | if (N->getNumOperands() != 8) | 
|  | return false; | 
|  |  | 
|  | // Lower quadword shuffled. | 
|  | for (unsigned i = 0; i != 4; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val > 4) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Upper quadword shuffled. | 
|  | for (unsigned i = 4; i != 8; ++i) { | 
|  | SDOperand Arg = N->getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) continue; | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val < 4 || Val > 7) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as | 
|  | /// values in ther permute mask. | 
|  | static SDOperand CommuteVectorShuffle(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand V1 = Op.getOperand(0); | 
|  | SDOperand V2 = Op.getOperand(1); | 
|  | SDOperand Mask = Op.getOperand(2); | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | MVT::ValueType MaskVT = Mask.getValueType(); | 
|  | MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT); | 
|  | unsigned NumElems = Mask.getNumOperands(); | 
|  | std::vector<SDOperand> MaskVec; | 
|  |  | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | SDOperand Arg = Mask.getOperand(i); | 
|  | if (Arg.getOpcode() == ISD::UNDEF) { | 
|  | MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); | 
|  | continue; | 
|  | } | 
|  | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val < NumElems) | 
|  | MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); | 
|  | else | 
|  | MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); | 
|  | } | 
|  |  | 
|  | Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, Mask); | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVHLPS - Return true if the node should be transformed to | 
|  | /// match movhlps. The lower half elements should come from upper half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). | 
|  | static bool ShouldXformToMOVHLPS(SDNode *Mask) { | 
|  | unsigned NumElems = Mask->getNumOperands(); | 
|  | if (NumElems != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = 2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask->getOperand(i), i+2)) | 
|  | return false; | 
|  | for (unsigned i = 2; i != 4; ++i) | 
|  | if (!isUndefOrEqual(Mask->getOperand(i), i+4)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isScalarLoadToVector - Returns true if the node is a scalar load that | 
|  | /// is promoted to a vector. | 
|  | static inline bool isScalarLoadToVector(SDNode *N) { | 
|  | if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | N = N->getOperand(0).Val; | 
|  | return (N->getOpcode() == ISD::LOAD); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to | 
|  | /// match movlp{s|d}. The lower half elements should come from lower half of | 
|  | /// V1 (and in order), and the upper half elements should come from the upper | 
|  | /// half of V2 (and in order). And since V1 will become the source of the | 
|  | /// MOVLP, it must be either a vector load or a scalar load to vector. | 
|  | static bool ShouldXformToMOVLP(SDNode *V1, SDNode *Mask) { | 
|  | if (V1->getOpcode() != ISD::LOAD && !isScalarLoadToVector(V1)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumElems = Mask->getNumOperands(); | 
|  | if (NumElems != 2 && NumElems != 4) | 
|  | return false; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) | 
|  | if (!isUndefOrEqual(Mask->getOperand(i), i)) | 
|  | return false; | 
|  | for (unsigned i = NumElems/2; i != NumElems; ++i) | 
|  | if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are | 
|  | /// all the same. | 
|  | static bool isSplatVector(SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) | 
|  | return false; | 
|  |  | 
|  | SDOperand SplatValue = N->getOperand(0); | 
|  | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i) != SplatValue) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements | 
|  | /// that point to V2 points to its first element. | 
|  | static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { | 
|  | assert(Mask.getOpcode() == ISD::BUILD_VECTOR); | 
|  |  | 
|  | bool Changed = false; | 
|  | std::vector<SDOperand> MaskVec; | 
|  | unsigned NumElems = Mask.getNumOperands(); | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | SDOperand Arg = Mask.getOperand(i); | 
|  | if (Arg.getOpcode() != ISD::UNDEF) { | 
|  | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); | 
|  | if (Val > NumElems) { | 
|  | Arg = DAG.getConstant(NumElems, Arg.getValueType()); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | MaskVec.push_back(Arg); | 
|  | } | 
|  |  | 
|  | if (Changed) | 
|  | Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), MaskVec); | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd | 
|  | /// operation of specified width. | 
|  | static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); | 
|  |  | 
|  | std::vector<SDOperand> MaskVec; | 
|  | MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | MaskVec.push_back(DAG.getConstant(i, BaseVT)); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | } | 
|  |  | 
|  | /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation | 
|  | /// of specified width. | 
|  | static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); | 
|  | std::vector<SDOperand> MaskVec; | 
|  | for (unsigned i = 0, e = NumElems/2; i != e; ++i) { | 
|  | MaskVec.push_back(DAG.getConstant(i,            BaseVT)); | 
|  | MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); | 
|  | } | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | } | 
|  |  | 
|  | /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation | 
|  | /// of specified width. | 
|  | static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); | 
|  | unsigned Half = NumElems/2; | 
|  | std::vector<SDOperand> MaskVec; | 
|  | for (unsigned i = 0; i != Half; ++i) { | 
|  | MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT)); | 
|  | MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); | 
|  | } | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | } | 
|  |  | 
|  | /// getZeroVector - Returns a vector of specified type with all zero elements. | 
|  | /// | 
|  | static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { | 
|  | assert(MVT::isVector(VT) && "Expected a vector type"); | 
|  | unsigned NumElems = getVectorNumElements(VT); | 
|  | MVT::ValueType EVT = MVT::getVectorBaseType(VT); | 
|  | bool isFP = MVT::isFloatingPoint(EVT); | 
|  | SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT); | 
|  | std::vector<SDOperand> ZeroVec(NumElems, Zero); | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, VT, ZeroVec); | 
|  | } | 
|  |  | 
|  | /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. | 
|  | /// | 
|  | static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand V1 = Op.getOperand(0); | 
|  | SDOperand Mask = Op.getOperand(2); | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | unsigned NumElems = Mask.getNumOperands(); | 
|  | Mask = getUnpacklMask(NumElems, DAG); | 
|  | while (NumElems != 4) { | 
|  | V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); | 
|  | NumElems >>= 1; | 
|  | } | 
|  | V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); | 
|  |  | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); | 
|  | Mask = getZeroVector(MaskVT, DAG); | 
|  | SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, | 
|  | DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); | 
|  | } | 
|  |  | 
|  | /// isZeroNode - Returns true if Elt is a constant zero or a floating point | 
|  | /// constant +0.0. | 
|  | static inline bool isZeroNode(SDOperand Elt) { | 
|  | return ((isa<ConstantSDNode>(Elt) && | 
|  | cast<ConstantSDNode>(Elt)->getValue() == 0) || | 
|  | (isa<ConstantFPSDNode>(Elt) && | 
|  | cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0))); | 
|  | } | 
|  |  | 
|  | /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified | 
|  | /// vector and zero or undef vector. | 
|  | static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, | 
|  | unsigned NumElems, unsigned Idx, | 
|  | bool isZero, SelectionDAG &DAG) { | 
|  | SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); | 
|  | SDOperand Zero = DAG.getConstant(0, EVT); | 
|  | std::vector<SDOperand> MaskVec(NumElems, Zero); | 
|  | MaskVec[Idx] = DAG.getConstant(NumElems, EVT); | 
|  | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. | 
|  | /// | 
|  | static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG) { | 
|  | if (NumNonZero > 8) | 
|  | return SDOperand(); | 
|  |  | 
|  | SDOperand V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 16; ++i) { | 
|  | bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (ThisIsNonZero && First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, DAG); | 
|  | else | 
|  | V = DAG.getNode(ISD::UNDEF, MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  |  | 
|  | if ((i & 1) != 0) { | 
|  | SDOperand ThisElt(0, 0), LastElt(0, 0); | 
|  | bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; | 
|  | if (LastIsNonZero) { | 
|  | LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); | 
|  | } | 
|  | if (ThisIsNonZero) { | 
|  | ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); | 
|  | ThisElt = DAG.getNode(ISD::SHL, MVT::i16, | 
|  | ThisElt, DAG.getConstant(8, MVT::i8)); | 
|  | if (LastIsNonZero) | 
|  | ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); | 
|  | } else | 
|  | ThisElt = LastElt; | 
|  |  | 
|  | if (ThisElt.Val) | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, | 
|  | DAG.getConstant(i/2, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); | 
|  | } | 
|  |  | 
|  | /// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16. | 
|  | /// | 
|  | static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, | 
|  | unsigned NumNonZero, unsigned NumZero, | 
|  | SelectionDAG &DAG) { | 
|  | if (NumNonZero > 4) | 
|  | return SDOperand(); | 
|  |  | 
|  | SDOperand V(0, 0); | 
|  | bool First = true; | 
|  | for (unsigned i = 0; i < 8; ++i) { | 
|  | bool isNonZero = (NonZeros & (1 << i)) != 0; | 
|  | if (isNonZero) { | 
|  | if (First) { | 
|  | if (NumZero) | 
|  | V = getZeroVector(MVT::v8i16, DAG); | 
|  | else | 
|  | V = DAG.getNode(ISD::UNDEF, MVT::v8i16); | 
|  | First = false; | 
|  | } | 
|  | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), | 
|  | DAG.getConstant(i, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { | 
|  | // All zero's are handled with pxor. | 
|  | if (ISD::isBuildVectorAllZeros(Op.Val)) | 
|  | return Op; | 
|  |  | 
|  | // All one's are handled with pcmpeqd. | 
|  | if (ISD::isBuildVectorAllOnes(Op.Val)) | 
|  | return Op; | 
|  |  | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | MVT::ValueType EVT = MVT::getVectorBaseType(VT); | 
|  | unsigned EVTBits = MVT::getSizeInBits(EVT); | 
|  |  | 
|  | unsigned NumElems = Op.getNumOperands(); | 
|  | unsigned NumZero  = 0; | 
|  | unsigned NumNonZero = 0; | 
|  | unsigned NonZeros = 0; | 
|  | std::set<SDOperand> Values; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDOperand Elt = Op.getOperand(i); | 
|  | if (Elt.getOpcode() != ISD::UNDEF) { | 
|  | Values.insert(Elt); | 
|  | if (isZeroNode(Elt)) | 
|  | NumZero++; | 
|  | else { | 
|  | NonZeros |= (1 << i); | 
|  | NumNonZero++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumNonZero == 0) | 
|  | // Must be a mix of zero and undef. Return a zero vector. | 
|  | return getZeroVector(VT, DAG); | 
|  |  | 
|  | // Splat is obviously ok. Let legalizer expand it to a shuffle. | 
|  | if (Values.size() == 1) | 
|  | return SDOperand(); | 
|  |  | 
|  | // Special case for single non-zero element. | 
|  | if (NumNonZero == 1) { | 
|  | unsigned Idx = CountTrailingZeros_32(NonZeros); | 
|  | SDOperand Item = Op.getOperand(Idx); | 
|  | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); | 
|  | if (Idx == 0) | 
|  | // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. | 
|  | return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, | 
|  | NumZero > 0, DAG); | 
|  |  | 
|  | if (EVTBits == 32) { | 
|  | // Turn it into a shuffle of zero and zero-extended scalar to vector. | 
|  | Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, | 
|  | DAG); | 
|  | MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); | 
|  | std::vector<SDOperand> MaskVec; | 
|  | for (unsigned i = 0; i < NumElems; i++) | 
|  | MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); | 
|  | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, | 
|  | DAG.getNode(ISD::UNDEF, VT), Mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Let legalizer expand 2-widde build_vector's. | 
|  | if (EVTBits == 64) | 
|  | return SDOperand(); | 
|  |  | 
|  | // If element VT is < 32 bits, convert it to inserts into a zero vector. | 
|  | if (EVTBits == 8) { | 
|  | SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG); | 
|  | if (V.Val) return V; | 
|  | } | 
|  |  | 
|  | if (EVTBits == 16) { | 
|  | SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG); | 
|  | if (V.Val) return V; | 
|  | } | 
|  |  | 
|  | // If element VT is == 32 bits, turn it into a number of shuffles. | 
|  | std::vector<SDOperand> V(NumElems); | 
|  | if (NumElems == 4 && NumZero > 0) { | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | bool isZero = !(NonZeros & (1 << i)); | 
|  | if (isZero) | 
|  | V[i] = getZeroVector(VT, DAG); | 
|  | else | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { | 
|  | default: break; | 
|  | case 0: | 
|  | V[i] = V[i*2];  // Must be a zero vector. | 
|  | break; | 
|  | case 1: | 
|  | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], | 
|  | getMOVLMask(NumElems, DAG)); | 
|  | break; | 
|  | case 2: | 
|  | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], | 
|  | getMOVLMask(NumElems, DAG)); | 
|  | break; | 
|  | case 3: | 
|  | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], | 
|  | getUnpacklMask(NumElems, DAG)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Take advantage of the fact R32 to VR128 scalar_to_vector (i.e. movd) | 
|  | // clears the upper bits. | 
|  | // FIXME: we can do the same for v4f32 case when we know both parts of | 
|  | // the lower half come from scalar_to_vector (loadf32). We should do | 
|  | // that in post legalizer dag combiner with target specific hooks. | 
|  | if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) | 
|  | return V[0]; | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); | 
|  | std::vector<SDOperand> MaskVec; | 
|  | bool Reverse = (NonZeros & 0x3) == 2; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | if (Reverse) | 
|  | MaskVec.push_back(DAG.getConstant(1-i, EVT)); | 
|  | else | 
|  | MaskVec.push_back(DAG.getConstant(i, EVT)); | 
|  | Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | if (Reverse) | 
|  | MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); | 
|  | else | 
|  | MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); | 
|  | SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); | 
|  | } | 
|  |  | 
|  | if (Values.size() > 2) { | 
|  | // Expand into a number of unpckl*. | 
|  | // e.g. for v4f32 | 
|  | //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> | 
|  | //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> | 
|  | //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0> | 
|  | SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); | 
|  | NumElems >>= 1; | 
|  | while (NumElems != 0) { | 
|  | for (unsigned i = 0; i < NumElems; ++i) | 
|  | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], | 
|  | UnpckMask); | 
|  | NumElems >>= 1; | 
|  | } | 
|  | return V[0]; | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand V1 = Op.getOperand(0); | 
|  | SDOperand V2 = Op.getOperand(1); | 
|  | SDOperand PermMask = Op.getOperand(2); | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | unsigned NumElems = PermMask.getNumOperands(); | 
|  | bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; | 
|  | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; | 
|  |  | 
|  | if (isSplatMask(PermMask.Val)) { | 
|  | if (NumElems <= 4) return Op; | 
|  | // Promote it to a v4i32 splat. | 
|  | return PromoteSplat(Op, DAG); | 
|  | } | 
|  |  | 
|  | if (X86::isMOVLMask(PermMask.Val)) | 
|  | return (V1IsUndef) ? V2 : Op; | 
|  |  | 
|  | if (X86::isMOVSHDUPMask(PermMask.Val) || | 
|  | X86::isMOVSLDUPMask(PermMask.Val) || | 
|  | X86::isMOVHLPSMask(PermMask.Val) || | 
|  | X86::isMOVHPMask(PermMask.Val) || | 
|  | X86::isMOVLPMask(PermMask.Val)) | 
|  | return Op; | 
|  |  | 
|  | if (ShouldXformToMOVHLPS(PermMask.Val) || | 
|  | ShouldXformToMOVLP(V1.Val, PermMask.Val)) | 
|  | return CommuteVectorShuffle(Op, DAG); | 
|  |  | 
|  | bool V1IsSplat = isSplatVector(V1.Val) || V1.getOpcode() == ISD::UNDEF; | 
|  | bool V2IsSplat = isSplatVector(V2.Val) || V2.getOpcode() == ISD::UNDEF; | 
|  | if (V1IsSplat && !V2IsSplat) { | 
|  | Op = CommuteVectorShuffle(Op, DAG); | 
|  | V1 = Op.getOperand(0); | 
|  | V2 = Op.getOperand(1); | 
|  | PermMask = Op.getOperand(2); | 
|  | V2IsSplat = true; | 
|  | } | 
|  |  | 
|  | if (isCommutedMOVL(PermMask.Val, V2IsSplat)) { | 
|  | if (V2IsUndef) return V1; | 
|  | Op = CommuteVectorShuffle(Op, DAG); | 
|  | V1 = Op.getOperand(0); | 
|  | V2 = Op.getOperand(1); | 
|  | PermMask = Op.getOperand(2); | 
|  | if (V2IsSplat) { | 
|  | // V2 is a splat, so the mask may be malformed. That is, it may point | 
|  | // to any V2 element. The instruction selectior won't like this. Get | 
|  | // a corrected mask and commute to form a proper MOVS{S|D}. | 
|  | SDOperand NewMask = getMOVLMask(NumElems, DAG); | 
|  | if (NewMask.Val != PermMask.Val) | 
|  | Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || | 
|  | X86::isUNPCKLMask(PermMask.Val) || | 
|  | X86::isUNPCKHMask(PermMask.Val)) | 
|  | return Op; | 
|  |  | 
|  | if (V2IsSplat) { | 
|  | // Normalize mask so all entries that point to V2 points to its first | 
|  | // element then try to match unpck{h|l} again. If match, return a | 
|  | // new vector_shuffle with the corrected mask. | 
|  | SDOperand NewMask = NormalizeMask(PermMask, DAG); | 
|  | if (NewMask.Val != PermMask.Val) { | 
|  | if (X86::isUNPCKLMask(PermMask.Val, true)) { | 
|  | SDOperand NewMask = getUnpacklMask(NumElems, DAG); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); | 
|  | } else if (X86::isUNPCKHMask(PermMask.Val, true)) { | 
|  | SDOperand NewMask = getUnpackhMask(NumElems, DAG); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Normalize the node to match x86 shuffle ops if needed | 
|  | if (V2.getOpcode() != ISD::UNDEF) | 
|  | if (isCommutedSHUFP(PermMask.Val)) { | 
|  | Op = CommuteVectorShuffle(Op, DAG); | 
|  | V1 = Op.getOperand(0); | 
|  | V2 = Op.getOperand(1); | 
|  | PermMask = Op.getOperand(2); | 
|  | } | 
|  |  | 
|  | // If VT is integer, try PSHUF* first, then SHUFP*. | 
|  | if (MVT::isInteger(VT)) { | 
|  | if (X86::isPSHUFDMask(PermMask.Val) || | 
|  | X86::isPSHUFHWMask(PermMask.Val) || | 
|  | X86::isPSHUFLWMask(PermMask.Val)) { | 
|  | if (V2.getOpcode() != ISD::UNDEF) | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, | 
|  | DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | if (X86::isSHUFPMask(PermMask.Val)) | 
|  | return Op; | 
|  |  | 
|  | // Handle v8i16 shuffle high / low shuffle node pair. | 
|  | if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) { | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); | 
|  | MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); | 
|  | std::vector<SDOperand> MaskVec; | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | MaskVec.push_back(PermMask.getOperand(i)); | 
|  | for (unsigned i = 4; i != 8; ++i) | 
|  | MaskVec.push_back(DAG.getConstant(i, BaseVT)); | 
|  | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); | 
|  | MaskVec.clear(); | 
|  | for (unsigned i = 0; i != 4; ++i) | 
|  | MaskVec.push_back(DAG.getConstant(i, BaseVT)); | 
|  | for (unsigned i = 4; i != 8; ++i) | 
|  | MaskVec.push_back(PermMask.getOperand(i)); | 
|  | Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); | 
|  | } | 
|  | } else { | 
|  | // Floating point cases in the other order. | 
|  | if (X86::isSHUFPMask(PermMask.Val)) | 
|  | return Op; | 
|  | if (X86::isPSHUFDMask(PermMask.Val) || | 
|  | X86::isPSHUFHWMask(PermMask.Val) || | 
|  | X86::isPSHUFLWMask(PermMask.Val)) { | 
|  | if (V2.getOpcode() != ISD::UNDEF) | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, | 
|  | DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); | 
|  | return Op; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumElems == 4) { | 
|  | // Break it into (shuffle shuffle_hi, shuffle_lo). | 
|  | MVT::ValueType MaskVT = PermMask.getValueType(); | 
|  | MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); | 
|  | std::map<unsigned, std::pair<int, int> > Locs; | 
|  | std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); | 
|  | std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); | 
|  | std::vector<SDOperand> *MaskPtr = &LoMask; | 
|  | unsigned MaskIdx = 0; | 
|  | unsigned LoIdx = 0; | 
|  | unsigned HiIdx = NumElems/2; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (i == NumElems/2) { | 
|  | MaskPtr = &HiMask; | 
|  | MaskIdx = 1; | 
|  | LoIdx = 0; | 
|  | HiIdx = NumElems/2; | 
|  | } | 
|  | SDOperand Elt = PermMask.getOperand(i); | 
|  | if (Elt.getOpcode() == ISD::UNDEF) { | 
|  | Locs[i] = std::make_pair(-1, -1); | 
|  | } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { | 
|  | Locs[i] = std::make_pair(MaskIdx, LoIdx); | 
|  | (*MaskPtr)[LoIdx] = Elt; | 
|  | LoIdx++; | 
|  | } else { | 
|  | Locs[i] = std::make_pair(MaskIdx, HiIdx); | 
|  | (*MaskPtr)[HiIdx] = Elt; | 
|  | HiIdx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDOperand LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, LoMask)); | 
|  | SDOperand HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, HiMask)); | 
|  | std::vector<SDOperand> MaskOps; | 
|  | for (unsigned i = 0; i != NumElems; ++i) { | 
|  | if (Locs[i].first == -1) { | 
|  | MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); | 
|  | } else { | 
|  | unsigned Idx = Locs[i].first * NumElems + Locs[i].second; | 
|  | MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); | 
|  | } | 
|  | } | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskOps)); | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return SDOperand(); | 
|  |  | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | // TODO: handle v16i8. | 
|  | if (MVT::getSizeInBits(VT) == 16) { | 
|  | // Transform it so it match pextrw which produces a 32-bit result. | 
|  | MVT::ValueType EVT = (MVT::ValueType)(VT+1); | 
|  | SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract, | 
|  | DAG.getValueType(VT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, VT, Assert); | 
|  | } else if (MVT::getSizeInBits(VT) == 32) { | 
|  | SDOperand Vec = Op.getOperand(0); | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // SHUFPS the element to the lowest double word, then movss. | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); | 
|  | SDOperand IdxNode = DAG.getConstant((Idx < 2) ? Idx : Idx+4, | 
|  | MVT::getVectorBaseType(MaskVT)); | 
|  | std::vector<SDOperand> IdxVec; | 
|  | IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT))); | 
|  | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); | 
|  | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); | 
|  | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); | 
|  | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, IdxVec); | 
|  | Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), | 
|  | Vec, Vec, Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | } else if (MVT::getSizeInBits(VT) == 64) { | 
|  | SDOperand Vec = Op.getOperand(0); | 
|  | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); | 
|  | if (Idx == 0) | 
|  | return Op; | 
|  |  | 
|  | // UNPCKHPD the element to the lowest double word, then movsd. | 
|  | // Note if the lower 64 bits of the result of the UNPCKHPD is then stored | 
|  | // to a f64mem, the whole operation is folded into a single MOVHPDmr. | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); | 
|  | std::vector<SDOperand> IdxVec; | 
|  | IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT))); | 
|  | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); | 
|  | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, IdxVec); | 
|  | Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), | 
|  | Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { | 
|  | // Transform it so it match pinsrw which expects a 16-bit value in a R32 | 
|  | // as its second argument. | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | MVT::ValueType BaseVT = MVT::getVectorBaseType(VT); | 
|  | SDOperand N0 = Op.getOperand(0); | 
|  | SDOperand N1 = Op.getOperand(1); | 
|  | SDOperand N2 = Op.getOperand(2); | 
|  | if (MVT::getSizeInBits(BaseVT) == 16) { | 
|  | if (N1.getValueType() != MVT::i32) | 
|  | N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); | 
|  | if (N2.getValueType() != MVT::i32) | 
|  | N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32); | 
|  | return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); | 
|  | } else if (MVT::getSizeInBits(BaseVT) == 32) { | 
|  | unsigned Idx = cast<ConstantSDNode>(N2)->getValue(); | 
|  | if (Idx == 0) { | 
|  | // Use a movss. | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1); | 
|  | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); | 
|  | MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); | 
|  | std::vector<SDOperand> MaskVec; | 
|  | MaskVec.push_back(DAG.getConstant(4, BaseVT)); | 
|  | for (unsigned i = 1; i <= 3; ++i) | 
|  | MaskVec.push_back(DAG.getConstant(i, BaseVT)); | 
|  | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1, | 
|  | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec)); | 
|  | } else { | 
|  | // Use two pinsrw instructions to insert a 32 bit value. | 
|  | Idx <<= 1; | 
|  | if (MVT::isFloatingPoint(N1.getValueType())) { | 
|  | if (N1.getOpcode() == ISD::LOAD) { | 
|  | // Just load directly from f32mem to R32. | 
|  | N1 = DAG.getLoad(MVT::i32, N1.getOperand(0), N1.getOperand(1), | 
|  | N1.getOperand(2)); | 
|  | } else { | 
|  | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1); | 
|  | N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1); | 
|  | N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1, | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | } | 
|  | } | 
|  | N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0); | 
|  | N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, | 
|  | DAG.getConstant(Idx, MVT::i32)); | 
|  | N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8)); | 
|  | N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, | 
|  | DAG.getConstant(Idx+1, MVT::i32)); | 
|  | return DAG.getNode(ISD::BIT_CONVERT, VT, N0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); | 
|  | return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt); | 
|  | } | 
|  |  | 
|  | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as | 
|  | // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is | 
|  | // one of the above mentioned nodes. It has to be wrapped because otherwise | 
|  | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
|  | // be used to form addressing mode. These wrapped nodes will be selected | 
|  | // into MOV32ri. | 
|  | SDOperand | 
|  | X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { | 
|  | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
|  | SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
|  | DAG.getTargetConstantPool(CP->get(), getPointerTy(), | 
|  | CP->getAlignment())); | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
|  | Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { | 
|  | GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
|  | DAG.getTargetGlobalAddress(GV, getPointerTy())); | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
|  | Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); | 
|  |  | 
|  | // For Darwin, external and weak symbols are indirect, so we want to load | 
|  | // the value at address GV, not the value of GV itself. This means that | 
|  | // the GlobalAddress must be in the base or index register of the address, | 
|  | // not the GV offset field. | 
|  | if (getTargetMachine().getRelocationModel() != Reloc::Static && | 
|  | DarwinGVRequiresExtraLoad(GV)) | 
|  | Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), | 
|  | Result, DAG.getSrcValue(NULL)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { | 
|  | const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); | 
|  | SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
|  | DAG.getTargetExternalSymbol(Sym, getPointerTy())); | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
|  | Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && | 
|  | "Not an i64 shift!"); | 
|  | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
|  | SDOperand ShOpLo = Op.getOperand(0); | 
|  | SDOperand ShOpHi = Op.getOperand(1); | 
|  | SDOperand ShAmt  = Op.getOperand(2); | 
|  | SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, | 
|  | DAG.getConstant(31, MVT::i8)) | 
|  | : DAG.getConstant(0, MVT::i32); | 
|  |  | 
|  | SDOperand Tmp2, Tmp3; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); | 
|  | } else { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); | 
|  | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); | 
|  | } | 
|  |  | 
|  | SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, | 
|  | ShAmt, DAG.getConstant(32, MVT::i8)); | 
|  |  | 
|  | SDOperand Hi, Lo; | 
|  | SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::i32); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Ops.push_back(Tmp2); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | InFlag = Hi.getValue(1); | 
|  |  | 
|  | Ops.clear(); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(Tmp1); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | } else { | 
|  | Ops.push_back(Tmp2); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | InFlag = Lo.getValue(1); | 
|  |  | 
|  | Ops.clear(); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(Tmp1); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | } | 
|  |  | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::i32); | 
|  | Tys.push_back(MVT::i32); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Lo); | 
|  | Ops.push_back(Hi); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getOperand(0).getValueType() <= MVT::i64 && | 
|  | Op.getOperand(0).getValueType() >= MVT::i16 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  |  | 
|  | SDOperand Result; | 
|  | MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); | 
|  | unsigned Size = MVT::getSizeInBits(SrcVT)/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, | 
|  | DAG.getEntryNode(), Op.getOperand(0), | 
|  | StackSlot, DAG.getSrcValue(NULL)); | 
|  |  | 
|  | // Build the FILD | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | if (X86ScalarSSE) Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(SrcVT)); | 
|  | Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, | 
|  | Tys, Ops); | 
|  |  | 
|  | if (X86ScalarSSE) { | 
|  | Chain = Result.getValue(1); | 
|  | SDOperand InFlag = Result.getValue(2); | 
|  |  | 
|  | // FIXME: Currently the FST is flagged to the FILD_FLAG. This | 
|  | // shouldn't be necessary except that RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Result); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(Op.getValueType())); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
|  | Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && | 
|  | "Unknown FP_TO_SINT to lower!"); | 
|  | // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary | 
|  | // stack slot. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (Op.getValueType()) { | 
|  | default: assert(0 && "Invalid FP_TO_SINT to lower!"); | 
|  | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
|  | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
|  | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
|  | } | 
|  |  | 
|  | SDOperand Chain = DAG.getEntryNode(); | 
|  | SDOperand Value = Op.getOperand(0); | 
|  | if (X86ScalarSSE) { | 
|  | assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot, | 
|  | DAG.getSrcValue(0)); | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); | 
|  | Value = DAG.getNode(X86ISD::FLD, Tys, Ops); | 
|  | Chain = Value.getValue(1); | 
|  | SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
|  | StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | } | 
|  |  | 
|  | // Build the FP_TO_INT*_IN_MEM | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Value); | 
|  | Ops.push_back(StackSlot); | 
|  | SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); | 
|  |  | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), FIST, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | const Type *OpNTy =  MVT::getTypeForValueType(VT); | 
|  | std::vector<Constant*> CV; | 
|  | if (VT == MVT::f64) { | 
|  | CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | } else { | 
|  | CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | } | 
|  | Constant *CS = ConstantStruct::get(CV); | 
|  | SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); | 
|  | SDOperand Mask | 
|  | = DAG.getNode(X86ISD::LOAD_PACK, | 
|  | VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); | 
|  | return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | const Type *OpNTy =  MVT::getTypeForValueType(VT); | 
|  | std::vector<Constant*> CV; | 
|  | if (VT == MVT::f64) { | 
|  | CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | } else { | 
|  | CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
|  | } | 
|  | Constant *CS = ConstantStruct::get(CV); | 
|  | SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); | 
|  | SDOperand Mask  = DAG.getNode(X86ISD::LOAD_PACK, | 
|  | VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); | 
|  | return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { | 
|  | assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); | 
|  | SDOperand Cond; | 
|  | SDOperand CC = Op.getOperand(2); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); | 
|  | bool Flip; | 
|  | unsigned X86CC; | 
|  | if (translateX86CC(CC, isFP, X86CC, Flip)) { | 
|  | if (Flip) | 
|  | Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Op.getOperand(1), Op.getOperand(0)); | 
|  | else | 
|  | Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | return DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | } else { | 
|  | assert(isFP && "Illegal integer SetCC!"); | 
|  |  | 
|  | Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | std::vector<SDOperand> Ops; | 
|  | switch (SetCCOpcode) { | 
|  | default: assert(false && "Illegal floating point SetCC!"); | 
|  | case ISD::SETOEQ: {  // !PF & ZF | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_E, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | case ISD::SETUNE: {  // PF | !ZF | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_NE, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | bool isFPStack = MVT::isFloatingPoint(VT) && !X86ScalarSSE; | 
|  | bool addTest   = false; | 
|  | SDOperand Op0 = Op.getOperand(0); | 
|  | SDOperand Cond, CC; | 
|  | if (Op0.getOpcode() == ISD::SETCC) | 
|  | Op0 = LowerOperation(Op0, DAG); | 
|  |  | 
|  | if (Op0.getOpcode() == X86ISD::SETCC) { | 
|  | // If condition flag is set by a X86ISD::CMP, then make a copy of it | 
|  | // (since flag operand cannot be shared). If the X86ISD::SETCC does not | 
|  | // have another use it will be eliminated. | 
|  | // If the X86ISD::SETCC has more than one use, then it's probably better | 
|  | // to use a test instead of duplicating the X86ISD::CMP (for register | 
|  | // pressure reason). | 
|  | unsigned CmpOpc = Op0.getOperand(1).getOpcode(); | 
|  | if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI || | 
|  | CmpOpc == X86ISD::UCOMI) { | 
|  | if (!Op0.hasOneUse()) { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i) | 
|  | Tys.push_back(Op0.Val->getValueType(i)); | 
|  | std::vector<SDOperand> Ops; | 
|  | for (unsigned i = 0; i < Op0.getNumOperands(); ++i) | 
|  | Ops.push_back(Op0.getOperand(i)); | 
|  | Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | } | 
|  |  | 
|  | CC   = Op0.getOperand(0); | 
|  | Cond = Op0.getOperand(1); | 
|  | // Make a copy as flag result cannot be used by more than one. | 
|  | Cond = DAG.getNode(CmpOpc, MVT::Flag, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | addTest = | 
|  | isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); | 
|  | } else | 
|  | addTest = true; | 
|  | } else | 
|  | addTest = true; | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
|  | Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(Op.getValueType()); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
|  | // condition is true. | 
|  | Ops.push_back(Op.getOperand(2)); | 
|  | Ops.push_back(Op.getOperand(1)); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(Cond); | 
|  | return DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { | 
|  | bool addTest = false; | 
|  | SDOperand Cond  = Op.getOperand(1); | 
|  | SDOperand Dest  = Op.getOperand(2); | 
|  | SDOperand CC; | 
|  | if (Cond.getOpcode() == ISD::SETCC) | 
|  | Cond = LowerOperation(Cond, DAG); | 
|  |  | 
|  | if (Cond.getOpcode() == X86ISD::SETCC) { | 
|  | // If condition flag is set by a X86ISD::CMP, then make a copy of it | 
|  | // (since flag operand cannot be shared). If the X86ISD::SETCC does not | 
|  | // have another use it will be eliminated. | 
|  | // If the X86ISD::SETCC has more than one use, then it's probably better | 
|  | // to use a test instead of duplicating the X86ISD::CMP (for register | 
|  | // pressure reason). | 
|  | unsigned CmpOpc = Cond.getOperand(1).getOpcode(); | 
|  | if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI || | 
|  | CmpOpc == X86ISD::UCOMI) { | 
|  | if (!Cond.hasOneUse()) { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i) | 
|  | Tys.push_back(Cond.Val->getValueType(i)); | 
|  | std::vector<SDOperand> Ops; | 
|  | for (unsigned i = 0; i < Cond.getNumOperands(); ++i) | 
|  | Ops.push_back(Cond.getOperand(i)); | 
|  | Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | } | 
|  |  | 
|  | CC   = Cond.getOperand(0); | 
|  | Cond = Cond.getOperand(1); | 
|  | // Make a copy as flag result cannot be used by more than one. | 
|  | Cond = DAG.getNode(CmpOpc, MVT::Flag, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | } else | 
|  | addTest = true; | 
|  | } else | 
|  | addTest = true; | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
|  | Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); | 
|  | } | 
|  | return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(2), CC, Cond); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { | 
|  | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
|  | SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
|  | DAG.getTargetJumpTable(JT->getIndex(), | 
|  | getPointerTy())); | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | // With PIC, the address is actually $g + Offset. | 
|  | if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
|  | Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
|  | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand Copy; | 
|  |  | 
|  | switch(Op.getNumOperands()) { | 
|  | default: | 
|  | assert(0 && "Do not know how to return this many arguments!"); | 
|  | abort(); | 
|  | case 1:    // ret void. | 
|  | return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), | 
|  | DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); | 
|  | case 2: { | 
|  | MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); | 
|  |  | 
|  | if (MVT::isVector(ArgVT)) { | 
|  | // Integer or FP vector result -> XMM0. | 
|  | if (DAG.getMachineFunction().liveout_empty()) | 
|  | DAG.getMachineFunction().addLiveOut(X86::XMM0); | 
|  | Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1), | 
|  | SDOperand()); | 
|  | } else if (MVT::isInteger(ArgVT)) { | 
|  | // Integer result -> EAX | 
|  | if (DAG.getMachineFunction().liveout_empty()) | 
|  | DAG.getMachineFunction().addLiveOut(X86::EAX); | 
|  |  | 
|  | Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1), | 
|  | SDOperand()); | 
|  | } else if (!X86ScalarSSE) { | 
|  | // FP return with fp-stack value. | 
|  | if (DAG.getMachineFunction().liveout_empty()) | 
|  | DAG.getMachineFunction().addLiveOut(X86::ST0); | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | Ops.push_back(Op.getOperand(1)); | 
|  | Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); | 
|  | } else { | 
|  | // FP return with ScalarSSE (return on fp-stack). | 
|  | if (DAG.getMachineFunction().liveout_empty()) | 
|  | DAG.getMachineFunction().addLiveOut(X86::ST0); | 
|  |  | 
|  | SDOperand MemLoc; | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | SDOperand Value = Op.getOperand(1); | 
|  |  | 
|  | if (Value.getOpcode() == ISD::LOAD && | 
|  | (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { | 
|  | Chain  = Value.getOperand(0); | 
|  | MemLoc = Value.getOperand(1); | 
|  | } else { | 
|  | // Spill the value to memory and reload it into top of stack. | 
|  | unsigned Size = MVT::getSizeInBits(ArgVT)/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), | 
|  | Value, MemLoc, DAG.getSrcValue(0)); | 
|  | } | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(MemLoc); | 
|  | Ops.push_back(DAG.getValueType(ArgVT)); | 
|  | Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Copy.getValue(1)); | 
|  | Ops.push_back(Copy); | 
|  | Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 3: | 
|  | if (DAG.getMachineFunction().liveout_empty()) { | 
|  | DAG.getMachineFunction().addLiveOut(X86::EAX); | 
|  | DAG.getMachineFunction().addLiveOut(X86::EDX); | 
|  | } | 
|  |  | 
|  | Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2), | 
|  | SDOperand()); | 
|  | Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1)); | 
|  | break; | 
|  | } | 
|  | return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, | 
|  | Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), | 
|  | Copy.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { | 
|  | if (FormalArgs.size() == 0) { | 
|  | unsigned CC = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); | 
|  | if (CC == CallingConv::Fast && EnableFastCC) | 
|  | LowerFastCCArguments(Op, DAG); | 
|  | else | 
|  | LowerCCCArguments(Op, DAG); | 
|  | } | 
|  | return FormalArgs[Op.ResNo]; | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand InFlag(0, 0); | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | unsigned Align = | 
|  | (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); | 
|  | if (Align == 0) Align = 1; | 
|  |  | 
|  | ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | // If not DWORD aligned, call memset if size is less than the threshold. | 
|  | // It knows how to align to the right boundary first. | 
|  | if ((Align & 3) != 0 || | 
|  | (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { | 
|  | MVT::ValueType IntPtr = getPointerTy(); | 
|  | const Type *IntPtrTy = getTargetData().getIntPtrType(); | 
|  | std::vector<std::pair<SDOperand, const Type*> > Args; | 
|  | Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); | 
|  | // Extend the ubyte argument to be an int value for the call. | 
|  | SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); | 
|  | Args.push_back(std::make_pair(Val, IntPtrTy)); | 
|  | Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); | 
|  | std::pair<SDOperand,SDOperand> CallResult = | 
|  | LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, | 
|  | DAG.getExternalSymbol("memset", IntPtr), Args, DAG); | 
|  | return CallResult.second; | 
|  | } | 
|  |  | 
|  | MVT::ValueType AVT; | 
|  | SDOperand Count; | 
|  | ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | unsigned BytesLeft = 0; | 
|  | bool TwoRepStos = false; | 
|  | if (ValC) { | 
|  | unsigned ValReg; | 
|  | unsigned Val = ValC->getValue() & 255; | 
|  |  | 
|  | // If the value is a constant, then we can potentially use larger sets. | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | AVT = MVT::i16; | 
|  | Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
|  | BytesLeft = I->getValue() % 2; | 
|  | Val    = (Val << 8) | Val; | 
|  | ValReg = X86::AX; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | AVT = MVT::i32; | 
|  | if (I) { | 
|  | Count = DAG.getConstant(I->getValue() / 4, MVT::i32); | 
|  | BytesLeft = I->getValue() % 4; | 
|  | } else { | 
|  | Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
|  | DAG.getConstant(2, MVT::i8)); | 
|  | TwoRepStos = true; | 
|  | } | 
|  | Val = (Val << 8)  | Val; | 
|  | Val = (Val << 16) | Val; | 
|  | ValReg = X86::EAX; | 
|  | break; | 
|  | default:  // Byte aligned | 
|  | AVT = MVT::i8; | 
|  | Count = Op.getOperand(3); | 
|  | ValReg = X86::AL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | AVT = MVT::i8; | 
|  | Count  = Op.getOperand(3); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(AVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, Ops); | 
|  |  | 
|  | if (TwoRepStos) { | 
|  | InFlag = Chain.getValue(1); | 
|  | Count = Op.getOperand(3); | 
|  | MVT::ValueType CVT = Count.getValueType(); | 
|  | SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, | 
|  | DAG.getConstant(3, CVT)); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(MVT::i8)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, Ops); | 
|  | } else if (BytesLeft) { | 
|  | // Issue stores for the last 1 - 3 bytes. | 
|  | SDOperand Value; | 
|  | unsigned Val = ValC->getValue() & 255; | 
|  | unsigned Offset = I->getValue() - BytesLeft; | 
|  | SDOperand DstAddr = Op.getOperand(1); | 
|  | MVT::ValueType AddrVT = DstAddr.getValueType(); | 
|  | if (BytesLeft >= 2) { | 
|  | Value = DAG.getConstant((Val << 8) | Val, MVT::i16); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, | 
|  | DAG.getNode(ISD::ADD, AddrVT, DstAddr, | 
|  | DAG.getConstant(Offset, AddrVT)), | 
|  | DAG.getSrcValue(NULL)); | 
|  | BytesLeft -= 2; | 
|  | Offset += 2; | 
|  | } | 
|  |  | 
|  | if (BytesLeft == 1) { | 
|  | Value = DAG.getConstant(Val, MVT::i8); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, | 
|  | DAG.getNode(ISD::ADD, AddrVT, DstAddr, | 
|  | DAG.getConstant(Offset, AddrVT)), | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | unsigned Align = | 
|  | (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); | 
|  | if (Align == 0) Align = 1; | 
|  |  | 
|  | ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
|  | // If not DWORD aligned, call memcpy if size is less than the threshold. | 
|  | // It knows how to align to the right boundary first. | 
|  | if ((Align & 3) != 0 || | 
|  | (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { | 
|  | MVT::ValueType IntPtr = getPointerTy(); | 
|  | const Type *IntPtrTy = getTargetData().getIntPtrType(); | 
|  | std::vector<std::pair<SDOperand, const Type*> > Args; | 
|  | Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); | 
|  | Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); | 
|  | Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); | 
|  | std::pair<SDOperand,SDOperand> CallResult = | 
|  | LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, | 
|  | DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); | 
|  | return CallResult.second; | 
|  | } | 
|  |  | 
|  | MVT::ValueType AVT; | 
|  | SDOperand Count; | 
|  | unsigned BytesLeft = 0; | 
|  | bool TwoRepMovs = false; | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | AVT = MVT::i16; | 
|  | Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
|  | BytesLeft = I->getValue() % 2; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | AVT = MVT::i32; | 
|  | if (I) { | 
|  | Count = DAG.getConstant(I->getValue() / 4, MVT::i32); | 
|  | BytesLeft = I->getValue() % 4; | 
|  | } else { | 
|  | Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
|  | DAG.getConstant(2, MVT::i8)); | 
|  | TwoRepMovs = true; | 
|  | } | 
|  | break; | 
|  | default:  // Byte aligned | 
|  | AVT = MVT::i8; | 
|  | Count = Op.getOperand(3); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDOperand InFlag(0, 0); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(AVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops); | 
|  |  | 
|  | if (TwoRepMovs) { | 
|  | InFlag = Chain.getValue(1); | 
|  | Count = Op.getOperand(3); | 
|  | MVT::ValueType CVT = Count.getValueType(); | 
|  | SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, | 
|  | DAG.getConstant(3, CVT)); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(DAG.getValueType(MVT::i8)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops); | 
|  | } else if (BytesLeft) { | 
|  | // Issue loads and stores for the last 1 - 3 bytes. | 
|  | unsigned Offset = I->getValue() - BytesLeft; | 
|  | SDOperand DstAddr = Op.getOperand(1); | 
|  | MVT::ValueType DstVT = DstAddr.getValueType(); | 
|  | SDOperand SrcAddr = Op.getOperand(2); | 
|  | MVT::ValueType SrcVT = SrcAddr.getValueType(); | 
|  | SDOperand Value; | 
|  | if (BytesLeft >= 2) { | 
|  | Value = DAG.getLoad(MVT::i16, Chain, | 
|  | DAG.getNode(ISD::ADD, SrcVT, SrcAddr, | 
|  | DAG.getConstant(Offset, SrcVT)), | 
|  | DAG.getSrcValue(NULL)); | 
|  | Chain = Value.getValue(1); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, | 
|  | DAG.getNode(ISD::ADD, DstVT, DstAddr, | 
|  | DAG.getConstant(Offset, DstVT)), | 
|  | DAG.getSrcValue(NULL)); | 
|  | BytesLeft -= 2; | 
|  | Offset += 2; | 
|  | } | 
|  |  | 
|  | if (BytesLeft == 1) { | 
|  | Value = DAG.getLoad(MVT::i8, Chain, | 
|  | DAG.getNode(ISD::ADD, SrcVT, SrcAddr, | 
|  | DAG.getConstant(Offset, SrcVT)), | 
|  | DAG.getSrcValue(NULL)); | 
|  | Chain = Value.getValue(1); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, | 
|  | DAG.getNode(ISD::ADD, DstVT, DstAddr, | 
|  | DAG.getConstant(Offset, DstVT)), | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); | 
|  | Ops.clear(); | 
|  | Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); | 
|  | Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, | 
|  | MVT::i32, Ops[0].getValue(2))); | 
|  | Ops.push_back(Ops[1].getValue(1)); | 
|  | Tys[0] = Tys[1] = MVT::i32; | 
|  | Tys.push_back(MVT::Other); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot into the | 
|  | // memory location argument. | 
|  | // FIXME: Replace MVT::i32 with PointerTy | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); | 
|  | return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, | 
|  | Op.getOperand(1), Op.getOperand(2)); | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { | 
|  | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); | 
|  | switch (IntNo) { | 
|  | default: return SDOperand();    // Don't custom lower most intrinsics. | 
|  | // Comparison intrinsics. | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: { | 
|  | unsigned Opc = 0; | 
|  | ISD::CondCode CC = ISD::SETCC_INVALID; | 
|  | switch (IntNo) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_comieq_ss: | 
|  | case Intrinsic::x86_sse2_comieq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comilt_ss: | 
|  | case Intrinsic::x86_sse2_comilt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comile_ss: | 
|  | case Intrinsic::x86_sse2_comile_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comigt_ss: | 
|  | case Intrinsic::x86_sse2_comigt_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comige_ss: | 
|  | case Intrinsic::x86_sse2_comige_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_comineq_ss: | 
|  | case Intrinsic::x86_sse2_comineq_sd: | 
|  | Opc = X86ISD::COMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomieq_ss: | 
|  | case Intrinsic::x86_sse2_ucomieq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETEQ; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomilt_ss: | 
|  | case Intrinsic::x86_sse2_ucomilt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomile_ss: | 
|  | case Intrinsic::x86_sse2_ucomile_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETLE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomigt_ss: | 
|  | case Intrinsic::x86_sse2_ucomigt_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGT; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomige_ss: | 
|  | case Intrinsic::x86_sse2_ucomige_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETGE; | 
|  | break; | 
|  | case Intrinsic::x86_sse_ucomineq_ss: | 
|  | case Intrinsic::x86_sse2_ucomineq_sd: | 
|  | Opc = X86ISD::UCOMI; | 
|  | CC = ISD::SETNE; | 
|  | break; | 
|  | } | 
|  | bool Flip; | 
|  | unsigned X86CC; | 
|  | translateX86CC(CC, true, X86CC, Flip); | 
|  | SDOperand Cond = DAG.getNode(Opc, MVT::Flag, Op.getOperand(Flip?2:1), | 
|  | Op.getOperand(Flip?1:2)); | 
|  | SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Should not custom lower this!"); | 
|  | case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG); | 
|  | case ISD::ConstantPool:       return LowerConstantPool(Op, DAG); | 
|  | case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG); | 
|  | case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG); | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS:          return LowerShift(Op, DAG); | 
|  | case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG); | 
|  | case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG); | 
|  | case ISD::FABS:               return LowerFABS(Op, DAG); | 
|  | case ISD::FNEG:               return LowerFNEG(Op, DAG); | 
|  | case ISD::SETCC:              return LowerSETCC(Op, DAG); | 
|  | case ISD::SELECT:             return LowerSELECT(Op, DAG); | 
|  | case ISD::BRCOND:             return LowerBRCOND(Op, DAG); | 
|  | case ISD::JumpTable:          return LowerJumpTable(Op, DAG); | 
|  | case ISD::RET:                return LowerRET(Op, DAG); | 
|  | case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG); | 
|  | case ISD::MEMSET:             return LowerMEMSET(Op, DAG); | 
|  | case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG); | 
|  | case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG); | 
|  | case ISD::VASTART:            return LowerVASTART(Op, DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return NULL; | 
|  | case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
|  | case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
|  | case X86ISD::FAND:               return "X86ISD::FAND"; | 
|  | case X86ISD::FXOR:               return "X86ISD::FXOR"; | 
|  | case X86ISD::FILD:               return "X86ISD::FILD"; | 
|  | case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG"; | 
|  | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
|  | case X86ISD::FLD:                return "X86ISD::FLD"; | 
|  | case X86ISD::FST:                return "X86ISD::FST"; | 
|  | case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT"; | 
|  | case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT"; | 
|  | case X86ISD::CALL:               return "X86ISD::CALL"; | 
|  | case X86ISD::TAILCALL:           return "X86ISD::TAILCALL"; | 
|  | case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
|  | case X86ISD::CMP:                return "X86ISD::CMP"; | 
|  | case X86ISD::TEST:               return "X86ISD::TEST"; | 
|  | case X86ISD::COMI:               return "X86ISD::COMI"; | 
|  | case X86ISD::UCOMI:              return "X86ISD::UCOMI"; | 
|  | case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
|  | case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
|  | case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
|  | case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
|  | case X86ISD::REP_STOS:           return "X86ISD::REP_STOS"; | 
|  | case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS"; | 
|  | case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK"; | 
|  | case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg"; | 
|  | case X86ISD::Wrapper:            return "X86ISD::Wrapper"; | 
|  | case X86ISD::S2VEC:              return "X86ISD::S2VEC"; | 
|  | case X86ISD::PEXTRW:             return "X86ISD::PEXTRW"; | 
|  | case X86ISD::PINSRW:             return "X86ISD::PINSRW"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, | 
|  | uint64_t Mask, | 
|  | uint64_t &KnownZero, | 
|  | uint64_t &KnownOne, | 
|  | unsigned Depth) const { | 
|  | unsigned Opc = Op.getOpcode(); | 
|  | assert((Opc >= ISD::BUILTIN_OP_END || | 
|  | Opc == ISD::INTRINSIC_WO_CHAIN || | 
|  | Opc == ISD::INTRINSIC_W_CHAIN || | 
|  | Opc == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  |  | 
|  | KnownZero = KnownOne = 0;   // Don't know anything. | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86ISD::SETCC: | 
|  | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<unsigned> X86TargetLowering:: | 
|  | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
|  | MVT::ValueType VT) const { | 
|  | if (Constraint.size() == 1) { | 
|  | // FIXME: not handling fp-stack yet! | 
|  | // FIXME: not handling MMX registers yet ('y' constraint). | 
|  | switch (Constraint[0]) {      // GCC X86 Constraint Letters | 
|  | default: break;  // Unknown constriant letter | 
|  | case 'r':   // GENERAL_REGS | 
|  | case 'R':   // LEGACY_REGS | 
|  | return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, | 
|  | X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); | 
|  | case 'l':   // INDEX_REGS | 
|  | return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, | 
|  | X86::ESI, X86::EDI, X86::EBP, 0); | 
|  | case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode) | 
|  | case 'Q':   // Q_REGS | 
|  | return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, 0); | 
|  | case 'x':   // SSE_REGS if SSE1 allowed | 
|  | if (Subtarget->hasSSE1()) | 
|  | return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, | 
|  | 0); | 
|  | return std::vector<unsigned>(); | 
|  | case 'Y':   // SSE_REGS if SSE2 allowed | 
|  | if (Subtarget->hasSSE2()) | 
|  | return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
|  | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, | 
|  | 0); | 
|  | return std::vector<unsigned>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::vector<unsigned>(); | 
|  | } | 
|  |  | 
|  | /// isLegalAddressImmediate - Return true if the integer value or | 
|  | /// GlobalValue can be used as the offset of the target addressing mode. | 
|  | bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const { | 
|  | // X86 allows a sign-extended 32-bit immediate field. | 
|  | return (V > -(1LL << 32) && V < (1LL << 32)-1); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { | 
|  | if (Subtarget->isTargetDarwin()) { | 
|  | Reloc::Model RModel = getTargetMachine().getRelocationModel(); | 
|  | if (RModel == Reloc::Static) | 
|  | return true; | 
|  | else if (RModel == Reloc::DynamicNoPIC) | 
|  | return !DarwinGVRequiresExtraLoad(GV); | 
|  | else | 
|  | return false; | 
|  | } else | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isShuffleMaskLegal - Targets can use this to indicate that they only | 
|  | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. | 
|  | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values | 
|  | /// are assumed to be legal. | 
|  | bool | 
|  | X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { | 
|  | // Only do shuffles on 128-bit vector types for now. | 
|  | if (MVT::getSizeInBits(VT) == 64) return false; | 
|  | return (Mask.Val->getNumOperands() <= 4 || | 
|  | isSplatMask(Mask.Val)  || | 
|  | isPSHUFHW_PSHUFLWMask(Mask.Val) || | 
|  | X86::isUNPCKLMask(Mask.Val) || | 
|  | X86::isUNPCKL_v_undef_Mask(Mask.Val) || | 
|  | X86::isUNPCKHMask(Mask.Val)); | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps, | 
|  | MVT::ValueType EVT, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned NumElts = BVOps.size(); | 
|  | // Only do shuffles on 128-bit vector types for now. | 
|  | if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; | 
|  | if (NumElts == 2) return true; | 
|  | if (NumElts == 4) { | 
|  | return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) || | 
|  | isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps)); | 
|  | } | 
|  | return false; | 
|  | } |