Revert rL302028 due to accidental line ending changes.

llvm-svn: 302038
diff --git a/llvm/lib/Support/Host.cpp b/llvm/lib/Support/Host.cpp
index 2477a02..970ecfd 100644
--- a/llvm/lib/Support/Host.cpp
+++ b/llvm/lib/Support/Host.cpp
@@ -1,1496 +1,1495 @@
-//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//

-//

-//                     The LLVM Compiler Infrastructure

-//

-// This file is distributed under the University of Illinois Open Source

-// License. See LICENSE.TXT for details.

-//

-//===----------------------------------------------------------------------===//

-//

-//  This file implements the operating system Host concept.

-//

-//===----------------------------------------------------------------------===//

-

-#include "llvm/Support/Host.h"

-#include "llvm/ADT/SmallSet.h"

-#include "llvm/ADT/SmallVector.h"

-#include "llvm/ADT/StringRef.h"

-#include "llvm/ADT/StringSwitch.h"

-#include "llvm/ADT/Triple.h"

-#include "llvm/Config/config.h"

-#include "llvm/Support/Debug.h"

-#include "llvm/Support/FileSystem.h"

-#include "llvm/Support/MemoryBuffer.h"

-#include "llvm/Support/raw_ostream.h"

-#include <assert.h>

-#include <string.h>

-

-// Include the platform-specific parts of this class.

-#ifdef LLVM_ON_UNIX

-#include "Unix/Host.inc"

-#endif

-#ifdef LLVM_ON_WIN32

-#include "Windows/Host.inc"

-#endif

-#ifdef _MSC_VER

-#include <intrin.h>

-#endif

-#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))

-#include <mach/host_info.h>

-#include <mach/mach.h>

-#include <mach/mach_host.h>

-#include <mach/machine.h>

-#endif

-

-#define DEBUG_TYPE "host-detection"

-

-//===----------------------------------------------------------------------===//

-//

-//  Implementations of the CPU detection routines

-//

-//===----------------------------------------------------------------------===//

-

-using namespace llvm;

-

-static std::unique_ptr<llvm::MemoryBuffer>

-    LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {

-  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =

-      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");

-  if (std::error_code EC = Text.getError()) {

-    llvm::errs() << "Can't read "

-                 << "/proc/cpuinfo: " << EC.message() << "\n";

-    return nullptr;

-  }

-  return std::move(*Text);

-}

-

-StringRef sys::detail::getHostCPUNameForPowerPC(

-    const StringRef &ProcCpuinfoContent) {

-  // Access to the Processor Version Register (PVR) on PowerPC is privileged,

-  // and so we must use an operating-system interface to determine the current

-  // processor type. On Linux, this is exposed through the /proc/cpuinfo file.

-  const char *generic = "generic";

-

-  // The cpu line is second (after the 'processor: 0' line), so if this

-  // buffer is too small then something has changed (or is wrong).

-  StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();

-  StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();

-

-  StringRef::const_iterator CIP = CPUInfoStart;

-

-  StringRef::const_iterator CPUStart = 0;

-  size_t CPULen = 0;

-

-  // We need to find the first line which starts with cpu, spaces, and a colon.

-  // After the colon, there may be some additional spaces and then the cpu type.

-  while (CIP < CPUInfoEnd && CPUStart == 0) {

-    if (CIP < CPUInfoEnd && *CIP == '\n')

-      ++CIP;

-

-    if (CIP < CPUInfoEnd && *CIP == 'c') {

-      ++CIP;

-      if (CIP < CPUInfoEnd && *CIP == 'p') {

-        ++CIP;

-        if (CIP < CPUInfoEnd && *CIP == 'u') {

-          ++CIP;

-          while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))

-            ++CIP;

-

-          if (CIP < CPUInfoEnd && *CIP == ':') {

-            ++CIP;

-            while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))

-              ++CIP;

-

-            if (CIP < CPUInfoEnd) {

-              CPUStart = CIP;

-              while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&

-                                          *CIP != ',' && *CIP != '\n'))

-                ++CIP;

-              CPULen = CIP - CPUStart;

-            }

-          }

-        }

-      }

-    }

-

-    if (CPUStart == 0)

-      while (CIP < CPUInfoEnd && *CIP != '\n')

-        ++CIP;

-  }

-

-  if (CPUStart == 0)

-    return generic;

-

-  return StringSwitch<const char *>(StringRef(CPUStart, CPULen))

-      .Case("604e", "604e")

-      .Case("604", "604")

-      .Case("7400", "7400")

-      .Case("7410", "7400")

-      .Case("7447", "7400")

-      .Case("7455", "7450")

-      .Case("G4", "g4")

-      .Case("POWER4", "970")

-      .Case("PPC970FX", "970")

-      .Case("PPC970MP", "970")

-      .Case("G5", "g5")

-      .Case("POWER5", "g5")

-      .Case("A2", "a2")

-      .Case("POWER6", "pwr6")

-      .Case("POWER7", "pwr7")

-      .Case("POWER8", "pwr8")

-      .Case("POWER8E", "pwr8")

-      .Case("POWER8NVL", "pwr8")

-      .Case("POWER9", "pwr9")

-      .Default(generic);

-}

-

-StringRef sys::detail::getHostCPUNameForARM(

-    const StringRef &ProcCpuinfoContent) {

-  // The cpuid register on arm is not accessible from user space. On Linux,

-  // it is exposed through the /proc/cpuinfo file.

-

-  // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line

-  // in all cases.

-  SmallVector<StringRef, 32> Lines;

-  ProcCpuinfoContent.split(Lines, "\n");

-

-  // Look for the CPU implementer line.

-  StringRef Implementer;

-  StringRef Hardware;

-  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {

-    if (Lines[I].startswith("CPU implementer"))

-      Implementer = Lines[I].substr(15).ltrim("\t :");

-    if (Lines[I].startswith("Hardware"))

-      Hardware = Lines[I].substr(8).ltrim("\t :");

-  }

-

-  if (Implementer == "0x41") { // ARM Ltd.

-    // MSM8992/8994 may give cpu part for the core that the kernel is running on,

-    // which is undeterministic and wrong. Always return cortex-a53 for these SoC.

-    if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))

-      return "cortex-a53";

-

-

-    // Look for the CPU part line.

-    for (unsigned I = 0, E = Lines.size(); I != E; ++I)

-      if (Lines[I].startswith("CPU part"))

-        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The

-        // values correspond to the "Part number" in the CP15/c0 register. The

-        // contents are specified in the various processor manuals.

-        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))

-            .Case("0x926", "arm926ej-s")

-            .Case("0xb02", "mpcore")

-            .Case("0xb36", "arm1136j-s")

-            .Case("0xb56", "arm1156t2-s")

-            .Case("0xb76", "arm1176jz-s")

-            .Case("0xc08", "cortex-a8")

-            .Case("0xc09", "cortex-a9")

-            .Case("0xc0f", "cortex-a15")

-            .Case("0xc20", "cortex-m0")

-            .Case("0xc23", "cortex-m3")

-            .Case("0xc24", "cortex-m4")

-            .Case("0xd04", "cortex-a35")

-            .Case("0xd03", "cortex-a53")

-            .Case("0xd07", "cortex-a57")

-            .Case("0xd08", "cortex-a72")

-            .Case("0xd09", "cortex-a73")

-            .Default("generic");

-  }

-

-  if (Implementer == "0x51") // Qualcomm Technologies, Inc.

-    // Look for the CPU part line.

-    for (unsigned I = 0, E = Lines.size(); I != E; ++I)

-      if (Lines[I].startswith("CPU part"))

-        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The

-        // values correspond to the "Part number" in the CP15/c0 register. The

-        // contents are specified in the various processor manuals.

-        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))

-            .Case("0x06f", "krait") // APQ8064

-            .Case("0x201", "kryo")

-            .Case("0x205", "kryo")

-            .Default("generic");

-

-  return "generic";

-}

-

-StringRef sys::detail::getHostCPUNameForS390x(

-    const StringRef &ProcCpuinfoContent) {

-  // STIDP is a privileged operation, so use /proc/cpuinfo instead.

-

-  // The "processor 0:" line comes after a fair amount of other information,

-  // including a cache breakdown, but this should be plenty.

-  SmallVector<StringRef, 32> Lines;

-  ProcCpuinfoContent.split(Lines, "\n");

-

-  // Look for the CPU features.

-  SmallVector<StringRef, 32> CPUFeatures;

-  for (unsigned I = 0, E = Lines.size(); I != E; ++I)

-    if (Lines[I].startswith("features")) {

-      size_t Pos = Lines[I].find(":");

-      if (Pos != StringRef::npos) {

-        Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');

-        break;

-      }

-    }

-

-  // We need to check for the presence of vector support independently of

-  // the machine type, since we may only use the vector register set when

-  // supported by the kernel (and hypervisor).

-  bool HaveVectorSupport = false;

-  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {

-    if (CPUFeatures[I] == "vx")

-      HaveVectorSupport = true;

-  }

-

-  // Now check the processor machine type.

-  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {

-    if (Lines[I].startswith("processor ")) {

-      size_t Pos = Lines[I].find("machine = ");

-      if (Pos != StringRef::npos) {

-        Pos += sizeof("machine = ") - 1;

-        unsigned int Id;

-        if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {

-          if (Id >= 2964 && HaveVectorSupport)

-            return "z13";

-          if (Id >= 2827)

-            return "zEC12";

-          if (Id >= 2817)

-            return "z196";

-        }

-      }

-      break;

-    }

-  }

-

-  return "generic";

-}

-

-#if defined(__i386__) || defined(_M_IX86) || \

-    defined(__x86_64__) || defined(_M_X64)

-

-enum VendorSignatures {

-  SIG_INTEL = 0x756e6547 /* Genu */,

-  SIG_AMD = 0x68747541 /* Auth */

-};

-

-enum ProcessorVendors {

-  VENDOR_INTEL = 1,

-  VENDOR_AMD,

-  VENDOR_OTHER,

-  VENDOR_MAX

-};

-

-enum ProcessorTypes {

-  INTEL_ATOM = 1,

-  INTEL_CORE2,

-  INTEL_COREI7,

-  AMDFAM10H,

-  AMDFAM15H,

-  INTEL_i386,

-  INTEL_i486,

-  INTEL_PENTIUM,

-  INTEL_PENTIUM_PRO,

-  INTEL_PENTIUM_II,

-  INTEL_PENTIUM_III,

-  INTEL_PENTIUM_IV,

-  INTEL_PENTIUM_M,

-  INTEL_CORE_DUO,

-  INTEL_XEONPHI,

-  INTEL_X86_64,

-  INTEL_NOCONA,

-  INTEL_PRESCOTT,

-  AMD_i486,

-  AMDPENTIUM,

-  AMDATHLON,

-  AMDFAM14H,

-  AMDFAM16H,

-  AMDFAM17H,

-  CPU_TYPE_MAX

-};

-

-enum ProcessorSubtypes {

-  INTEL_COREI7_NEHALEM = 1,

-  INTEL_COREI7_WESTMERE,

-  INTEL_COREI7_SANDYBRIDGE,

-  AMDFAM10H_BARCELONA,

-  AMDFAM10H_SHANGHAI,

-  AMDFAM10H_ISTANBUL,

-  AMDFAM15H_BDVER1,

-  AMDFAM15H_BDVER2,

-  INTEL_PENTIUM_MMX,

-  INTEL_CORE2_65,

-  INTEL_CORE2_45,

-  INTEL_COREI7_IVYBRIDGE,

-  INTEL_COREI7_HASWELL,

-  INTEL_COREI7_BROADWELL,

-  INTEL_COREI7_SKYLAKE,

-  INTEL_COREI7_SKYLAKE_AVX512,

-  INTEL_ATOM_BONNELL,

-  INTEL_ATOM_SILVERMONT,

-  INTEL_KNIGHTS_LANDING,

-  AMDPENTIUM_K6,

-  AMDPENTIUM_K62,

-  AMDPENTIUM_K63,

-  AMDPENTIUM_GEODE,

-  AMDATHLON_TBIRD,

-  AMDATHLON_MP,

-  AMDATHLON_XP,

-  AMDATHLON_K8SSE3,

-  AMDATHLON_OPTERON,

-  AMDATHLON_FX,

-  AMDATHLON_64,

-  AMD_BTVER1,

-  AMD_BTVER2,

-  AMDFAM15H_BDVER3,

-  AMDFAM15H_BDVER4,

-  AMDFAM17H_ZNVER1,

-  CPU_SUBTYPE_MAX

-};

-

-enum ProcessorFeatures {

-  FEATURE_CMOV = 0,

-  FEATURE_MMX,

-  FEATURE_POPCNT,

-  FEATURE_SSE,

-  FEATURE_SSE2,

-  FEATURE_SSE3,

-  FEATURE_SSSE3,

-  FEATURE_SSE4_1,

-  FEATURE_SSE4_2,

-  FEATURE_AVX,

-  FEATURE_AVX2,

-  FEATURE_AVX512,

-  FEATURE_AVX512SAVE,

-  FEATURE_MOVBE,

-  FEATURE_ADX,

-  FEATURE_EM64T

-};

-

-// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).

-// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID

-// support. Consequently, for i386, the presence of CPUID is checked first

-// via the corresponding eflags bit.

-// Removal of cpuid.h header motivated by PR30384

-// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp

-// or test-suite, but are used in external projects e.g. libstdcxx

-static bool isCpuIdSupported() {

-#if defined(__GNUC__) || defined(__clang__)

-#if defined(__i386__)

-  int __cpuid_supported;

-  __asm__("  pushfl\n"

-          "  popl   %%eax\n"

-          "  movl   %%eax,%%ecx\n"

-          "  xorl   $0x00200000,%%eax\n"

-          "  pushl  %%eax\n"

-          "  popfl\n"

-          "  pushfl\n"

-          "  popl   %%eax\n"

-          "  movl   $0,%0\n"

-          "  cmpl   %%eax,%%ecx\n"

-          "  je     1f\n"

-          "  movl   $1,%0\n"

-          "1:"

-          : "=r"(__cpuid_supported)

-          :

-          : "eax", "ecx");

-  if (!__cpuid_supported)

-    return false;

-#endif

-  return true;

-#endif

-  return true;

-}

-

-/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in

-/// the specified arguments.  If we can't run cpuid on the host, return true.

-static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,

-                               unsigned *rECX, unsigned *rEDX) {

-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)

-#if defined(__GNUC__) || defined(__clang__)

-#if defined(__x86_64__)

-  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.

-  // FIXME: should we save this for Clang?

-  __asm__("movq\t%%rbx, %%rsi\n\t"

-          "cpuid\n\t"

-          "xchgq\t%%rbx, %%rsi\n\t"

-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)

-          : "a"(value));

-#elif defined(__i386__)

-  __asm__("movl\t%%ebx, %%esi\n\t"

-          "cpuid\n\t"

-          "xchgl\t%%ebx, %%esi\n\t"

-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)

-          : "a"(value));

-#else

-  assert(0 && "This method is defined only for x86.");

-#endif

-#elif defined(_MSC_VER)

-  // The MSVC intrinsic is portable across x86 and x64.

-  int registers[4];

-  __cpuid(registers, value);

-  *rEAX = registers[0];

-  *rEBX = registers[1];

-  *rECX = registers[2];

-  *rEDX = registers[3];

-#endif

-  return false;

-#else

-  return true;

-#endif

-}

-

-/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return

-/// the 4 values in the specified arguments.  If we can't run cpuid on the host,

-/// return true.

-static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,

-                                 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,

-                                 unsigned *rEDX) {

-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)

-#if defined(__x86_64__) || defined(_M_X64)

-#if defined(__GNUC__) || defined(__clang__)

-  // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.

-  // FIXME: should we save this for Clang?

-  __asm__("movq\t%%rbx, %%rsi\n\t"

-          "cpuid\n\t"

-          "xchgq\t%%rbx, %%rsi\n\t"

-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)

-          : "a"(value), "c"(subleaf));

-#elif defined(_MSC_VER)

-  int registers[4];

-  __cpuidex(registers, value, subleaf);

-  *rEAX = registers[0];

-  *rEBX = registers[1];

-  *rECX = registers[2];

-  *rEDX = registers[3];

-#endif

-#elif defined(__i386__) || defined(_M_IX86)

-#if defined(__GNUC__) || defined(__clang__)

-  __asm__("movl\t%%ebx, %%esi\n\t"

-          "cpuid\n\t"

-          "xchgl\t%%ebx, %%esi\n\t"

-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)

-          : "a"(value), "c"(subleaf));

-#elif defined(_MSC_VER)

-  __asm {

-      mov   eax,value

-      mov   ecx,subleaf

-      cpuid

-      mov   esi,rEAX

-      mov   dword ptr [esi],eax

-      mov   esi,rEBX

-      mov   dword ptr [esi],ebx

-      mov   esi,rECX

-      mov   dword ptr [esi],ecx

-      mov   esi,rEDX

-      mov   dword ptr [esi],edx

-  }

-#endif

-#else

-  assert(0 && "This method is defined only for x86.");

-#endif

-  return false;

-#else

-  return true;

-#endif

-}

-

-static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {

-#if defined(__GNUC__) || defined(__clang__)

-  // Check xgetbv; this uses a .byte sequence instead of the instruction

-  // directly because older assemblers do not include support for xgetbv and

-  // there is no easy way to conditionally compile based on the assembler used.

-  __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));

-  return false;

-#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)

-  unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);

-  *rEAX = Result;

-  *rEDX = Result >> 32;

-  return false;

-#else

-  return true;

-#endif

-}

-

-static void detectX86FamilyModel(unsigned EAX, unsigned *Family,

-                                 unsigned *Model) {

-  *Family = (EAX >> 8) & 0xf; // Bits 8 - 11

-  *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7

-  if (*Family == 6 || *Family == 0xf) {

-    if (*Family == 0xf)

-      // Examine extended family ID if family ID is F.

-      *Family += (EAX >> 20) & 0xff; // Bits 20 - 27

-    // Examine extended model ID if family ID is 6 or F.

-    *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19

-  }

-}

-

-static void

-getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,

-                                unsigned int Brand_id, unsigned int Features,

-                                unsigned *Type, unsigned *Subtype) {

-  if (Brand_id != 0)

-    return;

-  switch (Family) {

-  case 3:

-    *Type = INTEL_i386;

-    break;

-  case 4:

-    switch (Model) {

-    case 0: // Intel486 DX processors

-    case 1: // Intel486 DX processors

-    case 2: // Intel486 SX processors

-    case 3: // Intel487 processors, IntelDX2 OverDrive processors,

-            // IntelDX2 processors

-    case 4: // Intel486 SL processor

-    case 5: // IntelSX2 processors

-    case 7: // Write-Back Enhanced IntelDX2 processors

-    case 8: // IntelDX4 OverDrive processors, IntelDX4 processors

-    default:

-      *Type = INTEL_i486;

-      break;

-    }

-    break;

-  case 5:

-    switch (Model) {

-    case 1: // Pentium OverDrive processor for Pentium processor (60, 66),

-            // Pentium processors (60, 66)

-    case 2: // Pentium OverDrive processor for Pentium processor (75, 90,

-            // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,

-            // 150, 166, 200)

-    case 3: // Pentium OverDrive processors for Intel486 processor-based

-            // systems

-      *Type = INTEL_PENTIUM;

-      break;

-    case 4: // Pentium OverDrive processor with MMX technology for Pentium

-            // processor (75, 90, 100, 120, 133), Pentium processor with

-            // MMX technology (166, 200)

-      *Type = INTEL_PENTIUM;

-      *Subtype = INTEL_PENTIUM_MMX;

-      break;

-    default:

-      *Type = INTEL_PENTIUM;

-      break;

-    }

-    break;

-  case 6:

-    switch (Model) {

-    case 0x01: // Pentium Pro processor

-      *Type = INTEL_PENTIUM_PRO;

-      break;

-    case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,

-               // model 03

-    case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,

-               // model 05, and Intel Celeron processor, model 05

-    case 0x06: // Celeron processor, model 06

-      *Type = INTEL_PENTIUM_II;

-      break;

-    case 0x07: // Pentium III processor, model 07, and Pentium III Xeon

-               // processor, model 07

-    case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,

-               // model 08, and Celeron processor, model 08

-    case 0x0a: // Pentium III Xeon processor, model 0Ah

-    case 0x0b: // Pentium III processor, model 0Bh

-      *Type = INTEL_PENTIUM_III;

-      break;

-    case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.

-    case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model

-               // 0Dh. All processors are manufactured using the 90 nm process.

-    case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579

-               // Integrated Processor with Intel QuickAssist Technology

-      *Type = INTEL_PENTIUM_M;

-      break;

-    case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model

-               // 0Eh. All processors are manufactured using the 65 nm process.

-      *Type = INTEL_CORE_DUO;

-      break;   // yonah

-    case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile

-               // processor, Intel Core 2 Quad processor, Intel Core 2 Quad

-               // mobile processor, Intel Core 2 Extreme processor, Intel

-               // Pentium Dual-Core processor, Intel Xeon processor, model

-               // 0Fh. All processors are manufactured using the 65 nm process.

-    case 0x16: // Intel Celeron processor model 16h. All processors are

-               // manufactured using the 65 nm process

-      *Type = INTEL_CORE2; // "core2"

-      *Subtype = INTEL_CORE2_65;

-      break;

-    case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model

-               // 17h. All processors are manufactured using the 45 nm process.

-               //

-               // 45nm: Penryn , Wolfdale, Yorkfield (XE)

-    case 0x1d: // Intel Xeon processor MP. All processors are manufactured using

-               // the 45 nm process.

-      *Type = INTEL_CORE2; // "penryn"

-      *Subtype = INTEL_CORE2_45;

-      break;

-    case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All

-               // processors are manufactured using the 45 nm process.

-    case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.

-               // As found in a Summer 2010 model iMac.

-    case 0x1f:

-    case 0x2e:             // Nehalem EX

-      *Type = INTEL_COREI7; // "nehalem"

-      *Subtype = INTEL_COREI7_NEHALEM;

-      break;

-    case 0x25: // Intel Core i7, laptop version.

-    case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All

-               // processors are manufactured using the 32 nm process.

-    case 0x2f: // Westmere EX

-      *Type = INTEL_COREI7; // "westmere"

-      *Subtype = INTEL_COREI7_WESTMERE;

-      break;

-    case 0x2a: // Intel Core i7 processor. All processors are manufactured

-               // using the 32 nm process.

-    case 0x2d:

-      *Type = INTEL_COREI7; //"sandybridge"

-      *Subtype = INTEL_COREI7_SANDYBRIDGE;

-      break;

-    case 0x3a:

-    case 0x3e:             // Ivy Bridge EP

-      *Type = INTEL_COREI7; // "ivybridge"

-      *Subtype = INTEL_COREI7_IVYBRIDGE;

-      break;

-

-    // Haswell:

-    case 0x3c:

-    case 0x3f:

-    case 0x45:

-    case 0x46:

-      *Type = INTEL_COREI7; // "haswell"

-      *Subtype = INTEL_COREI7_HASWELL;

-      break;

-

-    // Broadwell:

-    case 0x3d:

-    case 0x47:

-    case 0x4f:

-    case 0x56:

-      *Type = INTEL_COREI7; // "broadwell"

-      *Subtype = INTEL_COREI7_BROADWELL;

-      break;

-

-    // Skylake:

-    case 0x4e: // Skylake mobile

-    case 0x5e: // Skylake desktop

-    case 0x8e: // Kaby Lake mobile

-    case 0x9e: // Kaby Lake desktop

-      *Type = INTEL_COREI7; // "skylake"

-      *Subtype = INTEL_COREI7_SKYLAKE;

-      break;

-

-    // Skylake Xeon:

-    case 0x55:

-      *Type = INTEL_COREI7;

-      // Check that we really have AVX512

-      if (Features & (1 << FEATURE_AVX512)) {

-        *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"

-      } else {

-        *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"

-      }

-      break;

-

-    case 0x1c: // Most 45 nm Intel Atom processors

-    case 0x26: // 45 nm Atom Lincroft

-    case 0x27: // 32 nm Atom Medfield

-    case 0x35: // 32 nm Atom Midview

-    case 0x36: // 32 nm Atom Midview

-      *Type = INTEL_ATOM;

-      *Subtype = INTEL_ATOM_BONNELL;

-      break; // "bonnell"

-

-    // Atom Silvermont codes from the Intel software optimization guide.

-    case 0x37:

-    case 0x4a:

-    case 0x4d:

-    case 0x5a:

-    case 0x5d:

-    case 0x4c: // really airmont

-      *Type = INTEL_ATOM;

-      *Subtype = INTEL_ATOM_SILVERMONT;

-      break; // "silvermont"

-

-    case 0x57:

-      *Type = INTEL_XEONPHI; // knl

-      *Subtype = INTEL_KNIGHTS_LANDING;

-      break;

-

-    default: // Unknown family 6 CPU, try to guess.

-      if (Features & (1 << FEATURE_AVX512)) {

-        *Type = INTEL_XEONPHI; // knl

-        *Subtype = INTEL_KNIGHTS_LANDING;

-        break;

-      }

-      if (Features & (1 << FEATURE_ADX)) {

-        *Type = INTEL_COREI7;

-        *Subtype = INTEL_COREI7_BROADWELL;

-        break;

-      }

-      if (Features & (1 << FEATURE_AVX2)) {

-        *Type = INTEL_COREI7;

-        *Subtype = INTEL_COREI7_HASWELL;

-        break;

-      }

-      if (Features & (1 << FEATURE_AVX)) {

-        *Type = INTEL_COREI7;

-        *Subtype = INTEL_COREI7_SANDYBRIDGE;

-        break;

-      }

-      if (Features & (1 << FEATURE_SSE4_2)) {

-        if (Features & (1 << FEATURE_MOVBE)) {

-          *Type = INTEL_ATOM;

-          *Subtype = INTEL_ATOM_SILVERMONT;

-        } else {

-          *Type = INTEL_COREI7;

-          *Subtype = INTEL_COREI7_NEHALEM;

-        }

-        break;

-      }

-      if (Features & (1 << FEATURE_SSE4_1)) {

-        *Type = INTEL_CORE2; // "penryn"

-        *Subtype = INTEL_CORE2_45;

-        break;

-      }

-      if (Features & (1 << FEATURE_SSSE3)) {

-        if (Features & (1 << FEATURE_MOVBE)) {

-          *Type = INTEL_ATOM;

-          *Subtype = INTEL_ATOM_BONNELL; // "bonnell"

-        } else {

-          *Type = INTEL_CORE2; // "core2"

-          *Subtype = INTEL_CORE2_65;

-        }

-        break;

-      }

-      if (Features & (1 << FEATURE_EM64T)) {

-        *Type = INTEL_X86_64;

-        break; // x86-64

-      }

-      if (Features & (1 << FEATURE_SSE2)) {

-        *Type = INTEL_PENTIUM_M;

-        break;

-      }

-      if (Features & (1 << FEATURE_SSE)) {

-        *Type = INTEL_PENTIUM_III;

-        break;

-      }

-      if (Features & (1 << FEATURE_MMX)) {

-        *Type = INTEL_PENTIUM_II;

-        break;

-      }

-      *Type = INTEL_PENTIUM_PRO;

-      break;

-    }

-    break;

-  case 15: {

-    switch (Model) {

-    case 0: // Pentium 4 processor, Intel Xeon processor. All processors are

-            // model 00h and manufactured using the 0.18 micron process.

-    case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon

-            // processor MP, and Intel Celeron processor. All processors are

-            // model 01h and manufactured using the 0.18 micron process.

-    case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,

-            // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron

-            // processor, and Mobile Intel Celeron processor. All processors

-            // are model 02h and manufactured using the 0.13 micron process.

-      *Type =

-          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);

-      break;

-

-    case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D

-            // processor. All processors are model 03h and manufactured using

-            // the 90 nm process.

-    case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,

-            // Pentium D processor, Intel Xeon processor, Intel Xeon

-            // processor MP, Intel Celeron D processor. All processors are

-            // model 04h and manufactured using the 90 nm process.

-    case 6: // Pentium 4 processor, Pentium D processor, Pentium processor

-            // Extreme Edition, Intel Xeon processor, Intel Xeon processor

-            // MP, Intel Celeron D processor. All processors are model 06h

-            // and manufactured using the 65 nm process.

-      *Type =

-          ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);

-      break;

-

-    default:

-      *Type =

-          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);

-      break;

-    }

-    break;

-  }

-  default:

-    break; /*"generic"*/

-  }

-}

-

-static void getAMDProcessorTypeAndSubtype(unsigned int Family,

-                                          unsigned int Model,

-                                          unsigned int Features,

-                                          unsigned *Type,

-                                          unsigned *Subtype) {

-  // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There

-  // appears to be no way to generate the wide variety of AMD-specific targets

-  // from the information returned from CPUID.

-  switch (Family) {

-  case 4:

-    *Type = AMD_i486;

-    break;

-  case 5:

-    *Type = AMDPENTIUM;

-    switch (Model) {

-    case 6:

-    case 7:

-      *Subtype = AMDPENTIUM_K6;

-      break; // "k6"

-    case 8:

-      *Subtype = AMDPENTIUM_K62;

-      break; // "k6-2"

-    case 9:

-    case 13:

-      *Subtype = AMDPENTIUM_K63;

-      break; // "k6-3"

-    case 10:

-      *Subtype = AMDPENTIUM_GEODE;

-      break; // "geode"

-    }

-    break;

-  case 6:

-    *Type = AMDATHLON;

-    switch (Model) {

-    case 4:

-      *Subtype = AMDATHLON_TBIRD;

-      break; // "athlon-tbird"

-    case 6:

-    case 7:

-    case 8:

-      *Subtype = AMDATHLON_MP;

-      break; // "athlon-mp"

-    case 10:

-      *Subtype = AMDATHLON_XP;

-      break; // "athlon-xp"

-    }

-    break;

-  case 15:

-    *Type = AMDATHLON;

-    if (Features & (1 << FEATURE_SSE3)) {

-      *Subtype = AMDATHLON_K8SSE3;

-      break; // "k8-sse3"

-    }

-    switch (Model) {

-    case 1:

-      *Subtype = AMDATHLON_OPTERON;

-      break; // "opteron"

-    case 5:

-      *Subtype = AMDATHLON_FX;

-      break; // "athlon-fx"; also opteron

-    default:

-      *Subtype = AMDATHLON_64;

-      break; // "athlon64"

-    }

-    break;

-  case 16:

-    *Type = AMDFAM10H; // "amdfam10"

-    switch (Model) {

-    case 2:

-      *Subtype = AMDFAM10H_BARCELONA;

-      break;

-    case 4:

-      *Subtype = AMDFAM10H_SHANGHAI;

-      break;

-    case 8:

-      *Subtype = AMDFAM10H_ISTANBUL;

-      break;

-    }

-    break;

-  case 20:

-    *Type = AMDFAM14H;

-    *Subtype = AMD_BTVER1;

-    break; // "btver1";

-  case 21:

-    *Type = AMDFAM15H;

-    if (!(Features &

-          (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.

-      *Subtype = AMD_BTVER1;

-      break; // "btver1"

-    }

-    if (Model >= 0x50 && Model <= 0x6f) {

-      *Subtype = AMDFAM15H_BDVER4;

-      break; // "bdver4"; 50h-6Fh: Excavator

-    }

-    if (Model >= 0x30 && Model <= 0x3f) {

-      *Subtype = AMDFAM15H_BDVER3;

-      break; // "bdver3"; 30h-3Fh: Steamroller

-    }

-    if (Model >= 0x10 && Model <= 0x1f) {

-      *Subtype = AMDFAM15H_BDVER2;

-      break; // "bdver2"; 10h-1Fh: Piledriver

-    }

-    if (Model <= 0x0f) {

-      *Subtype = AMDFAM15H_BDVER1;

-      break; // "bdver1"; 00h-0Fh: Bulldozer

-    }

-    break;

-  case 22:

-    *Type = AMDFAM16H;

-    if (!(Features &

-          (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.

-      *Subtype = AMD_BTVER1;

-      break; // "btver1";

-    }

-    *Subtype = AMD_BTVER2;

-    break; // "btver2"

-  case 23:

-    *Type = AMDFAM17H;

-    if (Features & (1 << FEATURE_ADX)) {

-      *Subtype = AMDFAM17H_ZNVER1;

-      break; // "znver1"

-    }

-    *Subtype =  AMD_BTVER1;

-    break;

-  default:

-    break; // "generic"

-  }

-}

-

-static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,

-                                     unsigned MaxLeaf) {

-  unsigned Features = 0;

-  unsigned int EAX, EBX;

-  Features |= (((EDX >> 23) & 1) << FEATURE_MMX);

-  Features |= (((EDX >> 25) & 1) << FEATURE_SSE);

-  Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);

-  Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);

-  Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);

-  Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);

-  Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);

-  Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);

-

-  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV

-  // indicates that the AVX registers will be saved and restored on context

-  // switch, then we have full AVX support.

-  const unsigned AVXBits = (1 << 27) | (1 << 28);

-  bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&

-                ((EAX & 0x6) == 0x6);

-  bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);

-  bool HasLeaf7 =

-      MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);

-  bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);

-  bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);

-  bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);

-  Features |= (HasAVX << FEATURE_AVX);

-  Features |= (HasAVX2 << FEATURE_AVX2);

-  Features |= (HasAVX512 << FEATURE_AVX512);

-  Features |= (HasAVX512Save << FEATURE_AVX512SAVE);

-  Features |= (HasADX << FEATURE_ADX);

-

-  getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);

-  Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);

-  return Features;

-}

-

-StringRef sys::getHostCPUName() {

-  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;

-  unsigned MaxLeaf, Vendor;

-

-#if defined(__GNUC__) || defined(__clang__)

-  //FIXME: include cpuid.h from clang or copy __get_cpuid_max here

-  // and simplify it to not invoke __cpuid (like cpu_model.c in

-  // compiler-rt/lib/builtins/cpu_model.c?

-  // Opting for the second option.

-  if(!isCpuIdSupported())

-    return "generic";

-#endif

-  if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))

-    return "generic";

-  if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))

-    return "generic";

-

-  unsigned Brand_id = EBX & 0xff;

-  unsigned Family = 0, Model = 0;

-  unsigned Features = 0;

-  detectX86FamilyModel(EAX, &Family, &Model);

-  Features = getAvailableFeatures(ECX, EDX, MaxLeaf);

-

-  unsigned Type;

-  unsigned Subtype;

-

-  if (Vendor == SIG_INTEL) {

-    getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,

-                                    &Subtype);

-    switch (Type) {

-    case INTEL_i386:

-      return "i386";

-    case INTEL_i486:

-      return "i486";

-    case INTEL_PENTIUM:

-      if (Subtype == INTEL_PENTIUM_MMX)

-        return "pentium-mmx";

-      return "pentium";

-    case INTEL_PENTIUM_PRO:

-      return "pentiumpro";

-    case INTEL_PENTIUM_II:

-      return "pentium2";

-    case INTEL_PENTIUM_III:

-      return "pentium3";

-    case INTEL_PENTIUM_IV:

-      return "pentium4";

-    case INTEL_PENTIUM_M:

-      return "pentium-m";

-    case INTEL_CORE_DUO:

-      return "yonah";

-    case INTEL_CORE2:

-      switch (Subtype) {

-      case INTEL_CORE2_65:

-        return "core2";

-      case INTEL_CORE2_45:

-        return "penryn";

-      default:

-        return "core2";

-      }

-    case INTEL_COREI7:

-      switch (Subtype) {

-      case INTEL_COREI7_NEHALEM:

-        return "nehalem";

-      case INTEL_COREI7_WESTMERE:

-        return "westmere";

-      case INTEL_COREI7_SANDYBRIDGE:

-        return "sandybridge";

-      case INTEL_COREI7_IVYBRIDGE:

-        return "ivybridge";

-      case INTEL_COREI7_HASWELL:

-        return "haswell";

-      case INTEL_COREI7_BROADWELL:

-        return "broadwell";

-      case INTEL_COREI7_SKYLAKE:

-        return "skylake";

-      case INTEL_COREI7_SKYLAKE_AVX512:

-        return "skylake-avx512";

-      default:

-        return "corei7";

-      }

-    case INTEL_ATOM:

-      switch (Subtype) {

-      case INTEL_ATOM_BONNELL:

-        return "bonnell";

-      case INTEL_ATOM_SILVERMONT:

-        return "silvermont";

-      default:

-        return "atom";

-      }

-    case INTEL_XEONPHI:

-      return "knl"; /*update for more variants added*/

-    case INTEL_X86_64:

-      return "x86-64";

-    case INTEL_NOCONA:

-      return "nocona";

-    case INTEL_PRESCOTT:

-      return "prescott";

-    default:

-      return "generic";

-    }

-  } else if (Vendor == SIG_AMD) {

-    getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);

-    switch (Type) {

-    case AMD_i486:

-      return "i486";

-    case AMDPENTIUM:

-      switch (Subtype) {

-      case AMDPENTIUM_K6:

-        return "k6";

-      case AMDPENTIUM_K62:

-        return "k6-2";

-      case AMDPENTIUM_K63:

-        return "k6-3";

-      case AMDPENTIUM_GEODE:

-        return "geode";

-      default:

-        return "pentium";

-      }

-    case AMDATHLON:

-      switch (Subtype) {

-      case AMDATHLON_TBIRD:

-        return "athlon-tbird";

-      case AMDATHLON_MP:

-        return "athlon-mp";

-      case AMDATHLON_XP:

-        return "athlon-xp";

-      case AMDATHLON_K8SSE3:

-        return "k8-sse3";

-      case AMDATHLON_OPTERON:

-        return "opteron";

-      case AMDATHLON_FX:

-        return "athlon-fx";

-      case AMDATHLON_64:

-        return "athlon64";

-      default:

-        return "athlon";

-      }

-    case AMDFAM10H:

-      if(Subtype == AMDFAM10H_BARCELONA)

-        return "barcelona";

-      return "amdfam10";

-    case AMDFAM14H:

-      return "btver1";

-    case AMDFAM15H:

-      switch (Subtype) {

-      case AMDFAM15H_BDVER1:

-        return "bdver1";

-      case AMDFAM15H_BDVER2:

-        return "bdver2";

-      case AMDFAM15H_BDVER3:

-        return "bdver3";

-      case AMDFAM15H_BDVER4:

-        return "bdver4";

-      case AMD_BTVER1:

-        return "btver1";

-      default:

-        return "amdfam15";

-      }

-    case AMDFAM16H:

-      switch (Subtype) {

-      case AMD_BTVER1:

-        return "btver1";

-      case AMD_BTVER2:

-        return "btver2";

-      default:

-        return "amdfam16";

-      }

-    case AMDFAM17H:

-      switch (Subtype) {

-      case AMD_BTVER1:

-        return "btver1";

-      case AMDFAM17H_ZNVER1:

-        return "znver1";

-      default:

-        return "amdfam17";

-      }

-    default:

-      return "generic";

-    }

-  }

-  return "generic";

-}

-

-#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))

-StringRef sys::getHostCPUName() {

-  host_basic_info_data_t hostInfo;

-  mach_msg_type_number_t infoCount;

-

-  infoCount = HOST_BASIC_INFO_COUNT;

-  host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,

-            &infoCount);

-

-  if (hostInfo.cpu_type != CPU_TYPE_POWERPC)

-    return "generic";

-

-  switch (hostInfo.cpu_subtype) {

-  case CPU_SUBTYPE_POWERPC_601:

-    return "601";

-  case CPU_SUBTYPE_POWERPC_602:

-    return "602";

-  case CPU_SUBTYPE_POWERPC_603:

-    return "603";

-  case CPU_SUBTYPE_POWERPC_603e:

-    return "603e";

-  case CPU_SUBTYPE_POWERPC_603ev:

-    return "603ev";

-  case CPU_SUBTYPE_POWERPC_604:

-    return "604";

-  case CPU_SUBTYPE_POWERPC_604e:

-    return "604e";

-  case CPU_SUBTYPE_POWERPC_620:

-    return "620";

-  case CPU_SUBTYPE_POWERPC_750:

-    return "750";

-  case CPU_SUBTYPE_POWERPC_7400:

-    return "7400";

-  case CPU_SUBTYPE_POWERPC_7450:

-    return "7450";

-  case CPU_SUBTYPE_POWERPC_970:

-    return "970";

-  default:;

-  }

-

-  return "generic";

-}

-#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))

-StringRef sys::getHostCPUName() {

-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();

-  const StringRef& Content = P ? P->getBuffer() : "";

-  return detail::getHostCPUNameForPowerPC(Content);

-}

-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))

-StringRef sys::getHostCPUName() {

-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();

-  const StringRef& Content = P ? P->getBuffer() : "";

-  return detail::getHostCPUNameForARM(Content);

-}

-#elif defined(__linux__) && defined(__s390x__)

-StringRef sys::getHostCPUName() {

-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();

-  const StringRef& Content = P ? P->getBuffer() : "";

-  return detail::getHostCPUNameForS390x(Content);

-}

-#else

-StringRef sys::getHostCPUName() { return "generic"; }

-#endif

-

-#if defined(__linux__) && defined(__x86_64__)

-// On Linux, the number of physical cores can be computed from /proc/cpuinfo,

-// using the number of unique physical/core id pairs. The following

-// implementation reads the /proc/cpuinfo format on an x86_64 system.

-static int computeHostNumPhysicalCores() {

-  // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be

-  // mmapped because it appears to have 0 size.

-  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =

-      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");

-  if (std::error_code EC = Text.getError()) {

-    llvm::errs() << "Can't read "

-                 << "/proc/cpuinfo: " << EC.message() << "\n";

-    return -1;

-  }

-  SmallVector<StringRef, 8> strs;

-  (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,

-                             /*KeepEmpty=*/false);

-  int CurPhysicalId = -1;

-  int CurCoreId = -1;

-  SmallSet<std::pair<int, int>, 32> UniqueItems;

-  for (auto &Line : strs) {

-    Line = Line.trim();

-    if (!Line.startswith("physical id") && !Line.startswith("core id"))

-      continue;

-    std::pair<StringRef, StringRef> Data = Line.split(':');

-    auto Name = Data.first.trim();

-    auto Val = Data.second.trim();

-    if (Name == "physical id") {

-      assert(CurPhysicalId == -1 &&

-             "Expected a core id before seeing another physical id");

-      Val.getAsInteger(10, CurPhysicalId);

-    }

-    if (Name == "core id") {

-      assert(CurCoreId == -1 &&

-             "Expected a physical id before seeing another core id");

-      Val.getAsInteger(10, CurCoreId);

-    }

-    if (CurPhysicalId != -1 && CurCoreId != -1) {

-      UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));

-      CurPhysicalId = -1;

-      CurCoreId = -1;

-    }

-  }

-  return UniqueItems.size();

-}

-#elif defined(__APPLE__) && defined(__x86_64__)

-#include <sys/param.h>

-#include <sys/sysctl.h>

-

-// Gets the number of *physical cores* on the machine.

-static int computeHostNumPhysicalCores() {

-  uint32_t count;

-  size_t len = sizeof(count);

-  sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);

-  if (count < 1) {

-    int nm[2];

-    nm[0] = CTL_HW;

-    nm[1] = HW_AVAILCPU;

-    sysctl(nm, 2, &count, &len, NULL, 0);

-    if (count < 1)

-      return -1;

-  }

-  return count;

-}

-#else

-// On other systems, return -1 to indicate unknown.

-static int computeHostNumPhysicalCores() { return -1; }

-#endif

-

-int sys::getHostNumPhysicalCores() {

-  static int NumCores = computeHostNumPhysicalCores();

-  return NumCores;

-}

-

-#if defined(__i386__) || defined(_M_IX86) || \

-    defined(__x86_64__) || defined(_M_X64)

-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {

-  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;

-  unsigned MaxLevel;

-  union {

-    unsigned u[3];

-    char c[12];

-  } text;

-

-  if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||

-      MaxLevel < 1)

-    return false;

-

-  getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);

-

-  Features["cmov"] = (EDX >> 15) & 1;

-  Features["mmx"] = (EDX >> 23) & 1;

-  Features["sse"] = (EDX >> 25) & 1;

-  Features["sse2"] = (EDX >> 26) & 1;

-  Features["sse3"] = (ECX >> 0) & 1;

-  Features["ssse3"] = (ECX >> 9) & 1;

-  Features["sse4.1"] = (ECX >> 19) & 1;

-  Features["sse4.2"] = (ECX >> 20) & 1;

-

-  Features["pclmul"] = (ECX >> 1) & 1;

-  Features["cx16"] = (ECX >> 13) & 1;

-  Features["movbe"] = (ECX >> 22) & 1;

-  Features["popcnt"] = (ECX >> 23) & 1;

-  Features["aes"] = (ECX >> 25) & 1;

-  Features["rdrnd"] = (ECX >> 30) & 1;

-

-  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV

-  // indicates that the AVX registers will be saved and restored on context

-  // switch, then we have full AVX support.

-  bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&

-                    !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);

-  Features["avx"] = HasAVXSave;

-  Features["fma"] = HasAVXSave && (ECX >> 12) & 1;

-  Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;

-

-  // Only enable XSAVE if OS has enabled support for saving YMM state.

-  Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;

-

-  // AVX512 requires additional context to be saved by the OS.

-  bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);

-

-  unsigned MaxExtLevel;

-  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);

-

-  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&

-                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);

-  Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);

-  Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);

-  Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);

-  Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;

-  Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);

-  Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;

-  Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);

-  Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);

-

-  bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&

-                     !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);

-  Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);

-

-  bool HasLeaf7 =

-      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);

-

-  // AVX2 is only supported if we have the OS save support from AVX.

-  Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);

-

-  Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);

-  Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);

-  Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);

-  Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);

-  Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);

-  Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);

-  Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);

-  Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);

-  Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);

-  Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);

-

-  // AVX512 is only supported if the OS supports the context save for it.

-  Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;

-  Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;

-  Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;

-  Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;

-  Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;

-  Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;

-  Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;

-  Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;

-

-  Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);

-  Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;

-  // Enable protection keys

-  Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);

-

-  bool HasLeafD = MaxLevel >= 0xd &&

-                  !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);

-

-  // Only enable XSAVE if OS has enabled support for saving YMM state.

-  Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);

-  Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);

-  Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);

-

-  return true;

-}

-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))

-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {

-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();

-  if (!P)

-    return false;

-

-  SmallVector<StringRef, 32> Lines;

-  P->getBuffer().split(Lines, "\n");

-

-  SmallVector<StringRef, 32> CPUFeatures;

-

-  // Look for the CPU features.

-  for (unsigned I = 0, E = Lines.size(); I != E; ++I)

-    if (Lines[I].startswith("Features")) {

-      Lines[I].split(CPUFeatures, ' ');

-      break;

-    }

-

-#if defined(__aarch64__)

-  // Keep track of which crypto features we have seen

-  enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };

-  uint32_t crypto = 0;

-#endif

-

-  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {

-    StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])

-#if defined(__aarch64__)

-                                   .Case("asimd", "neon")

-                                   .Case("fp", "fp-armv8")

-                                   .Case("crc32", "crc")

-#else

-                                   .Case("half", "fp16")

-                                   .Case("neon", "neon")

-                                   .Case("vfpv3", "vfp3")

-                                   .Case("vfpv3d16", "d16")

-                                   .Case("vfpv4", "vfp4")

-                                   .Case("idiva", "hwdiv-arm")

-                                   .Case("idivt", "hwdiv")

-#endif

-                                   .Default("");

-

-#if defined(__aarch64__)

-    // We need to check crypto separately since we need all of the crypto

-    // extensions to enable the subtarget feature

-    if (CPUFeatures[I] == "aes")

-      crypto |= CAP_AES;

-    else if (CPUFeatures[I] == "pmull")

-      crypto |= CAP_PMULL;

-    else if (CPUFeatures[I] == "sha1")

-      crypto |= CAP_SHA1;

-    else if (CPUFeatures[I] == "sha2")

-      crypto |= CAP_SHA2;

-#endif

-

-    if (LLVMFeatureStr != "")

-      Features[LLVMFeatureStr] = true;

-  }

-

-#if defined(__aarch64__)

-  // If we have all crypto bits we can add the feature

-  if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))

-    Features["crypto"] = true;

-#endif

-

-  return true;

-}

-#else

-bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }

-#endif

-

-std::string sys::getProcessTriple() {

-  Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));

-

-  if (sizeof(void *) == 8 && PT.isArch32Bit())

-    PT = PT.get64BitArchVariant();

-  if (sizeof(void *) == 4 && PT.isArch64Bit())

-    PT = PT.get32BitArchVariant();

-

-  return PT.str();

-}

+//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements the operating system Host concept.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Host.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Config/config.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <assert.h>
+#include <string.h>
+
+// Include the platform-specific parts of this class.
+#ifdef LLVM_ON_UNIX
+#include "Unix/Host.inc"
+#endif
+#ifdef LLVM_ON_WIN32
+#include "Windows/Host.inc"
+#endif
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+#include <mach/host_info.h>
+#include <mach/mach.h>
+#include <mach/mach_host.h>
+#include <mach/machine.h>
+#endif
+
+#define DEBUG_TYPE "host-detection"
+
+//===----------------------------------------------------------------------===//
+//
+//  Implementations of the CPU detection routines
+//
+//===----------------------------------------------------------------------===//
+
+using namespace llvm;
+
+static std::unique_ptr<llvm::MemoryBuffer>
+    LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
+  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+  if (std::error_code EC = Text.getError()) {
+    llvm::errs() << "Can't read "
+                 << "/proc/cpuinfo: " << EC.message() << "\n";
+    return nullptr;
+  }
+  return std::move(*Text);
+}
+
+StringRef sys::detail::getHostCPUNameForPowerPC(
+    const StringRef &ProcCpuinfoContent) {
+  // Access to the Processor Version Register (PVR) on PowerPC is privileged,
+  // and so we must use an operating-system interface to determine the current
+  // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
+  const char *generic = "generic";
+
+  // The cpu line is second (after the 'processor: 0' line), so if this
+  // buffer is too small then something has changed (or is wrong).
+  StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
+  StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
+
+  StringRef::const_iterator CIP = CPUInfoStart;
+
+  StringRef::const_iterator CPUStart = 0;
+  size_t CPULen = 0;
+
+  // We need to find the first line which starts with cpu, spaces, and a colon.
+  // After the colon, there may be some additional spaces and then the cpu type.
+  while (CIP < CPUInfoEnd && CPUStart == 0) {
+    if (CIP < CPUInfoEnd && *CIP == '\n')
+      ++CIP;
+
+    if (CIP < CPUInfoEnd && *CIP == 'c') {
+      ++CIP;
+      if (CIP < CPUInfoEnd && *CIP == 'p') {
+        ++CIP;
+        if (CIP < CPUInfoEnd && *CIP == 'u') {
+          ++CIP;
+          while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+            ++CIP;
+
+          if (CIP < CPUInfoEnd && *CIP == ':') {
+            ++CIP;
+            while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+              ++CIP;
+
+            if (CIP < CPUInfoEnd) {
+              CPUStart = CIP;
+              while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
+                                          *CIP != ',' && *CIP != '\n'))
+                ++CIP;
+              CPULen = CIP - CPUStart;
+            }
+          }
+        }
+      }
+    }
+
+    if (CPUStart == 0)
+      while (CIP < CPUInfoEnd && *CIP != '\n')
+        ++CIP;
+  }
+
+  if (CPUStart == 0)
+    return generic;
+
+  return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
+      .Case("604e", "604e")
+      .Case("604", "604")
+      .Case("7400", "7400")
+      .Case("7410", "7400")
+      .Case("7447", "7400")
+      .Case("7455", "7450")
+      .Case("G4", "g4")
+      .Case("POWER4", "970")
+      .Case("PPC970FX", "970")
+      .Case("PPC970MP", "970")
+      .Case("G5", "g5")
+      .Case("POWER5", "g5")
+      .Case("A2", "a2")
+      .Case("POWER6", "pwr6")
+      .Case("POWER7", "pwr7")
+      .Case("POWER8", "pwr8")
+      .Case("POWER8E", "pwr8")
+      .Case("POWER8NVL", "pwr8")
+      .Case("POWER9", "pwr9")
+      .Default(generic);
+}
+
+StringRef sys::detail::getHostCPUNameForARM(
+    const StringRef &ProcCpuinfoContent) {
+  // The cpuid register on arm is not accessible from user space. On Linux,
+  // it is exposed through the /proc/cpuinfo file.
+
+  // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
+  // in all cases.
+  SmallVector<StringRef, 32> Lines;
+  ProcCpuinfoContent.split(Lines, "\n");
+
+  // Look for the CPU implementer line.
+  StringRef Implementer;
+  StringRef Hardware;
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+    if (Lines[I].startswith("CPU implementer"))
+      Implementer = Lines[I].substr(15).ltrim("\t :");
+    if (Lines[I].startswith("Hardware"))
+      Hardware = Lines[I].substr(8).ltrim("\t :");
+  }
+
+  if (Implementer == "0x41") { // ARM Ltd.
+    // MSM8992/8994 may give cpu part for the core that the kernel is running on,
+    // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
+    if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
+      return "cortex-a53";
+
+
+    // Look for the CPU part line.
+    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+      if (Lines[I].startswith("CPU part"))
+        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+        // values correspond to the "Part number" in the CP15/c0 register. The
+        // contents are specified in the various processor manuals.
+        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+            .Case("0x926", "arm926ej-s")
+            .Case("0xb02", "mpcore")
+            .Case("0xb36", "arm1136j-s")
+            .Case("0xb56", "arm1156t2-s")
+            .Case("0xb76", "arm1176jz-s")
+            .Case("0xc08", "cortex-a8")
+            .Case("0xc09", "cortex-a9")
+            .Case("0xc0f", "cortex-a15")
+            .Case("0xc20", "cortex-m0")
+            .Case("0xc23", "cortex-m3")
+            .Case("0xc24", "cortex-m4")
+            .Case("0xd04", "cortex-a35")
+            .Case("0xd03", "cortex-a53")
+            .Case("0xd07", "cortex-a57")
+            .Case("0xd08", "cortex-a72")
+            .Case("0xd09", "cortex-a73")
+            .Default("generic");
+  }
+
+  if (Implementer == "0x51") // Qualcomm Technologies, Inc.
+    // Look for the CPU part line.
+    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+      if (Lines[I].startswith("CPU part"))
+        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+        // values correspond to the "Part number" in the CP15/c0 register. The
+        // contents are specified in the various processor manuals.
+        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+            .Case("0x06f", "krait") // APQ8064
+            .Case("0x201", "kryo")
+            .Case("0x205", "kryo")
+            .Default("generic");
+
+  return "generic";
+}
+
+StringRef sys::detail::getHostCPUNameForS390x(
+    const StringRef &ProcCpuinfoContent) {
+  // STIDP is a privileged operation, so use /proc/cpuinfo instead.
+
+  // The "processor 0:" line comes after a fair amount of other information,
+  // including a cache breakdown, but this should be plenty.
+  SmallVector<StringRef, 32> Lines;
+  ProcCpuinfoContent.split(Lines, "\n");
+
+  // Look for the CPU features.
+  SmallVector<StringRef, 32> CPUFeatures;
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+    if (Lines[I].startswith("features")) {
+      size_t Pos = Lines[I].find(":");
+      if (Pos != StringRef::npos) {
+        Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
+        break;
+      }
+    }
+
+  // We need to check for the presence of vector support independently of
+  // the machine type, since we may only use the vector register set when
+  // supported by the kernel (and hypervisor).
+  bool HaveVectorSupport = false;
+  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+    if (CPUFeatures[I] == "vx")
+      HaveVectorSupport = true;
+  }
+
+  // Now check the processor machine type.
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+    if (Lines[I].startswith("processor ")) {
+      size_t Pos = Lines[I].find("machine = ");
+      if (Pos != StringRef::npos) {
+        Pos += sizeof("machine = ") - 1;
+        unsigned int Id;
+        if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
+          if (Id >= 2964 && HaveVectorSupport)
+            return "z13";
+          if (Id >= 2827)
+            return "zEC12";
+          if (Id >= 2817)
+            return "z196";
+        }
+      }
+      break;
+    }
+  }
+
+  return "generic";
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+    defined(__x86_64__) || defined(_M_X64)
+
+enum VendorSignatures {
+  SIG_INTEL = 0x756e6547 /* Genu */,
+  SIG_AMD = 0x68747541 /* Auth */
+};
+
+enum ProcessorVendors {
+  VENDOR_INTEL = 1,
+  VENDOR_AMD,
+  VENDOR_OTHER,
+  VENDOR_MAX
+};
+
+enum ProcessorTypes {
+  INTEL_ATOM = 1,
+  INTEL_CORE2,
+  INTEL_COREI7,
+  AMDFAM10H,
+  AMDFAM15H,
+  INTEL_i386,
+  INTEL_i486,
+  INTEL_PENTIUM,
+  INTEL_PENTIUM_PRO,
+  INTEL_PENTIUM_II,
+  INTEL_PENTIUM_III,
+  INTEL_PENTIUM_IV,
+  INTEL_PENTIUM_M,
+  INTEL_CORE_DUO,
+  INTEL_XEONPHI,
+  INTEL_X86_64,
+  INTEL_NOCONA,
+  INTEL_PRESCOTT,
+  AMD_i486,
+  AMDPENTIUM,
+  AMDATHLON,
+  AMDFAM14H,
+  AMDFAM16H,
+  AMDFAM17H,
+  CPU_TYPE_MAX
+};
+
+enum ProcessorSubtypes {
+  INTEL_COREI7_NEHALEM = 1,
+  INTEL_COREI7_WESTMERE,
+  INTEL_COREI7_SANDYBRIDGE,
+  AMDFAM10H_BARCELONA,
+  AMDFAM10H_SHANGHAI,
+  AMDFAM10H_ISTANBUL,
+  AMDFAM15H_BDVER1,
+  AMDFAM15H_BDVER2,
+  INTEL_PENTIUM_MMX,
+  INTEL_CORE2_65,
+  INTEL_CORE2_45,
+  INTEL_COREI7_IVYBRIDGE,
+  INTEL_COREI7_HASWELL,
+  INTEL_COREI7_BROADWELL,
+  INTEL_COREI7_SKYLAKE,
+  INTEL_COREI7_SKYLAKE_AVX512,
+  INTEL_ATOM_BONNELL,
+  INTEL_ATOM_SILVERMONT,
+  INTEL_KNIGHTS_LANDING,
+  AMDPENTIUM_K6,
+  AMDPENTIUM_K62,
+  AMDPENTIUM_K63,
+  AMDPENTIUM_GEODE,
+  AMDATHLON_TBIRD,
+  AMDATHLON_MP,
+  AMDATHLON_XP,
+  AMDATHLON_K8SSE3,
+  AMDATHLON_OPTERON,
+  AMDATHLON_FX,
+  AMDATHLON_64,
+  AMD_BTVER1,
+  AMD_BTVER2,
+  AMDFAM15H_BDVER3,
+  AMDFAM15H_BDVER4,
+  AMDFAM17H_ZNVER1,
+  CPU_SUBTYPE_MAX
+};
+
+enum ProcessorFeatures {
+  FEATURE_CMOV = 0,
+  FEATURE_MMX,
+  FEATURE_POPCNT,
+  FEATURE_SSE,
+  FEATURE_SSE2,
+  FEATURE_SSE3,
+  FEATURE_SSSE3,
+  FEATURE_SSE4_1,
+  FEATURE_SSE4_2,
+  FEATURE_AVX,
+  FEATURE_AVX2,
+  FEATURE_AVX512,
+  FEATURE_AVX512SAVE,
+  FEATURE_MOVBE,
+  FEATURE_ADX,
+  FEATURE_EM64T
+};
+
+// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
+// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
+// support. Consequently, for i386, the presence of CPUID is checked first
+// via the corresponding eflags bit.
+// Removal of cpuid.h header motivated by PR30384
+// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
+// or test-suite, but are used in external projects e.g. libstdcxx
+static bool isCpuIdSupported() {
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__i386__)
+  int __cpuid_supported;
+  __asm__("  pushfl\n"
+          "  popl   %%eax\n"
+          "  movl   %%eax,%%ecx\n"
+          "  xorl   $0x00200000,%%eax\n"
+          "  pushl  %%eax\n"
+          "  popfl\n"
+          "  pushfl\n"
+          "  popl   %%eax\n"
+          "  movl   $0,%0\n"
+          "  cmpl   %%eax,%%ecx\n"
+          "  je     1f\n"
+          "  movl   $1,%0\n"
+          "1:"
+          : "=r"(__cpuid_supported)
+          :
+          : "eax", "ecx");
+  if (!__cpuid_supported)
+    return false;
+#endif
+  return true;
+#endif
+  return true;
+}
+
+/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
+/// the specified arguments.  If we can't run cpuid on the host, return true.
+static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
+                               unsigned *rECX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__x86_64__)
+  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
+  // FIXME: should we save this for Clang?
+  __asm__("movq\t%%rbx, %%rsi\n\t"
+          "cpuid\n\t"
+          "xchgq\t%%rbx, %%rsi\n\t"
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+          : "a"(value));
+#elif defined(__i386__)
+  __asm__("movl\t%%ebx, %%esi\n\t"
+          "cpuid\n\t"
+          "xchgl\t%%ebx, %%esi\n\t"
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+          : "a"(value));
+#else
+  assert(0 && "This method is defined only for x86.");
+#endif
+#elif defined(_MSC_VER)
+  // The MSVC intrinsic is portable across x86 and x64.
+  int registers[4];
+  __cpuid(registers, value);
+  *rEAX = registers[0];
+  *rEBX = registers[1];
+  *rECX = registers[2];
+  *rEDX = registers[3];
+#endif
+  return false;
+#else
+  return true;
+#endif
+}
+
+/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
+/// the 4 values in the specified arguments.  If we can't run cpuid on the host,
+/// return true.
+static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
+                                 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
+                                 unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
+#if defined(__x86_64__) || defined(_M_X64)
+#if defined(__GNUC__) || defined(__clang__)
+  // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
+  // FIXME: should we save this for Clang?
+  __asm__("movq\t%%rbx, %%rsi\n\t"
+          "cpuid\n\t"
+          "xchgq\t%%rbx, %%rsi\n\t"
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+          : "a"(value), "c"(subleaf));
+#elif defined(_MSC_VER)
+  int registers[4];
+  __cpuidex(registers, value, subleaf);
+  *rEAX = registers[0];
+  *rEBX = registers[1];
+  *rECX = registers[2];
+  *rEDX = registers[3];
+#endif
+#elif defined(__i386__) || defined(_M_IX86)
+#if defined(__GNUC__) || defined(__clang__)
+  __asm__("movl\t%%ebx, %%esi\n\t"
+          "cpuid\n\t"
+          "xchgl\t%%ebx, %%esi\n\t"
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+          : "a"(value), "c"(subleaf));
+#elif defined(_MSC_VER)
+  __asm {
+      mov   eax,value
+      mov   ecx,subleaf
+      cpuid
+      mov   esi,rEAX
+      mov   dword ptr [esi],eax
+      mov   esi,rEBX
+      mov   dword ptr [esi],ebx
+      mov   esi,rECX
+      mov   dword ptr [esi],ecx
+      mov   esi,rEDX
+      mov   dword ptr [esi],edx
+  }
+#endif
+#else
+  assert(0 && "This method is defined only for x86.");
+#endif
+  return false;
+#else
+  return true;
+#endif
+}
+
+static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__)
+  // Check xgetbv; this uses a .byte sequence instead of the instruction
+  // directly because older assemblers do not include support for xgetbv and
+  // there is no easy way to conditionally compile based on the assembler used.
+  __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
+  return false;
+#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
+  unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
+  *rEAX = Result;
+  *rEDX = Result >> 32;
+  return false;
+#else
+  return true;
+#endif
+}
+
+static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
+                                 unsigned *Model) {
+  *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
+  *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
+  if (*Family == 6 || *Family == 0xf) {
+    if (*Family == 0xf)
+      // Examine extended family ID if family ID is F.
+      *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
+    // Examine extended model ID if family ID is 6 or F.
+    *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
+  }
+}
+
+static void
+getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
+                                unsigned int Brand_id, unsigned int Features,
+                                unsigned *Type, unsigned *Subtype) {
+  if (Brand_id != 0)
+    return;
+  switch (Family) {
+  case 3:
+    *Type = INTEL_i386;
+    break;
+  case 4:
+    switch (Model) {
+    case 0: // Intel486 DX processors
+    case 1: // Intel486 DX processors
+    case 2: // Intel486 SX processors
+    case 3: // Intel487 processors, IntelDX2 OverDrive processors,
+            // IntelDX2 processors
+    case 4: // Intel486 SL processor
+    case 5: // IntelSX2 processors
+    case 7: // Write-Back Enhanced IntelDX2 processors
+    case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
+    default:
+      *Type = INTEL_i486;
+      break;
+    }
+    break;
+  case 5:
+    switch (Model) {
+    case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
+            // Pentium processors (60, 66)
+    case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
+            // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
+            // 150, 166, 200)
+    case 3: // Pentium OverDrive processors for Intel486 processor-based
+            // systems
+      *Type = INTEL_PENTIUM;
+      break;
+    case 4: // Pentium OverDrive processor with MMX technology for Pentium
+            // processor (75, 90, 100, 120, 133), Pentium processor with
+            // MMX technology (166, 200)
+      *Type = INTEL_PENTIUM;
+      *Subtype = INTEL_PENTIUM_MMX;
+      break;
+    default:
+      *Type = INTEL_PENTIUM;
+      break;
+    }
+    break;
+  case 6:
+    switch (Model) {
+    case 0x01: // Pentium Pro processor
+      *Type = INTEL_PENTIUM_PRO;
+      break;
+    case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
+               // model 03
+    case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
+               // model 05, and Intel Celeron processor, model 05
+    case 0x06: // Celeron processor, model 06
+      *Type = INTEL_PENTIUM_II;
+      break;
+    case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
+               // processor, model 07
+    case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
+               // model 08, and Celeron processor, model 08
+    case 0x0a: // Pentium III Xeon processor, model 0Ah
+    case 0x0b: // Pentium III processor, model 0Bh
+      *Type = INTEL_PENTIUM_III;
+      break;
+    case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
+    case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
+               // 0Dh. All processors are manufactured using the 90 nm process.
+    case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
+               // Integrated Processor with Intel QuickAssist Technology
+      *Type = INTEL_PENTIUM_M;
+      break;
+    case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
+               // 0Eh. All processors are manufactured using the 65 nm process.
+      *Type = INTEL_CORE_DUO;
+      break;   // yonah
+    case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
+               // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
+               // mobile processor, Intel Core 2 Extreme processor, Intel
+               // Pentium Dual-Core processor, Intel Xeon processor, model
+               // 0Fh. All processors are manufactured using the 65 nm process.
+    case 0x16: // Intel Celeron processor model 16h. All processors are
+               // manufactured using the 65 nm process
+      *Type = INTEL_CORE2; // "core2"
+      *Subtype = INTEL_CORE2_65;
+      break;
+    case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
+               // 17h. All processors are manufactured using the 45 nm process.
+               //
+               // 45nm: Penryn , Wolfdale, Yorkfield (XE)
+    case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
+               // the 45 nm process.
+      *Type = INTEL_CORE2; // "penryn"
+      *Subtype = INTEL_CORE2_45;
+      break;
+    case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
+               // processors are manufactured using the 45 nm process.
+    case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
+               // As found in a Summer 2010 model iMac.
+    case 0x1f:
+    case 0x2e:             // Nehalem EX
+      *Type = INTEL_COREI7; // "nehalem"
+      *Subtype = INTEL_COREI7_NEHALEM;
+      break;
+    case 0x25: // Intel Core i7, laptop version.
+    case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
+               // processors are manufactured using the 32 nm process.
+    case 0x2f: // Westmere EX
+      *Type = INTEL_COREI7; // "westmere"
+      *Subtype = INTEL_COREI7_WESTMERE;
+      break;
+    case 0x2a: // Intel Core i7 processor. All processors are manufactured
+               // using the 32 nm process.
+    case 0x2d:
+      *Type = INTEL_COREI7; //"sandybridge"
+      *Subtype = INTEL_COREI7_SANDYBRIDGE;
+      break;
+    case 0x3a:
+    case 0x3e:             // Ivy Bridge EP
+      *Type = INTEL_COREI7; // "ivybridge"
+      *Subtype = INTEL_COREI7_IVYBRIDGE;
+      break;
+
+    // Haswell:
+    case 0x3c:
+    case 0x3f:
+    case 0x45:
+    case 0x46:
+      *Type = INTEL_COREI7; // "haswell"
+      *Subtype = INTEL_COREI7_HASWELL;
+      break;
+
+    // Broadwell:
+    case 0x3d:
+    case 0x47:
+    case 0x4f:
+    case 0x56:
+      *Type = INTEL_COREI7; // "broadwell"
+      *Subtype = INTEL_COREI7_BROADWELL;
+      break;
+
+    // Skylake:
+    case 0x4e: // Skylake mobile
+    case 0x5e: // Skylake desktop
+    case 0x8e: // Kaby Lake mobile
+    case 0x9e: // Kaby Lake desktop
+      *Type = INTEL_COREI7; // "skylake"
+      *Subtype = INTEL_COREI7_SKYLAKE;
+      break;
+
+    // Skylake Xeon:
+    case 0x55:
+      *Type = INTEL_COREI7;
+      // Check that we really have AVX512
+      if (Features & (1 << FEATURE_AVX512)) {
+        *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
+      } else {
+        *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
+      }
+      break;
+
+    case 0x1c: // Most 45 nm Intel Atom processors
+    case 0x26: // 45 nm Atom Lincroft
+    case 0x27: // 32 nm Atom Medfield
+    case 0x35: // 32 nm Atom Midview
+    case 0x36: // 32 nm Atom Midview
+      *Type = INTEL_ATOM;
+      *Subtype = INTEL_ATOM_BONNELL;
+      break; // "bonnell"
+
+    // Atom Silvermont codes from the Intel software optimization guide.
+    case 0x37:
+    case 0x4a:
+    case 0x4d:
+    case 0x5a:
+    case 0x5d:
+    case 0x4c: // really airmont
+      *Type = INTEL_ATOM;
+      *Subtype = INTEL_ATOM_SILVERMONT;
+      break; // "silvermont"
+
+    case 0x57:
+      *Type = INTEL_XEONPHI; // knl
+      *Subtype = INTEL_KNIGHTS_LANDING;
+      break;
+
+    default: // Unknown family 6 CPU, try to guess.
+      if (Features & (1 << FEATURE_AVX512)) {
+        *Type = INTEL_XEONPHI; // knl
+        *Subtype = INTEL_KNIGHTS_LANDING;
+        break;
+      }
+      if (Features & (1 << FEATURE_ADX)) {
+        *Type = INTEL_COREI7;
+        *Subtype = INTEL_COREI7_BROADWELL;
+        break;
+      }
+      if (Features & (1 << FEATURE_AVX2)) {
+        *Type = INTEL_COREI7;
+        *Subtype = INTEL_COREI7_HASWELL;
+        break;
+      }
+      if (Features & (1 << FEATURE_AVX)) {
+        *Type = INTEL_COREI7;
+        *Subtype = INTEL_COREI7_SANDYBRIDGE;
+        break;
+      }
+      if (Features & (1 << FEATURE_SSE4_2)) {
+        if (Features & (1 << FEATURE_MOVBE)) {
+          *Type = INTEL_ATOM;
+          *Subtype = INTEL_ATOM_SILVERMONT;
+        } else {
+          *Type = INTEL_COREI7;
+          *Subtype = INTEL_COREI7_NEHALEM;
+        }
+        break;
+      }
+      if (Features & (1 << FEATURE_SSE4_1)) {
+        *Type = INTEL_CORE2; // "penryn"
+        *Subtype = INTEL_CORE2_45;
+        break;
+      }
+      if (Features & (1 << FEATURE_SSSE3)) {
+        if (Features & (1 << FEATURE_MOVBE)) {
+          *Type = INTEL_ATOM;
+          *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
+        } else {
+          *Type = INTEL_CORE2; // "core2"
+          *Subtype = INTEL_CORE2_65;
+        }
+        break;
+      }
+      if (Features & (1 << FEATURE_EM64T)) {
+        *Type = INTEL_X86_64;
+        break; // x86-64
+      }
+      if (Features & (1 << FEATURE_SSE2)) {
+        *Type = INTEL_PENTIUM_M;
+        break;
+      }
+      if (Features & (1 << FEATURE_SSE)) {
+        *Type = INTEL_PENTIUM_III;
+        break;
+      }
+      if (Features & (1 << FEATURE_MMX)) {
+        *Type = INTEL_PENTIUM_II;
+        break;
+      }
+      *Type = INTEL_PENTIUM_PRO;
+      break;
+    }
+    break;
+  case 15: {
+    switch (Model) {
+    case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
+            // model 00h and manufactured using the 0.18 micron process.
+    case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
+            // processor MP, and Intel Celeron processor. All processors are
+            // model 01h and manufactured using the 0.18 micron process.
+    case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
+            // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
+            // processor, and Mobile Intel Celeron processor. All processors
+            // are model 02h and manufactured using the 0.13 micron process.
+      *Type =
+          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
+      break;
+
+    case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
+            // processor. All processors are model 03h and manufactured using
+            // the 90 nm process.
+    case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
+            // Pentium D processor, Intel Xeon processor, Intel Xeon
+            // processor MP, Intel Celeron D processor. All processors are
+            // model 04h and manufactured using the 90 nm process.
+    case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
+            // Extreme Edition, Intel Xeon processor, Intel Xeon processor
+            // MP, Intel Celeron D processor. All processors are model 06h
+            // and manufactured using the 65 nm process.
+      *Type =
+          ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
+      break;
+
+    default:
+      *Type =
+          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
+      break;
+    }
+    break;
+  }
+  default:
+    break; /*"generic"*/
+  }
+}
+
+static void getAMDProcessorTypeAndSubtype(unsigned int Family,
+                                          unsigned int Model,
+                                          unsigned int Features,
+                                          unsigned *Type,
+                                          unsigned *Subtype) {
+  // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
+  // appears to be no way to generate the wide variety of AMD-specific targets
+  // from the information returned from CPUID.
+  switch (Family) {
+  case 4:
+    *Type = AMD_i486;
+    break;
+  case 5:
+    *Type = AMDPENTIUM;
+    switch (Model) {
+    case 6:
+    case 7:
+      *Subtype = AMDPENTIUM_K6;
+      break; // "k6"
+    case 8:
+      *Subtype = AMDPENTIUM_K62;
+      break; // "k6-2"
+    case 9:
+    case 13:
+      *Subtype = AMDPENTIUM_K63;
+      break; // "k6-3"
+    case 10:
+      *Subtype = AMDPENTIUM_GEODE;
+      break; // "geode"
+    }
+    break;
+  case 6:
+    *Type = AMDATHLON;
+    switch (Model) {
+    case 4:
+      *Subtype = AMDATHLON_TBIRD;
+      break; // "athlon-tbird"
+    case 6:
+    case 7:
+    case 8:
+      *Subtype = AMDATHLON_MP;
+      break; // "athlon-mp"
+    case 10:
+      *Subtype = AMDATHLON_XP;
+      break; // "athlon-xp"
+    }
+    break;
+  case 15:
+    *Type = AMDATHLON;
+    if (Features & (1 << FEATURE_SSE3)) {
+      *Subtype = AMDATHLON_K8SSE3;
+      break; // "k8-sse3"
+    }
+    switch (Model) {
+    case 1:
+      *Subtype = AMDATHLON_OPTERON;
+      break; // "opteron"
+    case 5:
+      *Subtype = AMDATHLON_FX;
+      break; // "athlon-fx"; also opteron
+    default:
+      *Subtype = AMDATHLON_64;
+      break; // "athlon64"
+    }
+    break;
+  case 16:
+    *Type = AMDFAM10H; // "amdfam10"
+    switch (Model) {
+    case 2:
+      *Subtype = AMDFAM10H_BARCELONA;
+      break;
+    case 4:
+      *Subtype = AMDFAM10H_SHANGHAI;
+      break;
+    case 8:
+      *Subtype = AMDFAM10H_ISTANBUL;
+      break;
+    }
+    break;
+  case 20:
+    *Type = AMDFAM14H;
+    *Subtype = AMD_BTVER1;
+    break; // "btver1";
+  case 21:
+    *Type = AMDFAM15H;
+    if (!(Features &
+          (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
+      *Subtype = AMD_BTVER1;
+      break; // "btver1"
+    }
+    if (Model >= 0x50 && Model <= 0x6f) {
+      *Subtype = AMDFAM15H_BDVER4;
+      break; // "bdver4"; 50h-6Fh: Excavator
+    }
+    if (Model >= 0x30 && Model <= 0x3f) {
+      *Subtype = AMDFAM15H_BDVER3;
+      break; // "bdver3"; 30h-3Fh: Steamroller
+    }
+    if (Model >= 0x10 && Model <= 0x1f) {
+      *Subtype = AMDFAM15H_BDVER2;
+      break; // "bdver2"; 10h-1Fh: Piledriver
+    }
+    if (Model <= 0x0f) {
+      *Subtype = AMDFAM15H_BDVER1;
+      break; // "bdver1"; 00h-0Fh: Bulldozer
+    }
+    break;
+  case 22:
+    *Type = AMDFAM16H;
+    if (!(Features &
+          (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
+      *Subtype = AMD_BTVER1;
+      break; // "btver1";
+    }
+    *Subtype = AMD_BTVER2;
+    break; // "btver2"
+  case 23:
+    *Type = AMDFAM17H;
+    if (Features & (1 << FEATURE_ADX)) {
+      *Subtype = AMDFAM17H_ZNVER1;
+      break; // "znver1"
+    }
+    *Subtype =  AMD_BTVER1;
+    break;
+  default:
+    break; // "generic"
+  }
+}
+
+static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
+                                     unsigned MaxLeaf) {
+  unsigned Features = 0;
+  unsigned int EAX, EBX;
+  Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
+  Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
+  Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
+  Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
+  Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
+  Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
+  Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
+  Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
+
+  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+  // indicates that the AVX registers will be saved and restored on context
+  // switch, then we have full AVX support.
+  const unsigned AVXBits = (1 << 27) | (1 << 28);
+  bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
+                ((EAX & 0x6) == 0x6);
+  bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
+  bool HasLeaf7 =
+      MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+  bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
+  bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
+  bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
+  Features |= (HasAVX << FEATURE_AVX);
+  Features |= (HasAVX2 << FEATURE_AVX2);
+  Features |= (HasAVX512 << FEATURE_AVX512);
+  Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
+  Features |= (HasADX << FEATURE_ADX);
+
+  getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+  Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
+  return Features;
+}
+
+StringRef sys::getHostCPUName() {
+  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+  unsigned MaxLeaf, Vendor;
+
+#if defined(__GNUC__) || defined(__clang__)
+  //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
+  // and simplify it to not invoke __cpuid (like cpu_model.c in
+  // compiler-rt/lib/builtins/cpu_model.c?
+  // Opting for the second option.
+  if(!isCpuIdSupported())
+    return "generic";
+#endif
+  if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
+    return "generic";
+  if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
+    return "generic";
+
+  unsigned Brand_id = EBX & 0xff;
+  unsigned Family = 0, Model = 0;
+  unsigned Features = 0;
+  detectX86FamilyModel(EAX, &Family, &Model);
+  Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
+
+  unsigned Type;
+  unsigned Subtype;
+
+  if (Vendor == SIG_INTEL) {
+    getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
+                                    &Subtype);
+    switch (Type) {
+    case INTEL_i386:
+      return "i386";
+    case INTEL_i486:
+      return "i486";
+    case INTEL_PENTIUM:
+      if (Subtype == INTEL_PENTIUM_MMX)
+        return "pentium-mmx";
+      return "pentium";
+    case INTEL_PENTIUM_PRO:
+      return "pentiumpro";
+    case INTEL_PENTIUM_II:
+      return "pentium2";
+    case INTEL_PENTIUM_III:
+      return "pentium3";
+    case INTEL_PENTIUM_IV:
+      return "pentium4";
+    case INTEL_PENTIUM_M:
+      return "pentium-m";
+    case INTEL_CORE_DUO:
+      return "yonah";
+    case INTEL_CORE2:
+      switch (Subtype) {
+      case INTEL_CORE2_65:
+        return "core2";
+      case INTEL_CORE2_45:
+        return "penryn";
+      default:
+        return "core2";
+      }
+    case INTEL_COREI7:
+      switch (Subtype) {
+      case INTEL_COREI7_NEHALEM:
+        return "nehalem";
+      case INTEL_COREI7_WESTMERE:
+        return "westmere";
+      case INTEL_COREI7_SANDYBRIDGE:
+        return "sandybridge";
+      case INTEL_COREI7_IVYBRIDGE:
+        return "ivybridge";
+      case INTEL_COREI7_HASWELL:
+        return "haswell";
+      case INTEL_COREI7_BROADWELL:
+        return "broadwell";
+      case INTEL_COREI7_SKYLAKE:
+        return "skylake";
+      case INTEL_COREI7_SKYLAKE_AVX512:
+        return "skylake-avx512";
+      default:
+        return "corei7";
+      }
+    case INTEL_ATOM:
+      switch (Subtype) {
+      case INTEL_ATOM_BONNELL:
+        return "bonnell";
+      case INTEL_ATOM_SILVERMONT:
+        return "silvermont";
+      default:
+        return "atom";
+      }
+    case INTEL_XEONPHI:
+      return "knl"; /*update for more variants added*/
+    case INTEL_X86_64:
+      return "x86-64";
+    case INTEL_NOCONA:
+      return "nocona";
+    case INTEL_PRESCOTT:
+      return "prescott";
+    default:
+      return "generic";
+    }
+  } else if (Vendor == SIG_AMD) {
+    getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
+    switch (Type) {
+    case AMD_i486:
+      return "i486";
+    case AMDPENTIUM:
+      switch (Subtype) {
+      case AMDPENTIUM_K6:
+        return "k6";
+      case AMDPENTIUM_K62:
+        return "k6-2";
+      case AMDPENTIUM_K63:
+        return "k6-3";
+      case AMDPENTIUM_GEODE:
+        return "geode";
+      default:
+        return "pentium";
+      }
+    case AMDATHLON:
+      switch (Subtype) {
+      case AMDATHLON_TBIRD:
+        return "athlon-tbird";
+      case AMDATHLON_MP:
+        return "athlon-mp";
+      case AMDATHLON_XP:
+        return "athlon-xp";
+      case AMDATHLON_K8SSE3:
+        return "k8-sse3";
+      case AMDATHLON_OPTERON:
+        return "opteron";
+      case AMDATHLON_FX:
+        return "athlon-fx";
+      case AMDATHLON_64:
+        return "athlon64";
+      default:
+        return "athlon";
+      }
+    case AMDFAM10H:
+      if(Subtype == AMDFAM10H_BARCELONA)
+        return "barcelona";
+      return "amdfam10";
+    case AMDFAM14H:
+      return "btver1";
+    case AMDFAM15H:
+      switch (Subtype) {
+      case AMDFAM15H_BDVER1:
+        return "bdver1";
+      case AMDFAM15H_BDVER2:
+        return "bdver2";
+      case AMDFAM15H_BDVER3:
+        return "bdver3";
+      case AMDFAM15H_BDVER4:
+        return "bdver4";
+      case AMD_BTVER1:
+        return "btver1";
+      default:
+        return "amdfam15";
+      }
+    case AMDFAM16H:
+      switch (Subtype) {
+      case AMD_BTVER1:
+        return "btver1";
+      case AMD_BTVER2:
+        return "btver2";
+      default:
+        return "amdfam16";
+      }
+    case AMDFAM17H:
+      switch (Subtype) {
+      case AMD_BTVER1:
+        return "btver1";
+      case AMDFAM17H_ZNVER1:
+        return "znver1";
+      default:
+        return "amdfam17";
+      }
+    default:
+      return "generic";
+    }
+  }
+  return "generic";
+}
+
+#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+  host_basic_info_data_t hostInfo;
+  mach_msg_type_number_t infoCount;
+
+  infoCount = HOST_BASIC_INFO_COUNT;
+  host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
+            &infoCount);
+
+  if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
+    return "generic";
+
+  switch (hostInfo.cpu_subtype) {
+  case CPU_SUBTYPE_POWERPC_601:
+    return "601";
+  case CPU_SUBTYPE_POWERPC_602:
+    return "602";
+  case CPU_SUBTYPE_POWERPC_603:
+    return "603";
+  case CPU_SUBTYPE_POWERPC_603e:
+    return "603e";
+  case CPU_SUBTYPE_POWERPC_603ev:
+    return "603ev";
+  case CPU_SUBTYPE_POWERPC_604:
+    return "604";
+  case CPU_SUBTYPE_POWERPC_604e:
+    return "604e";
+  case CPU_SUBTYPE_POWERPC_620:
+    return "620";
+  case CPU_SUBTYPE_POWERPC_750:
+    return "750";
+  case CPU_SUBTYPE_POWERPC_7400:
+    return "7400";
+  case CPU_SUBTYPE_POWERPC_7450:
+    return "7450";
+  case CPU_SUBTYPE_POWERPC_970:
+    return "970";
+  default:;
+  }
+
+  return "generic";
+}
+#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+  const StringRef& Content = P ? P->getBuffer() : "";
+  return detail::getHostCPUNameForPowerPC(Content);
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+StringRef sys::getHostCPUName() {
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+  const StringRef& Content = P ? P->getBuffer() : "";
+  return detail::getHostCPUNameForARM(Content);
+}
+#elif defined(__linux__) && defined(__s390x__)
+StringRef sys::getHostCPUName() {
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+  const StringRef& Content = P ? P->getBuffer() : "";
+  return detail::getHostCPUNameForS390x(Content);
+}
+#else
+StringRef sys::getHostCPUName() { return "generic"; }
+#endif
+
+#if defined(__linux__) && defined(__x86_64__)
+// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
+// using the number of unique physical/core id pairs. The following
+// implementation reads the /proc/cpuinfo format on an x86_64 system.
+static int computeHostNumPhysicalCores() {
+  // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
+  // mmapped because it appears to have 0 size.
+  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+  if (std::error_code EC = Text.getError()) {
+    llvm::errs() << "Can't read "
+                 << "/proc/cpuinfo: " << EC.message() << "\n";
+    return -1;
+  }
+  SmallVector<StringRef, 8> strs;
+  (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
+                             /*KeepEmpty=*/false);
+  int CurPhysicalId = -1;
+  int CurCoreId = -1;
+  SmallSet<std::pair<int, int>, 32> UniqueItems;
+  for (auto &Line : strs) {
+    Line = Line.trim();
+    if (!Line.startswith("physical id") && !Line.startswith("core id"))
+      continue;
+    std::pair<StringRef, StringRef> Data = Line.split(':');
+    auto Name = Data.first.trim();
+    auto Val = Data.second.trim();
+    if (Name == "physical id") {
+      assert(CurPhysicalId == -1 &&
+             "Expected a core id before seeing another physical id");
+      Val.getAsInteger(10, CurPhysicalId);
+    }
+    if (Name == "core id") {
+      assert(CurCoreId == -1 &&
+             "Expected a physical id before seeing another core id");
+      Val.getAsInteger(10, CurCoreId);
+    }
+    if (CurPhysicalId != -1 && CurCoreId != -1) {
+      UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
+      CurPhysicalId = -1;
+      CurCoreId = -1;
+    }
+  }
+  return UniqueItems.size();
+}
+#elif defined(__APPLE__) && defined(__x86_64__)
+#include <sys/param.h>
+#include <sys/sysctl.h>
+
+// Gets the number of *physical cores* on the machine.
+static int computeHostNumPhysicalCores() {
+  uint32_t count;
+  size_t len = sizeof(count);
+  sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
+  if (count < 1) {
+    int nm[2];
+    nm[0] = CTL_HW;
+    nm[1] = HW_AVAILCPU;
+    sysctl(nm, 2, &count, &len, NULL, 0);
+    if (count < 1)
+      return -1;
+  }
+  return count;
+}
+#else
+// On other systems, return -1 to indicate unknown.
+static int computeHostNumPhysicalCores() { return -1; }
+#endif
+
+int sys::getHostNumPhysicalCores() {
+  static int NumCores = computeHostNumPhysicalCores();
+  return NumCores;
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+    defined(__x86_64__) || defined(_M_X64)
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+  unsigned MaxLevel;
+  union {
+    unsigned u[3];
+    char c[12];
+  } text;
+
+  if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
+      MaxLevel < 1)
+    return false;
+
+  getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
+
+  Features["cmov"] = (EDX >> 15) & 1;
+  Features["mmx"] = (EDX >> 23) & 1;
+  Features["sse"] = (EDX >> 25) & 1;
+  Features["sse2"] = (EDX >> 26) & 1;
+  Features["sse3"] = (ECX >> 0) & 1;
+  Features["ssse3"] = (ECX >> 9) & 1;
+  Features["sse4.1"] = (ECX >> 19) & 1;
+  Features["sse4.2"] = (ECX >> 20) & 1;
+
+  Features["pclmul"] = (ECX >> 1) & 1;
+  Features["cx16"] = (ECX >> 13) & 1;
+  Features["movbe"] = (ECX >> 22) & 1;
+  Features["popcnt"] = (ECX >> 23) & 1;
+  Features["aes"] = (ECX >> 25) & 1;
+  Features["rdrnd"] = (ECX >> 30) & 1;
+
+  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+  // indicates that the AVX registers will be saved and restored on context
+  // switch, then we have full AVX support.
+  bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
+                    !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
+  Features["avx"] = HasAVXSave;
+  Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
+  Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
+
+  // Only enable XSAVE if OS has enabled support for saving YMM state.
+  Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
+
+  // AVX512 requires additional context to be saved by the OS.
+  bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
+
+  unsigned MaxExtLevel;
+  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
+
+  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
+                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+  Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
+  Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
+  Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
+  Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
+  Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
+  Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
+  Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
+
+  bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
+                     !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
+  Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
+
+  bool HasLeaf7 =
+      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+
+  // AVX2 is only supported if we have the OS save support from AVX.
+  Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
+
+  Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
+  Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
+  Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
+  Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
+  Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
+  Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
+  Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
+  Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
+  Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
+  Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
+
+  // AVX512 is only supported if the OS supports the context save for it.
+  Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
+  Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
+  Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
+  Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
+  Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
+  Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
+  Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
+  Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
+
+  Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
+  Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
+  // Enable protection keys
+  Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
+
+  bool HasLeafD = MaxLevel >= 0xd &&
+                  !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
+
+  // Only enable XSAVE if OS has enabled support for saving YMM state.
+  Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
+  Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
+  Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
+
+  return true;
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+  if (!P)
+    return false;
+
+  SmallVector<StringRef, 32> Lines;
+  P->getBuffer().split(Lines, "\n");
+
+  SmallVector<StringRef, 32> CPUFeatures;
+
+  // Look for the CPU features.
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+    if (Lines[I].startswith("Features")) {
+      Lines[I].split(CPUFeatures, ' ');
+      break;
+    }
+
+#if defined(__aarch64__)
+  // Keep track of which crypto features we have seen
+  enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
+  uint32_t crypto = 0;
+#endif
+
+  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+    StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
+#if defined(__aarch64__)
+                                   .Case("asimd", "neon")
+                                   .Case("fp", "fp-armv8")
+                                   .Case("crc32", "crc")
+#else
+                                   .Case("half", "fp16")
+                                   .Case("neon", "neon")
+                                   .Case("vfpv3", "vfp3")
+                                   .Case("vfpv3d16", "d16")
+                                   .Case("vfpv4", "vfp4")
+                                   .Case("idiva", "hwdiv-arm")
+                                   .Case("idivt", "hwdiv")
+#endif
+                                   .Default("");
+
+#if defined(__aarch64__)
+    // We need to check crypto separately since we need all of the crypto
+    // extensions to enable the subtarget feature
+    if (CPUFeatures[I] == "aes")
+      crypto |= CAP_AES;
+    else if (CPUFeatures[I] == "pmull")
+      crypto |= CAP_PMULL;
+    else if (CPUFeatures[I] == "sha1")
+      crypto |= CAP_SHA1;
+    else if (CPUFeatures[I] == "sha2")
+      crypto |= CAP_SHA2;
+#endif
+
+    if (LLVMFeatureStr != "")
+      Features[LLVMFeatureStr] = true;
+  }
+
+#if defined(__aarch64__)
+  // If we have all crypto bits we can add the feature
+  if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
+    Features["crypto"] = true;
+#endif
+
+  return true;
+}
+#else
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
+#endif
+
+std::string sys::getProcessTriple() {
+  Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
+
+  if (sizeof(void *) == 8 && PT.isArch32Bit())
+    PT = PT.get64BitArchVariant();
+  if (sizeof(void *) == 4 && PT.isArch64Bit())
+    PT = PT.get32BitArchVariant();
+
+  return PT.str();
+}