|  | ;; X's live range extends beyond the shift, so the register allocator | 
|  | ;; cannot coalesce it with Y.  Because of this, a copy needs to be | 
|  | ;; emitted before the shift to save the register value before it is | 
|  | ;; clobbered.  However, this copy is not needed if the register | 
|  | ;; allocator turns the shift into an LEA.  This also occurs for ADD. | 
|  |  | 
|  | ; Check that the shift gets turned into an LEA. | 
|  | ; RUN: llc < %s -mcpu=generic -mtriple=x86_64-apple-darwin | FileCheck %s | 
|  |  | 
|  | @G = external global i32 | 
|  |  | 
|  | define i32 @test1(i32 %X) nounwind { | 
|  | ; CHECK-LABEL: test1: | 
|  | ; CHECK-NOT: mov | 
|  | ; CHECK: leal 1(%rdi) | 
|  | %Z = add i32 %X, 1 | 
|  | store volatile i32 %Z, i32* @G | 
|  | ret i32 %X | 
|  | } | 
|  |  | 
|  | ; rdar://8977508 | 
|  | ; The second add should not be transformed to leal nor should it be | 
|  | ; commutted (which would require inserting a copy). | 
|  | define i32 @test2(i32 inreg %a, i32 inreg %b, i32 %c, i32 %d) nounwind { | 
|  | entry: | 
|  | ; CHECK-LABEL: test2: | 
|  | ; CHECK: leal | 
|  | ; CHECK-NEXT: addl | 
|  | ; CHECK-NEXT: addl | 
|  | ; CHECK-NEXT: ret | 
|  | %add = add i32 %b, %a | 
|  | %add3 = add i32 %add, %c | 
|  | %add5 = add i32 %add3, %d | 
|  | ret i32 %add5 | 
|  | } | 
|  |  | 
|  | ; rdar://9002648 | 
|  | define i64 @test3(i64 %x) nounwind readnone ssp { | 
|  | entry: | 
|  | ; CHECK-LABEL: test3: | 
|  | ; CHECK: leaq (%rdi,%rdi), %rax | 
|  | ; CHECK-NOT: addq | 
|  | ; CHECK-NEXT: ret | 
|  | %0 = shl i64 %x, 1 | 
|  | ret i64 %0 | 
|  | } |