|  | //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements inline cost analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | #include "llvm/Transforms/Utils/InlineCost.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // CountCodeReductionForConstant - Figure out an approximation for how many | 
|  | // instructions will be constant folded if the specified value is constant. | 
|  | // | 
|  | unsigned InlineCostAnalyzer::FunctionInfo:: | 
|  | CountCodeReductionForConstant(Value *V) { | 
|  | unsigned Reduction = 0; | 
|  | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) | 
|  | if (isa<BranchInst>(*UI)) | 
|  | Reduction += 40;          // Eliminating a conditional branch is a big win | 
|  | else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI)) | 
|  | // Eliminating a switch is a big win, proportional to the number of edges | 
|  | // deleted. | 
|  | Reduction += (SI->getNumSuccessors()-1) * 40; | 
|  | else if (CallInst *CI = dyn_cast<CallInst>(*UI)) { | 
|  | // Turning an indirect call into a direct call is a BIG win | 
|  | Reduction += CI->getCalledValue() == V ? 500 : 0; | 
|  | } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) { | 
|  | // Turning an indirect call into a direct call is a BIG win | 
|  | Reduction += II->getCalledValue() == V ? 500 : 0; | 
|  | } else { | 
|  | // Figure out if this instruction will be removed due to simple constant | 
|  | // propagation. | 
|  | Instruction &Inst = cast<Instruction>(**UI); | 
|  | bool AllOperandsConstant = true; | 
|  | for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) | 
|  | if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { | 
|  | AllOperandsConstant = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AllOperandsConstant) { | 
|  | // We will get to remove this instruction... | 
|  | Reduction += 7; | 
|  |  | 
|  | // And any other instructions that use it which become constants | 
|  | // themselves. | 
|  | Reduction += CountCodeReductionForConstant(&Inst); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Reduction; | 
|  | } | 
|  |  | 
|  | // CountCodeReductionForAlloca - Figure out an approximation of how much smaller | 
|  | // the function will be if it is inlined into a context where an argument | 
|  | // becomes an alloca. | 
|  | // | 
|  | unsigned InlineCostAnalyzer::FunctionInfo:: | 
|  | CountCodeReductionForAlloca(Value *V) { | 
|  | if (!isa<PointerType>(V->getType())) return 0;  // Not a pointer | 
|  | unsigned Reduction = 0; | 
|  | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ | 
|  | Instruction *I = cast<Instruction>(*UI); | 
|  | if (isa<LoadInst>(I) || isa<StoreInst>(I)) | 
|  | Reduction += 10; | 
|  | else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { | 
|  | // If the GEP has variable indices, we won't be able to do much with it. | 
|  | for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end(); | 
|  | I != E; ++I) | 
|  | if (!isa<Constant>(*I)) return 0; | 
|  | Reduction += CountCodeReductionForAlloca(GEP)+15; | 
|  | } else { | 
|  | // If there is some other strange instruction, we're not going to be able | 
|  | // to do much if we inline this. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Reduction; | 
|  | } | 
|  |  | 
|  | /// analyzeFunction - Fill in the current structure with information gleaned | 
|  | /// from the specified function. | 
|  | void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) { | 
|  | unsigned NumInsts = 0, NumBlocks = 0, NumVectorInsts = 0; | 
|  |  | 
|  | // Look at the size of the callee.  Each basic block counts as 20 units, and | 
|  | // each instruction counts as 5. | 
|  | for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { | 
|  | for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); | 
|  | II != E; ++II) { | 
|  | if (isa<PHINode>(II)) continue;           // PHI nodes don't count. | 
|  |  | 
|  | // Special handling for calls. | 
|  | if (isa<CallInst>(II) || isa<InvokeInst>(II)) { | 
|  | if (isa<DbgInfoIntrinsic>(II)) | 
|  | continue;  // Debug intrinsics don't count as size. | 
|  |  | 
|  | CallSite CS = CallSite::get(const_cast<Instruction*>(&*II)); | 
|  |  | 
|  | // If this function contains a call to setjmp or _setjmp, never inline | 
|  | // it.  This is a hack because we depend on the user marking their local | 
|  | // variables as volatile if they are live across a setjmp call, and they | 
|  | // probably won't do this in callers. | 
|  | if (Function *F = CS.getCalledFunction()) | 
|  | if (F->isDeclaration() && | 
|  | (F->isName("setjmp") || F->isName("_setjmp"))) { | 
|  | NeverInline = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Calls often compile into many machine instructions.  Bump up their | 
|  | // cost to reflect this. | 
|  | if (!isa<IntrinsicInst>(II)) | 
|  | NumInsts += 5; | 
|  | } | 
|  |  | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { | 
|  | if (!AI->isStaticAlloca()) | 
|  | this->usesDynamicAlloca = true; | 
|  | } | 
|  |  | 
|  | if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType())) | 
|  | ++NumVectorInsts; | 
|  |  | 
|  | // Noop casts, including ptr <-> int,  don't count. | 
|  | if (const CastInst *CI = dyn_cast<CastInst>(II)) { | 
|  | if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || | 
|  | isa<PtrToIntInst>(CI)) | 
|  | continue; | 
|  | } else if (const GetElementPtrInst *GEPI = | 
|  | dyn_cast<GetElementPtrInst>(II)) { | 
|  | // If a GEP has all constant indices, it will probably be folded with | 
|  | // a load/store. | 
|  | bool AllConstant = true; | 
|  | for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i) | 
|  | if (!isa<ConstantInt>(GEPI->getOperand(i))) { | 
|  | AllConstant = false; | 
|  | break; | 
|  | } | 
|  | if (AllConstant) continue; | 
|  | } | 
|  |  | 
|  | ++NumInsts; | 
|  | } | 
|  |  | 
|  | ++NumBlocks; | 
|  | } | 
|  |  | 
|  | this->NumBlocks      = NumBlocks; | 
|  | this->NumInsts       = NumInsts; | 
|  | this->NumVectorInsts = NumVectorInsts; | 
|  |  | 
|  | // Check out all of the arguments to the function, figuring out how much | 
|  | // code can be eliminated if one of the arguments is a constant. | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) | 
|  | ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I), | 
|  | CountCodeReductionForAlloca(I))); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // getInlineCost - The heuristic used to determine if we should inline the | 
|  | // function call or not. | 
|  | // | 
|  | InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, | 
|  | SmallPtrSet<const Function *, 16> &NeverInline) { | 
|  | Instruction *TheCall = CS.getInstruction(); | 
|  | Function *Callee = CS.getCalledFunction(); | 
|  | Function *Caller = TheCall->getParent()->getParent(); | 
|  |  | 
|  | // Don't inline functions which can be redefined at link-time to mean | 
|  | // something else. | 
|  | if (Callee->mayBeOverridden() || | 
|  | // Don't inline functions marked noinline. | 
|  | Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee)) | 
|  | return llvm::InlineCost::getNever(); | 
|  |  | 
|  | // InlineCost - This value measures how good of an inline candidate this call | 
|  | // site is to inline.  A lower inline cost make is more likely for the call to | 
|  | // be inlined.  This value may go negative. | 
|  | // | 
|  | int InlineCost = 0; | 
|  |  | 
|  | // If there is only one call of the function, and it has internal linkage, | 
|  | // make it almost guaranteed to be inlined. | 
|  | // | 
|  | if (Callee->hasLocalLinkage() && Callee->hasOneUse()) | 
|  | InlineCost -= 15000; | 
|  |  | 
|  | // If this function uses the coldcc calling convention, prefer not to inline | 
|  | // it. | 
|  | if (Callee->getCallingConv() == CallingConv::Cold) | 
|  | InlineCost += 2000; | 
|  |  | 
|  | // If the instruction after the call, or if the normal destination of the | 
|  | // invoke is an unreachable instruction, the function is noreturn.  As such, | 
|  | // there is little point in inlining this. | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { | 
|  | if (isa<UnreachableInst>(II->getNormalDest()->begin())) | 
|  | InlineCost += 10000; | 
|  | } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) | 
|  | InlineCost += 10000; | 
|  |  | 
|  | // Get information about the callee... | 
|  | FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; | 
|  |  | 
|  | // If we haven't calculated this information yet, do so now. | 
|  | if (CalleeFI.NumBlocks == 0) | 
|  | CalleeFI.analyzeFunction(Callee); | 
|  |  | 
|  | // If we should never inline this, return a huge cost. | 
|  | if (CalleeFI.NeverInline) | 
|  | return InlineCost::getNever(); | 
|  |  | 
|  | // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we | 
|  | // could move this up and avoid computing the FunctionInfo for | 
|  | // things we are going to just return always inline for. This | 
|  | // requires handling setjmp somewhere else, however. | 
|  | if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline)) | 
|  | return InlineCost::getAlways(); | 
|  |  | 
|  | if (CalleeFI.usesDynamicAlloca) { | 
|  | // Get infomation about the caller... | 
|  | FunctionInfo &CallerFI = CachedFunctionInfo[Caller]; | 
|  |  | 
|  | // If we haven't calculated this information yet, do so now. | 
|  | if (CallerFI.NumBlocks == 0) | 
|  | CallerFI.analyzeFunction(Caller); | 
|  |  | 
|  | // Don't inline a callee with dynamic alloca into a caller without them. | 
|  | // Functions containing dynamic alloca's are inefficient in various ways; | 
|  | // don't create more inefficiency. | 
|  | if (!CallerFI.usesDynamicAlloca) | 
|  | return InlineCost::getNever(); | 
|  | } | 
|  |  | 
|  | // Add to the inline quality for properties that make the call valuable to | 
|  | // inline.  This includes factors that indicate that the result of inlining | 
|  | // the function will be optimizable.  Currently this just looks at arguments | 
|  | // passed into the function. | 
|  | // | 
|  | unsigned ArgNo = 0; | 
|  | for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); | 
|  | I != E; ++I, ++ArgNo) { | 
|  | // Each argument passed in has a cost at both the caller and the callee | 
|  | // sides.  This favors functions that take many arguments over functions | 
|  | // that take few arguments. | 
|  | InlineCost -= 20; | 
|  |  | 
|  | // If this is a function being passed in, it is very likely that we will be | 
|  | // able to turn an indirect function call into a direct function call. | 
|  | if (isa<Function>(I)) | 
|  | InlineCost -= 100; | 
|  |  | 
|  | // If an alloca is passed in, inlining this function is likely to allow | 
|  | // significant future optimization possibilities (like scalar promotion, and | 
|  | // scalarization), so encourage the inlining of the function. | 
|  | // | 
|  | else if (isa<AllocaInst>(I)) { | 
|  | if (ArgNo < CalleeFI.ArgumentWeights.size()) | 
|  | InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight; | 
|  |  | 
|  | // If this is a constant being passed into the function, use the argument | 
|  | // weights calculated for the callee to determine how much will be folded | 
|  | // away with this information. | 
|  | } else if (isa<Constant>(I)) { | 
|  | if (ArgNo < CalleeFI.ArgumentWeights.size()) | 
|  | InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have considered all of the factors that make the call site more | 
|  | // likely to be inlined, look at factors that make us not want to inline it. | 
|  |  | 
|  | // Don't inline into something too big, which would make it bigger. | 
|  | // | 
|  | InlineCost += Caller->size()/15; | 
|  |  | 
|  | // Look at the size of the callee. Each instruction counts as 5. | 
|  | InlineCost += CalleeFI.NumInsts*5; | 
|  |  | 
|  | return llvm::InlineCost::get(InlineCost); | 
|  | } | 
|  |  | 
|  | // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a | 
|  | // higher threshold to determine if the function call should be inlined. | 
|  | float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { | 
|  | Function *Callee = CS.getCalledFunction(); | 
|  |  | 
|  | // Get information about the callee... | 
|  | FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; | 
|  |  | 
|  | // If we haven't calculated this information yet, do so now. | 
|  | if (CalleeFI.NumBlocks == 0) | 
|  | CalleeFI.analyzeFunction(Callee); | 
|  |  | 
|  | float Factor = 1.0f; | 
|  | // Single BB functions are often written to be inlined. | 
|  | if (CalleeFI.NumBlocks == 1) | 
|  | Factor += 0.5f; | 
|  |  | 
|  | // Be more aggressive if the function contains a good chunk (if it mades up | 
|  | // at least 10% of the instructions) of vector instructions. | 
|  | if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/2) | 
|  | Factor += 2.0f; | 
|  | else if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/10) | 
|  | Factor += 1.5f; | 
|  | return Factor; | 
|  | } |