|  | //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This register allocator allocates registers to a basic block at a time, | 
|  | // attempting to keep values in registers and reusing registers as appropriate. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/RegAllocRegistry.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/ADT/IndexedMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <algorithm> | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumStores, "Number of stores added"); | 
|  | STATISTIC(NumLoads , "Number of loads added"); | 
|  |  | 
|  | namespace { | 
|  | static RegisterRegAlloc | 
|  | localRegAlloc("local", "  local register allocator", | 
|  | createLocalRegisterAllocator); | 
|  |  | 
|  |  | 
|  | class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  | RALocal() : MachineFunctionPass((intptr_t)&ID) {} | 
|  | private: | 
|  | const TargetMachine *TM; | 
|  | MachineFunction *MF; | 
|  | const TargetRegisterInfo *TRI; | 
|  | const TargetInstrInfo *TII; | 
|  |  | 
|  | // StackSlotForVirtReg - Maps virtual regs to the frame index where these | 
|  | // values are spilled. | 
|  | std::map<unsigned, int> StackSlotForVirtReg; | 
|  |  | 
|  | // Virt2PhysRegMap - This map contains entries for each virtual register | 
|  | // that is currently available in a physical register. | 
|  | IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; | 
|  |  | 
|  | unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { | 
|  | return Virt2PhysRegMap[VirtReg]; | 
|  | } | 
|  |  | 
|  | // PhysRegsUsed - This array is effectively a map, containing entries for | 
|  | // each physical register that currently has a value (ie, it is in | 
|  | // Virt2PhysRegMap).  The value mapped to is the virtual register | 
|  | // corresponding to the physical register (the inverse of the | 
|  | // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned | 
|  | // because it is used by a future instruction, and to -2 if it is not | 
|  | // allocatable.  If the entry for a physical register is -1, then the | 
|  | // physical register is "not in the map". | 
|  | // | 
|  | std::vector<int> PhysRegsUsed; | 
|  |  | 
|  | // PhysRegsUseOrder - This contains a list of the physical registers that | 
|  | // currently have a virtual register value in them.  This list provides an | 
|  | // ordering of registers, imposing a reallocation order.  This list is only | 
|  | // used if all registers are allocated and we have to spill one, in which | 
|  | // case we spill the least recently used register.  Entries at the front of | 
|  | // the list are the least recently used registers, entries at the back are | 
|  | // the most recently used. | 
|  | // | 
|  | std::vector<unsigned> PhysRegsUseOrder; | 
|  |  | 
|  | // Virt2LastUseMap - This maps each virtual register to its last use | 
|  | // (MachineInstr*, operand index pair). | 
|  | IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor> | 
|  | Virt2LastUseMap; | 
|  |  | 
|  | std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
|  | return Virt2LastUseMap[Reg]; | 
|  | } | 
|  |  | 
|  | // VirtRegModified - This bitset contains information about which virtual | 
|  | // registers need to be spilled back to memory when their registers are | 
|  | // scavenged.  If a virtual register has simply been rematerialized, there | 
|  | // is no reason to spill it to memory when we need the register back. | 
|  | // | 
|  | BitVector VirtRegModified; | 
|  |  | 
|  | void markVirtRegModified(unsigned Reg, bool Val = true) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
|  | Reg -= TargetRegisterInfo::FirstVirtualRegister; | 
|  | if (Val) | 
|  | VirtRegModified.set(Reg); | 
|  | else | 
|  | VirtRegModified.reset(Reg); | 
|  | } | 
|  |  | 
|  | bool isVirtRegModified(unsigned Reg) const { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); | 
|  | assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() | 
|  | && "Illegal virtual register!"); | 
|  | return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; | 
|  | } | 
|  |  | 
|  | void AddToPhysRegsUseOrder(unsigned Reg) { | 
|  | std::vector<unsigned>::iterator It = | 
|  | std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg); | 
|  | if (It != PhysRegsUseOrder.end()) | 
|  | PhysRegsUseOrder.erase(It); | 
|  | PhysRegsUseOrder.push_back(Reg); | 
|  | } | 
|  |  | 
|  | void MarkPhysRegRecentlyUsed(unsigned Reg) { | 
|  | if (PhysRegsUseOrder.empty() || | 
|  | PhysRegsUseOrder.back() == Reg) return;  // Already most recently used | 
|  |  | 
|  | for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) | 
|  | if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { | 
|  | unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle | 
|  | PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); | 
|  | // Add it to the end of the list | 
|  | PhysRegsUseOrder.push_back(RegMatch); | 
|  | if (RegMatch == Reg) | 
|  | return;    // Found an exact match, exit early | 
|  | } | 
|  | } | 
|  |  | 
|  | public: | 
|  | virtual const char *getPassName() const { | 
|  | return "Local Register Allocator"; | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<LiveVariables>(); | 
|  | AU.addRequiredID(PHIEliminationID); | 
|  | AU.addRequiredID(TwoAddressInstructionPassID); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// runOnMachineFunction - Register allocate the whole function | 
|  | bool runOnMachineFunction(MachineFunction &Fn); | 
|  |  | 
|  | /// AllocateBasicBlock - Register allocate the specified basic block. | 
|  | void AllocateBasicBlock(MachineBasicBlock &MBB); | 
|  |  | 
|  |  | 
|  | /// areRegsEqual - This method returns true if the specified registers are | 
|  | /// related to each other.  To do this, it checks to see if they are equal | 
|  | /// or if the first register is in the alias set of the second register. | 
|  | /// | 
|  | bool areRegsEqual(unsigned R1, unsigned R2) const { | 
|  | if (R1 == R2) return true; | 
|  | for (const unsigned *AliasSet = TRI->getAliasSet(R2); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (*AliasSet == R1) return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getStackSpaceFor - This returns the frame index of the specified virtual | 
|  | /// register on the stack, allocating space if necessary. | 
|  | int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); | 
|  |  | 
|  | /// removePhysReg - This method marks the specified physical register as no | 
|  | /// longer being in use. | 
|  | /// | 
|  | void removePhysReg(unsigned PhysReg); | 
|  |  | 
|  | /// spillVirtReg - This method spills the value specified by PhysReg into | 
|  | /// the virtual register slot specified by VirtReg.  It then updates the RA | 
|  | /// data structures to indicate the fact that PhysReg is now available. | 
|  | /// | 
|  | void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, | 
|  | unsigned VirtReg, unsigned PhysReg); | 
|  |  | 
|  | /// spillPhysReg - This method spills the specified physical register into | 
|  | /// the virtual register slot associated with it.  If OnlyVirtRegs is set to | 
|  | /// true, then the request is ignored if the physical register does not | 
|  | /// contain a virtual register. | 
|  | /// | 
|  | void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
|  | unsigned PhysReg, bool OnlyVirtRegs = false); | 
|  |  | 
|  | /// assignVirtToPhysReg - This method updates local state so that we know | 
|  | /// that PhysReg is the proper container for VirtReg now.  The physical | 
|  | /// register must not be used for anything else when this is called. | 
|  | /// | 
|  | void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); | 
|  |  | 
|  | /// isPhysRegAvailable - Return true if the specified physical register is | 
|  | /// free and available for use.  This also includes checking to see if | 
|  | /// aliased registers are all free... | 
|  | /// | 
|  | bool isPhysRegAvailable(unsigned PhysReg) const; | 
|  |  | 
|  | /// getFreeReg - Look to see if there is a free register available in the | 
|  | /// specified register class.  If not, return 0. | 
|  | /// | 
|  | unsigned getFreeReg(const TargetRegisterClass *RC); | 
|  |  | 
|  | /// getReg - Find a physical register to hold the specified virtual | 
|  | /// register.  If all compatible physical registers are used, this method | 
|  | /// spills the last used virtual register to the stack, and uses that | 
|  | /// register. | 
|  | /// | 
|  | unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
|  | unsigned VirtReg); | 
|  |  | 
|  | /// reloadVirtReg - This method transforms the specified specified virtual | 
|  | /// register use to refer to a physical register.  This method may do this | 
|  | /// in one of several ways: if the register is available in a physical | 
|  | /// register already, it uses that physical register.  If the value is not | 
|  | /// in a physical register, and if there are physical registers available, | 
|  | /// it loads it into a register.  If register pressure is high, and it is | 
|  | /// possible, it tries to fold the load of the virtual register into the | 
|  | /// instruction itself.  It avoids doing this if register pressure is low to | 
|  | /// improve the chance that subsequent instructions can use the reloaded | 
|  | /// value.  This method returns the modified instruction. | 
|  | /// | 
|  | MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
|  | unsigned OpNum); | 
|  |  | 
|  |  | 
|  | void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, | 
|  | unsigned PhysReg); | 
|  | }; | 
|  | char RALocal::ID = 0; | 
|  | } | 
|  |  | 
|  | /// getStackSpaceFor - This allocates space for the specified virtual register | 
|  | /// to be held on the stack. | 
|  | int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { | 
|  | // Find the location Reg would belong... | 
|  | std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg); | 
|  |  | 
|  | if (I != StackSlotForVirtReg.end() && I->first == VirtReg) | 
|  | return I->second;          // Already has space allocated? | 
|  |  | 
|  | // Allocate a new stack object for this spill location... | 
|  | int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), | 
|  | RC->getAlignment()); | 
|  |  | 
|  | // Assign the slot... | 
|  | StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx)); | 
|  | return FrameIdx; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// removePhysReg - This method marks the specified physical register as no | 
|  | /// longer being in use. | 
|  | /// | 
|  | void RALocal::removePhysReg(unsigned PhysReg) { | 
|  | PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used | 
|  |  | 
|  | std::vector<unsigned>::iterator It = | 
|  | std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); | 
|  | if (It != PhysRegsUseOrder.end()) | 
|  | PhysRegsUseOrder.erase(It); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// spillVirtReg - This method spills the value specified by PhysReg into the | 
|  | /// virtual register slot specified by VirtReg.  It then updates the RA data | 
|  | /// structures to indicate the fact that PhysReg is now available. | 
|  | /// | 
|  | void RALocal::spillVirtReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned VirtReg, unsigned PhysReg) { | 
|  | assert(VirtReg && "Spilling a physical register is illegal!" | 
|  | " Must not have appropriate kill for the register or use exists beyond" | 
|  | " the intended one."); | 
|  | DOUT << "  Spilling register " << TRI->getName(PhysReg) | 
|  | << " containing %reg" << VirtReg; | 
|  |  | 
|  | const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); | 
|  |  | 
|  | if (!isVirtRegModified(VirtReg)) { | 
|  | DOUT << " which has not been modified, so no store necessary!"; | 
|  | std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg); | 
|  | if (LastUse.first) | 
|  | LastUse.first->getOperand(LastUse.second).setIsKill(); | 
|  | } else { | 
|  | // Otherwise, there is a virtual register corresponding to this physical | 
|  | // register.  We only need to spill it into its stack slot if it has been | 
|  | // modified. | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
|  | int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
|  | DOUT << " to stack slot #" << FrameIndex; | 
|  | // If the instruction reads the register that's spilled, (e.g. this can | 
|  | // happen if it is a move to a physical register), then the spill | 
|  | // instruction is not a kill. | 
|  | bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg)); | 
|  | TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC); | 
|  | ++NumStores;   // Update statistics | 
|  | } | 
|  |  | 
|  | getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available | 
|  |  | 
|  | DOUT << "\n"; | 
|  | removePhysReg(PhysReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// spillPhysReg - This method spills the specified physical register into the | 
|  | /// virtual register slot associated with it.  If OnlyVirtRegs is set to true, | 
|  | /// then the request is ignored if the physical register does not contain a | 
|  | /// virtual register. | 
|  | /// | 
|  | void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, | 
|  | unsigned PhysReg, bool OnlyVirtRegs) { | 
|  | if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used! | 
|  | assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); | 
|  | if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) | 
|  | spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); | 
|  | } else { | 
|  | // If the selected register aliases any other registers, we must make | 
|  | // sure that one of the aliases isn't alive. | 
|  | for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); | 
|  | *AliasSet; ++AliasSet) | 
|  | if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register. | 
|  | PhysRegsUsed[*AliasSet] != -2)       // If allocatable. | 
|  | if (PhysRegsUsed[*AliasSet]) | 
|  | spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// assignVirtToPhysReg - This method updates local state so that we know | 
|  | /// that PhysReg is the proper container for VirtReg now.  The physical | 
|  | /// register must not be used for anything else when this is called. | 
|  | /// | 
|  | void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { | 
|  | assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); | 
|  | // Update information to note the fact that this register was just used, and | 
|  | // it holds VirtReg. | 
|  | PhysRegsUsed[PhysReg] = VirtReg; | 
|  | getVirt2PhysRegMapSlot(VirtReg) = PhysReg; | 
|  | AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isPhysRegAvailable - Return true if the specified physical register is free | 
|  | /// and available for use.  This also includes checking to see if aliased | 
|  | /// registers are all free... | 
|  | /// | 
|  | bool RALocal::isPhysRegAvailable(unsigned PhysReg) const { | 
|  | if (PhysRegsUsed[PhysReg] != -1) return false; | 
|  |  | 
|  | // If the selected register aliases any other allocated registers, it is | 
|  | // not free! | 
|  | for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); | 
|  | *AliasSet; ++AliasSet) | 
|  | if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? | 
|  | return false;                    // Can't use this reg then. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getFreeReg - Look to see if there is a free register available in the | 
|  | /// specified register class.  If not, return 0. | 
|  | /// | 
|  | unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) { | 
|  | // Get iterators defining the range of registers that are valid to allocate in | 
|  | // this class, which also specifies the preferred allocation order. | 
|  | TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); | 
|  | TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); | 
|  |  | 
|  | for (; RI != RE; ++RI) | 
|  | if (isPhysRegAvailable(*RI)) {       // Is reg unused? | 
|  | assert(*RI != 0 && "Cannot use register!"); | 
|  | return *RI; // Found an unused register! | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getReg - Find a physical register to hold the specified virtual | 
|  | /// register.  If all compatible physical registers are used, this method spills | 
|  | /// the last used virtual register to the stack, and uses that register. | 
|  | /// | 
|  | unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I, | 
|  | unsigned VirtReg) { | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
|  |  | 
|  | // First check to see if we have a free register of the requested type... | 
|  | unsigned PhysReg = getFreeReg(RC); | 
|  |  | 
|  | // If we didn't find an unused register, scavenge one now! | 
|  | if (PhysReg == 0) { | 
|  | assert(!PhysRegsUseOrder.empty() && "No allocated registers??"); | 
|  |  | 
|  | // Loop over all of the preallocated registers from the least recently used | 
|  | // to the most recently used.  When we find one that is capable of holding | 
|  | // our register, use it. | 
|  | for (unsigned i = 0; PhysReg == 0; ++i) { | 
|  | assert(i != PhysRegsUseOrder.size() && | 
|  | "Couldn't find a register of the appropriate class!"); | 
|  |  | 
|  | unsigned R = PhysRegsUseOrder[i]; | 
|  |  | 
|  | // We can only use this register if it holds a virtual register (ie, it | 
|  | // can be spilled).  Do not use it if it is an explicitly allocated | 
|  | // physical register! | 
|  | assert(PhysRegsUsed[R] != -1 && | 
|  | "PhysReg in PhysRegsUseOrder, but is not allocated?"); | 
|  | if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) { | 
|  | // If the current register is compatible, use it. | 
|  | if (RC->contains(R)) { | 
|  | PhysReg = R; | 
|  | break; | 
|  | } else { | 
|  | // If one of the registers aliased to the current register is | 
|  | // compatible, use it. | 
|  | for (const unsigned *AliasIt = TRI->getAliasSet(R); | 
|  | *AliasIt; ++AliasIt) { | 
|  | if (RC->contains(*AliasIt) && | 
|  | // If this is pinned down for some reason, don't use it.  For | 
|  | // example, if CL is pinned, and we run across CH, don't use | 
|  | // CH as justification for using scavenging ECX (which will | 
|  | // fail). | 
|  | PhysRegsUsed[*AliasIt] != 0 && | 
|  |  | 
|  | // Make sure the register is allocatable.  Don't allocate SIL on | 
|  | // x86-32. | 
|  | PhysRegsUsed[*AliasIt] != -2) { | 
|  | PhysReg = *AliasIt;    // Take an aliased register | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(PhysReg && "Physical register not assigned!?!?"); | 
|  |  | 
|  | // At this point PhysRegsUseOrder[i] is the least recently used register of | 
|  | // compatible register class.  Spill it to memory and reap its remains. | 
|  | spillPhysReg(MBB, I, PhysReg); | 
|  | } | 
|  |  | 
|  | // Now that we know which register we need to assign this to, do it now! | 
|  | assignVirtToPhysReg(VirtReg, PhysReg); | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// reloadVirtReg - This method transforms the specified specified virtual | 
|  | /// register use to refer to a physical register.  This method may do this in | 
|  | /// one of several ways: if the register is available in a physical register | 
|  | /// already, it uses that physical register.  If the value is not in a physical | 
|  | /// register, and if there are physical registers available, it loads it into a | 
|  | /// register.  If register pressure is high, and it is possible, it tries to | 
|  | /// fold the load of the virtual register into the instruction itself.  It | 
|  | /// avoids doing this if register pressure is low to improve the chance that | 
|  | /// subsequent instructions can use the reloaded value.  This method returns the | 
|  | /// modified instruction. | 
|  | /// | 
|  | MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, | 
|  | unsigned OpNum) { | 
|  | unsigned VirtReg = MI->getOperand(OpNum).getReg(); | 
|  |  | 
|  | // If the virtual register is already available, just update the instruction | 
|  | // and return. | 
|  | if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { | 
|  | MarkPhysRegRecentlyUsed(PR);       // Already have this value available! | 
|  | MI->getOperand(OpNum).setReg(PR);  // Assign the input register | 
|  | getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // Otherwise, we need to fold it into the current instruction, or reload it. | 
|  | // If we have registers available to hold the value, use them. | 
|  | const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); | 
|  | unsigned PhysReg = getFreeReg(RC); | 
|  | int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
|  |  | 
|  | if (PhysReg) {   // Register is available, allocate it! | 
|  | assignVirtToPhysReg(VirtReg, PhysReg); | 
|  | } else {         // No registers available. | 
|  | // Force some poor hapless value out of the register file to | 
|  | // make room for the new register, and reload it. | 
|  | PhysReg = getReg(MBB, MI, VirtReg); | 
|  | } | 
|  |  | 
|  | markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded | 
|  |  | 
|  | DOUT << "  Reloading %reg" << VirtReg << " into " | 
|  | << TRI->getName(PhysReg) << "\n"; | 
|  |  | 
|  | // Add move instruction(s) | 
|  | const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); | 
|  | TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); | 
|  | ++NumLoads;    // Update statistics | 
|  |  | 
|  | MF->getRegInfo().setPhysRegUsed(PhysReg); | 
|  | MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register | 
|  | getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | /// isReadModWriteImplicitKill - True if this is an implicit kill for a | 
|  | /// read/mod/write register, i.e. update partial register. | 
|  | static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && | 
|  | MO.isDef() && !MO.isDead()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isReadModWriteImplicitDef - True if this is an implicit def for a | 
|  | /// read/mod/write register, i.e. update partial register. | 
|  | static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && | 
|  | !MO.isDef() && MO.isKill()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) { | 
|  | // loop over each instruction | 
|  | MachineBasicBlock::iterator MII = MBB.begin(); | 
|  | const TargetInstrInfo &TII = *TM->getInstrInfo(); | 
|  |  | 
|  | DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); | 
|  | if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); | 
|  |  | 
|  | // If this is the first basic block in the machine function, add live-in | 
|  | // registers as active. | 
|  | if (&MBB == &*MF->begin()) { | 
|  | for (MachineRegisterInfo::livein_iterator I=MF->getRegInfo().livein_begin(), | 
|  | E = MF->getRegInfo().livein_end(); I != E; ++I) { | 
|  | unsigned Reg = I->first; | 
|  | MF->getRegInfo().setPhysRegUsed(Reg); | 
|  | PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
|  | AddToPhysRegsUseOrder(Reg); | 
|  | for (const unsigned *AliasSet = TRI->getSubRegisters(Reg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | AddToPhysRegsUseOrder(*AliasSet); | 
|  | PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
|  | MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, sequentially allocate each instruction in the MBB. | 
|  | while (MII != MBB.end()) { | 
|  | MachineInstr *MI = MII++; | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  | DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI; | 
|  | DOUT << "  Regs have values: "; | 
|  | for (unsigned i = 0; i != TRI->getNumRegs(); ++i) | 
|  | if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) | 
|  | DOUT << "[" << TRI->getName(i) | 
|  | << ",%reg" << PhysRegsUsed[i] << "] "; | 
|  | DOUT << "\n"); | 
|  |  | 
|  | // Loop over the implicit uses, making sure that they are at the head of the | 
|  | // use order list, so they don't get reallocated. | 
|  | if (TID.ImplicitUses) { | 
|  | for (const unsigned *ImplicitUses = TID.ImplicitUses; | 
|  | *ImplicitUses; ++ImplicitUses) | 
|  | MarkPhysRegRecentlyUsed(*ImplicitUses); | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 8> Kills; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isKill()) { | 
|  | if (!MO.isImplicit()) | 
|  | Kills.push_back(MO.getReg()); | 
|  | else if (!isReadModWriteImplicitKill(MI, MO.getReg())) | 
|  | // These are extra physical register kills when a sub-register | 
|  | // is defined (def of a sub-register is a read/mod/write of the | 
|  | // larger registers). Ignore. | 
|  | Kills.push_back(MO.getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the used operands into registers.  This has the potential to spill | 
|  | // incoming values if we are out of registers.  Note that we completely | 
|  | // ignore physical register uses here.  We assume that if an explicit | 
|  | // physical register is referenced by the instruction, that it is guaranteed | 
|  | // to be live-in, or the input is badly hosed. | 
|  | // | 
|  | for (unsigned i = 0; i != MI->getNumOperands(); ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | // here we are looking for only used operands (never def&use) | 
|  | if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | MI = reloadVirtReg(MBB, MI, i); | 
|  | } | 
|  |  | 
|  | // If this instruction is the last user of this register, kill the | 
|  | // value, freeing the register being used, so it doesn't need to be | 
|  | // spilled to memory. | 
|  | // | 
|  | for (unsigned i = 0, e = Kills.size(); i != e; ++i) { | 
|  | unsigned VirtReg = Kills[i]; | 
|  | unsigned PhysReg = VirtReg; | 
|  | if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
|  | // If the virtual register was never materialized into a register, it | 
|  | // might not be in the map, but it won't hurt to zero it out anyway. | 
|  | unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
|  | PhysReg = PhysRegSlot; | 
|  | PhysRegSlot = 0; | 
|  | } else if (PhysRegsUsed[PhysReg] == -2) { | 
|  | // Unallocatable register dead, ignore. | 
|  | continue; | 
|  | } else { | 
|  | assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && | 
|  | "Silently clearing a virtual register?"); | 
|  | } | 
|  |  | 
|  | if (PhysReg) { | 
|  | DOUT << "  Last use of " << TRI->getName(PhysReg) | 
|  | << "[%reg" << VirtReg <<"], removing it from live set\n"; | 
|  | removePhysReg(PhysReg); | 
|  | for (const unsigned *AliasSet = TRI->getSubRegisters(PhysReg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | DOUT  << "  Last use of " | 
|  | << TRI->getName(*AliasSet) | 
|  | << "[%reg" << VirtReg <<"], removing it from live set\n"; | 
|  | removePhysReg(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over all of the operands of the instruction, spilling registers that | 
|  | // are defined, and marking explicit destinations in the PhysRegsUsed map. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() && | 
|  | TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP. | 
|  | // These are extra physical register defs when a sub-register | 
|  | // is defined (def of a sub-register is a read/mod/write of the | 
|  | // larger registers). Ignore. | 
|  | if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; | 
|  |  | 
|  | MF->getRegInfo().setPhysRegUsed(Reg); | 
|  | spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg | 
|  | PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
|  | AddToPhysRegsUseOrder(Reg); | 
|  |  | 
|  | for (const unsigned *AliasSet = TRI->getSubRegisters(Reg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
|  | PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
|  | AddToPhysRegsUseOrder(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Loop over the implicit defs, spilling them as well. | 
|  | if (TID.ImplicitDefs) { | 
|  | for (const unsigned *ImplicitDefs = TID.ImplicitDefs; | 
|  | *ImplicitDefs; ++ImplicitDefs) { | 
|  | unsigned Reg = *ImplicitDefs; | 
|  | if (PhysRegsUsed[Reg] != -2) { | 
|  | spillPhysReg(MBB, MI, Reg, true); | 
|  | AddToPhysRegsUseOrder(Reg); | 
|  | PhysRegsUsed[Reg] = 0;            // It is free and reserved now | 
|  | } | 
|  | MF->getRegInfo().setPhysRegUsed(Reg); | 
|  | for (const unsigned *AliasSet = TRI->getSubRegisters(Reg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | AddToPhysRegsUseOrder(*AliasSet); | 
|  | PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now | 
|  | MF->getRegInfo().setPhysRegUsed(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 8> DeadDefs; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDead()) | 
|  | DeadDefs.push_back(MO.getReg()); | 
|  | } | 
|  |  | 
|  | // Okay, we have allocated all of the source operands and spilled any values | 
|  | // that would be destroyed by defs of this instruction.  Loop over the | 
|  | // explicit defs and assign them to a register, spilling incoming values if | 
|  | // we need to scavenge a register. | 
|  | // | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand& MO = MI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDef() && MO.getReg() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | unsigned DestVirtReg = MO.getReg(); | 
|  | unsigned DestPhysReg; | 
|  |  | 
|  | // If DestVirtReg already has a value, use it. | 
|  | if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) | 
|  | DestPhysReg = getReg(MBB, MI, DestVirtReg); | 
|  | MF->getRegInfo().setPhysRegUsed(DestPhysReg); | 
|  | markVirtRegModified(DestVirtReg); | 
|  | getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0); | 
|  | DOUT << "  Assigning " << TRI->getName(DestPhysReg) | 
|  | << " to %reg" << DestVirtReg << "\n"; | 
|  | MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this instruction defines any registers that are immediately dead, | 
|  | // kill them now. | 
|  | // | 
|  | for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { | 
|  | unsigned VirtReg = DeadDefs[i]; | 
|  | unsigned PhysReg = VirtReg; | 
|  | if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
|  | unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); | 
|  | PhysReg = PhysRegSlot; | 
|  | assert(PhysReg != 0); | 
|  | PhysRegSlot = 0; | 
|  | } else if (PhysRegsUsed[PhysReg] == -2) { | 
|  | // Unallocatable register dead, ignore. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PhysReg) { | 
|  | DOUT  << "  Register " << TRI->getName(PhysReg) | 
|  | << " [%reg" << VirtReg | 
|  | << "] is never used, removing it frame live list\n"; | 
|  | removePhysReg(PhysReg); | 
|  | for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); | 
|  | *AliasSet; ++AliasSet) { | 
|  | if (PhysRegsUsed[*AliasSet] != -2) { | 
|  | DOUT  << "  Register " << TRI->getName(*AliasSet) | 
|  | << " [%reg" << *AliasSet | 
|  | << "] is never used, removing it frame live list\n"; | 
|  | removePhysReg(*AliasSet); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if this is a noop copy instruction, zap it. | 
|  | unsigned SrcReg, DstReg; | 
|  | if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) | 
|  | MBB.erase(MI); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); | 
|  |  | 
|  | // Spill all physical registers holding virtual registers now. | 
|  | for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) | 
|  | if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { | 
|  | if (unsigned VirtReg = PhysRegsUsed[i]) | 
|  | spillVirtReg(MBB, MI, VirtReg, i); | 
|  | else | 
|  | removePhysReg(i); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | // This checking code is very expensive. | 
|  | bool AllOk = true; | 
|  | for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, | 
|  | e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i) | 
|  | if (unsigned PR = Virt2PhysRegMap[i]) { | 
|  | cerr << "Register still mapped: " << i << " -> " << PR << "\n"; | 
|  | AllOk = false; | 
|  | } | 
|  | assert(AllOk && "Virtual registers still in phys regs?"); | 
|  | #endif | 
|  |  | 
|  | // Clear any physical register which appear live at the end of the basic | 
|  | // block, but which do not hold any virtual registers.  e.g., the stack | 
|  | // pointer. | 
|  | PhysRegsUseOrder.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// runOnMachineFunction - Register allocate the whole function | 
|  | /// | 
|  | bool RALocal::runOnMachineFunction(MachineFunction &Fn) { | 
|  | DOUT << "Machine Function " << "\n"; | 
|  | MF = &Fn; | 
|  | TM = &Fn.getTarget(); | 
|  | TRI = TM->getRegisterInfo(); | 
|  | TII = TM->getInstrInfo(); | 
|  |  | 
|  | PhysRegsUsed.assign(TRI->getNumRegs(), -1); | 
|  |  | 
|  | // At various places we want to efficiently check to see whether a register | 
|  | // is allocatable.  To handle this, we mark all unallocatable registers as | 
|  | // being pinned down, permanently. | 
|  | { | 
|  | BitVector Allocable = TRI->getAllocatableSet(Fn); | 
|  | for (unsigned i = 0, e = Allocable.size(); i != e; ++i) | 
|  | if (!Allocable[i]) | 
|  | PhysRegsUsed[i] = -2;  // Mark the reg unallocable. | 
|  | } | 
|  |  | 
|  | // initialize the virtual->physical register map to have a 'null' | 
|  | // mapping for all virtual registers | 
|  | unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg(); | 
|  | Virt2PhysRegMap.grow(LastVirtReg); | 
|  | Virt2LastUseMap.grow(LastVirtReg); | 
|  | VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister); | 
|  |  | 
|  | // Loop over all of the basic blocks, eliminating virtual register references | 
|  | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); | 
|  | MBB != MBBe; ++MBB) | 
|  | AllocateBasicBlock(*MBB); | 
|  |  | 
|  | StackSlotForVirtReg.clear(); | 
|  | PhysRegsUsed.clear(); | 
|  | VirtRegModified.clear(); | 
|  | Virt2PhysRegMap.clear(); | 
|  | Virt2LastUseMap.clear(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createLocalRegisterAllocator() { | 
|  | return new RALocal(); | 
|  | } |