|  | //===- Writer.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Writer.h" | 
|  | #include "Config.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "MapFile.h" | 
|  | #include "Memory.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Relocations.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <climits> | 
|  | #include <thread> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace llvm::support::endian; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | namespace { | 
|  | // The writer writes a SymbolTable result to a file. | 
|  | template <class ELFT> class Writer { | 
|  | public: | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | typedef typename ELFT::Shdr Elf_Shdr; | 
|  | typedef typename ELFT::Ehdr Elf_Ehdr; | 
|  | typedef typename ELFT::Phdr Elf_Phdr; | 
|  | typedef typename ELFT::Sym Elf_Sym; | 
|  | typedef typename ELFT::SymRange Elf_Sym_Range; | 
|  | typedef typename ELFT::Rela Elf_Rela; | 
|  | void run(); | 
|  |  | 
|  | private: | 
|  | void createSyntheticSections(); | 
|  | void copyLocalSymbols(); | 
|  | void addSectionSymbols(); | 
|  | void addReservedSymbols(); | 
|  | void createSections(); | 
|  | void forEachRelSec(std::function<void(InputSectionBase &)> Fn); | 
|  | void sortSections(); | 
|  | void finalizeSections(); | 
|  | void addPredefinedSections(); | 
|  |  | 
|  | std::vector<PhdrEntry> createPhdrs(); | 
|  | void removeEmptyPTLoad(); | 
|  | void addPtArmExid(std::vector<PhdrEntry> &Phdrs); | 
|  | void assignAddresses(); | 
|  | void assignFileOffsets(); | 
|  | void assignFileOffsetsBinary(); | 
|  | void setPhdrs(); | 
|  | void fixHeaders(); | 
|  | void fixSectionAlignments(); | 
|  | void fixPredefinedSymbols(); | 
|  | void openFile(); | 
|  | void writeHeader(); | 
|  | void writeSections(); | 
|  | void writeSectionsBinary(); | 
|  | void writeBuildId(); | 
|  |  | 
|  | std::unique_ptr<FileOutputBuffer> Buffer; | 
|  |  | 
|  | std::vector<OutputSection *> OutputSections; | 
|  | OutputSectionFactory<ELFT> Factory{OutputSections}; | 
|  |  | 
|  | void addRelIpltSymbols(); | 
|  | void addStartEndSymbols(); | 
|  | void addStartStopSymbols(OutputSection *Sec); | 
|  | uintX_t getEntryAddr(); | 
|  | OutputSection *findSection(StringRef Name); | 
|  |  | 
|  | std::vector<PhdrEntry> Phdrs; | 
|  |  | 
|  | uintX_t FileSize; | 
|  | uintX_t SectionHeaderOff; | 
|  | bool AllocateHeader = true; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | StringRef elf::getOutputSectionName(StringRef Name) { | 
|  | if (Config->Relocatable) | 
|  | return Name; | 
|  |  | 
|  | // If -emit-relocs is given (which is rare), we need to copy | 
|  | // relocation sections to the output. If input section .foo is | 
|  | // output as .bar, we want to rename .rel.foo .rel.bar as well. | 
|  | if (Config->EmitRelocs) { | 
|  | for (StringRef V : {".rel.", ".rela."}) { | 
|  | if (Name.startswith(V)) { | 
|  | StringRef Inner = getOutputSectionName(Name.substr(V.size() - 1)); | 
|  | return Saver.save(Twine(V.drop_back()) + Inner); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (StringRef V : | 
|  | {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", | 
|  | ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", | 
|  | ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { | 
|  | StringRef Prefix = V.drop_back(); | 
|  | if (Name.startswith(V) || Name == Prefix) | 
|  | return Prefix; | 
|  | } | 
|  |  | 
|  | // CommonSection is identified as "COMMON" in linker scripts. | 
|  | // By default, it should go to .bss section. | 
|  | if (Name == "COMMON") | 
|  | return ".bss"; | 
|  |  | 
|  | // ".zdebug_" is a prefix for ZLIB-compressed sections. | 
|  | // Because we decompressed input sections, we want to remove 'z'. | 
|  | if (Name.startswith(".zdebug_")) | 
|  | return Saver.save(Twine(".") + Name.substr(2)); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsInterpSection() { | 
|  | return !Symtab<ELFT>::X->getSharedFiles().empty() && | 
|  | !Config->DynamicLinker.empty() && | 
|  | !Script<ELFT>::X->ignoreInterpSection(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { | 
|  | auto I = std::remove_if(Phdrs.begin(), Phdrs.end(), [&](const PhdrEntry &P) { | 
|  | if (P.p_type != PT_LOAD) | 
|  | return false; | 
|  | if (!P.First) | 
|  | return true; | 
|  | uintX_t Size = P.Last->Addr + P.Last->Size - P.First->Addr; | 
|  | return Size == 0; | 
|  | }); | 
|  | Phdrs.erase(I, Phdrs.end()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static typename ELFT::uint getOutFlags(InputSectionBase *S) { | 
|  | return S->Flags & ~(typename ELFT::uint)(SHF_GROUP | SHF_COMPRESSED); | 
|  | } | 
|  |  | 
|  | // This function scans over the input sections and creates mergeable | 
|  | // synthetic sections. It removes MergeInputSections from array and | 
|  | // adds new synthetic ones. Each synthetic section is added to the | 
|  | // location of the first input section it replaces. | 
|  | template <class ELFT> static void combineMergableSections() { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | std::vector<MergeSyntheticSection<ELFT> *> MergeSections; | 
|  | for (InputSectionBase *&S : Symtab<ELFT>::X->Sections) { | 
|  | MergeInputSection<ELFT> *MS = dyn_cast<MergeInputSection<ELFT>>(S); | 
|  | if (!MS) | 
|  | continue; | 
|  |  | 
|  | // We do not want to handle sections that are not alive, so just remove | 
|  | // them instead of trying to merge. | 
|  | if (!MS->Live) | 
|  | continue; | 
|  |  | 
|  | StringRef OutsecName = getOutputSectionName(MS->Name); | 
|  | uintX_t Flags = getOutFlags<ELFT>(MS); | 
|  | uintX_t Alignment = std::max<uintX_t>(MS->Alignment, MS->Entsize); | 
|  |  | 
|  | auto I = | 
|  | llvm::find_if(MergeSections, [=](MergeSyntheticSection<ELFT> *Sec) { | 
|  | return Sec->Name == OutsecName && Sec->Flags == Flags && | 
|  | Sec->Alignment == Alignment; | 
|  | }); | 
|  | if (I == MergeSections.end()) { | 
|  | MergeSyntheticSection<ELFT> *Syn = make<MergeSyntheticSection<ELFT>>( | 
|  | OutsecName, MS->Type, Flags, Alignment); | 
|  | MergeSections.push_back(Syn); | 
|  | I = std::prev(MergeSections.end()); | 
|  | S = Syn; | 
|  | } else { | 
|  | S = nullptr; | 
|  | } | 
|  | (*I)->addSection(MS); | 
|  | } | 
|  |  | 
|  | std::vector<InputSectionBase *> &V = Symtab<ELFT>::X->Sections; | 
|  | V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); | 
|  | } | 
|  |  | 
|  | // The main function of the writer. | 
|  | template <class ELFT> void Writer<ELFT>::run() { | 
|  | // Create linker-synthesized sections such as .got or .plt. | 
|  | // Such sections are of type input section. | 
|  | createSyntheticSections(); | 
|  | combineMergableSections<ELFT>(); | 
|  |  | 
|  | // We need to create some reserved symbols such as _end. Create them. | 
|  | if (!Config->Relocatable) | 
|  | addReservedSymbols(); | 
|  |  | 
|  | // Create output sections. | 
|  | Script<ELFT>::X->OutputSections = &OutputSections; | 
|  | if (ScriptConfig->HasSections) { | 
|  | // If linker script contains SECTIONS commands, let it create sections. | 
|  | Script<ELFT>::X->processCommands(Factory); | 
|  |  | 
|  | // Linker scripts may have left some input sections unassigned. | 
|  | // Assign such sections using the default rule. | 
|  | Script<ELFT>::X->addOrphanSections(Factory); | 
|  | } else { | 
|  | // If linker script does not contain SECTIONS commands, create | 
|  | // output sections by default rules. We still need to give the | 
|  | // linker script a chance to run, because it might contain | 
|  | // non-SECTIONS commands such as ASSERT. | 
|  | createSections(); | 
|  | Script<ELFT>::X->processCommands(Factory); | 
|  | } | 
|  |  | 
|  | if (Config->Discard != DiscardPolicy::All) | 
|  | copyLocalSymbols(); | 
|  |  | 
|  | if (Config->copyRelocs()) | 
|  | addSectionSymbols(); | 
|  |  | 
|  | // Now that we have a complete set of output sections. This function | 
|  | // completes section contents. For example, we need to add strings | 
|  | // to the string table, and add entries to .got and .plt. | 
|  | // finalizeSections does that. | 
|  | finalizeSections(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (Config->Relocatable) { | 
|  | assignFileOffsets(); | 
|  | } else { | 
|  | if (ScriptConfig->HasSections) { | 
|  | Script<ELFT>::X->assignAddresses(Phdrs); | 
|  | } else { | 
|  | fixSectionAlignments(); | 
|  | assignAddresses(); | 
|  | } | 
|  |  | 
|  | // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a | 
|  | // 0 sized region. This has to be done late since only after assignAddresses | 
|  | // we know the size of the sections. | 
|  | removeEmptyPTLoad(); | 
|  |  | 
|  | if (!Config->OFormatBinary) | 
|  | assignFileOffsets(); | 
|  | else | 
|  | assignFileOffsetsBinary(); | 
|  |  | 
|  | setPhdrs(); | 
|  | fixPredefinedSymbols(); | 
|  | } | 
|  |  | 
|  | // It does not make sense try to open the file if we have error already. | 
|  | if (ErrorCount) | 
|  | return; | 
|  | // Write the result down to a file. | 
|  | openFile(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  | if (!Config->OFormatBinary) { | 
|  | writeHeader(); | 
|  | writeSections(); | 
|  | } else { | 
|  | writeSectionsBinary(); | 
|  | } | 
|  |  | 
|  | // Backfill .note.gnu.build-id section content. This is done at last | 
|  | // because the content is usually a hash value of the entire output file. | 
|  | writeBuildId(); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | // Handle -Map option. | 
|  | writeMapFile<ELFT>(OutputSections); | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | if (auto EC = Buffer->commit()) | 
|  | error("failed to write to the output file: " + EC.message()); | 
|  |  | 
|  | // Flush the output streams and exit immediately. A full shutdown | 
|  | // is a good test that we are keeping track of all allocated memory, | 
|  | // but actually freeing it is a waste of time in a regular linker run. | 
|  | if (Config->ExitEarly) | 
|  | exitLld(0); | 
|  | } | 
|  |  | 
|  | // Initialize Out<ELFT> members. | 
|  | template <class ELFT> void Writer<ELFT>::createSyntheticSections() { | 
|  | // Initialize all pointers with NULL. This is needed because | 
|  | // you can call lld::elf::main more than once as a library. | 
|  | memset(&Out<ELFT>::First, 0, sizeof(Out<ELFT>)); | 
|  |  | 
|  | auto Add = [](InputSectionBase *Sec) { | 
|  | Symtab<ELFT>::X->Sections.push_back(Sec); | 
|  | }; | 
|  |  | 
|  | // Create singleton output sections. | 
|  | Out<ELFT>::Bss = | 
|  | make<OutputSection>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); | 
|  | Out<ELFT>::BssRelRo = | 
|  | make<OutputSection>(".bss.rel.ro", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); | 
|  | In<ELFT>::DynStrTab = make<StringTableSection<ELFT>>(".dynstr", true); | 
|  | In<ELFT>::Dynamic = make<DynamicSection<ELFT>>(); | 
|  | In<ELFT>::RelaDyn = make<RelocationSection<ELFT>>( | 
|  | Config->Rela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); | 
|  | In<ELFT>::ShStrTab = make<StringTableSection<ELFT>>(".shstrtab", false); | 
|  |  | 
|  | Out<ELFT>::ElfHeader = make<OutputSection>("", 0, SHF_ALLOC); | 
|  | Out<ELFT>::ElfHeader->Size = sizeof(Elf_Ehdr); | 
|  | Out<ELFT>::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); | 
|  | Out<ELFT>::ProgramHeaders->updateAlignment(sizeof(uintX_t)); | 
|  |  | 
|  | if (needsInterpSection<ELFT>()) { | 
|  | In<ELFT>::Interp = createInterpSection<ELFT>(); | 
|  | Add(In<ELFT>::Interp); | 
|  | } else { | 
|  | In<ELFT>::Interp = nullptr; | 
|  | } | 
|  |  | 
|  | if (!Config->Relocatable) | 
|  | Add(createCommentSection<ELFT>()); | 
|  |  | 
|  | if (Config->Strip != StripPolicy::All) { | 
|  | In<ELFT>::StrTab = make<StringTableSection<ELFT>>(".strtab", false); | 
|  | In<ELFT>::SymTab = make<SymbolTableSection<ELFT>>(*In<ELFT>::StrTab); | 
|  | } | 
|  |  | 
|  | if (Config->BuildId != BuildIdKind::None) { | 
|  | In<ELFT>::BuildId = make<BuildIdSection<ELFT>>(); | 
|  | Add(In<ELFT>::BuildId); | 
|  | } | 
|  |  | 
|  | InputSection *Common = createCommonSection<ELFT>(); | 
|  | if (!Common->Data.empty()) { | 
|  | In<ELFT>::Common = Common; | 
|  | Add(Common); | 
|  | } | 
|  |  | 
|  | // Add MIPS-specific sections. | 
|  | bool HasDynSymTab = | 
|  | !Symtab<ELFT>::X->getSharedFiles().empty() || Config->pic() || | 
|  | Config->ExportDynamic; | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | if (!Config->Shared && HasDynSymTab) { | 
|  | In<ELFT>::MipsRldMap = make<MipsRldMapSection<ELFT>>(); | 
|  | Add(In<ELFT>::MipsRldMap); | 
|  | } | 
|  | if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) | 
|  | Add(Sec); | 
|  | if (auto *Sec = MipsOptionsSection<ELFT>::create()) | 
|  | Add(Sec); | 
|  | if (auto *Sec = MipsReginfoSection<ELFT>::create()) | 
|  | Add(Sec); | 
|  | } | 
|  |  | 
|  | if (HasDynSymTab) { | 
|  | In<ELFT>::DynSymTab = make<SymbolTableSection<ELFT>>(*In<ELFT>::DynStrTab); | 
|  | Add(In<ELFT>::DynSymTab); | 
|  |  | 
|  | In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); | 
|  | Add(In<ELFT>::VerSym); | 
|  |  | 
|  | if (!Config->VersionDefinitions.empty()) { | 
|  | In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); | 
|  | Add(In<ELFT>::VerDef); | 
|  | } | 
|  |  | 
|  | In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); | 
|  | Add(In<ELFT>::VerNeed); | 
|  |  | 
|  | if (Config->GnuHash) { | 
|  | In<ELFT>::GnuHashTab = make<GnuHashTableSection<ELFT>>(); | 
|  | Add(In<ELFT>::GnuHashTab); | 
|  | } | 
|  |  | 
|  | if (Config->SysvHash) { | 
|  | In<ELFT>::HashTab = make<HashTableSection<ELFT>>(); | 
|  | Add(In<ELFT>::HashTab); | 
|  | } | 
|  |  | 
|  | Add(In<ELFT>::Dynamic); | 
|  | Add(In<ELFT>::DynStrTab); | 
|  | Add(In<ELFT>::RelaDyn); | 
|  | } | 
|  |  | 
|  | // Add .got. MIPS' .got is so different from the other archs, | 
|  | // it has its own class. | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | In<ELFT>::MipsGot = make<MipsGotSection<ELFT>>(); | 
|  | Add(In<ELFT>::MipsGot); | 
|  | } else { | 
|  | In<ELFT>::Got = make<GotSection<ELFT>>(); | 
|  | Add(In<ELFT>::Got); | 
|  | } | 
|  |  | 
|  | In<ELFT>::GotPlt = make<GotPltSection<ELFT>>(); | 
|  | Add(In<ELFT>::GotPlt); | 
|  | In<ELFT>::IgotPlt = make<IgotPltSection<ELFT>>(); | 
|  | Add(In<ELFT>::IgotPlt); | 
|  |  | 
|  | if (Config->GdbIndex) { | 
|  | In<ELFT>::GdbIndex = make<GdbIndexSection<ELFT>>(); | 
|  | Add(In<ELFT>::GdbIndex); | 
|  | } | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even for static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | In<ELFT>::RelaPlt = make<RelocationSection<ELFT>>( | 
|  | Config->Rela ? ".rela.plt" : ".rel.plt", false /*Sort*/); | 
|  | Add(In<ELFT>::RelaPlt); | 
|  |  | 
|  | // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure | 
|  | // that the IRelative relocations are processed last by the dynamic loader | 
|  | In<ELFT>::RelaIplt = make<RelocationSection<ELFT>>( | 
|  | (Config->EMachine == EM_ARM) ? ".rel.dyn" : In<ELFT>::RelaPlt->Name, | 
|  | false /*Sort*/); | 
|  | Add(In<ELFT>::RelaIplt); | 
|  |  | 
|  | In<ELFT>::Plt = make<PltSection<ELFT>>(Target->PltHeaderSize); | 
|  | Add(In<ELFT>::Plt); | 
|  | In<ELFT>::Iplt = make<PltSection<ELFT>>(0); | 
|  | Add(In<ELFT>::Iplt); | 
|  |  | 
|  | if (Config->EhFrameHdr) { | 
|  | In<ELFT>::EhFrameHdr = make<EhFrameHeader<ELFT>>(); | 
|  | Add(In<ELFT>::EhFrameHdr); | 
|  | } | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | In<ELFT>::EhFrame = make<EhFrameSection<ELFT>>(); | 
|  | Add(In<ELFT>::EhFrame); | 
|  | } | 
|  |  | 
|  | if (In<ELFT>::SymTab) | 
|  | Add(In<ELFT>::SymTab); | 
|  | Add(In<ELFT>::ShStrTab); | 
|  | if (In<ELFT>::StrTab) | 
|  | Add(In<ELFT>::StrTab); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool shouldKeepInSymtab(InputSectionBase *Sec, StringRef SymName, | 
|  | const SymbolBody &B) { | 
|  | if (B.isFile() || B.isSection()) | 
|  | return false; | 
|  |  | 
|  | // If sym references a section in a discarded group, don't keep it. | 
|  | if (Sec == &InputSection::Discarded) | 
|  | return false; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::None) | 
|  | return true; | 
|  |  | 
|  | // In ELF assembly .L symbols are normally discarded by the assembler. | 
|  | // If the assembler fails to do so, the linker discards them if | 
|  | // * --discard-locals is used. | 
|  | // * The symbol is in a SHF_MERGE section, which is normally the reason for | 
|  | //   the assembler keeping the .L symbol. | 
|  | if (!SymName.startswith(".L") && !SymName.empty()) | 
|  | return true; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::Locals) | 
|  | return false; | 
|  |  | 
|  | return !Sec || !(Sec->Flags & SHF_MERGE); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { | 
|  | if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) | 
|  | return false; | 
|  |  | 
|  | if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { | 
|  | // Always include absolute symbols. | 
|  | if (!D->Section) | 
|  | return true; | 
|  | // Exclude symbols pointing to garbage-collected sections. | 
|  | if (!D->Section->Live) | 
|  | return false; | 
|  | if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section)) | 
|  | if (!S->getSectionPiece(D->Value)->Live) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Local symbols are not in the linker's symbol table. This function scans | 
|  | // each object file's symbol table to copy local symbols to the output. | 
|  | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | 
|  | if (!In<ELFT>::SymTab) | 
|  | return; | 
|  | for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (SymbolBody *B : F->getLocalSymbols()) { | 
|  | if (!B->IsLocal) | 
|  | fatal(toString(F) + | 
|  | ": broken object: getLocalSymbols returns a non-local symbol"); | 
|  | auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); | 
|  |  | 
|  | // No reason to keep local undefined symbol in symtab. | 
|  | if (!DR) | 
|  | continue; | 
|  | if (!includeInSymtab<ELFT>(*B)) | 
|  | continue; | 
|  |  | 
|  | InputSectionBase *Sec = DR->Section; | 
|  | if (!shouldKeepInSymtab<ELFT>(Sec, B->getName(), *B)) | 
|  | continue; | 
|  | In<ELFT>::SymTab->addLocal(B); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::addSectionSymbols() { | 
|  | // Create one STT_SECTION symbol for each output section we might | 
|  | // have a relocation with. | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | InputSection *IS = nullptr; | 
|  | if (!Sec->Sections.empty()) | 
|  | IS = Sec->Sections[0]; | 
|  | if (!IS || isa<SyntheticSection<ELFT>>(IS) || IS->Type == SHT_REL || | 
|  | IS->Type == SHT_RELA) | 
|  | continue; | 
|  | auto *B = new (BAlloc) | 
|  | DefinedRegular<ELFT>("", /*IsLocal=*/true, /*StOther*/ 0, STT_SECTION, | 
|  | /*Value*/ 0, /*Size*/ 0, IS, nullptr); | 
|  |  | 
|  | In<ELFT>::SymTab->addLocal(B); | 
|  | } | 
|  | } | 
|  |  | 
|  | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that | 
|  | // we would like to make sure appear is a specific order to maximize their | 
|  | // coverage by a single signed 16-bit offset from the TOC base pointer. | 
|  | // Conversely, the special .tocbss section should be first among all SHT_NOBITS | 
|  | // sections. This will put it next to the loaded special PPC64 sections (and, | 
|  | // thus, within reach of the TOC base pointer). | 
|  | static int getPPC64SectionRank(StringRef SectionName) { | 
|  | return StringSwitch<int>(SectionName) | 
|  | .Case(".tocbss", 0) | 
|  | .Case(".branch_lt", 2) | 
|  | .Case(".toc", 3) | 
|  | .Case(".toc1", 4) | 
|  | .Case(".opd", 5) | 
|  | .Default(1); | 
|  | } | 
|  |  | 
|  | // All sections with SHF_MIPS_GPREL flag should be grouped together | 
|  | // because data in these sections is addressable with a gp relative address. | 
|  | static int getMipsSectionRank(const OutputSection *S) { | 
|  | if ((S->Flags & SHF_MIPS_GPREL) == 0) | 
|  | return 0; | 
|  | if (S->Name == ".got") | 
|  | return 1; | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // Today's loaders have a feature to make segments read-only after | 
|  | // processing dynamic relocations to enhance security. PT_GNU_RELRO | 
|  | // is defined for that. | 
|  | // | 
|  | // This function returns true if a section needs to be put into a | 
|  | // PT_GNU_RELRO segment. | 
|  | template <class ELFT> bool elf::isRelroSection(const OutputSection *Sec) { | 
|  | if (!Config->ZRelro) | 
|  | return false; | 
|  |  | 
|  | uint64_t Flags = Sec->Flags; | 
|  | if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) | 
|  | return false; | 
|  | if (Flags & SHF_TLS) | 
|  | return true; | 
|  |  | 
|  | uint32_t Type = Sec->Type; | 
|  | if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY) | 
|  | return true; | 
|  |  | 
|  | if (Sec == In<ELFT>::GotPlt->OutSec) | 
|  | return Config->ZNow; | 
|  | if (Sec == In<ELFT>::Dynamic->OutSec) | 
|  | return true; | 
|  | if (In<ELFT>::Got && Sec == In<ELFT>::Got->OutSec) | 
|  | return true; | 
|  | if (Sec == Out<ELFT>::BssRelRo) | 
|  | return true; | 
|  |  | 
|  | StringRef S = Sec->Name; | 
|  | return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || | 
|  | S == ".eh_frame" || S == ".openbsd.randomdata"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool compareSectionsNonScript(const OutputSection *A, | 
|  | const OutputSection *B) { | 
|  | // Put .interp first because some loaders want to see that section | 
|  | // on the first page of the executable file when loaded into memory. | 
|  | bool AIsInterp = A->Name == ".interp"; | 
|  | bool BIsInterp = B->Name == ".interp"; | 
|  | if (AIsInterp != BIsInterp) | 
|  | return AIsInterp; | 
|  |  | 
|  | // Allocatable sections go first to reduce the total PT_LOAD size and | 
|  | // so debug info doesn't change addresses in actual code. | 
|  | bool AIsAlloc = A->Flags & SHF_ALLOC; | 
|  | bool BIsAlloc = B->Flags & SHF_ALLOC; | 
|  | if (AIsAlloc != BIsAlloc) | 
|  | return AIsAlloc; | 
|  |  | 
|  | // We don't have any special requirements for the relative order of two non | 
|  | // allocatable sections. | 
|  | if (!AIsAlloc) | 
|  | return false; | 
|  |  | 
|  | // We want to put section specified by -T option first, so we | 
|  | // can start assigning VA starting from them later. | 
|  | auto AAddrSetI = Config->SectionStartMap.find(A->Name); | 
|  | auto BAddrSetI = Config->SectionStartMap.find(B->Name); | 
|  | bool AHasAddrSet = AAddrSetI != Config->SectionStartMap.end(); | 
|  | bool BHasAddrSet = BAddrSetI != Config->SectionStartMap.end(); | 
|  | if (AHasAddrSet != BHasAddrSet) | 
|  | return AHasAddrSet; | 
|  | if (AHasAddrSet) | 
|  | return AAddrSetI->second < BAddrSetI->second; | 
|  |  | 
|  | // We want the read only sections first so that they go in the PT_LOAD | 
|  | // covering the program headers at the start of the file. | 
|  | bool AIsWritable = A->Flags & SHF_WRITE; | 
|  | bool BIsWritable = B->Flags & SHF_WRITE; | 
|  | if (AIsWritable != BIsWritable) | 
|  | return BIsWritable; | 
|  |  | 
|  | if (!Config->SingleRoRx) { | 
|  | // For a corresponding reason, put non exec sections first (the program | 
|  | // header PT_LOAD is not executable). | 
|  | // We only do that if we are not using linker scripts, since with linker | 
|  | // scripts ro and rx sections are in the same PT_LOAD, so their relative | 
|  | // order is not important. The same applies for -no-rosegment. | 
|  | bool AIsExec = A->Flags & SHF_EXECINSTR; | 
|  | bool BIsExec = B->Flags & SHF_EXECINSTR; | 
|  | if (AIsExec != BIsExec) | 
|  | return BIsExec; | 
|  | } | 
|  |  | 
|  | // If we got here we know that both A and B are in the same PT_LOAD. | 
|  |  | 
|  | bool AIsTls = A->Flags & SHF_TLS; | 
|  | bool BIsTls = B->Flags & SHF_TLS; | 
|  | bool AIsNoBits = A->Type == SHT_NOBITS; | 
|  | bool BIsNoBits = B->Type == SHT_NOBITS; | 
|  |  | 
|  | // The first requirement we have is to put (non-TLS) nobits sections last. The | 
|  | // reason is that the only thing the dynamic linker will see about them is a | 
|  | // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the | 
|  | // PT_LOAD, so that has to correspond to the nobits sections. | 
|  | bool AIsNonTlsNoBits = AIsNoBits && !AIsTls; | 
|  | bool BIsNonTlsNoBits = BIsNoBits && !BIsTls; | 
|  | if (AIsNonTlsNoBits != BIsNonTlsNoBits) | 
|  | return BIsNonTlsNoBits; | 
|  |  | 
|  | // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo | 
|  | // sections after r/w ones, so that the RelRo sections are contiguous. | 
|  | bool AIsRelRo = isRelroSection<ELFT>(A); | 
|  | bool BIsRelRo = isRelroSection<ELFT>(B); | 
|  | if (AIsRelRo != BIsRelRo) | 
|  | return AIsNonTlsNoBits ? AIsRelRo : BIsRelRo; | 
|  |  | 
|  | // The TLS initialization block needs to be a single contiguous block in a R/W | 
|  | // PT_LOAD, so stick TLS sections directly before the other RelRo R/W | 
|  | // sections. The TLS NOBITS sections are placed here as they don't take up | 
|  | // virtual address space in the PT_LOAD. | 
|  | if (AIsTls != BIsTls) | 
|  | return AIsTls; | 
|  |  | 
|  | // Within the TLS initialization block, the non-nobits sections need to appear | 
|  | // first. | 
|  | if (AIsNoBits != BIsNoBits) | 
|  | return BIsNoBits; | 
|  |  | 
|  | // Some architectures have additional ordering restrictions for sections | 
|  | // within the same PT_LOAD. | 
|  | if (Config->EMachine == EM_PPC64) | 
|  | return getPPC64SectionRank(A->Name) < getPPC64SectionRank(B->Name); | 
|  | if (Config->EMachine == EM_MIPS) | 
|  | return getMipsSectionRank(A) < getMipsSectionRank(B); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Output section ordering is determined by this function. | 
|  | template <class ELFT> | 
|  | static bool compareSections(const OutputSection *A, const OutputSection *B) { | 
|  | // For now, put sections mentioned in a linker script first. | 
|  | int AIndex = Script<ELFT>::X->getSectionIndex(A->Name); | 
|  | int BIndex = Script<ELFT>::X->getSectionIndex(B->Name); | 
|  | bool AInScript = AIndex != INT_MAX; | 
|  | bool BInScript = BIndex != INT_MAX; | 
|  | if (AInScript != BInScript) | 
|  | return AInScript; | 
|  | // If both are in the script, use that order. | 
|  | if (AInScript) | 
|  | return AIndex < BIndex; | 
|  |  | 
|  | return compareSectionsNonScript<ELFT>(A, B); | 
|  | } | 
|  |  | 
|  | // Program header entry | 
|  | PhdrEntry::PhdrEntry(unsigned Type, unsigned Flags) { | 
|  | p_type = Type; | 
|  | p_flags = Flags; | 
|  | } | 
|  |  | 
|  | void PhdrEntry::add(OutputSection *Sec) { | 
|  | Last = Sec; | 
|  | if (!First) | 
|  | First = Sec; | 
|  | p_align = std::max(p_align, Sec->Addralign); | 
|  | if (p_type == PT_LOAD) | 
|  | Sec->FirstInPtLoad = First; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static DefinedSynthetic * | 
|  | addOptionalSynthetic(StringRef Name, OutputSection *Sec, | 
|  | typename ELFT::uint Val, uint8_t StOther = STV_HIDDEN) { | 
|  | if (SymbolBody *S = Symtab<ELFT>::X->find(Name)) | 
|  | if (!S->isInCurrentDSO()) | 
|  | return cast<DefinedSynthetic>( | 
|  | Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther)->body()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addRegular(StringRef Name, InputSectionBase *Sec, | 
|  | typename ELFT::uint Value) { | 
|  | // The linker generated symbols are added as STB_WEAK to allow user defined | 
|  | // ones to override them. | 
|  | return Symtab<ELFT>::X->addRegular(Name, STV_HIDDEN, STT_NOTYPE, Value, | 
|  | /*Size=*/0, STB_WEAK, Sec, | 
|  | /*File=*/nullptr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addOptionalRegular(StringRef Name, InputSectionBase *IS, | 
|  | typename ELFT::uint Value) { | 
|  | SymbolBody *S = Symtab<ELFT>::X->find(Name); | 
|  | if (!S) | 
|  | return nullptr; | 
|  | if (S->isInCurrentDSO()) | 
|  | return S->symbol(); | 
|  | return addRegular<ELFT>(Name, IS, Value); | 
|  | } | 
|  |  | 
|  | // The beginning and the ending of .rel[a].plt section are marked | 
|  | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | 
|  | // executable. The runtime needs these symbols in order to resolve | 
|  | // all IRELATIVE relocs on startup. For dynamic executables, we don't | 
|  | // need these symbols, since IRELATIVE relocs are resolved through GOT | 
|  | // and PLT. For details, see http://www.airs.com/blog/archives/403. | 
|  | template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { | 
|  | if (In<ELFT>::DynSymTab) | 
|  | return; | 
|  | StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; | 
|  | addOptionalRegular<ELFT>(S, In<ELFT>::RelaIplt, 0); | 
|  |  | 
|  | S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; | 
|  | addOptionalRegular<ELFT>(S, In<ELFT>::RelaIplt, -1); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define some symbols depending on | 
|  | // the linking result. This function defines such symbols. | 
|  | template <class ELFT> void Writer<ELFT>::addReservedSymbols() { | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer | 
|  | // so that it points to an absolute address which by default is relative | 
|  | // to GOT. Default offset is 0x7ff0. | 
|  | // See "Global Data Symbols" in Chapter 6 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | ElfSym<ELFT>::MipsGp = | 
|  | Symtab<ELFT>::X->addAbsolute("_gp", STV_HIDDEN, STB_LOCAL); | 
|  |  | 
|  | // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between | 
|  | // start of function and 'gp' pointer into GOT. To simplify relocation | 
|  | // calculation we assign _gp value to it and calculate corresponding | 
|  | // relocations as relative to this value. | 
|  | if (Symtab<ELFT>::X->find("_gp_disp")) | 
|  | ElfSym<ELFT>::MipsGpDisp = | 
|  | Symtab<ELFT>::X->addAbsolute("_gp_disp", STV_HIDDEN, STB_LOCAL); | 
|  |  | 
|  | // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' | 
|  | // pointer. This symbol is used in the code generated by .cpload pseudo-op | 
|  | // in case of using -mno-shared option. | 
|  | // https://sourceware.org/ml/binutils/2004-12/msg00094.html | 
|  | if (Symtab<ELFT>::X->find("__gnu_local_gp")) | 
|  | ElfSym<ELFT>::MipsLocalGp = | 
|  | Symtab<ELFT>::X->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_LOCAL); | 
|  | } | 
|  |  | 
|  | // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol | 
|  | // is magical and is used to produce a R_386_GOTPC relocation. | 
|  | // The R_386_GOTPC relocation value doesn't actually depend on the | 
|  | // symbol value, so it could use an index of STN_UNDEF which, according | 
|  | // to the spec, means the symbol value is 0. | 
|  | // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in | 
|  | // the object file. | 
|  | // The situation is even stranger on x86_64 where the assembly doesn't | 
|  | // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as | 
|  | // an undefined symbol in the .o files. | 
|  | // Given that the symbol is effectively unused, we just create a dummy | 
|  | // hidden one to avoid the undefined symbol error. | 
|  | Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); | 
|  |  | 
|  | // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For | 
|  | // static linking the linker is required to optimize away any references to | 
|  | // __tls_get_addr, so it's not defined anywhere. Create a hidden definition | 
|  | // to avoid the undefined symbol error. As usual special cases are ARM and | 
|  | // MIPS - the libc for these targets defines __tls_get_addr itself because | 
|  | // there are no TLS optimizations for these targets. | 
|  | if (!In<ELFT>::DynSymTab && | 
|  | (Config->EMachine != EM_MIPS && Config->EMachine != EM_ARM)) | 
|  | Symtab<ELFT>::X->addIgnored("__tls_get_addr"); | 
|  |  | 
|  | // If linker script do layout we do not need to create any standart symbols. | 
|  | if (ScriptConfig->HasSections) | 
|  | return; | 
|  |  | 
|  | // __ehdr_start is the location of ELF file headers. | 
|  | ElfSym<ELFT>::EhdrStart = | 
|  | addOptionalSynthetic<ELFT>("__ehdr_start", Out<ELFT>::ElfHeader, 0); | 
|  |  | 
|  | auto Define = [](StringRef S, DefinedSynthetic *&Sym1, | 
|  | DefinedSynthetic *&Sym2) { | 
|  | Sym1 = addOptionalSynthetic<ELFT>(S, nullptr, 0, STV_DEFAULT); | 
|  | assert(S.startswith("_")); | 
|  | S = S.substr(1); | 
|  | Sym2 = addOptionalSynthetic<ELFT>(S, nullptr, 0, STV_DEFAULT); | 
|  | }; | 
|  |  | 
|  | Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2); | 
|  | Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2); | 
|  | Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2); | 
|  | } | 
|  |  | 
|  | // Sort input sections by section name suffixes for | 
|  | // __attribute__((init_priority(N))). | 
|  | template <class ELFT> static void sortInitFini(OutputSection *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection *>(S)->sortInitFini(); | 
|  | } | 
|  |  | 
|  | // Sort input sections by the special rule for .ctors and .dtors. | 
|  | template <class ELFT> static void sortCtorsDtors(OutputSection *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection *>(S)->sortCtorsDtors(); | 
|  | } | 
|  |  | 
|  | // Sort input sections using the list provided by --symbol-ordering-file. | 
|  | template <class ELFT> | 
|  | static void sortBySymbolsOrder(ArrayRef<OutputSection *> OutputSections) { | 
|  | if (Config->SymbolOrderingFile.empty()) | 
|  | return; | 
|  |  | 
|  | // Build a map from symbols to their priorities. Symbols that didn't | 
|  | // appear in the symbol ordering file have the lowest priority 0. | 
|  | // All explicitly mentioned symbols have negative (higher) priorities. | 
|  | DenseMap<StringRef, int> SymbolOrder; | 
|  | int Priority = -Config->SymbolOrderingFile.size(); | 
|  | for (StringRef S : Config->SymbolOrderingFile) | 
|  | SymbolOrder.insert({S, Priority++}); | 
|  |  | 
|  | // Build a map from sections to their priorities. | 
|  | DenseMap<InputSectionBase *, int> SectionOrder; | 
|  | for (elf::ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (SymbolBody *Body : File->getSymbols()) { | 
|  | auto *D = dyn_cast<DefinedRegular<ELFT>>(Body); | 
|  | if (!D || !D->Section) | 
|  | continue; | 
|  | int &Priority = SectionOrder[D->Section]; | 
|  | Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort sections by priority. | 
|  | for (OutputSection *Base : OutputSections) | 
|  | if (auto *Sec = dyn_cast<OutputSection>(Base)) | 
|  | Sec->sort([&](InputSectionBase *S) { return SectionOrder.lookup(S); }); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { | 
|  | for (InputSectionBase *IS : Symtab<ELFT>::X->Sections) { | 
|  | if (!IS->Live) | 
|  | continue; | 
|  | // Scan all relocations. Each relocation goes through a series | 
|  | // of tests to determine if it needs special treatment, such as | 
|  | // creating GOT, PLT, copy relocations, etc. | 
|  | // Note that relocations for non-alloc sections are directly | 
|  | // processed by InputSection::relocateNonAlloc. | 
|  | if (!(IS->Flags & SHF_ALLOC)) | 
|  | continue; | 
|  | if (isa<InputSection>(IS) || isa<EhInputSection<ELFT>>(IS)) | 
|  | Fn(*IS); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::createSections() { | 
|  | for (InputSectionBase *IS : Symtab<ELFT>::X->Sections) | 
|  | if (IS) | 
|  | Factory.addInputSec(IS, getOutputSectionName(IS->Name)); | 
|  |  | 
|  | sortBySymbolsOrder<ELFT>(OutputSections); | 
|  | sortInitFini<ELFT>(findSection(".init_array")); | 
|  | sortInitFini<ELFT>(findSection(".fini_array")); | 
|  | sortCtorsDtors<ELFT>(findSection(".ctors")); | 
|  | sortCtorsDtors<ELFT>(findSection(".dtors")); | 
|  |  | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Sec->assignOffsets<ELFT>(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool canSharePtLoad(const OutputSection &S1, const OutputSection &S2) { | 
|  | if (!(S1.Flags & SHF_ALLOC) || !(S2.Flags & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | bool S1IsWrite = S1.Flags & SHF_WRITE; | 
|  | bool S2IsWrite = S2.Flags & SHF_WRITE; | 
|  | if (S1IsWrite != S2IsWrite) | 
|  | return false; | 
|  |  | 
|  | if (!S1IsWrite) | 
|  | return true; // RO and RX share a PT_LOAD with linker scripts. | 
|  | return (S1.Flags & SHF_EXECINSTR) == (S2.Flags & SHF_EXECINSTR); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::sortSections() { | 
|  | // Don't sort if using -r. It is not necessary and we want to preserve the | 
|  | // relative order for SHF_LINK_ORDER sections. | 
|  | if (Config->Relocatable) | 
|  | return; | 
|  | if (!ScriptConfig->HasSections) { | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSectionsNonScript<ELFT>); | 
|  | return; | 
|  | } | 
|  | Script<ELFT>::X->adjustSectionsBeforeSorting(); | 
|  |  | 
|  | // The order of the sections in the script is arbitrary and may not agree with | 
|  | // compareSectionsNonScript. This means that we cannot easily define a | 
|  | // strict weak ordering. To see why, consider a comparison of a section in the | 
|  | // script and one not in the script. We have a two simple options: | 
|  | // * Make them equivalent (a is not less than b, and b is not less than a). | 
|  | //   The problem is then that equivalence has to be transitive and we can | 
|  | //   have sections a, b and c with only b in a script and a less than c | 
|  | //   which breaks this property. | 
|  | // * Use compareSectionsNonScript. Given that the script order doesn't have | 
|  | //   to match, we can end up with sections a, b, c, d where b and c are in the | 
|  | //   script and c is compareSectionsNonScript less than b. In which case d | 
|  | //   can be equivalent to c, a to b and d < a. As a concrete example: | 
|  | //   .a (rx) # not in script | 
|  | //   .b (rx) # in script | 
|  | //   .c (ro) # in script | 
|  | //   .d (ro) # not in script | 
|  | // | 
|  | // The way we define an order then is: | 
|  | // *  First put script sections at the start and sort the script and | 
|  | //    non-script sections independently. | 
|  | // *  Move each non-script section to its preferred position. We try | 
|  | //    to put each section in the last position where it it can share | 
|  | //    a PT_LOAD. | 
|  |  | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSections<ELFT>); | 
|  |  | 
|  | auto I = OutputSections.begin(); | 
|  | auto E = OutputSections.end(); | 
|  | auto NonScriptI = | 
|  | std::find_if(OutputSections.begin(), E, [](OutputSection *S) { | 
|  | return Script<ELFT>::X->getSectionIndex(S->Name) == INT_MAX; | 
|  | }); | 
|  | while (NonScriptI != E) { | 
|  | auto BestPos = std::max_element( | 
|  | I, NonScriptI, [&](OutputSection *&A, OutputSection *&B) { | 
|  | bool ACanSharePtLoad = canSharePtLoad<ELFT>(**NonScriptI, *A); | 
|  | bool BCanSharePtLoad = canSharePtLoad<ELFT>(**NonScriptI, *B); | 
|  | if (ACanSharePtLoad != BCanSharePtLoad) | 
|  | return BCanSharePtLoad; | 
|  |  | 
|  | bool ACmp = compareSectionsNonScript<ELFT>(*NonScriptI, A); | 
|  | bool BCmp = compareSectionsNonScript<ELFT>(*NonScriptI, B); | 
|  | if (ACmp != BCmp) | 
|  | return BCmp; // FIXME: missing test | 
|  |  | 
|  | size_t PosA = &A - &OutputSections[0]; | 
|  | size_t PosB = &B - &OutputSections[0]; | 
|  | return ACmp ? PosA > PosB : PosA < PosB; | 
|  | }); | 
|  |  | 
|  | // max_element only returns NonScriptI if the range is empty. If the range | 
|  | // is not empty we should consider moving the the element forward one | 
|  | // position. | 
|  | if (BestPos != NonScriptI && | 
|  | !compareSectionsNonScript<ELFT>(*NonScriptI, *BestPos)) | 
|  | ++BestPos; | 
|  | std::rotate(BestPos, NonScriptI, NonScriptI + 1); | 
|  | ++NonScriptI; | 
|  | } | 
|  |  | 
|  | Script<ELFT>::X->adjustSectionsAfterSorting(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void | 
|  | finalizeSynthetic(const std::vector<SyntheticSection<ELFT> *> &Sections) { | 
|  | for (SyntheticSection<ELFT> *SS : Sections) | 
|  | if (SS && SS->OutSec && !SS->empty()) { | 
|  | SS->finalize(); | 
|  | SS->OutSec->Size = 0; | 
|  | SS->OutSec->template assignOffsets<ELFT>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to add input synthetic sections early in createSyntheticSections() | 
|  | // to make them visible from linkescript side. But not all sections are always | 
|  | // required to be in output. For example we don't need dynamic section content | 
|  | // sometimes. This function filters out such unused sections from output. | 
|  | template <class ELFT> | 
|  | static void removeUnusedSyntheticSections(std::vector<OutputSection *> &V) { | 
|  | // All input synthetic sections that can be empty are placed after | 
|  | // all regular ones. We iterate over them all and exit at first | 
|  | // non-synthetic. | 
|  | for (InputSectionBase *S : llvm::reverse(Symtab<ELFT>::X->Sections)) { | 
|  | SyntheticSection<ELFT> *SS = dyn_cast<SyntheticSection<ELFT>>(S); | 
|  | if (!SS) | 
|  | return; | 
|  | if (!SS->empty() || !SS->OutSec) | 
|  | continue; | 
|  |  | 
|  | OutputSection *OutSec = cast<OutputSection>(SS->OutSec); | 
|  | OutSec->Sections.erase( | 
|  | std::find(OutSec->Sections.begin(), OutSec->Sections.end(), SS)); | 
|  | // If there is no other sections in output section, remove it from output. | 
|  | if (OutSec->Sections.empty()) | 
|  | V.erase(std::find(V.begin(), V.end(), OutSec)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create output section objects and add them to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::finalizeSections() { | 
|  | Out<ELFT>::DebugInfo = findSection(".debug_info"); | 
|  | Out<ELFT>::PreinitArray = findSection(".preinit_array"); | 
|  | Out<ELFT>::InitArray = findSection(".init_array"); | 
|  | Out<ELFT>::FiniArray = findSection(".fini_array"); | 
|  |  | 
|  | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | 
|  | // symbols for sections, so that the runtime can get the start and end | 
|  | // addresses of each section by section name. Add such symbols. | 
|  | if (!Config->Relocatable) { | 
|  | addStartEndSymbols(); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | addStartStopSymbols(Sec); | 
|  | } | 
|  |  | 
|  | // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. | 
|  | // It should be okay as no one seems to care about the type. | 
|  | // Even the author of gold doesn't remember why gold behaves that way. | 
|  | // https://sourceware.org/ml/binutils/2002-03/msg00360.html | 
|  | if (In<ELFT>::DynSymTab) | 
|  | addRegular<ELFT>("_DYNAMIC", In<ELFT>::Dynamic, 0); | 
|  |  | 
|  | // Define __rel[a]_iplt_{start,end} symbols if needed. | 
|  | addRelIpltSymbols(); | 
|  |  | 
|  | // This responsible for splitting up .eh_frame section into | 
|  | // pieces. The relocation scan uses those peaces, so this has to be | 
|  | // earlier. | 
|  | finalizeSynthetic<ELFT>({In<ELFT>::EhFrame}); | 
|  |  | 
|  | // Scan relocations. This must be done after every symbol is declared so that | 
|  | // we can correctly decide if a dynamic relocation is needed. | 
|  | forEachRelSec(scanRelocations<ELFT>); | 
|  |  | 
|  | if (In<ELFT>::Plt && !In<ELFT>::Plt->empty()) | 
|  | In<ELFT>::Plt->addSymbols(); | 
|  | if (In<ELFT>::Iplt && !In<ELFT>::Iplt->empty()) | 
|  | In<ELFT>::Iplt->addSymbols(); | 
|  |  | 
|  | // Now that we have defined all possible global symbols including linker- | 
|  | // synthesized ones. Visit all symbols to give the finishing touches. | 
|  | for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { | 
|  | SymbolBody *Body = S->body(); | 
|  |  | 
|  | if (!includeInSymtab<ELFT>(*Body)) | 
|  | continue; | 
|  | if (In<ELFT>::SymTab) | 
|  | In<ELFT>::SymTab->addGlobal(Body); | 
|  |  | 
|  | if (In<ELFT>::DynSymTab && S->includeInDynsym()) { | 
|  | In<ELFT>::DynSymTab->addGlobal(Body); | 
|  | if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body)) | 
|  | if (SS->file()->isNeeded()) | 
|  | In<ELFT>::VerNeed->addSymbol(SS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not proceed if there was an undefined symbol. | 
|  | if (ErrorCount) | 
|  | return; | 
|  |  | 
|  | // So far we have added sections from input object files. | 
|  | // This function adds linker-created Out<ELFT>::* sections. | 
|  | addPredefinedSections(); | 
|  | removeUnusedSyntheticSections<ELFT>(OutputSections); | 
|  |  | 
|  | sortSections(); | 
|  |  | 
|  | // This is a bit of a hack. A value of 0 means undef, so we set it | 
|  | // to 1 t make __ehdr_start defined. The section number is not | 
|  | // particularly relevant. | 
|  | Out<ELFT>::ElfHeader->SectionIndex = 1; | 
|  |  | 
|  | unsigned I = 1; | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | Sec->SectionIndex = I++; | 
|  | Sec->ShName = In<ELFT>::ShStrTab->addString(Sec->Name); | 
|  | } | 
|  |  | 
|  | // Binary and relocatable output does not have PHDRS. | 
|  | // The headers have to be created before finalize as that can influence the | 
|  | // image base and the dynamic section on mips includes the image base. | 
|  | if (!Config->Relocatable && !Config->OFormatBinary) { | 
|  | Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs() | 
|  | : createPhdrs(); | 
|  | addPtArmExid(Phdrs); | 
|  | fixHeaders(); | 
|  | } | 
|  |  | 
|  | // Some architectures use small displacements for jump instructions. | 
|  | // It is linker's responsibility to create thunks containing long | 
|  | // jump instructions if jump targets are too far. Create thunks. | 
|  | if (Target->NeedsThunks) | 
|  | createThunks<ELFT>(OutputSections); | 
|  |  | 
|  | // Fill other section headers. The dynamic table is finalized | 
|  | // at the end because some tags like RELSZ depend on result | 
|  | // of finalizing other sections. | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Sec->finalize<ELFT>(); | 
|  |  | 
|  | // Dynamic section must be the last one in this list and dynamic | 
|  | // symbol table section (DynSymTab) must be the first one. | 
|  | finalizeSynthetic<ELFT>( | 
|  | {In<ELFT>::DynSymTab, In<ELFT>::GnuHashTab, In<ELFT>::HashTab, | 
|  | In<ELFT>::SymTab,    In<ELFT>::ShStrTab,   In<ELFT>::StrTab, | 
|  | In<ELFT>::VerDef,    In<ELFT>::DynStrTab,  In<ELFT>::GdbIndex, | 
|  | In<ELFT>::Got,       In<ELFT>::MipsGot,    In<ELFT>::IgotPlt, | 
|  | In<ELFT>::GotPlt,    In<ELFT>::RelaDyn,    In<ELFT>::RelaIplt, | 
|  | In<ELFT>::RelaPlt,   In<ELFT>::Plt,        In<ELFT>::Iplt, | 
|  | In<ELFT>::Plt,       In<ELFT>::EhFrameHdr, In<ELFT>::VerSym, | 
|  | In<ELFT>::VerNeed,   In<ELFT>::Dynamic}); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::addPredefinedSections() { | 
|  | // Add BSS sections. | 
|  | auto Add = [=](OutputSection *Sec) { | 
|  | if (!Sec->Sections.empty()) { | 
|  | Sec->assignOffsets<ELFT>(); | 
|  | OutputSections.push_back(Sec); | 
|  | } | 
|  | }; | 
|  | Add(Out<ELFT>::Bss); | 
|  | Add(Out<ELFT>::BssRelRo); | 
|  |  | 
|  | // ARM ABI requires .ARM.exidx to be terminated by some piece of data. | 
|  | // We have the terminater synthetic section class. Add that at the end. | 
|  | auto *OS = dyn_cast_or_null<OutputSection>(findSection(".ARM.exidx")); | 
|  | if (OS && !OS->Sections.empty() && !Config->Relocatable) | 
|  | OS->addSection(make<ARMExidxSentinelSection<ELFT>>()); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define SECNAME_start and SECNAME_end | 
|  | // symbols for a few sections. This function defines them. | 
|  | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | 
|  | auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { | 
|  | // These symbols resolve to the image base if the section does not exist. | 
|  | // A special value -1 indicates end of the section. | 
|  | addOptionalSynthetic<ELFT>(Start, OS, 0); | 
|  | addOptionalSynthetic<ELFT>(End, OS, OS ? -1 : 0); | 
|  | }; | 
|  |  | 
|  | Define("__preinit_array_start", "__preinit_array_end", | 
|  | Out<ELFT>::PreinitArray); | 
|  | Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray); | 
|  | Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray); | 
|  |  | 
|  | if (OutputSection *Sec = findSection(".ARM.exidx")) | 
|  | Define("__exidx_start", "__exidx_end", Sec); | 
|  | } | 
|  |  | 
|  | // If a section name is valid as a C identifier (which is rare because of | 
|  | // the leading '.'), linkers are expected to define __start_<secname> and | 
|  | // __stop_<secname> symbols. They are at beginning and end of the section, | 
|  | // respectively. This is not requested by the ELF standard, but GNU ld and | 
|  | // gold provide the feature, and used by many programs. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { | 
|  | StringRef S = Sec->Name; | 
|  | if (!isValidCIdentifier(S)) | 
|  | return; | 
|  | addOptionalSynthetic<ELFT>(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); | 
|  | addOptionalSynthetic<ELFT>(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); | 
|  | } | 
|  |  | 
|  | template <class ELFT> OutputSection *Writer<ELFT>::findSection(StringRef Name) { | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Name == Name) | 
|  | return Sec; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsPtLoad(OutputSection *Sec) { | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is | 
|  | // responsible for allocating space for them, not the PT_LOAD that | 
|  | // contains the TLS initialization image. | 
|  | if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Linker scripts are responsible for aligning addresses. Unfortunately, most | 
|  | // linker scripts are designed for creating two PT_LOADs only, one RX and one | 
|  | // RW. This means that there is no alignment in the RO to RX transition and we | 
|  | // cannot create a PT_LOAD there. | 
|  | template <class ELFT> | 
|  | static typename ELFT::uint computeFlags(typename ELFT::uint F) { | 
|  | if (Config->Omagic) | 
|  | return PF_R | PF_W | PF_X; | 
|  | if (Config->SingleRoRx && !(F & PF_W)) | 
|  | return F | PF_X; | 
|  | return F; | 
|  | } | 
|  |  | 
|  | // Decide which program headers to create and which sections to include in each | 
|  | // one. | 
|  | template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() { | 
|  | std::vector<PhdrEntry> Ret; | 
|  | auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { | 
|  | Ret.emplace_back(Type, Flags); | 
|  | return &Ret.back(); | 
|  | }; | 
|  |  | 
|  | // The first phdr entry is PT_PHDR which describes the program header itself. | 
|  | AddHdr(PT_PHDR, PF_R)->add(Out<ELFT>::ProgramHeaders); | 
|  |  | 
|  | // PT_INTERP must be the second entry if exists. | 
|  | if (OutputSection *Sec = findSection(".interp")) | 
|  | AddHdr(PT_INTERP, Sec->getPhdrFlags())->add(Sec); | 
|  |  | 
|  | // Add the first PT_LOAD segment for regular output sections. | 
|  | uintX_t Flags = computeFlags<ELFT>(PF_R); | 
|  | PhdrEntry *Load = AddHdr(PT_LOAD, Flags); | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | if (!(Sec->Flags & SHF_ALLOC)) | 
|  | break; | 
|  | if (!needsPtLoad<ELFT>(Sec)) | 
|  | continue; | 
|  |  | 
|  | // Segments are contiguous memory regions that has the same attributes | 
|  | // (e.g. executable or writable). There is one phdr for each segment. | 
|  | // Therefore, we need to create a new phdr when the next section has | 
|  | // different flags or is loaded at a discontiguous address using AT linker | 
|  | // script command. | 
|  | uintX_t NewFlags = computeFlags<ELFT>(Sec->getPhdrFlags()); | 
|  | if (Script<ELFT>::X->hasLMA(Sec->Name) || Flags != NewFlags) { | 
|  | Load = AddHdr(PT_LOAD, NewFlags); | 
|  | Flags = NewFlags; | 
|  | } | 
|  |  | 
|  | Load->add(Sec); | 
|  | } | 
|  |  | 
|  | // Add a TLS segment if any. | 
|  | PhdrEntry TlsHdr(PT_TLS, PF_R); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_TLS) | 
|  | TlsHdr.add(Sec); | 
|  | if (TlsHdr.First) | 
|  | Ret.push_back(std::move(TlsHdr)); | 
|  |  | 
|  | // Add an entry for .dynamic. | 
|  | if (In<ELFT>::DynSymTab) | 
|  | AddHdr(PT_DYNAMIC, In<ELFT>::Dynamic->OutSec->getPhdrFlags()) | 
|  | ->add(In<ELFT>::Dynamic->OutSec); | 
|  |  | 
|  | // PT_GNU_RELRO includes all sections that should be marked as | 
|  | // read-only by dynamic linker after proccessing relocations. | 
|  | PhdrEntry RelRo(PT_GNU_RELRO, PF_R); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (needsPtLoad<ELFT>(Sec) && isRelroSection<ELFT>(Sec)) | 
|  | RelRo.add(Sec); | 
|  | if (RelRo.First) | 
|  | Ret.push_back(std::move(RelRo)); | 
|  |  | 
|  | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. | 
|  | if (!In<ELFT>::EhFrame->empty() && In<ELFT>::EhFrameHdr) | 
|  | AddHdr(PT_GNU_EH_FRAME, In<ELFT>::EhFrameHdr->OutSec->getPhdrFlags()) | 
|  | ->add(In<ELFT>::EhFrameHdr->OutSec); | 
|  |  | 
|  | // PT_OPENBSD_RANDOMIZE specifies the location and size of a part of the | 
|  | // memory image of the program that must be filled with random data before any | 
|  | // code in the object is executed. | 
|  | if (OutputSection *Sec = findSection(".openbsd.randomdata")) | 
|  | AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags())->add(Sec); | 
|  |  | 
|  | // PT_GNU_STACK is a special section to tell the loader to make the | 
|  | // pages for the stack non-executable. If you really want an executable | 
|  | // stack, you can pass -z execstack, but that's not recommended for | 
|  | // security reasons. | 
|  | unsigned Perm; | 
|  | if (Config->ZExecstack) | 
|  | Perm = PF_R | PF_W | PF_X; | 
|  | else | 
|  | Perm = PF_R | PF_W; | 
|  | AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; | 
|  |  | 
|  | // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable | 
|  | // is expected to perform W^X violations, such as calling mprotect(2) or | 
|  | // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on | 
|  | // OpenBSD. | 
|  | if (Config->ZWxneeded) | 
|  | AddHdr(PT_OPENBSD_WXNEEDED, PF_X); | 
|  |  | 
|  | // Create one PT_NOTE per a group of contiguous .note sections. | 
|  | PhdrEntry *Note = nullptr; | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | if (Sec->Type == SHT_NOTE) { | 
|  | if (!Note || Script<ELFT>::X->hasLMA(Sec->Name)) | 
|  | Note = AddHdr(PT_NOTE, PF_R); | 
|  | Note->add(Sec); | 
|  | } else { | 
|  | Note = nullptr; | 
|  | } | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry> &Phdrs) { | 
|  | if (Config->EMachine != EM_ARM) | 
|  | return; | 
|  | auto I = std::find_if( | 
|  | OutputSections.begin(), OutputSections.end(), | 
|  | [](OutputSection *Sec) { return Sec->Type == SHT_ARM_EXIDX; }); | 
|  | if (I == OutputSections.end()) | 
|  | return; | 
|  |  | 
|  | // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME | 
|  | PhdrEntry ARMExidx(PT_ARM_EXIDX, PF_R); | 
|  | ARMExidx.add(*I); | 
|  | Phdrs.push_back(ARMExidx); | 
|  | } | 
|  |  | 
|  | // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the | 
|  | // first section after PT_GNU_RELRO have to be page aligned so that the dynamic | 
|  | // linker can set the permissions. | 
|  | template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { | 
|  | for (const PhdrEntry &P : Phdrs) | 
|  | if (P.p_type == PT_LOAD && P.First) | 
|  | P.First->PageAlign = true; | 
|  |  | 
|  | for (const PhdrEntry &P : Phdrs) { | 
|  | if (P.p_type != PT_GNU_RELRO) | 
|  | continue; | 
|  | if (P.First) | 
|  | P.First->PageAlign = true; | 
|  | // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we | 
|  | // have to align it to a page. | 
|  | auto End = OutputSections.end(); | 
|  | auto I = std::find(OutputSections.begin(), End, P.Last); | 
|  | if (I == End || (I + 1) == End) | 
|  | continue; | 
|  | OutputSection *Sec = *(I + 1); | 
|  | if (needsPtLoad<ELFT>(Sec)) | 
|  | Sec->PageAlign = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool elf::allocateHeaders(std::vector<PhdrEntry> &Phdrs, | 
|  | ArrayRef<OutputSection *> OutputSections, | 
|  | uint64_t Min) { | 
|  | auto FirstPTLoad = | 
|  | std::find_if(Phdrs.begin(), Phdrs.end(), | 
|  | [](const PhdrEntry &E) { return E.p_type == PT_LOAD; }); | 
|  | if (FirstPTLoad == Phdrs.end()) | 
|  | return false; | 
|  |  | 
|  | uint64_t HeaderSize = getHeaderSize<ELFT>(); | 
|  | if (HeaderSize > Min) { | 
|  | auto PhdrI = | 
|  | std::find_if(Phdrs.begin(), Phdrs.end(), | 
|  | [](const PhdrEntry &E) { return E.p_type == PT_PHDR; }); | 
|  | if (PhdrI != Phdrs.end()) | 
|  | Phdrs.erase(PhdrI); | 
|  | return false; | 
|  | } | 
|  | Min = alignDown(Min - HeaderSize, Config->MaxPageSize); | 
|  |  | 
|  | if (!ScriptConfig->HasSections) | 
|  | Config->ImageBase = Min = std::min(Min, Config->ImageBase); | 
|  |  | 
|  | Out<ELFT>::ElfHeader->Addr = Min; | 
|  | Out<ELFT>::ProgramHeaders->Addr = Min + Out<ELFT>::ElfHeader->Size; | 
|  |  | 
|  | if (Script<ELFT>::X->hasPhdrsCommands()) | 
|  | return true; | 
|  |  | 
|  | if (FirstPTLoad->First) | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->FirstInPtLoad == FirstPTLoad->First) | 
|  | Sec->FirstInPtLoad = Out<ELFT>::ElfHeader; | 
|  | FirstPTLoad->First = Out<ELFT>::ElfHeader; | 
|  | if (!FirstPTLoad->Last) | 
|  | FirstPTLoad->Last = Out<ELFT>::ProgramHeaders; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We should set file offsets and VAs for elf header and program headers | 
|  | // sections. These are special, we do not include them into output sections | 
|  | // list, but have them to simplify the code. | 
|  | template <class ELFT> void Writer<ELFT>::fixHeaders() { | 
|  | Out<ELFT>::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); | 
|  | // If the script has SECTIONS, assignAddresses will compute the values. | 
|  | if (ScriptConfig->HasSections) | 
|  | return; | 
|  |  | 
|  | // When -T<section> option is specified, lower the base to make room for those | 
|  | // sections. | 
|  | uint64_t Min = -1; | 
|  | if (!Config->SectionStartMap.empty()) | 
|  | for (const auto &P : Config->SectionStartMap) | 
|  | Min = std::min(Min, P.second); | 
|  |  | 
|  | AllocateHeader = allocateHeaders<ELFT>(Phdrs, OutputSections, Min); | 
|  | } | 
|  |  | 
|  | // Assign VAs (addresses at run-time) to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignAddresses() { | 
|  | uintX_t VA = Config->ImageBase; | 
|  | if (AllocateHeader) | 
|  | VA += getHeaderSize<ELFT>(); | 
|  | uintX_t ThreadBssOffset = 0; | 
|  | for (OutputSection *Sec : OutputSections) { | 
|  | uintX_t Alignment = Sec->Addralign; | 
|  | if (Sec->PageAlign) | 
|  | Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); | 
|  |  | 
|  | auto I = Config->SectionStartMap.find(Sec->Name); | 
|  | if (I != Config->SectionStartMap.end()) | 
|  | VA = I->second; | 
|  |  | 
|  | // We only assign VAs to allocated sections. | 
|  | if (needsPtLoad<ELFT>(Sec)) { | 
|  | VA = alignTo(VA, Alignment); | 
|  | Sec->Addr = VA; | 
|  | VA += Sec->Size; | 
|  | } else if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) { | 
|  | uintX_t TVA = VA + ThreadBssOffset; | 
|  | TVA = alignTo(TVA, Alignment); | 
|  | Sec->Addr = TVA; | 
|  | ThreadBssOffset = TVA - VA + Sec->Size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjusts the file alignment for a given output section and returns | 
|  | // its new file offset. The file offset must be the same with its | 
|  | // virtual address (modulo the page size) so that the loader can load | 
|  | // executables without any address adjustment. | 
|  | template <class ELFT, class uintX_t> | 
|  | static uintX_t getFileAlignment(uintX_t Off, OutputSection *Sec) { | 
|  | OutputSection *First = Sec->FirstInPtLoad; | 
|  | // If the section is not in a PT_LOAD, we just have to align it. | 
|  | if (!First) | 
|  | return alignTo(Off, Sec->Addralign); | 
|  |  | 
|  | // The first section in a PT_LOAD has to have congruent offset and address | 
|  | // module the page size. | 
|  | if (Sec == First) | 
|  | return alignTo(Off, Config->MaxPageSize, Sec->Addr); | 
|  |  | 
|  | // If two sections share the same PT_LOAD the file offset is calculated | 
|  | // using this formula: Off2 = Off1 + (VA2 - VA1). | 
|  | return First->Offset + Sec->Addr - First->Addr; | 
|  | } | 
|  |  | 
|  | template <class ELFT, class uintX_t> | 
|  | static uintX_t setOffset(OutputSection *Sec, uintX_t Off) { | 
|  | if (Sec->Type == SHT_NOBITS) { | 
|  | Sec->Offset = Off; | 
|  | return Off; | 
|  | } | 
|  |  | 
|  | Off = getFileAlignment<ELFT>(Off, Sec); | 
|  | Sec->Offset = Off; | 
|  | return Off + Sec->Size; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { | 
|  | uintX_t Off = 0; | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_ALLOC) | 
|  | Off = setOffset<ELFT>(Sec, Off); | 
|  | FileSize = alignTo(Off, sizeof(uintX_t)); | 
|  | } | 
|  |  | 
|  | // Assign file offsets to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsets() { | 
|  | uintX_t Off = 0; | 
|  | Off = setOffset<ELFT>(Out<ELFT>::ElfHeader, Off); | 
|  | Off = setOffset<ELFT>(Out<ELFT>::ProgramHeaders, Off); | 
|  |  | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Off = setOffset<ELFT>(Sec, Off); | 
|  |  | 
|  | SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); | 
|  | FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); | 
|  | } | 
|  |  | 
|  | // Finalize the program headers. We call this function after we assign | 
|  | // file offsets and VAs to all sections. | 
|  | template <class ELFT> void Writer<ELFT>::setPhdrs() { | 
|  | for (PhdrEntry &P : Phdrs) { | 
|  | OutputSection *First = P.First; | 
|  | OutputSection *Last = P.Last; | 
|  | if (First) { | 
|  | P.p_filesz = Last->Offset - First->Offset; | 
|  | if (Last->Type != SHT_NOBITS) | 
|  | P.p_filesz += Last->Size; | 
|  | P.p_memsz = Last->Addr + Last->Size - First->Addr; | 
|  | P.p_offset = First->Offset; | 
|  | P.p_vaddr = First->Addr; | 
|  | if (!P.HasLMA) | 
|  | P.p_paddr = First->getLMA(); | 
|  | } | 
|  | if (P.p_type == PT_LOAD) | 
|  | P.p_align = Config->MaxPageSize; | 
|  | else if (P.p_type == PT_GNU_RELRO) { | 
|  | P.p_align = 1; | 
|  | // The glibc dynamic loader rounds the size down, so we need to round up | 
|  | // to protect the last page. This is a no-op on FreeBSD which always | 
|  | // rounds up. | 
|  | P.p_memsz = alignTo(P.p_memsz, Target->PageSize); | 
|  | } | 
|  |  | 
|  | // The TLS pointer goes after PT_TLS. At least glibc will align it, | 
|  | // so round up the size to make sure the offsets are correct. | 
|  | if (P.p_type == PT_TLS) { | 
|  | Out<ELFT>::TlsPhdr = &P; | 
|  | if (P.p_memsz) | 
|  | P.p_memsz = alignTo(P.p_memsz, P.p_align); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The entry point address is chosen in the following ways. | 
|  | // | 
|  | // 1. the '-e' entry command-line option; | 
|  | // 2. the ENTRY(symbol) command in a linker control script; | 
|  | // 3. the value of the symbol start, if present; | 
|  | // 4. the address of the first byte of the .text section, if present; | 
|  | // 5. the address 0. | 
|  | template <class ELFT> typename ELFT::uint Writer<ELFT>::getEntryAddr() { | 
|  | // Case 1, 2 or 3. As a special case, if the symbol is actually | 
|  | // a number, we'll use that number as an address. | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Entry)) | 
|  | return B->getVA<ELFT>(); | 
|  | uint64_t Addr; | 
|  | if (!Config->Entry.getAsInteger(0, Addr)) | 
|  | return Addr; | 
|  |  | 
|  | // Case 4 | 
|  | if (OutputSection *Sec = findSection(".text")) { | 
|  | if (Config->WarnMissingEntry) | 
|  | warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + | 
|  | utohexstr(Sec->Addr)); | 
|  | return Sec->Addr; | 
|  | } | 
|  |  | 
|  | // Case 5 | 
|  | if (Config->WarnMissingEntry) | 
|  | warn("cannot find entry symbol " + Config->Entry + | 
|  | "; not setting start address"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint8_t getELFEncoding() { | 
|  | if (ELFT::TargetEndianness == llvm::support::little) | 
|  | return ELFDATA2LSB; | 
|  | return ELFDATA2MSB; | 
|  | } | 
|  |  | 
|  | static uint16_t getELFType() { | 
|  | if (Config->pic()) | 
|  | return ET_DYN; | 
|  | if (Config->Relocatable) | 
|  | return ET_REL; | 
|  | return ET_EXEC; | 
|  | } | 
|  |  | 
|  | // This function is called after we have assigned address and size | 
|  | // to each section. This function fixes some predefined | 
|  | // symbol values that depend on section address and size. | 
|  | template <class ELFT> void Writer<ELFT>::fixPredefinedSymbols() { | 
|  | auto Set = [](DefinedSynthetic *S1, DefinedSynthetic *S2, OutputSection *Sec, | 
|  | uint64_t Value) { | 
|  | if (S1) { | 
|  | S1->Section = Sec; | 
|  | S1->Value = Value; | 
|  | } | 
|  | if (S2) { | 
|  | S2->Section = Sec; | 
|  | S2->Value = Value; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // _etext is the first location after the last read-only loadable segment. | 
|  | // _edata is the first location after the last read-write loadable segment. | 
|  | // _end is the first location after the uninitialized data region. | 
|  | PhdrEntry *Last = nullptr; | 
|  | PhdrEntry *LastRO = nullptr; | 
|  | PhdrEntry *LastRW = nullptr; | 
|  | for (PhdrEntry &P : Phdrs) { | 
|  | if (P.p_type != PT_LOAD) | 
|  | continue; | 
|  | Last = &P; | 
|  | if (P.p_flags & PF_W) | 
|  | LastRW = &P; | 
|  | else | 
|  | LastRO = &P; | 
|  | } | 
|  | if (Last) | 
|  | Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, Last->First, Last->p_memsz); | 
|  | if (LastRO) | 
|  | Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, LastRO->First, | 
|  | LastRO->p_filesz); | 
|  | if (LastRW) | 
|  | Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, LastRW->First, | 
|  | LastRW->p_filesz); | 
|  |  | 
|  | // Setup MIPS _gp_disp/__gnu_local_gp symbols which should | 
|  | // be equal to the _gp symbol's value. | 
|  | if (Config->EMachine == EM_MIPS) { | 
|  | if (!ElfSym<ELFT>::MipsGp->Value) { | 
|  | // Find GP-relative section with the lowest address | 
|  | // and use this address to calculate default _gp value. | 
|  | uintX_t Gp = -1; | 
|  | for (const OutputSection *OS : OutputSections) | 
|  | if ((OS->Flags & SHF_MIPS_GPREL) && OS->Addr < Gp) | 
|  | Gp = OS->Addr; | 
|  | if (Gp != (uintX_t)-1) | 
|  | ElfSym<ELFT>::MipsGp->Value = Gp + 0x7ff0; | 
|  | } | 
|  | if (ElfSym<ELFT>::MipsGpDisp) | 
|  | ElfSym<ELFT>::MipsGpDisp->Value = ElfSym<ELFT>::MipsGp->Value; | 
|  | if (ElfSym<ELFT>::MipsLocalGp) | 
|  | ElfSym<ELFT>::MipsLocalGp->Value = ElfSym<ELFT>::MipsGp->Value; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeHeader() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | memcpy(Buf, "\177ELF", 4); | 
|  |  | 
|  | // Write the ELF header. | 
|  | auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); | 
|  | EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); | 
|  | EHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | EHdr->e_ident[EI_OSABI] = Config->OSABI; | 
|  | EHdr->e_type = getELFType(); | 
|  | EHdr->e_machine = Config->EMachine; | 
|  | EHdr->e_version = EV_CURRENT; | 
|  | EHdr->e_entry = getEntryAddr(); | 
|  | EHdr->e_shoff = SectionHeaderOff; | 
|  | EHdr->e_ehsize = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phnum = Phdrs.size(); | 
|  | EHdr->e_shentsize = sizeof(Elf_Shdr); | 
|  | EHdr->e_shnum = OutputSections.size() + 1; | 
|  | EHdr->e_shstrndx = In<ELFT>::ShStrTab->OutSec->SectionIndex; | 
|  |  | 
|  | if (Config->EMachine == EM_ARM) | 
|  | // We don't currently use any features incompatible with EF_ARM_EABI_VER5, | 
|  | // but we don't have any firm guarantees of conformance. Linux AArch64 | 
|  | // kernels (as of 2016) require an EABI version to be set. | 
|  | EHdr->e_flags = EF_ARM_EABI_VER5; | 
|  | else if (Config->EMachine == EM_MIPS) | 
|  | EHdr->e_flags = getMipsEFlags<ELFT>(); | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | EHdr->e_phoff = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phentsize = sizeof(Elf_Phdr); | 
|  | } | 
|  |  | 
|  | // Write the program header table. | 
|  | auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); | 
|  | for (PhdrEntry &P : Phdrs) { | 
|  | HBuf->p_type = P.p_type; | 
|  | HBuf->p_flags = P.p_flags; | 
|  | HBuf->p_offset = P.p_offset; | 
|  | HBuf->p_vaddr = P.p_vaddr; | 
|  | HBuf->p_paddr = P.p_paddr; | 
|  | HBuf->p_filesz = P.p_filesz; | 
|  | HBuf->p_memsz = P.p_memsz; | 
|  | HBuf->p_align = P.p_align; | 
|  | ++HBuf; | 
|  | } | 
|  |  | 
|  | // Write the section header table. Note that the first table entry is null. | 
|  | auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | Sec->writeHeaderTo<ELFT>(++SHdrs); | 
|  | } | 
|  |  | 
|  | // Removes a given file asynchronously. This is a performance hack, | 
|  | // so remove this when operating systems are improved. | 
|  | // | 
|  | // On Linux (and probably on other Unix-like systems), unlink(2) is a | 
|  | // noticeably slow system call. As of 2016, unlink takes 250 | 
|  | // milliseconds to remove a 1 GB file on ext4 filesystem on my machine. | 
|  | // | 
|  | // To create a new result file, we first remove existing file. So, if | 
|  | // you repeatedly link a 1 GB program in a regular compile-link-debug | 
|  | // cycle, every cycle wastes 250 milliseconds only to remove a file. | 
|  | // Since LLD can link a 1 GB binary in about 5 seconds, that waste | 
|  | // actually counts. | 
|  | // | 
|  | // This function spawns a background thread to call unlink. | 
|  | // The calling thread returns almost immediately. | 
|  | static void unlinkAsync(StringRef Path) { | 
|  | if (!Config->Threads || !sys::fs::exists(Config->OutputFile)) | 
|  | return; | 
|  |  | 
|  | // First, rename Path to avoid race condition. We cannot remove | 
|  | // Path from a different thread because we are now going to create | 
|  | // Path as a new file. If we do that in a different thread, the new | 
|  | // thread can remove the new file. | 
|  | SmallString<128> TempPath; | 
|  | if (sys::fs::createUniqueFile(Path + "tmp%%%%%%%%", TempPath)) | 
|  | return; | 
|  | if (sys::fs::rename(Path, TempPath)) { | 
|  | sys::fs::remove(TempPath); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Remove TempPath in background. | 
|  | std::thread([=] { ::remove(TempPath.str().str().c_str()); }).detach(); | 
|  | } | 
|  |  | 
|  | // Open a result file. | 
|  | template <class ELFT> void Writer<ELFT>::openFile() { | 
|  | unlinkAsync(Config->OutputFile); | 
|  | ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = | 
|  | FileOutputBuffer::create(Config->OutputFile, FileSize, | 
|  | FileOutputBuffer::F_executable); | 
|  |  | 
|  | if (auto EC = BufferOrErr.getError()) | 
|  | error("failed to open " + Config->OutputFile + ": " + EC.message()); | 
|  | else | 
|  | Buffer = std::move(*BufferOrErr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Flags & SHF_ALLOC) | 
|  | Sec->writeTo<ELFT>(Buf + Sec->Offset); | 
|  | } | 
|  |  | 
|  | // Write section contents to a mmap'ed file. | 
|  | template <class ELFT> void Writer<ELFT>::writeSections() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | // PPC64 needs to process relocations in the .opd section | 
|  | // before processing relocations in code-containing sections. | 
|  | Out<ELFT>::Opd = findSection(".opd"); | 
|  | if (Out<ELFT>::Opd) { | 
|  | Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->Offset; | 
|  | Out<ELFT>::Opd->template writeTo<ELFT>(Buf + Out<ELFT>::Opd->Offset); | 
|  | } | 
|  |  | 
|  | OutputSection *EhFrameHdr = | 
|  | In<ELFT>::EhFrameHdr ? In<ELFT>::EhFrameHdr->OutSec : nullptr; | 
|  |  | 
|  | // In -r or -emit-relocs mode, write the relocation sections first as in | 
|  | // ELf_Rel targets we might find out that we need to modify the relocated | 
|  | // section while doing it. | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) | 
|  | Sec->writeTo<ELFT>(Buf + Sec->Offset); | 
|  |  | 
|  | for (OutputSection *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && | 
|  | Sec->Type != SHT_RELA) | 
|  | Sec->writeTo<ELFT>(Buf + Sec->Offset); | 
|  |  | 
|  | // The .eh_frame_hdr depends on .eh_frame section contents, therefore | 
|  | // it should be written after .eh_frame is written. | 
|  | if (EhFrameHdr) | 
|  | EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeBuildId() { | 
|  | if (!In<ELFT>::BuildId || !In<ELFT>::BuildId->OutSec) | 
|  | return; | 
|  |  | 
|  | // Compute a hash of all sections of the output file. | 
|  | uint8_t *Start = Buffer->getBufferStart(); | 
|  | uint8_t *End = Start + FileSize; | 
|  | In<ELFT>::BuildId->writeBuildId({Start, End}); | 
|  | } | 
|  |  | 
|  | template void elf::writeResult<ELF32LE>(); | 
|  | template void elf::writeResult<ELF32BE>(); | 
|  | template void elf::writeResult<ELF64LE>(); | 
|  | template void elf::writeResult<ELF64BE>(); | 
|  |  | 
|  | template bool elf::allocateHeaders<ELF32LE>(std::vector<PhdrEntry> &, | 
|  | ArrayRef<OutputSection *>, | 
|  | uint64_t); | 
|  | template bool elf::allocateHeaders<ELF32BE>(std::vector<PhdrEntry> &, | 
|  | ArrayRef<OutputSection *>, | 
|  | uint64_t); | 
|  | template bool elf::allocateHeaders<ELF64LE>(std::vector<PhdrEntry> &, | 
|  | ArrayRef<OutputSection *>, | 
|  | uint64_t); | 
|  | template bool elf::allocateHeaders<ELF64BE>(std::vector<PhdrEntry> &, | 
|  | ArrayRef<OutputSection *>, | 
|  | uint64_t); | 
|  |  | 
|  | template bool elf::isRelroSection<ELF32LE>(const OutputSection *); | 
|  | template bool elf::isRelroSection<ELF32BE>(const OutputSection *); | 
|  | template bool elf::isRelroSection<ELF64LE>(const OutputSection *); | 
|  | template bool elf::isRelroSection<ELF64BE>(const OutputSection *); |