//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This file implements the operating system Host concept. | |
// | |
//===----------------------------------------------------------------------===// | |
#include "llvm/Support/Host.h" | |
#include "llvm/ADT/SmallSet.h" | |
#include "llvm/ADT/SmallVector.h" | |
#include "llvm/ADT/StringRef.h" | |
#include "llvm/ADT/StringSwitch.h" | |
#include "llvm/ADT/Triple.h" | |
#include "llvm/Config/config.h" | |
#include "llvm/Support/Debug.h" | |
#include "llvm/Support/FileSystem.h" | |
#include "llvm/Support/MemoryBuffer.h" | |
#include "llvm/Support/raw_ostream.h" | |
#include <assert.h> | |
#include <string.h> | |
// Include the platform-specific parts of this class. | |
#ifdef LLVM_ON_UNIX | |
#include "Unix/Host.inc" | |
#endif | |
#ifdef LLVM_ON_WIN32 | |
#include "Windows/Host.inc" | |
#endif | |
#ifdef _MSC_VER | |
#include <intrin.h> | |
#endif | |
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | |
#include <mach/host_info.h> | |
#include <mach/mach.h> | |
#include <mach/mach_host.h> | |
#include <mach/machine.h> | |
#endif | |
#define DEBUG_TYPE "host-detection" | |
//===----------------------------------------------------------------------===// | |
// | |
// Implementations of the CPU detection routines | |
// | |
//===----------------------------------------------------------------------===// | |
using namespace llvm; | |
static std::unique_ptr<llvm::MemoryBuffer> | |
LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { | |
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = | |
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); | |
if (std::error_code EC = Text.getError()) { | |
llvm::errs() << "Can't read " | |
<< "/proc/cpuinfo: " << EC.message() << "\n"; | |
return nullptr; | |
} | |
return std::move(*Text); | |
} | |
StringRef sys::detail::getHostCPUNameForPowerPC( | |
const StringRef &ProcCpuinfoContent) { | |
// Access to the Processor Version Register (PVR) on PowerPC is privileged, | |
// and so we must use an operating-system interface to determine the current | |
// processor type. On Linux, this is exposed through the /proc/cpuinfo file. | |
const char *generic = "generic"; | |
// The cpu line is second (after the 'processor: 0' line), so if this | |
// buffer is too small then something has changed (or is wrong). | |
StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); | |
StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); | |
StringRef::const_iterator CIP = CPUInfoStart; | |
StringRef::const_iterator CPUStart = 0; | |
size_t CPULen = 0; | |
// We need to find the first line which starts with cpu, spaces, and a colon. | |
// After the colon, there may be some additional spaces and then the cpu type. | |
while (CIP < CPUInfoEnd && CPUStart == 0) { | |
if (CIP < CPUInfoEnd && *CIP == '\n') | |
++CIP; | |
if (CIP < CPUInfoEnd && *CIP == 'c') { | |
++CIP; | |
if (CIP < CPUInfoEnd && *CIP == 'p') { | |
++CIP; | |
if (CIP < CPUInfoEnd && *CIP == 'u') { | |
++CIP; | |
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | |
++CIP; | |
if (CIP < CPUInfoEnd && *CIP == ':') { | |
++CIP; | |
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | |
++CIP; | |
if (CIP < CPUInfoEnd) { | |
CPUStart = CIP; | |
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && | |
*CIP != ',' && *CIP != '\n')) | |
++CIP; | |
CPULen = CIP - CPUStart; | |
} | |
} | |
} | |
} | |
} | |
if (CPUStart == 0) | |
while (CIP < CPUInfoEnd && *CIP != '\n') | |
++CIP; | |
} | |
if (CPUStart == 0) | |
return generic; | |
return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) | |
.Case("604e", "604e") | |
.Case("604", "604") | |
.Case("7400", "7400") | |
.Case("7410", "7400") | |
.Case("7447", "7400") | |
.Case("7455", "7450") | |
.Case("G4", "g4") | |
.Case("POWER4", "970") | |
.Case("PPC970FX", "970") | |
.Case("PPC970MP", "970") | |
.Case("G5", "g5") | |
.Case("POWER5", "g5") | |
.Case("A2", "a2") | |
.Case("POWER6", "pwr6") | |
.Case("POWER7", "pwr7") | |
.Case("POWER8", "pwr8") | |
.Case("POWER8E", "pwr8") | |
.Case("POWER8NVL", "pwr8") | |
.Case("POWER9", "pwr9") | |
.Default(generic); | |
} | |
StringRef sys::detail::getHostCPUNameForARM( | |
const StringRef &ProcCpuinfoContent) { | |
// The cpuid register on arm is not accessible from user space. On Linux, | |
// it is exposed through the /proc/cpuinfo file. | |
// Read 32 lines from /proc/cpuinfo, which should contain the CPU part line | |
// in all cases. | |
SmallVector<StringRef, 32> Lines; | |
ProcCpuinfoContent.split(Lines, "\n"); | |
// Look for the CPU implementer line. | |
StringRef Implementer; | |
StringRef Hardware; | |
for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | |
if (Lines[I].startswith("CPU implementer")) | |
Implementer = Lines[I].substr(15).ltrim("\t :"); | |
if (Lines[I].startswith("Hardware")) | |
Hardware = Lines[I].substr(8).ltrim("\t :"); | |
} | |
if (Implementer == "0x41") { // ARM Ltd. | |
// MSM8992/8994 may give cpu part for the core that the kernel is running on, | |
// which is undeterministic and wrong. Always return cortex-a53 for these SoC. | |
if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) | |
return "cortex-a53"; | |
// Look for the CPU part line. | |
for (unsigned I = 0, E = Lines.size(); I != E; ++I) | |
if (Lines[I].startswith("CPU part")) | |
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | |
// values correspond to the "Part number" in the CP15/c0 register. The | |
// contents are specified in the various processor manuals. | |
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | |
.Case("0x926", "arm926ej-s") | |
.Case("0xb02", "mpcore") | |
.Case("0xb36", "arm1136j-s") | |
.Case("0xb56", "arm1156t2-s") | |
.Case("0xb76", "arm1176jz-s") | |
.Case("0xc08", "cortex-a8") | |
.Case("0xc09", "cortex-a9") | |
.Case("0xc0f", "cortex-a15") | |
.Case("0xc20", "cortex-m0") | |
.Case("0xc23", "cortex-m3") | |
.Case("0xc24", "cortex-m4") | |
.Case("0xd04", "cortex-a35") | |
.Case("0xd03", "cortex-a53") | |
.Case("0xd07", "cortex-a57") | |
.Case("0xd08", "cortex-a72") | |
.Case("0xd09", "cortex-a73") | |
.Default("generic"); | |
} | |
if (Implementer == "0x51") // Qualcomm Technologies, Inc. | |
// Look for the CPU part line. | |
for (unsigned I = 0, E = Lines.size(); I != E; ++I) | |
if (Lines[I].startswith("CPU part")) | |
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | |
// values correspond to the "Part number" in the CP15/c0 register. The | |
// contents are specified in the various processor manuals. | |
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | |
.Case("0x06f", "krait") // APQ8064 | |
.Case("0x201", "kryo") | |
.Case("0x205", "kryo") | |
.Default("generic"); | |
return "generic"; | |
} | |
StringRef sys::detail::getHostCPUNameForS390x( | |
const StringRef &ProcCpuinfoContent) { | |
// STIDP is a privileged operation, so use /proc/cpuinfo instead. | |
// The "processor 0:" line comes after a fair amount of other information, | |
// including a cache breakdown, but this should be plenty. | |
SmallVector<StringRef, 32> Lines; | |
ProcCpuinfoContent.split(Lines, "\n"); | |
// Look for the CPU features. | |
SmallVector<StringRef, 32> CPUFeatures; | |
for (unsigned I = 0, E = Lines.size(); I != E; ++I) | |
if (Lines[I].startswith("features")) { | |
size_t Pos = Lines[I].find(":"); | |
if (Pos != StringRef::npos) { | |
Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); | |
break; | |
} | |
} | |
// We need to check for the presence of vector support independently of | |
// the machine type, since we may only use the vector register set when | |
// supported by the kernel (and hypervisor). | |
bool HaveVectorSupport = false; | |
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | |
if (CPUFeatures[I] == "vx") | |
HaveVectorSupport = true; | |
} | |
// Now check the processor machine type. | |
for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | |
if (Lines[I].startswith("processor ")) { | |
size_t Pos = Lines[I].find("machine = "); | |
if (Pos != StringRef::npos) { | |
Pos += sizeof("machine = ") - 1; | |
unsigned int Id; | |
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { | |
if (Id >= 2964 && HaveVectorSupport) | |
return "z13"; | |
if (Id >= 2827) | |
return "zEC12"; | |
if (Id >= 2817) | |
return "z196"; | |
} | |
} | |
break; | |
} | |
} | |
return "generic"; | |
} | |
#if defined(__i386__) || defined(_M_IX86) || \ | |
defined(__x86_64__) || defined(_M_X64) | |
enum VendorSignatures { | |
SIG_INTEL = 0x756e6547 /* Genu */, | |
SIG_AMD = 0x68747541 /* Auth */ | |
}; | |
enum ProcessorVendors { | |
VENDOR_INTEL = 1, | |
VENDOR_AMD, | |
VENDOR_OTHER, | |
VENDOR_MAX | |
}; | |
enum ProcessorTypes { | |
INTEL_ATOM = 1, | |
INTEL_CORE2, | |
INTEL_COREI7, | |
AMDFAM10H, | |
AMDFAM15H, | |
INTEL_i386, | |
INTEL_i486, | |
INTEL_PENTIUM, | |
INTEL_PENTIUM_PRO, | |
INTEL_PENTIUM_II, | |
INTEL_PENTIUM_III, | |
INTEL_PENTIUM_IV, | |
INTEL_PENTIUM_M, | |
INTEL_CORE_DUO, | |
INTEL_XEONPHI, | |
INTEL_X86_64, | |
INTEL_NOCONA, | |
INTEL_PRESCOTT, | |
AMD_i486, | |
AMDPENTIUM, | |
AMDATHLON, | |
AMDFAM14H, | |
AMDFAM16H, | |
AMDFAM17H, | |
CPU_TYPE_MAX | |
}; | |
enum ProcessorSubtypes { | |
INTEL_COREI7_NEHALEM = 1, | |
INTEL_COREI7_WESTMERE, | |
INTEL_COREI7_SANDYBRIDGE, | |
AMDFAM10H_BARCELONA, | |
AMDFAM10H_SHANGHAI, | |
AMDFAM10H_ISTANBUL, | |
AMDFAM15H_BDVER1, | |
AMDFAM15H_BDVER2, | |
INTEL_PENTIUM_MMX, | |
INTEL_CORE2_65, | |
INTEL_CORE2_45, | |
INTEL_COREI7_IVYBRIDGE, | |
INTEL_COREI7_HASWELL, | |
INTEL_COREI7_BROADWELL, | |
INTEL_COREI7_SKYLAKE, | |
INTEL_COREI7_SKYLAKE_AVX512, | |
INTEL_ATOM_BONNELL, | |
INTEL_ATOM_SILVERMONT, | |
INTEL_KNIGHTS_LANDING, | |
AMDPENTIUM_K6, | |
AMDPENTIUM_K62, | |
AMDPENTIUM_K63, | |
AMDPENTIUM_GEODE, | |
AMDATHLON_TBIRD, | |
AMDATHLON_MP, | |
AMDATHLON_XP, | |
AMDATHLON_K8SSE3, | |
AMDATHLON_OPTERON, | |
AMDATHLON_FX, | |
AMDATHLON_64, | |
AMD_BTVER1, | |
AMD_BTVER2, | |
AMDFAM15H_BDVER3, | |
AMDFAM15H_BDVER4, | |
AMDFAM17H_ZNVER1, | |
CPU_SUBTYPE_MAX | |
}; | |
enum ProcessorFeatures { | |
FEATURE_CMOV = 0, | |
FEATURE_MMX, | |
FEATURE_POPCNT, | |
FEATURE_SSE, | |
FEATURE_SSE2, | |
FEATURE_SSE3, | |
FEATURE_SSSE3, | |
FEATURE_SSE4_1, | |
FEATURE_SSE4_2, | |
FEATURE_AVX, | |
FEATURE_AVX2, | |
FEATURE_AVX512, | |
FEATURE_AVX512SAVE, | |
FEATURE_MOVBE, | |
FEATURE_ADX, | |
FEATURE_EM64T | |
}; | |
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). | |
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID | |
// support. Consequently, for i386, the presence of CPUID is checked first | |
// via the corresponding eflags bit. | |
// Removal of cpuid.h header motivated by PR30384 | |
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp | |
// or test-suite, but are used in external projects e.g. libstdcxx | |
static bool isCpuIdSupported() { | |
#if defined(__GNUC__) || defined(__clang__) | |
#if defined(__i386__) | |
int __cpuid_supported; | |
__asm__(" pushfl\n" | |
" popl %%eax\n" | |
" movl %%eax,%%ecx\n" | |
" xorl $0x00200000,%%eax\n" | |
" pushl %%eax\n" | |
" popfl\n" | |
" pushfl\n" | |
" popl %%eax\n" | |
" movl $0,%0\n" | |
" cmpl %%eax,%%ecx\n" | |
" je 1f\n" | |
" movl $1,%0\n" | |
"1:" | |
: "=r"(__cpuid_supported) | |
: | |
: "eax", "ecx"); | |
if (!__cpuid_supported) | |
return false; | |
#endif | |
return true; | |
#endif | |
return true; | |
} | |
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in | |
/// the specified arguments. If we can't run cpuid on the host, return true. | |
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, | |
unsigned *rECX, unsigned *rEDX) { | |
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) | |
#if defined(__GNUC__) || defined(__clang__) | |
#if defined(__x86_64__) | |
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. | |
// FIXME: should we save this for Clang? | |
__asm__("movq\t%%rbx, %%rsi\n\t" | |
"cpuid\n\t" | |
"xchgq\t%%rbx, %%rsi\n\t" | |
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | |
: "a"(value)); | |
#elif defined(__i386__) | |
__asm__("movl\t%%ebx, %%esi\n\t" | |
"cpuid\n\t" | |
"xchgl\t%%ebx, %%esi\n\t" | |
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | |
: "a"(value)); | |
#else | |
assert(0 && "This method is defined only for x86."); | |
#endif | |
#elif defined(_MSC_VER) | |
// The MSVC intrinsic is portable across x86 and x64. | |
int registers[4]; | |
__cpuid(registers, value); | |
*rEAX = registers[0]; | |
*rEBX = registers[1]; | |
*rECX = registers[2]; | |
*rEDX = registers[3]; | |
#endif | |
return false; | |
#else | |
return true; | |
#endif | |
} | |
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return | |
/// the 4 values in the specified arguments. If we can't run cpuid on the host, | |
/// return true. | |
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, | |
unsigned *rEAX, unsigned *rEBX, unsigned *rECX, | |
unsigned *rEDX) { | |
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) | |
#if defined(__x86_64__) || defined(_M_X64) | |
#if defined(__GNUC__) || defined(__clang__) | |
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. | |
// FIXME: should we save this for Clang? | |
__asm__("movq\t%%rbx, %%rsi\n\t" | |
"cpuid\n\t" | |
"xchgq\t%%rbx, %%rsi\n\t" | |
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | |
: "a"(value), "c"(subleaf)); | |
#elif defined(_MSC_VER) | |
int registers[4]; | |
__cpuidex(registers, value, subleaf); | |
*rEAX = registers[0]; | |
*rEBX = registers[1]; | |
*rECX = registers[2]; | |
*rEDX = registers[3]; | |
#endif | |
#elif defined(__i386__) || defined(_M_IX86) | |
#if defined(__GNUC__) || defined(__clang__) | |
__asm__("movl\t%%ebx, %%esi\n\t" | |
"cpuid\n\t" | |
"xchgl\t%%ebx, %%esi\n\t" | |
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | |
: "a"(value), "c"(subleaf)); | |
#elif defined(_MSC_VER) | |
__asm { | |
mov eax,value | |
mov ecx,subleaf | |
cpuid | |
mov esi,rEAX | |
mov dword ptr [esi],eax | |
mov esi,rEBX | |
mov dword ptr [esi],ebx | |
mov esi,rECX | |
mov dword ptr [esi],ecx | |
mov esi,rEDX | |
mov dword ptr [esi],edx | |
} | |
#endif | |
#else | |
assert(0 && "This method is defined only for x86."); | |
#endif | |
return false; | |
#else | |
return true; | |
#endif | |
} | |
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { | |
#if defined(__GNUC__) || defined(__clang__) | |
// Check xgetbv; this uses a .byte sequence instead of the instruction | |
// directly because older assemblers do not include support for xgetbv and | |
// there is no easy way to conditionally compile based on the assembler used. | |
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); | |
return false; | |
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) | |
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); | |
*rEAX = Result; | |
*rEDX = Result >> 32; | |
return false; | |
#else | |
return true; | |
#endif | |
} | |
static void detectX86FamilyModel(unsigned EAX, unsigned *Family, | |
unsigned *Model) { | |
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11 | |
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7 | |
if (*Family == 6 || *Family == 0xf) { | |
if (*Family == 0xf) | |
// Examine extended family ID if family ID is F. | |
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27 | |
// Examine extended model ID if family ID is 6 or F. | |
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 | |
} | |
} | |
static void | |
getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model, | |
unsigned int Brand_id, unsigned int Features, | |
unsigned *Type, unsigned *Subtype) { | |
if (Brand_id != 0) | |
return; | |
switch (Family) { | |
case 3: | |
*Type = INTEL_i386; | |
break; | |
case 4: | |
switch (Model) { | |
case 0: // Intel486 DX processors | |
case 1: // Intel486 DX processors | |
case 2: // Intel486 SX processors | |
case 3: // Intel487 processors, IntelDX2 OverDrive processors, | |
// IntelDX2 processors | |
case 4: // Intel486 SL processor | |
case 5: // IntelSX2 processors | |
case 7: // Write-Back Enhanced IntelDX2 processors | |
case 8: // IntelDX4 OverDrive processors, IntelDX4 processors | |
default: | |
*Type = INTEL_i486; | |
break; | |
} | |
break; | |
case 5: | |
switch (Model) { | |
case 1: // Pentium OverDrive processor for Pentium processor (60, 66), | |
// Pentium processors (60, 66) | |
case 2: // Pentium OverDrive processor for Pentium processor (75, 90, | |
// 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, | |
// 150, 166, 200) | |
case 3: // Pentium OverDrive processors for Intel486 processor-based | |
// systems | |
*Type = INTEL_PENTIUM; | |
break; | |
case 4: // Pentium OverDrive processor with MMX technology for Pentium | |
// processor (75, 90, 100, 120, 133), Pentium processor with | |
// MMX technology (166, 200) | |
*Type = INTEL_PENTIUM; | |
*Subtype = INTEL_PENTIUM_MMX; | |
break; | |
default: | |
*Type = INTEL_PENTIUM; | |
break; | |
} | |
break; | |
case 6: | |
switch (Model) { | |
case 0x01: // Pentium Pro processor | |
*Type = INTEL_PENTIUM_PRO; | |
break; | |
case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, | |
// model 03 | |
case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, | |
// model 05, and Intel Celeron processor, model 05 | |
case 0x06: // Celeron processor, model 06 | |
*Type = INTEL_PENTIUM_II; | |
break; | |
case 0x07: // Pentium III processor, model 07, and Pentium III Xeon | |
// processor, model 07 | |
case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, | |
// model 08, and Celeron processor, model 08 | |
case 0x0a: // Pentium III Xeon processor, model 0Ah | |
case 0x0b: // Pentium III processor, model 0Bh | |
*Type = INTEL_PENTIUM_III; | |
break; | |
case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. | |
case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model | |
// 0Dh. All processors are manufactured using the 90 nm process. | |
case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 | |
// Integrated Processor with Intel QuickAssist Technology | |
*Type = INTEL_PENTIUM_M; | |
break; | |
case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model | |
// 0Eh. All processors are manufactured using the 65 nm process. | |
*Type = INTEL_CORE_DUO; | |
break; // yonah | |
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile | |
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad | |
// mobile processor, Intel Core 2 Extreme processor, Intel | |
// Pentium Dual-Core processor, Intel Xeon processor, model | |
// 0Fh. All processors are manufactured using the 65 nm process. | |
case 0x16: // Intel Celeron processor model 16h. All processors are | |
// manufactured using the 65 nm process | |
*Type = INTEL_CORE2; // "core2" | |
*Subtype = INTEL_CORE2_65; | |
break; | |
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model | |
// 17h. All processors are manufactured using the 45 nm process. | |
// | |
// 45nm: Penryn , Wolfdale, Yorkfield (XE) | |
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using | |
// the 45 nm process. | |
*Type = INTEL_CORE2; // "penryn" | |
*Subtype = INTEL_CORE2_45; | |
break; | |
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All | |
// processors are manufactured using the 45 nm process. | |
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. | |
// As found in a Summer 2010 model iMac. | |
case 0x1f: | |
case 0x2e: // Nehalem EX | |
*Type = INTEL_COREI7; // "nehalem" | |
*Subtype = INTEL_COREI7_NEHALEM; | |
break; | |
case 0x25: // Intel Core i7, laptop version. | |
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All | |
// processors are manufactured using the 32 nm process. | |
case 0x2f: // Westmere EX | |
*Type = INTEL_COREI7; // "westmere" | |
*Subtype = INTEL_COREI7_WESTMERE; | |
break; | |
case 0x2a: // Intel Core i7 processor. All processors are manufactured | |
// using the 32 nm process. | |
case 0x2d: | |
*Type = INTEL_COREI7; //"sandybridge" | |
*Subtype = INTEL_COREI7_SANDYBRIDGE; | |
break; | |
case 0x3a: | |
case 0x3e: // Ivy Bridge EP | |
*Type = INTEL_COREI7; // "ivybridge" | |
*Subtype = INTEL_COREI7_IVYBRIDGE; | |
break; | |
// Haswell: | |
case 0x3c: | |
case 0x3f: | |
case 0x45: | |
case 0x46: | |
*Type = INTEL_COREI7; // "haswell" | |
*Subtype = INTEL_COREI7_HASWELL; | |
break; | |
// Broadwell: | |
case 0x3d: | |
case 0x47: | |
case 0x4f: | |
case 0x56: | |
*Type = INTEL_COREI7; // "broadwell" | |
*Subtype = INTEL_COREI7_BROADWELL; | |
break; | |
// Skylake: | |
case 0x4e: // Skylake mobile | |
case 0x5e: // Skylake desktop | |
case 0x8e: // Kaby Lake mobile | |
case 0x9e: // Kaby Lake desktop | |
*Type = INTEL_COREI7; // "skylake" | |
*Subtype = INTEL_COREI7_SKYLAKE; | |
break; | |
// Skylake Xeon: | |
case 0x55: | |
*Type = INTEL_COREI7; | |
// Check that we really have AVX512 | |
if (Features & (1 << FEATURE_AVX512)) { | |
*Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" | |
} else { | |
*Subtype = INTEL_COREI7_SKYLAKE; // "skylake" | |
} | |
break; | |
case 0x1c: // Most 45 nm Intel Atom processors | |
case 0x26: // 45 nm Atom Lincroft | |
case 0x27: // 32 nm Atom Medfield | |
case 0x35: // 32 nm Atom Midview | |
case 0x36: // 32 nm Atom Midview | |
*Type = INTEL_ATOM; | |
*Subtype = INTEL_ATOM_BONNELL; | |
break; // "bonnell" | |
// Atom Silvermont codes from the Intel software optimization guide. | |
case 0x37: | |
case 0x4a: | |
case 0x4d: | |
case 0x5a: | |
case 0x5d: | |
case 0x4c: // really airmont | |
*Type = INTEL_ATOM; | |
*Subtype = INTEL_ATOM_SILVERMONT; | |
break; // "silvermont" | |
case 0x57: | |
*Type = INTEL_XEONPHI; // knl | |
*Subtype = INTEL_KNIGHTS_LANDING; | |
break; | |
default: // Unknown family 6 CPU, try to guess. | |
if (Features & (1 << FEATURE_AVX512)) { | |
*Type = INTEL_XEONPHI; // knl | |
*Subtype = INTEL_KNIGHTS_LANDING; | |
break; | |
} | |
if (Features & (1 << FEATURE_ADX)) { | |
*Type = INTEL_COREI7; | |
*Subtype = INTEL_COREI7_BROADWELL; | |
break; | |
} | |
if (Features & (1 << FEATURE_AVX2)) { | |
*Type = INTEL_COREI7; | |
*Subtype = INTEL_COREI7_HASWELL; | |
break; | |
} | |
if (Features & (1 << FEATURE_AVX)) { | |
*Type = INTEL_COREI7; | |
*Subtype = INTEL_COREI7_SANDYBRIDGE; | |
break; | |
} | |
if (Features & (1 << FEATURE_SSE4_2)) { | |
if (Features & (1 << FEATURE_MOVBE)) { | |
*Type = INTEL_ATOM; | |
*Subtype = INTEL_ATOM_SILVERMONT; | |
} else { | |
*Type = INTEL_COREI7; | |
*Subtype = INTEL_COREI7_NEHALEM; | |
} | |
break; | |
} | |
if (Features & (1 << FEATURE_SSE4_1)) { | |
*Type = INTEL_CORE2; // "penryn" | |
*Subtype = INTEL_CORE2_45; | |
break; | |
} | |
if (Features & (1 << FEATURE_SSSE3)) { | |
if (Features & (1 << FEATURE_MOVBE)) { | |
*Type = INTEL_ATOM; | |
*Subtype = INTEL_ATOM_BONNELL; // "bonnell" | |
} else { | |
*Type = INTEL_CORE2; // "core2" | |
*Subtype = INTEL_CORE2_65; | |
} | |
break; | |
} | |
if (Features & (1 << FEATURE_EM64T)) { | |
*Type = INTEL_X86_64; | |
break; // x86-64 | |
} | |
if (Features & (1 << FEATURE_SSE2)) { | |
*Type = INTEL_PENTIUM_M; | |
break; | |
} | |
if (Features & (1 << FEATURE_SSE)) { | |
*Type = INTEL_PENTIUM_III; | |
break; | |
} | |
if (Features & (1 << FEATURE_MMX)) { | |
*Type = INTEL_PENTIUM_II; | |
break; | |
} | |
*Type = INTEL_PENTIUM_PRO; | |
break; | |
} | |
break; | |
case 15: { | |
switch (Model) { | |
case 0: // Pentium 4 processor, Intel Xeon processor. All processors are | |
// model 00h and manufactured using the 0.18 micron process. | |
case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon | |
// processor MP, and Intel Celeron processor. All processors are | |
// model 01h and manufactured using the 0.18 micron process. | |
case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, | |
// Intel Xeon processor, Intel Xeon processor MP, Intel Celeron | |
// processor, and Mobile Intel Celeron processor. All processors | |
// are model 02h and manufactured using the 0.13 micron process. | |
*Type = | |
((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); | |
break; | |
case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D | |
// processor. All processors are model 03h and manufactured using | |
// the 90 nm process. | |
case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, | |
// Pentium D processor, Intel Xeon processor, Intel Xeon | |
// processor MP, Intel Celeron D processor. All processors are | |
// model 04h and manufactured using the 90 nm process. | |
case 6: // Pentium 4 processor, Pentium D processor, Pentium processor | |
// Extreme Edition, Intel Xeon processor, Intel Xeon processor | |
// MP, Intel Celeron D processor. All processors are model 06h | |
// and manufactured using the 65 nm process. | |
*Type = | |
((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT); | |
break; | |
default: | |
*Type = | |
((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); | |
break; | |
} | |
break; | |
} | |
default: | |
break; /*"generic"*/ | |
} | |
} | |
static void getAMDProcessorTypeAndSubtype(unsigned int Family, | |
unsigned int Model, | |
unsigned int Features, | |
unsigned *Type, | |
unsigned *Subtype) { | |
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There | |
// appears to be no way to generate the wide variety of AMD-specific targets | |
// from the information returned from CPUID. | |
switch (Family) { | |
case 4: | |
*Type = AMD_i486; | |
break; | |
case 5: | |
*Type = AMDPENTIUM; | |
switch (Model) { | |
case 6: | |
case 7: | |
*Subtype = AMDPENTIUM_K6; | |
break; // "k6" | |
case 8: | |
*Subtype = AMDPENTIUM_K62; | |
break; // "k6-2" | |
case 9: | |
case 13: | |
*Subtype = AMDPENTIUM_K63; | |
break; // "k6-3" | |
case 10: | |
*Subtype = AMDPENTIUM_GEODE; | |
break; // "geode" | |
} | |
break; | |
case 6: | |
*Type = AMDATHLON; | |
switch (Model) { | |
case 4: | |
*Subtype = AMDATHLON_TBIRD; | |
break; // "athlon-tbird" | |
case 6: | |
case 7: | |
case 8: | |
*Subtype = AMDATHLON_MP; | |
break; // "athlon-mp" | |
case 10: | |
*Subtype = AMDATHLON_XP; | |
break; // "athlon-xp" | |
} | |
break; | |
case 15: | |
*Type = AMDATHLON; | |
if (Features & (1 << FEATURE_SSE3)) { | |
*Subtype = AMDATHLON_K8SSE3; | |
break; // "k8-sse3" | |
} | |
switch (Model) { | |
case 1: | |
*Subtype = AMDATHLON_OPTERON; | |
break; // "opteron" | |
case 5: | |
*Subtype = AMDATHLON_FX; | |
break; // "athlon-fx"; also opteron | |
default: | |
*Subtype = AMDATHLON_64; | |
break; // "athlon64" | |
} | |
break; | |
case 16: | |
*Type = AMDFAM10H; // "amdfam10" | |
switch (Model) { | |
case 2: | |
*Subtype = AMDFAM10H_BARCELONA; | |
break; | |
case 4: | |
*Subtype = AMDFAM10H_SHANGHAI; | |
break; | |
case 8: | |
*Subtype = AMDFAM10H_ISTANBUL; | |
break; | |
} | |
break; | |
case 20: | |
*Type = AMDFAM14H; | |
*Subtype = AMD_BTVER1; | |
break; // "btver1"; | |
case 21: | |
*Type = AMDFAM15H; | |
if (!(Features & | |
(1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback. | |
*Subtype = AMD_BTVER1; | |
break; // "btver1" | |
} | |
if (Model >= 0x50 && Model <= 0x6f) { | |
*Subtype = AMDFAM15H_BDVER4; | |
break; // "bdver4"; 50h-6Fh: Excavator | |
} | |
if (Model >= 0x30 && Model <= 0x3f) { | |
*Subtype = AMDFAM15H_BDVER3; | |
break; // "bdver3"; 30h-3Fh: Steamroller | |
} | |
if (Model >= 0x10 && Model <= 0x1f) { | |
*Subtype = AMDFAM15H_BDVER2; | |
break; // "bdver2"; 10h-1Fh: Piledriver | |
} | |
if (Model <= 0x0f) { | |
*Subtype = AMDFAM15H_BDVER1; | |
break; // "bdver1"; 00h-0Fh: Bulldozer | |
} | |
break; | |
case 22: | |
*Type = AMDFAM16H; | |
if (!(Features & | |
(1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback. | |
*Subtype = AMD_BTVER1; | |
break; // "btver1"; | |
} | |
*Subtype = AMD_BTVER2; | |
break; // "btver2" | |
case 23: | |
*Type = AMDFAM17H; | |
if (Features & (1 << FEATURE_ADX)) { | |
*Subtype = AMDFAM17H_ZNVER1; | |
break; // "znver1" | |
} | |
*Subtype = AMD_BTVER1; | |
break; | |
default: | |
break; // "generic" | |
} | |
} | |
static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX, | |
unsigned MaxLeaf) { | |
unsigned Features = 0; | |
unsigned int EAX, EBX; | |
Features |= (((EDX >> 23) & 1) << FEATURE_MMX); | |
Features |= (((EDX >> 25) & 1) << FEATURE_SSE); | |
Features |= (((EDX >> 26) & 1) << FEATURE_SSE2); | |
Features |= (((ECX >> 0) & 1) << FEATURE_SSE3); | |
Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3); | |
Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1); | |
Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2); | |
Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE); | |
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | |
// indicates that the AVX registers will be saved and restored on context | |
// switch, then we have full AVX support. | |
const unsigned AVXBits = (1 << 27) | (1 << 28); | |
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && | |
((EAX & 0x6) == 0x6); | |
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); | |
bool HasLeaf7 = | |
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | |
bool HasADX = HasLeaf7 && ((EBX >> 19) & 1); | |
bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20); | |
bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1); | |
Features |= (HasAVX << FEATURE_AVX); | |
Features |= (HasAVX2 << FEATURE_AVX2); | |
Features |= (HasAVX512 << FEATURE_AVX512); | |
Features |= (HasAVX512Save << FEATURE_AVX512SAVE); | |
Features |= (HasADX << FEATURE_ADX); | |
getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | |
Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T); | |
return Features; | |
} | |
StringRef sys::getHostCPUName() { | |
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | |
unsigned MaxLeaf, Vendor; | |
#if defined(__GNUC__) || defined(__clang__) | |
//FIXME: include cpuid.h from clang or copy __get_cpuid_max here | |
// and simplify it to not invoke __cpuid (like cpu_model.c in | |
// compiler-rt/lib/builtins/cpu_model.c? | |
// Opting for the second option. | |
if(!isCpuIdSupported()) | |
return "generic"; | |
#endif | |
if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX)) | |
return "generic"; | |
if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) | |
return "generic"; | |
unsigned Brand_id = EBX & 0xff; | |
unsigned Family = 0, Model = 0; | |
unsigned Features = 0; | |
detectX86FamilyModel(EAX, &Family, &Model); | |
Features = getAvailableFeatures(ECX, EDX, MaxLeaf); | |
unsigned Type; | |
unsigned Subtype; | |
if (Vendor == SIG_INTEL) { | |
getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type, | |
&Subtype); | |
switch (Type) { | |
case INTEL_i386: | |
return "i386"; | |
case INTEL_i486: | |
return "i486"; | |
case INTEL_PENTIUM: | |
if (Subtype == INTEL_PENTIUM_MMX) | |
return "pentium-mmx"; | |
return "pentium"; | |
case INTEL_PENTIUM_PRO: | |
return "pentiumpro"; | |
case INTEL_PENTIUM_II: | |
return "pentium2"; | |
case INTEL_PENTIUM_III: | |
return "pentium3"; | |
case INTEL_PENTIUM_IV: | |
return "pentium4"; | |
case INTEL_PENTIUM_M: | |
return "pentium-m"; | |
case INTEL_CORE_DUO: | |
return "yonah"; | |
case INTEL_CORE2: | |
switch (Subtype) { | |
case INTEL_CORE2_65: | |
return "core2"; | |
case INTEL_CORE2_45: | |
return "penryn"; | |
default: | |
return "core2"; | |
} | |
case INTEL_COREI7: | |
switch (Subtype) { | |
case INTEL_COREI7_NEHALEM: | |
return "nehalem"; | |
case INTEL_COREI7_WESTMERE: | |
return "westmere"; | |
case INTEL_COREI7_SANDYBRIDGE: | |
return "sandybridge"; | |
case INTEL_COREI7_IVYBRIDGE: | |
return "ivybridge"; | |
case INTEL_COREI7_HASWELL: | |
return "haswell"; | |
case INTEL_COREI7_BROADWELL: | |
return "broadwell"; | |
case INTEL_COREI7_SKYLAKE: | |
return "skylake"; | |
case INTEL_COREI7_SKYLAKE_AVX512: | |
return "skylake-avx512"; | |
default: | |
return "corei7"; | |
} | |
case INTEL_ATOM: | |
switch (Subtype) { | |
case INTEL_ATOM_BONNELL: | |
return "bonnell"; | |
case INTEL_ATOM_SILVERMONT: | |
return "silvermont"; | |
default: | |
return "atom"; | |
} | |
case INTEL_XEONPHI: | |
return "knl"; /*update for more variants added*/ | |
case INTEL_X86_64: | |
return "x86-64"; | |
case INTEL_NOCONA: | |
return "nocona"; | |
case INTEL_PRESCOTT: | |
return "prescott"; | |
default: | |
return "generic"; | |
} | |
} else if (Vendor == SIG_AMD) { | |
getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); | |
switch (Type) { | |
case AMD_i486: | |
return "i486"; | |
case AMDPENTIUM: | |
switch (Subtype) { | |
case AMDPENTIUM_K6: | |
return "k6"; | |
case AMDPENTIUM_K62: | |
return "k6-2"; | |
case AMDPENTIUM_K63: | |
return "k6-3"; | |
case AMDPENTIUM_GEODE: | |
return "geode"; | |
default: | |
return "pentium"; | |
} | |
case AMDATHLON: | |
switch (Subtype) { | |
case AMDATHLON_TBIRD: | |
return "athlon-tbird"; | |
case AMDATHLON_MP: | |
return "athlon-mp"; | |
case AMDATHLON_XP: | |
return "athlon-xp"; | |
case AMDATHLON_K8SSE3: | |
return "k8-sse3"; | |
case AMDATHLON_OPTERON: | |
return "opteron"; | |
case AMDATHLON_FX: | |
return "athlon-fx"; | |
case AMDATHLON_64: | |
return "athlon64"; | |
default: | |
return "athlon"; | |
} | |
case AMDFAM10H: | |
if(Subtype == AMDFAM10H_BARCELONA) | |
return "barcelona"; | |
return "amdfam10"; | |
case AMDFAM14H: | |
return "btver1"; | |
case AMDFAM15H: | |
switch (Subtype) { | |
case AMDFAM15H_BDVER1: | |
return "bdver1"; | |
case AMDFAM15H_BDVER2: | |
return "bdver2"; | |
case AMDFAM15H_BDVER3: | |
return "bdver3"; | |
case AMDFAM15H_BDVER4: | |
return "bdver4"; | |
case AMD_BTVER1: | |
return "btver1"; | |
default: | |
return "amdfam15"; | |
} | |
case AMDFAM16H: | |
switch (Subtype) { | |
case AMD_BTVER1: | |
return "btver1"; | |
case AMD_BTVER2: | |
return "btver2"; | |
default: | |
return "amdfam16"; | |
} | |
case AMDFAM17H: | |
switch (Subtype) { | |
case AMD_BTVER1: | |
return "btver1"; | |
case AMDFAM17H_ZNVER1: | |
return "znver1"; | |
default: | |
return "amdfam17"; | |
} | |
default: | |
return "generic"; | |
} | |
} | |
return "generic"; | |
} | |
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | |
StringRef sys::getHostCPUName() { | |
host_basic_info_data_t hostInfo; | |
mach_msg_type_number_t infoCount; | |
infoCount = HOST_BASIC_INFO_COUNT; | |
host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, | |
&infoCount); | |
if (hostInfo.cpu_type != CPU_TYPE_POWERPC) | |
return "generic"; | |
switch (hostInfo.cpu_subtype) { | |
case CPU_SUBTYPE_POWERPC_601: | |
return "601"; | |
case CPU_SUBTYPE_POWERPC_602: | |
return "602"; | |
case CPU_SUBTYPE_POWERPC_603: | |
return "603"; | |
case CPU_SUBTYPE_POWERPC_603e: | |
return "603e"; | |
case CPU_SUBTYPE_POWERPC_603ev: | |
return "603ev"; | |
case CPU_SUBTYPE_POWERPC_604: | |
return "604"; | |
case CPU_SUBTYPE_POWERPC_604e: | |
return "604e"; | |
case CPU_SUBTYPE_POWERPC_620: | |
return "620"; | |
case CPU_SUBTYPE_POWERPC_750: | |
return "750"; | |
case CPU_SUBTYPE_POWERPC_7400: | |
return "7400"; | |
case CPU_SUBTYPE_POWERPC_7450: | |
return "7450"; | |
case CPU_SUBTYPE_POWERPC_970: | |
return "970"; | |
default:; | |
} | |
return "generic"; | |
} | |
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) | |
StringRef sys::getHostCPUName() { | |
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | |
const StringRef& Content = P ? P->getBuffer() : ""; | |
return detail::getHostCPUNameForPowerPC(Content); | |
} | |
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | |
StringRef sys::getHostCPUName() { | |
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | |
const StringRef& Content = P ? P->getBuffer() : ""; | |
return detail::getHostCPUNameForARM(Content); | |
} | |
#elif defined(__linux__) && defined(__s390x__) | |
StringRef sys::getHostCPUName() { | |
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | |
const StringRef& Content = P ? P->getBuffer() : ""; | |
return detail::getHostCPUNameForS390x(Content); | |
} | |
#else | |
StringRef sys::getHostCPUName() { return "generic"; } | |
#endif | |
#if defined(__linux__) && defined(__x86_64__) | |
// On Linux, the number of physical cores can be computed from /proc/cpuinfo, | |
// using the number of unique physical/core id pairs. The following | |
// implementation reads the /proc/cpuinfo format on an x86_64 system. | |
static int computeHostNumPhysicalCores() { | |
// Read /proc/cpuinfo as a stream (until EOF reached). It cannot be | |
// mmapped because it appears to have 0 size. | |
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = | |
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); | |
if (std::error_code EC = Text.getError()) { | |
llvm::errs() << "Can't read " | |
<< "/proc/cpuinfo: " << EC.message() << "\n"; | |
return -1; | |
} | |
SmallVector<StringRef, 8> strs; | |
(*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, | |
/*KeepEmpty=*/false); | |
int CurPhysicalId = -1; | |
int CurCoreId = -1; | |
SmallSet<std::pair<int, int>, 32> UniqueItems; | |
for (auto &Line : strs) { | |
Line = Line.trim(); | |
if (!Line.startswith("physical id") && !Line.startswith("core id")) | |
continue; | |
std::pair<StringRef, StringRef> Data = Line.split(':'); | |
auto Name = Data.first.trim(); | |
auto Val = Data.second.trim(); | |
if (Name == "physical id") { | |
assert(CurPhysicalId == -1 && | |
"Expected a core id before seeing another physical id"); | |
Val.getAsInteger(10, CurPhysicalId); | |
} | |
if (Name == "core id") { | |
assert(CurCoreId == -1 && | |
"Expected a physical id before seeing another core id"); | |
Val.getAsInteger(10, CurCoreId); | |
} | |
if (CurPhysicalId != -1 && CurCoreId != -1) { | |
UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); | |
CurPhysicalId = -1; | |
CurCoreId = -1; | |
} | |
} | |
return UniqueItems.size(); | |
} | |
#elif defined(__APPLE__) && defined(__x86_64__) | |
#include <sys/param.h> | |
#include <sys/sysctl.h> | |
// Gets the number of *physical cores* on the machine. | |
static int computeHostNumPhysicalCores() { | |
uint32_t count; | |
size_t len = sizeof(count); | |
sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); | |
if (count < 1) { | |
int nm[2]; | |
nm[0] = CTL_HW; | |
nm[1] = HW_AVAILCPU; | |
sysctl(nm, 2, &count, &len, NULL, 0); | |
if (count < 1) | |
return -1; | |
} | |
return count; | |
} | |
#else | |
// On other systems, return -1 to indicate unknown. | |
static int computeHostNumPhysicalCores() { return -1; } | |
#endif | |
int sys::getHostNumPhysicalCores() { | |
static int NumCores = computeHostNumPhysicalCores(); | |
return NumCores; | |
} | |
#if defined(__i386__) || defined(_M_IX86) || \ | |
defined(__x86_64__) || defined(_M_X64) | |
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | |
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | |
unsigned MaxLevel; | |
union { | |
unsigned u[3]; | |
char c[12]; | |
} text; | |
if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || | |
MaxLevel < 1) | |
return false; | |
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); | |
Features["cmov"] = (EDX >> 15) & 1; | |
Features["mmx"] = (EDX >> 23) & 1; | |
Features["sse"] = (EDX >> 25) & 1; | |
Features["sse2"] = (EDX >> 26) & 1; | |
Features["sse3"] = (ECX >> 0) & 1; | |
Features["ssse3"] = (ECX >> 9) & 1; | |
Features["sse4.1"] = (ECX >> 19) & 1; | |
Features["sse4.2"] = (ECX >> 20) & 1; | |
Features["pclmul"] = (ECX >> 1) & 1; | |
Features["cx16"] = (ECX >> 13) & 1; | |
Features["movbe"] = (ECX >> 22) & 1; | |
Features["popcnt"] = (ECX >> 23) & 1; | |
Features["aes"] = (ECX >> 25) & 1; | |
Features["rdrnd"] = (ECX >> 30) & 1; | |
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | |
// indicates that the AVX registers will be saved and restored on context | |
// switch, then we have full AVX support. | |
bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && | |
!getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); | |
Features["avx"] = HasAVXSave; | |
Features["fma"] = HasAVXSave && (ECX >> 12) & 1; | |
Features["f16c"] = HasAVXSave && (ECX >> 29) & 1; | |
// Only enable XSAVE if OS has enabled support for saving YMM state. | |
Features["xsave"] = HasAVXSave && (ECX >> 26) & 1; | |
// AVX512 requires additional context to be saved by the OS. | |
bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); | |
unsigned MaxExtLevel; | |
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); | |
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && | |
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | |
Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); | |
Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); | |
Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); | |
Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; | |
Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1); | |
Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; | |
Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); | |
Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); | |
bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && | |
!getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX); | |
Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); | |
bool HasLeaf7 = | |
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | |
// AVX2 is only supported if we have the OS save support from AVX. | |
Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1); | |
Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); | |
Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); | |
Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); | |
Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); | |
Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); | |
Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); | |
Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); | |
Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); | |
Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); | |
Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); | |
// AVX512 is only supported if the OS supports the context save for it. | |
Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; | |
Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; | |
Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; | |
Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; | |
Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; | |
Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; | |
Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; | |
Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; | |
Features["prefetchwt1"] = HasLeaf7 && (ECX & 1); | |
Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; | |
// Enable protection keys | |
Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); | |
bool HasLeafD = MaxLevel >= 0xd && | |
!getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); | |
// Only enable XSAVE if OS has enabled support for saving YMM state. | |
Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1); | |
Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1); | |
Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1); | |
return true; | |
} | |
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | |
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | |
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | |
if (!P) | |
return false; | |
SmallVector<StringRef, 32> Lines; | |
P->getBuffer().split(Lines, "\n"); | |
SmallVector<StringRef, 32> CPUFeatures; | |
// Look for the CPU features. | |
for (unsigned I = 0, E = Lines.size(); I != E; ++I) | |
if (Lines[I].startswith("Features")) { | |
Lines[I].split(CPUFeatures, ' '); | |
break; | |
} | |
#if defined(__aarch64__) | |
// Keep track of which crypto features we have seen | |
enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; | |
uint32_t crypto = 0; | |
#endif | |
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | |
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) | |
#if defined(__aarch64__) | |
.Case("asimd", "neon") | |
.Case("fp", "fp-armv8") | |
.Case("crc32", "crc") | |
#else | |
.Case("half", "fp16") | |
.Case("neon", "neon") | |
.Case("vfpv3", "vfp3") | |
.Case("vfpv3d16", "d16") | |
.Case("vfpv4", "vfp4") | |
.Case("idiva", "hwdiv-arm") | |
.Case("idivt", "hwdiv") | |
#endif | |
.Default(""); | |
#if defined(__aarch64__) | |
// We need to check crypto separately since we need all of the crypto | |
// extensions to enable the subtarget feature | |
if (CPUFeatures[I] == "aes") | |
crypto |= CAP_AES; | |
else if (CPUFeatures[I] == "pmull") | |
crypto |= CAP_PMULL; | |
else if (CPUFeatures[I] == "sha1") | |
crypto |= CAP_SHA1; | |
else if (CPUFeatures[I] == "sha2") | |
crypto |= CAP_SHA2; | |
#endif | |
if (LLVMFeatureStr != "") | |
Features[LLVMFeatureStr] = true; | |
} | |
#if defined(__aarch64__) | |
// If we have all crypto bits we can add the feature | |
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) | |
Features["crypto"] = true; | |
#endif | |
return true; | |
} | |
#else | |
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } | |
#endif | |
std::string sys::getProcessTriple() { | |
Triple PT(Triple::normalize(LLVM_HOST_TRIPLE)); | |
if (sizeof(void *) == 8 && PT.isArch32Bit()) | |
PT = PT.get64BitArchVariant(); | |
if (sizeof(void *) == 4 && PT.isArch64Bit()) | |
PT = PT.get32BitArchVariant(); | |
return PT.str(); | |
} |