|  | //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the VirtRegMap class. | 
|  | // | 
|  | // It also contains implementations of the the Spiller interface, which, given a | 
|  | // virtual register map and a machine function, eliminates all virtual | 
|  | // references by replacing them with physical register references - adding spill | 
|  | // code as necessary. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "spiller" | 
|  | #include "VirtRegMap.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumSpills, "Number of register spills"); | 
|  | STATISTIC(NumPSpills,"Number of physical register spills"); | 
|  | STATISTIC(NumReMats, "Number of re-materialization"); | 
|  | STATISTIC(NumDRM   , "Number of re-materializable defs elided"); | 
|  | STATISTIC(NumStores, "Number of stores added"); | 
|  | STATISTIC(NumLoads , "Number of loads added"); | 
|  | STATISTIC(NumReused, "Number of values reused"); | 
|  | STATISTIC(NumDSE   , "Number of dead stores elided"); | 
|  | STATISTIC(NumDCE   , "Number of copies elided"); | 
|  | STATISTIC(NumDSS   , "Number of dead spill slots removed"); | 
|  |  | 
|  | namespace { | 
|  | enum SpillerName { simple, local }; | 
|  |  | 
|  | static cl::opt<SpillerName> | 
|  | SpillerOpt("spiller", | 
|  | cl::desc("Spiller to use: (default: local)"), | 
|  | cl::Prefix, | 
|  | cl::values(clEnumVal(simple, "  simple spiller"), | 
|  | clEnumVal(local,  "  local spiller"), | 
|  | clEnumValEnd), | 
|  | cl::init(local)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  VirtRegMap implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | VirtRegMap::VirtRegMap(MachineFunction &mf) | 
|  | : TII(*mf.getTarget().getInstrInfo()), MF(mf), | 
|  | Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT), | 
|  | Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0), | 
|  | Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1), | 
|  | LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { | 
|  | SpillSlotToUsesMap.resize(8); | 
|  | ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1- | 
|  | TargetRegisterInfo::FirstVirtualRegister); | 
|  | grow(); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::grow() { | 
|  | unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg(); | 
|  | Virt2PhysMap.grow(LastVirtReg); | 
|  | Virt2StackSlotMap.grow(LastVirtReg); | 
|  | Virt2ReMatIdMap.grow(LastVirtReg); | 
|  | Virt2SplitMap.grow(LastVirtReg); | 
|  | Virt2SplitKillMap.grow(LastVirtReg); | 
|  | ReMatMap.grow(LastVirtReg); | 
|  | ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1); | 
|  | } | 
|  |  | 
|  | int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(virtReg)); | 
|  | assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
|  | "attempt to assign stack slot to already spilled register"); | 
|  | const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg); | 
|  | int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(), | 
|  | RC->getAlignment()); | 
|  | if (LowSpillSlot == NO_STACK_SLOT) | 
|  | LowSpillSlot = SS; | 
|  | if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot) | 
|  | HighSpillSlot = SS; | 
|  | unsigned Idx = SS-LowSpillSlot; | 
|  | while (Idx >= SpillSlotToUsesMap.size()) | 
|  | SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2); | 
|  | Virt2StackSlotMap[virtReg] = SS; | 
|  | ++NumSpills; | 
|  | return SS; | 
|  | } | 
|  |  | 
|  | void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(virtReg)); | 
|  | assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
|  | "attempt to assign stack slot to already spilled register"); | 
|  | assert((SS >= 0 || | 
|  | (SS >= MF.getFrameInfo()->getObjectIndexBegin())) && | 
|  | "illegal fixed frame index"); | 
|  | Virt2StackSlotMap[virtReg] = SS; | 
|  | } | 
|  |  | 
|  | int VirtRegMap::assignVirtReMatId(unsigned virtReg) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(virtReg)); | 
|  | assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT && | 
|  | "attempt to assign re-mat id to already spilled register"); | 
|  | Virt2ReMatIdMap[virtReg] = ReMatId; | 
|  | return ReMatId++; | 
|  | } | 
|  |  | 
|  | void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(virtReg)); | 
|  | assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT && | 
|  | "attempt to assign re-mat id to already spilled register"); | 
|  | Virt2ReMatIdMap[virtReg] = id; | 
|  | } | 
|  |  | 
|  | int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) { | 
|  | std::map<const TargetRegisterClass*, int>::iterator I = | 
|  | EmergencySpillSlots.find(RC); | 
|  | if (I != EmergencySpillSlots.end()) | 
|  | return I->second; | 
|  | int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(), | 
|  | RC->getAlignment()); | 
|  | if (LowSpillSlot == NO_STACK_SLOT) | 
|  | LowSpillSlot = SS; | 
|  | if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot) | 
|  | HighSpillSlot = SS; | 
|  | I->second = SS; | 
|  | return SS; | 
|  | } | 
|  |  | 
|  | void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) { | 
|  | if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) { | 
|  | assert(FI >= 0 && "Spill slot index should not be negative!"); | 
|  | SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI, | 
|  | MachineInstr *NewMI, ModRef MRInfo) { | 
|  | // Move previous memory references folded to new instruction. | 
|  | MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI); | 
|  | for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI), | 
|  | E = MI2VirtMap.end(); I != E && I->first == OldMI; ) { | 
|  | MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second)); | 
|  | MI2VirtMap.erase(I++); | 
|  | } | 
|  |  | 
|  | // add new memory reference | 
|  | MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo))); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) { | 
|  | MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI); | 
|  | MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo))); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isFrameIndex()) | 
|  | continue; | 
|  | int FI = MO.getIndex(); | 
|  | if (MF.getFrameInfo()->isFixedObjectIndex(FI)) | 
|  | continue; | 
|  | SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI); | 
|  | } | 
|  | MI2VirtMap.erase(MI); | 
|  | SpillPt2VirtMap.erase(MI); | 
|  | RestorePt2VirtMap.erase(MI); | 
|  | EmergencySpillMap.erase(MI); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::print(std::ostream &OS) const { | 
|  | const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo(); | 
|  |  | 
|  | OS << "********** REGISTER MAP **********\n"; | 
|  | for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, | 
|  | e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) { | 
|  | if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG) | 
|  | OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i]) | 
|  | << "]\n"; | 
|  | } | 
|  |  | 
|  | for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, | 
|  | e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) | 
|  | if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT) | 
|  | OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n"; | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | void VirtRegMap::dump() const { | 
|  | print(cerr); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Simple Spiller Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Spiller::~Spiller() {} | 
|  |  | 
|  | namespace { | 
|  | struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller { | 
|  | bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM); | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { | 
|  | DOUT << "********** REWRITE MACHINE CODE **********\n"; | 
|  | DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; | 
|  | const TargetMachine &TM = MF.getTarget(); | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  |  | 
|  |  | 
|  | // LoadedRegs - Keep track of which vregs are loaded, so that we only load | 
|  | // each vreg once (in the case where a spilled vreg is used by multiple | 
|  | // operands).  This is always smaller than the number of operands to the | 
|  | // current machine instr, so it should be small. | 
|  | std::vector<unsigned> LoadedRegs; | 
|  |  | 
|  | for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); | 
|  | MBBI != E; ++MBBI) { | 
|  | DOUT << MBBI->getBasicBlock()->getName() << ":\n"; | 
|  | MachineBasicBlock &MBB = *MBBI; | 
|  | for (MachineBasicBlock::iterator MII = MBB.begin(), | 
|  | E = MBB.end(); MII != E; ++MII) { | 
|  | MachineInstr &MI = *MII; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isRegister() && MO.getReg()) { | 
|  | if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | unsigned PhysReg = VRM.getPhys(VirtReg); | 
|  | if (!VRM.isAssignedReg(VirtReg)) { | 
|  | int StackSlot = VRM.getStackSlot(VirtReg); | 
|  | const TargetRegisterClass* RC = | 
|  | MF.getRegInfo().getRegClass(VirtReg); | 
|  |  | 
|  | if (MO.isUse() && | 
|  | std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) | 
|  | == LoadedRegs.end()) { | 
|  | TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); | 
|  | MachineInstr *LoadMI = prior(MII); | 
|  | VRM.addSpillSlotUse(StackSlot, LoadMI); | 
|  | LoadedRegs.push_back(VirtReg); | 
|  | ++NumLoads; | 
|  | DOUT << '\t' << *LoadMI; | 
|  | } | 
|  |  | 
|  | if (MO.isDef()) { | 
|  | TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true, | 
|  | StackSlot, RC); | 
|  | MachineInstr *StoreMI = next(MII); | 
|  | VRM.addSpillSlotUse(StackSlot, StoreMI); | 
|  | ++NumStores; | 
|  | } | 
|  | } | 
|  | MF.getRegInfo().setPhysRegUsed(PhysReg); | 
|  | MI.getOperand(i).setReg(PhysReg); | 
|  | } else { | 
|  | MF.getRegInfo().setPhysRegUsed(MO.getReg()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DOUT << '\t' << MI; | 
|  | LoadedRegs.clear(); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Local Spiller Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class AvailableSpills; | 
|  |  | 
|  | /// LocalSpiller - This spiller does a simple pass over the machine basic | 
|  | /// block to attempt to keep spills in registers as much as possible for | 
|  | /// blocks that have low register pressure (the vreg may be spilled due to | 
|  | /// register pressure in other blocks). | 
|  | class VISIBILITY_HIDDEN LocalSpiller : public Spiller { | 
|  | MachineRegisterInfo *RegInfo; | 
|  | const TargetRegisterInfo *TRI; | 
|  | const TargetInstrInfo *TII; | 
|  | public: | 
|  | bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { | 
|  | RegInfo = &MF.getRegInfo(); | 
|  | TRI = MF.getTarget().getRegisterInfo(); | 
|  | TII = MF.getTarget().getInstrInfo(); | 
|  | DOUT << "\n**** Local spiller rewriting function '" | 
|  | << MF.getFunction()->getName() << "':\n"; | 
|  | DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)" | 
|  | " ****\n"; | 
|  | DEBUG(MF.dump()); | 
|  |  | 
|  | for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); | 
|  | MBB != E; ++MBB) | 
|  | RewriteMBB(*MBB, VRM); | 
|  |  | 
|  | // Mark unused spill slots. | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | int SS = VRM.getLowSpillSlot(); | 
|  | if (SS != VirtRegMap::NO_STACK_SLOT) | 
|  | for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS) | 
|  | if (!VRM.isSpillSlotUsed(SS)) { | 
|  | MFI->RemoveStackObject(SS); | 
|  | ++NumDSS; | 
|  | } | 
|  |  | 
|  | DOUT << "**** Post Machine Instrs ****\n"; | 
|  | DEBUG(MF.dump()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | private: | 
|  | bool PrepForUnfoldOpti(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | AvailableSpills &Spills, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM); | 
|  | void SpillRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | int Idx, unsigned PhysReg, int StackSlot, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isAvailable, MachineInstr *&LastStore, | 
|  | AvailableSpills &Spills, | 
|  | SmallSet<MachineInstr*, 4> &ReMatDefs, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM); | 
|  | void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from | 
|  | /// top down, keep track of which spills slots or remat are available in each | 
|  | /// register. | 
|  | /// | 
|  | /// Note that not all physregs are created equal here.  In particular, some | 
|  | /// physregs are reloads that we are allowed to clobber or ignore at any time. | 
|  | /// Other physregs are values that the register allocated program is using that | 
|  | /// we cannot CHANGE, but we can read if we like.  We keep track of this on a | 
|  | /// per-stack-slot / remat id basis as the low bit in the value of the | 
|  | /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks | 
|  | /// this bit and addAvailable sets it if. | 
|  | namespace { | 
|  | class VISIBILITY_HIDDEN AvailableSpills { | 
|  | const TargetRegisterInfo *TRI; | 
|  | const TargetInstrInfo *TII; | 
|  |  | 
|  | // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled | 
|  | // or remat'ed virtual register values that are still available, due to being | 
|  | // loaded or stored to, but not invalidated yet. | 
|  | std::map<int, unsigned> SpillSlotsOrReMatsAvailable; | 
|  |  | 
|  | // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, | 
|  | // indicating which stack slot values are currently held by a physreg.  This | 
|  | // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a | 
|  | // physreg is modified. | 
|  | std::multimap<unsigned, int> PhysRegsAvailable; | 
|  |  | 
|  | void disallowClobberPhysRegOnly(unsigned PhysReg); | 
|  |  | 
|  | void ClobberPhysRegOnly(unsigned PhysReg); | 
|  | public: | 
|  | AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) | 
|  | : TRI(tri), TII(tii) { | 
|  | } | 
|  |  | 
|  | const TargetRegisterInfo *getRegInfo() const { return TRI; } | 
|  |  | 
|  | /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is | 
|  | /// available in a  physical register, return that PhysReg, otherwise | 
|  | /// return 0. | 
|  | unsigned getSpillSlotOrReMatPhysReg(int Slot) const { | 
|  | std::map<int, unsigned>::const_iterator I = | 
|  | SpillSlotsOrReMatsAvailable.find(Slot); | 
|  | if (I != SpillSlotsOrReMatsAvailable.end()) { | 
|  | return I->second >> 1;  // Remove the CanClobber bit. | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// addAvailable - Mark that the specified stack slot / remat is available in | 
|  | /// the specified physreg.  If CanClobber is true, the physreg can be modified | 
|  | /// at any time without changing the semantics of the program. | 
|  | void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg, | 
|  | bool CanClobber = true) { | 
|  | // If this stack slot is thought to be available in some other physreg, | 
|  | // remove its record. | 
|  | ModifyStackSlotOrReMat(SlotOrReMat); | 
|  |  | 
|  | PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); | 
|  | SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber; | 
|  |  | 
|  | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
|  | DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1; | 
|  | else | 
|  | DOUT << "Remembering SS#" << SlotOrReMat; | 
|  | DOUT << " in physreg " << TRI->getName(Reg) << "\n"; | 
|  | } | 
|  |  | 
|  | /// canClobberPhysReg - Return true if the spiller is allowed to change the | 
|  | /// value of the specified stackslot register if it desires.  The specified | 
|  | /// stack slot must be available in a physreg for this query to make sense. | 
|  | bool canClobberPhysReg(int SlotOrReMat) const { | 
|  | assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && | 
|  | "Value not available!"); | 
|  | return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; | 
|  | } | 
|  |  | 
|  | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
|  | /// stackslot register. The register is still available but is no longer | 
|  | /// allowed to be modifed. | 
|  | void disallowClobberPhysReg(unsigned PhysReg); | 
|  |  | 
|  | /// ClobberPhysReg - This is called when the specified physreg changes | 
|  | /// value.  We use this to invalidate any info about stuff that lives in | 
|  | /// it and any of its aliases. | 
|  | void ClobberPhysReg(unsigned PhysReg); | 
|  |  | 
|  | /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
|  | /// slot changes.  This removes information about which register the previous | 
|  | /// value for this slot lives in (as the previous value is dead now). | 
|  | void ModifyStackSlotOrReMat(int SlotOrReMat); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified | 
|  | /// stackslot register. The register is still available but is no longer | 
|  | /// allowed to be modifed. | 
|  | void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { | 
|  | std::multimap<unsigned, int>::iterator I = | 
|  | PhysRegsAvailable.lower_bound(PhysReg); | 
|  | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
|  | int SlotOrReMat = I->second; | 
|  | I++; | 
|  | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
|  | "Bidirectional map mismatch!"); | 
|  | SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; | 
|  | DOUT << "PhysReg " << TRI->getName(PhysReg) | 
|  | << " copied, it is available for use but can no longer be modified\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
|  | /// stackslot register and its aliases. The register and its aliases may | 
|  | /// still available but is no longer allowed to be modifed. | 
|  | void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { | 
|  | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) | 
|  | disallowClobberPhysRegOnly(*AS); | 
|  | disallowClobberPhysRegOnly(PhysReg); | 
|  | } | 
|  |  | 
|  | /// ClobberPhysRegOnly - This is called when the specified physreg changes | 
|  | /// value.  We use this to invalidate any info about stuff we thing lives in it. | 
|  | void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { | 
|  | std::multimap<unsigned, int>::iterator I = | 
|  | PhysRegsAvailable.lower_bound(PhysReg); | 
|  | while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
|  | int SlotOrReMat = I->second; | 
|  | PhysRegsAvailable.erase(I++); | 
|  | assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
|  | "Bidirectional map mismatch!"); | 
|  | SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); | 
|  | DOUT << "PhysReg " << TRI->getName(PhysReg) | 
|  | << " clobbered, invalidating "; | 
|  | if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
|  | DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n"; | 
|  | else | 
|  | DOUT << "SS#" << SlotOrReMat << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ClobberPhysReg - This is called when the specified physreg changes | 
|  | /// value.  We use this to invalidate any info about stuff we thing lives in | 
|  | /// it and any of its aliases. | 
|  | void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { | 
|  | for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) | 
|  | ClobberPhysRegOnly(*AS); | 
|  | ClobberPhysRegOnly(PhysReg); | 
|  | } | 
|  |  | 
|  | /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
|  | /// slot changes.  This removes information about which register the previous | 
|  | /// value for this slot lives in (as the previous value is dead now). | 
|  | void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { | 
|  | std::map<int, unsigned>::iterator It = | 
|  | SpillSlotsOrReMatsAvailable.find(SlotOrReMat); | 
|  | if (It == SpillSlotsOrReMatsAvailable.end()) return; | 
|  | unsigned Reg = It->second >> 1; | 
|  | SpillSlotsOrReMatsAvailable.erase(It); | 
|  |  | 
|  | // This register may hold the value of multiple stack slots, only remove this | 
|  | // stack slot from the set of values the register contains. | 
|  | std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); | 
|  | for (; ; ++I) { | 
|  | assert(I != PhysRegsAvailable.end() && I->first == Reg && | 
|  | "Map inverse broken!"); | 
|  | if (I->second == SlotOrReMat) break; | 
|  | } | 
|  | PhysRegsAvailable.erase(I); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// InvalidateKills - MI is going to be deleted. If any of its operands are | 
|  | /// marked kill, then invalidate the information. | 
|  | static void InvalidateKills(MachineInstr &MI, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | SmallVector<unsigned, 2> *KillRegs = NULL) { | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isRegister() || !MO.isUse() || !MO.isKill()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (KillRegs) | 
|  | KillRegs->push_back(Reg); | 
|  | if (KillOps[Reg] == &MO) { | 
|  | RegKills.reset(Reg); | 
|  | KillOps[Reg] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InvalidateKill - A MI that defines the specified register is being deleted, | 
|  | /// invalidate the register kill information. | 
|  | static void InvalidateKill(unsigned Reg, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | if (RegKills[Reg]) { | 
|  | KillOps[Reg]->setIsKill(false); | 
|  | KillOps[Reg] = NULL; | 
|  | RegKills.reset(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InvalidateRegDef - If the def operand of the specified def MI is now dead | 
|  | /// (since it's spill instruction is removed), mark it isDead. Also checks if | 
|  | /// the def MI has other definition operands that are not dead. Returns it by | 
|  | /// reference. | 
|  | static bool InvalidateRegDef(MachineBasicBlock::iterator I, | 
|  | MachineInstr &NewDef, unsigned Reg, | 
|  | bool &HasLiveDef) { | 
|  | // Due to remat, it's possible this reg isn't being reused. That is, | 
|  | // the def of this reg (by prev MI) is now dead. | 
|  | MachineInstr *DefMI = I; | 
|  | MachineOperand *DefOp = NULL; | 
|  | for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = DefMI->getOperand(i); | 
|  | if (MO.isRegister() && MO.isDef()) { | 
|  | if (MO.getReg() == Reg) | 
|  | DefOp = &MO; | 
|  | else if (!MO.isDead()) | 
|  | HasLiveDef = true; | 
|  | } | 
|  | } | 
|  | if (!DefOp) | 
|  | return false; | 
|  |  | 
|  | bool FoundUse = false, Done = false; | 
|  | MachineBasicBlock::iterator E = NewDef; | 
|  | ++I; ++E; | 
|  | for (; !Done && I != E; ++I) { | 
|  | MachineInstr *NMI = I; | 
|  | for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { | 
|  | MachineOperand &MO = NMI->getOperand(j); | 
|  | if (!MO.isRegister() || MO.getReg() != Reg) | 
|  | continue; | 
|  | if (MO.isUse()) | 
|  | FoundUse = true; | 
|  | Done = true; // Stop after scanning all the operands of this MI. | 
|  | } | 
|  | } | 
|  | if (!FoundUse) { | 
|  | // Def is dead! | 
|  | DefOp->setIsDead(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// UpdateKills - Track and update kill info. If a MI reads a register that is | 
|  | /// marked kill, then it must be due to register reuse. Transfer the kill info | 
|  | /// over. | 
|  | static void UpdateKills(MachineInstr &MI, BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isRegister() || !MO.isUse()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { | 
|  | // That can't be right. Register is killed but not re-defined and it's | 
|  | // being reused. Let's fix that. | 
|  | KillOps[Reg]->setIsKill(false); | 
|  | KillOps[Reg] = NULL; | 
|  | RegKills.reset(Reg); | 
|  | if (i < TID.getNumOperands() && | 
|  | TID.getOperandConstraint(i, TOI::TIED_TO) == -1) | 
|  | // Unless it's a two-address operand, this is the new kill. | 
|  | MO.setIsKill(); | 
|  | } | 
|  | if (MO.isKill()) { | 
|  | RegKills.set(Reg); | 
|  | KillOps[Reg] = &MO; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isRegister() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | RegKills.reset(Reg); | 
|  | KillOps[Reg] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReMaterialize - Re-materialize definition for Reg targetting DestReg. | 
|  | /// | 
|  | static void ReMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | unsigned DestReg, unsigned Reg, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI, | 
|  | VirtRegMap &VRM) { | 
|  | TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg)); | 
|  | MachineInstr *NewMI = prior(MII); | 
|  | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = NewMI->getOperand(i); | 
|  | if (!MO.isRegister() || MO.getReg() == 0) | 
|  | continue; | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) | 
|  | continue; | 
|  | assert(MO.isUse()); | 
|  | unsigned SubIdx = MO.getSubReg(); | 
|  | unsigned Phys = VRM.getPhys(VirtReg); | 
|  | assert(Phys); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; | 
|  | MO.setReg(RReg); | 
|  | } | 
|  | ++NumReMats; | 
|  | } | 
|  |  | 
|  |  | 
|  | // ReusedOp - For each reused operand, we keep track of a bit of information, in | 
|  | // case we need to rollback upon processing a new operand.  See comments below. | 
|  | namespace { | 
|  | struct ReusedOp { | 
|  | // The MachineInstr operand that reused an available value. | 
|  | unsigned Operand; | 
|  |  | 
|  | // StackSlotOrReMat - The spill slot or remat id of the value being reused. | 
|  | unsigned StackSlotOrReMat; | 
|  |  | 
|  | // PhysRegReused - The physical register the value was available in. | 
|  | unsigned PhysRegReused; | 
|  |  | 
|  | // AssignedPhysReg - The physreg that was assigned for use by the reload. | 
|  | unsigned AssignedPhysReg; | 
|  |  | 
|  | // VirtReg - The virtual register itself. | 
|  | unsigned VirtReg; | 
|  |  | 
|  | ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, | 
|  | unsigned vreg) | 
|  | : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), | 
|  | AssignedPhysReg(apr), VirtReg(vreg) {} | 
|  | }; | 
|  |  | 
|  | /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that | 
|  | /// is reused instead of reloaded. | 
|  | class VISIBILITY_HIDDEN ReuseInfo { | 
|  | MachineInstr &MI; | 
|  | std::vector<ReusedOp> Reuses; | 
|  | BitVector PhysRegsClobbered; | 
|  | public: | 
|  | ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { | 
|  | PhysRegsClobbered.resize(tri->getNumRegs()); | 
|  | } | 
|  |  | 
|  | bool hasReuses() const { | 
|  | return !Reuses.empty(); | 
|  | } | 
|  |  | 
|  | /// addReuse - If we choose to reuse a virtual register that is already | 
|  | /// available instead of reloading it, remember that we did so. | 
|  | void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, | 
|  | unsigned PhysRegReused, unsigned AssignedPhysReg, | 
|  | unsigned VirtReg) { | 
|  | // If the reload is to the assigned register anyway, no undo will be | 
|  | // required. | 
|  | if (PhysRegReused == AssignedPhysReg) return; | 
|  |  | 
|  | // Otherwise, remember this. | 
|  | Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, | 
|  | AssignedPhysReg, VirtReg)); | 
|  | } | 
|  |  | 
|  | void markClobbered(unsigned PhysReg) { | 
|  | PhysRegsClobbered.set(PhysReg); | 
|  | } | 
|  |  | 
|  | bool isClobbered(unsigned PhysReg) const { | 
|  | return PhysRegsClobbered.test(PhysReg); | 
|  | } | 
|  |  | 
|  | /// GetRegForReload - We are about to emit a reload into PhysReg.  If there | 
|  | /// is some other operand that is using the specified register, either pick | 
|  | /// a new register to use, or evict the previous reload and use this reg. | 
|  | unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, | 
|  | AvailableSpills &Spills, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | SmallSet<unsigned, 8> &Rejected, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM) { | 
|  | const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget() | 
|  | .getInstrInfo(); | 
|  |  | 
|  | if (Reuses.empty()) return PhysReg;  // This is most often empty. | 
|  |  | 
|  | for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { | 
|  | ReusedOp &Op = Reuses[ro]; | 
|  | // If we find some other reuse that was supposed to use this register | 
|  | // exactly for its reload, we can change this reload to use ITS reload | 
|  | // register. That is, unless its reload register has already been | 
|  | // considered and subsequently rejected because it has also been reused | 
|  | // by another operand. | 
|  | if (Op.PhysRegReused == PhysReg && | 
|  | Rejected.count(Op.AssignedPhysReg) == 0) { | 
|  | // Yup, use the reload register that we didn't use before. | 
|  | unsigned NewReg = Op.AssignedPhysReg; | 
|  | Rejected.insert(PhysReg); | 
|  | return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected, | 
|  | RegKills, KillOps, VRM); | 
|  | } else { | 
|  | // Otherwise, we might also have a problem if a previously reused | 
|  | // value aliases the new register.  If so, codegen the previous reload | 
|  | // and use this one. | 
|  | unsigned PRRU = Op.PhysRegReused; | 
|  | const TargetRegisterInfo *TRI = Spills.getRegInfo(); | 
|  | if (TRI->areAliases(PRRU, PhysReg)) { | 
|  | // Okay, we found out that an alias of a reused register | 
|  | // was used.  This isn't good because it means we have | 
|  | // to undo a previous reuse. | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | const TargetRegisterClass *AliasRC = | 
|  | MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); | 
|  |  | 
|  | // Copy Op out of the vector and remove it, we're going to insert an | 
|  | // explicit load for it. | 
|  | ReusedOp NewOp = Op; | 
|  | Reuses.erase(Reuses.begin()+ro); | 
|  |  | 
|  | // Ok, we're going to try to reload the assigned physreg into the | 
|  | // slot that we were supposed to in the first place.  However, that | 
|  | // register could hold a reuse.  Check to see if it conflicts or | 
|  | // would prefer us to use a different register. | 
|  | unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, | 
|  | MI, Spills, MaybeDeadStores, | 
|  | Rejected, RegKills, KillOps, VRM); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = MI; | 
|  | if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) { | 
|  | ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM); | 
|  | } else { | 
|  | TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg, | 
|  | NewOp.StackSlotOrReMat, AliasRC); | 
|  | MachineInstr *LoadMI = prior(MII); | 
|  | VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); | 
|  | // Any stores to this stack slot are not dead anymore. | 
|  | MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; | 
|  | ++NumLoads; | 
|  | } | 
|  | Spills.ClobberPhysReg(NewPhysReg); | 
|  | Spills.ClobberPhysReg(NewOp.PhysRegReused); | 
|  |  | 
|  | MI->getOperand(NewOp.Operand).setReg(NewPhysReg); | 
|  |  | 
|  | Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg); | 
|  | --MII; | 
|  | UpdateKills(*MII, RegKills, KillOps); | 
|  | DOUT << '\t' << *MII; | 
|  |  | 
|  | DOUT << "Reuse undone!\n"; | 
|  | --NumReused; | 
|  |  | 
|  | // Finally, PhysReg is now available, go ahead and use it. | 
|  | return PhysReg; | 
|  | } | 
|  | } | 
|  | } | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | /// GetRegForReload - Helper for the above GetRegForReload(). Add a | 
|  | /// 'Rejected' set to remember which registers have been considered and | 
|  | /// rejected for the reload. This avoids infinite looping in case like | 
|  | /// this: | 
|  | /// t1 := op t2, t3 | 
|  | /// t2 <- assigned r0 for use by the reload but ended up reuse r1 | 
|  | /// t3 <- assigned r1 for use by the reload but ended up reuse r0 | 
|  | /// t1 <- desires r1 | 
|  | ///       sees r1 is taken by t2, tries t2's reload register r0 | 
|  | ///       sees r0 is taken by t3, tries t3's reload register r1 | 
|  | ///       sees r1 is taken by t2, tries t2's reload register r0 ... | 
|  | unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, | 
|  | AvailableSpills &Spills, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM) { | 
|  | SmallSet<unsigned, 8> Rejected; | 
|  | return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected, | 
|  | RegKills, KillOps, VRM); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// PrepForUnfoldOpti - Turn a store folding instruction into a load folding | 
|  | /// instruction. e.g. | 
|  | ///     xorl  %edi, %eax | 
|  | ///     movl  %eax, -32(%ebp) | 
|  | ///     movl  -36(%ebp), %eax | 
|  | ///     orl   %eax, -32(%ebp) | 
|  | /// ==> | 
|  | ///     xorl  %edi, %eax | 
|  | ///     orl   -36(%ebp), %eax | 
|  | ///     mov   %eax, -32(%ebp) | 
|  | /// This enables unfolding optimization for a subsequent instruction which will | 
|  | /// also eliminate the newly introduced store instruction. | 
|  | bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | std::vector<MachineInstr*> &MaybeDeadStores, | 
|  | AvailableSpills &Spills, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM) { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineInstr &MI = *MII; | 
|  | unsigned UnfoldedOpc = 0; | 
|  | unsigned UnfoldPR = 0; | 
|  | unsigned UnfoldVR = 0; | 
|  | int FoldedSS = VirtRegMap::NO_STACK_SLOT; | 
|  | VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
|  | for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { | 
|  | // Only transform a MI that folds a single register. | 
|  | if (UnfoldedOpc) | 
|  | return false; | 
|  | UnfoldVR = I->second.first; | 
|  | VirtRegMap::ModRef MR = I->second.second; | 
|  | // MI2VirtMap be can updated which invalidate the iterator. | 
|  | // Increment the iterator first. | 
|  | ++I; | 
|  | if (VRM.isAssignedReg(UnfoldVR)) | 
|  | continue; | 
|  | // If this reference is not a use, any previous store is now dead. | 
|  | // Otherwise, the store to this stack slot is not dead anymore. | 
|  | FoldedSS = VRM.getStackSlot(UnfoldVR); | 
|  | MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; | 
|  | if (DeadStore && (MR & VirtRegMap::isModRef)) { | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); | 
|  | if (!PhysReg || !DeadStore->readsRegister(PhysReg)) | 
|  | continue; | 
|  | UnfoldPR = PhysReg; | 
|  | UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), | 
|  | false, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!UnfoldedOpc) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse()) | 
|  | continue; | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) | 
|  | continue; | 
|  | if (VRM.isAssignedReg(VirtReg)) { | 
|  | unsigned PhysReg = VRM.getPhys(VirtReg); | 
|  | if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) | 
|  | return false; | 
|  | } else if (VRM.isReMaterialized(VirtReg)) | 
|  | continue; | 
|  | int SS = VRM.getStackSlot(VirtReg); | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
|  | if (PhysReg) { | 
|  | if (TRI->regsOverlap(PhysReg, UnfoldPR)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | PhysReg = VRM.getPhys(VirtReg); | 
|  | if (!TRI->regsOverlap(PhysReg, UnfoldPR)) | 
|  | continue; | 
|  |  | 
|  | // Ok, we'll need to reload the value into a register which makes | 
|  | // it impossible to perform the store unfolding optimization later. | 
|  | // Let's see if it is possible to fold the load if the store is | 
|  | // unfolded. This allows us to perform the store unfolding | 
|  | // optimization. | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { | 
|  | assert(NewMIs.size() == 1); | 
|  | MachineInstr *NewMI = NewMIs.back(); | 
|  | NewMIs.clear(); | 
|  | int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); | 
|  | assert(Idx != -1); | 
|  | SmallVector<unsigned, 2> Ops; | 
|  | Ops.push_back(Idx); | 
|  | MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); | 
|  | if (FoldedMI) { | 
|  | VRM.addSpillSlotUse(SS, FoldedMI); | 
|  | if (!VRM.hasPhys(UnfoldVR)) | 
|  | VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); | 
|  | VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); | 
|  | MII = MBB.insert(MII, FoldedMI); | 
|  | VRM.RemoveMachineInstrFromMaps(&MI); | 
|  | MBB.erase(&MI); | 
|  | return true; | 
|  | } | 
|  | delete NewMI; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findSuperReg - Find the SubReg's super-register of given register class | 
|  | /// where its SubIdx sub-register is SubReg. | 
|  | static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, | 
|  | unsigned SubIdx, const TargetRegisterInfo *TRI) { | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
|  | I != E; ++I) { | 
|  | unsigned Reg = *I; | 
|  | if (TRI->getSubReg(Reg, SubIdx) == SubReg) | 
|  | return Reg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if | 
|  | /// the last store to the same slot is now dead. If so, remove the last store. | 
|  | void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MII, | 
|  | int Idx, unsigned PhysReg, int StackSlot, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isAvailable, MachineInstr *&LastStore, | 
|  | AvailableSpills &Spills, | 
|  | SmallSet<MachineInstr*, 4> &ReMatDefs, | 
|  | BitVector &RegKills, | 
|  | std::vector<MachineOperand*> &KillOps, | 
|  | VirtRegMap &VRM) { | 
|  | TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC); | 
|  | MachineInstr *StoreMI = next(MII); | 
|  | VRM.addSpillSlotUse(StackSlot, StoreMI); | 
|  | DOUT << "Store:\t" << *StoreMI; | 
|  |  | 
|  | // If there is a dead store to this stack slot, nuke it now. | 
|  | if (LastStore) { | 
|  | DOUT << "Removed dead store:\t" << *LastStore; | 
|  | ++NumDSE; | 
|  | SmallVector<unsigned, 2> KillRegs; | 
|  | InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs); | 
|  | MachineBasicBlock::iterator PrevMII = LastStore; | 
|  | bool CheckDef = PrevMII != MBB.begin(); | 
|  | if (CheckDef) | 
|  | --PrevMII; | 
|  | VRM.RemoveMachineInstrFromMaps(LastStore); | 
|  | MBB.erase(LastStore); | 
|  | if (CheckDef) { | 
|  | // Look at defs of killed registers on the store. Mark the defs | 
|  | // as dead since the store has been deleted and they aren't | 
|  | // being reused. | 
|  | for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { | 
|  | bool HasOtherDef = false; | 
|  | if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { | 
|  | MachineInstr *DeadDef = PrevMII; | 
|  | if (ReMatDefs.count(DeadDef) && !HasOtherDef) { | 
|  | // FIXME: This assumes a remat def does not have side | 
|  | // effects. | 
|  | VRM.RemoveMachineInstrFromMaps(DeadDef); | 
|  | MBB.erase(DeadDef); | 
|  | ++NumDRM; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LastStore = next(MII); | 
|  |  | 
|  | // If the stack slot value was previously available in some other | 
|  | // register, change it now.  Otherwise, make the register available, | 
|  | // in PhysReg. | 
|  | Spills.ModifyStackSlotOrReMat(StackSlot); | 
|  | Spills.ClobberPhysReg(PhysReg); | 
|  | Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable); | 
|  | ++NumStores; | 
|  | } | 
|  |  | 
|  | /// rewriteMBB - Keep track of which spills are available even after the | 
|  | /// register allocator is done with them.  If possible, avid reloading vregs. | 
|  | void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { | 
|  | DOUT << MBB.getBasicBlock()->getName() << ":\n"; | 
|  |  | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  |  | 
|  | // Spills - Keep track of which spilled values are available in physregs so | 
|  | // that we can choose to reuse the physregs instead of emitting reloads. | 
|  | AvailableSpills Spills(TRI, TII); | 
|  |  | 
|  | // MaybeDeadStores - When we need to write a value back into a stack slot, | 
|  | // keep track of the inserted store.  If the stack slot value is never read | 
|  | // (because the value was used from some available register, for example), and | 
|  | // subsequently stored to, the original store is dead.  This map keeps track | 
|  | // of inserted stores that are not used.  If we see a subsequent store to the | 
|  | // same stack slot, the original store is deleted. | 
|  | std::vector<MachineInstr*> MaybeDeadStores; | 
|  | MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); | 
|  |  | 
|  | // ReMatDefs - These are rematerializable def MIs which are not deleted. | 
|  | SmallSet<MachineInstr*, 4> ReMatDefs; | 
|  |  | 
|  | // Keep track of kill information. | 
|  | BitVector RegKills(TRI->getNumRegs()); | 
|  | std::vector<MachineOperand*>  KillOps; | 
|  | KillOps.resize(TRI->getNumRegs(), NULL); | 
|  |  | 
|  | for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); | 
|  | MII != E; ) { | 
|  | MachineBasicBlock::iterator NextMII = MII; ++NextMII; | 
|  |  | 
|  | VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
|  | bool Erased = false; | 
|  | bool BackTracked = false; | 
|  | if (PrepForUnfoldOpti(MBB, MII, | 
|  | MaybeDeadStores, Spills, RegKills, KillOps, VRM)) | 
|  | NextMII = next(MII); | 
|  |  | 
|  | MachineInstr &MI = *MII; | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | if (VRM.hasEmergencySpills(&MI)) { | 
|  | // Spill physical register(s) in the rare case the allocator has run out | 
|  | // of registers to allocate. | 
|  | SmallSet<int, 4> UsedSS; | 
|  | std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI); | 
|  | for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { | 
|  | unsigned PhysReg = EmSpills[i]; | 
|  | const TargetRegisterClass *RC = | 
|  | TRI->getPhysicalRegisterRegClass(PhysReg); | 
|  | assert(RC && "Unable to determine register class!"); | 
|  | int SS = VRM.getEmergencySpillSlot(RC); | 
|  | if (UsedSS.count(SS)) | 
|  | assert(0 && "Need to spill more than one physical registers!"); | 
|  | UsedSS.insert(SS); | 
|  | TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC); | 
|  | MachineInstr *StoreMI = prior(MII); | 
|  | VRM.addSpillSlotUse(SS, StoreMI); | 
|  | TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC); | 
|  | MachineInstr *LoadMI = next(MII); | 
|  | VRM.addSpillSlotUse(SS, LoadMI); | 
|  | ++NumPSpills; | 
|  | } | 
|  | NextMII = next(MII); | 
|  | } | 
|  |  | 
|  | // Insert restores here if asked to. | 
|  | if (VRM.isRestorePt(&MI)) { | 
|  | std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI); | 
|  | for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { | 
|  | unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order. | 
|  | if (!VRM.getPreSplitReg(VirtReg)) | 
|  | continue; // Split interval spilled again. | 
|  | unsigned Phys = VRM.getPhys(VirtReg); | 
|  | RegInfo->setPhysRegUsed(Phys); | 
|  | if (VRM.isReMaterialized(VirtReg)) { | 
|  | ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM); | 
|  | } else { | 
|  | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
|  | int SS = VRM.getStackSlot(VirtReg); | 
|  | TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC); | 
|  | MachineInstr *LoadMI = prior(MII); | 
|  | VRM.addSpillSlotUse(SS, LoadMI); | 
|  | ++NumLoads; | 
|  | } | 
|  | // This invalidates Phys. | 
|  | Spills.ClobberPhysReg(Phys); | 
|  | UpdateKills(*prior(MII), RegKills, KillOps); | 
|  | DOUT << '\t' << *prior(MII); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert spills here if asked to. | 
|  | if (VRM.isSpillPt(&MI)) { | 
|  | std::vector<std::pair<unsigned,bool> > &SpillRegs = | 
|  | VRM.getSpillPtSpills(&MI); | 
|  | for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { | 
|  | unsigned VirtReg = SpillRegs[i].first; | 
|  | bool isKill = SpillRegs[i].second; | 
|  | if (!VRM.getPreSplitReg(VirtReg)) | 
|  | continue; // Split interval spilled again. | 
|  | const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); | 
|  | unsigned Phys = VRM.getPhys(VirtReg); | 
|  | int StackSlot = VRM.getStackSlot(VirtReg); | 
|  | TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC); | 
|  | MachineInstr *StoreMI = next(MII); | 
|  | VRM.addSpillSlotUse(StackSlot, StoreMI); | 
|  | DOUT << "Store:\t" << *StoreMI; | 
|  | VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
|  | } | 
|  | NextMII = next(MII); | 
|  | } | 
|  |  | 
|  | /// ReusedOperands - Keep track of operand reuse in case we need to undo | 
|  | /// reuse. | 
|  | ReuseInfo ReusedOperands(MI, TRI); | 
|  | SmallVector<unsigned, 4> VirtUseOps; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isRegister() || MO.getReg() == 0) | 
|  | continue;   // Ignore non-register operands. | 
|  |  | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { | 
|  | // Ignore physregs for spilling, but remember that it is used by this | 
|  | // function. | 
|  | RegInfo->setPhysRegUsed(VirtReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We want to process implicit virtual register uses first. | 
|  | if (MO.isImplicit()) | 
|  | // If the virtual register is implicitly defined, emit a implicit_def | 
|  | // before so scavenger knows it's "defined". | 
|  | VirtUseOps.insert(VirtUseOps.begin(), i); | 
|  | else | 
|  | VirtUseOps.push_back(i); | 
|  | } | 
|  |  | 
|  | // Process all of the spilled uses and all non spilled reg references. | 
|  | for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { | 
|  | unsigned i = VirtUseOps[j]; | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
|  | "Not a virtual register?"); | 
|  |  | 
|  | unsigned SubIdx = MO.getSubReg(); | 
|  | if (VRM.isAssignedReg(VirtReg)) { | 
|  | // This virtual register was assigned a physreg! | 
|  | unsigned Phys = VRM.getPhys(VirtReg); | 
|  | RegInfo->setPhysRegUsed(Phys); | 
|  | if (MO.isDef()) | 
|  | ReusedOperands.markClobbered(Phys); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | if (VRM.isImplicitlyDefined(VirtReg)) | 
|  | BuildMI(MBB, MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This virtual register is now known to be a spilled value. | 
|  | if (!MO.isUse()) | 
|  | continue;  // Handle defs in the loop below (handle use&def here though) | 
|  |  | 
|  | bool DoReMat = VRM.isReMaterialized(VirtReg); | 
|  | int SSorRMId = DoReMat | 
|  | ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); | 
|  | int ReuseSlot = SSorRMId; | 
|  |  | 
|  | // Check to see if this stack slot is available. | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); | 
|  |  | 
|  | // If this is a sub-register use, make sure the reuse register is in the | 
|  | // right register class. For example, for x86 not all of the 32-bit | 
|  | // registers have accessible sub-registers. | 
|  | // Similarly so for EXTRACT_SUBREG. Consider this: | 
|  | // EDI = op | 
|  | // MOV32_mr fi#1, EDI | 
|  | // ... | 
|  | //       = EXTRACT_SUBREG fi#1 | 
|  | // fi#1 is available in EDI, but it cannot be reused because it's not in | 
|  | // the right register file. | 
|  | if (PhysReg && | 
|  | (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { | 
|  | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
|  | if (!RC->contains(PhysReg)) | 
|  | PhysReg = 0; | 
|  | } | 
|  |  | 
|  | if (PhysReg) { | 
|  | // This spilled operand might be part of a two-address operand.  If this | 
|  | // is the case, then changing it will necessarily require changing the | 
|  | // def part of the instruction as well.  However, in some cases, we | 
|  | // aren't allowed to modify the reused register.  If none of these cases | 
|  | // apply, reuse it. | 
|  | bool CanReuse = true; | 
|  | int ti = TID.getOperandConstraint(i, TOI::TIED_TO); | 
|  | if (ti != -1 && | 
|  | MI.getOperand(ti).isRegister() && | 
|  | MI.getOperand(ti).getReg() == VirtReg) { | 
|  | // Okay, we have a two address operand.  We can reuse this physreg as | 
|  | // long as we are allowed to clobber the value and there isn't an | 
|  | // earlier def that has already clobbered the physreg. | 
|  | CanReuse = Spills.canClobberPhysReg(ReuseSlot) && | 
|  | !ReusedOperands.isClobbered(PhysReg); | 
|  | } | 
|  |  | 
|  | if (CanReuse) { | 
|  | // If this stack slot value is already available, reuse it! | 
|  | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
|  | DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; | 
|  | else | 
|  | DOUT << "Reusing SS#" << ReuseSlot; | 
|  | DOUT << " from physreg " | 
|  | << TRI->getName(PhysReg) << " for vreg" | 
|  | << VirtReg <<" instead of reloading into physreg " | 
|  | << TRI->getName(VRM.getPhys(VirtReg)) << "\n"; | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  |  | 
|  | // The only technical detail we have is that we don't know that | 
|  | // PhysReg won't be clobbered by a reloaded stack slot that occurs | 
|  | // later in the instruction.  In particular, consider 'op V1, V2'. | 
|  | // If V1 is available in physreg R0, we would choose to reuse it | 
|  | // here, instead of reloading it into the register the allocator | 
|  | // indicated (say R1).  However, V2 might have to be reloaded | 
|  | // later, and it might indicate that it needs to live in R0.  When | 
|  | // this occurs, we need to have information available that | 
|  | // indicates it is safe to use R1 for the reload instead of R0. | 
|  | // | 
|  | // To further complicate matters, we might conflict with an alias, | 
|  | // or R0 and R1 might not be compatible with each other.  In this | 
|  | // case, we actually insert a reload for V1 in R1, ensuring that | 
|  | // we can get at R0 or its alias. | 
|  | ReusedOperands.addReuse(i, ReuseSlot, PhysReg, | 
|  | VRM.getPhys(VirtReg), VirtReg); | 
|  | if (ti != -1) | 
|  | // Only mark it clobbered if this is a use&def operand. | 
|  | ReusedOperands.markClobbered(PhysReg); | 
|  | ++NumReused; | 
|  |  | 
|  | if (MI.getOperand(i).isKill() && | 
|  | ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { | 
|  | // This was the last use and the spilled value is still available | 
|  | // for reuse. That means the spill was unnecessary! | 
|  | MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot]; | 
|  | if (DeadStore) { | 
|  | DOUT << "Removed dead store:\t" << *DeadStore; | 
|  | InvalidateKills(*DeadStore, RegKills, KillOps); | 
|  | VRM.RemoveMachineInstrFromMaps(DeadStore); | 
|  | MBB.erase(DeadStore); | 
|  | MaybeDeadStores[ReuseSlot] = NULL; | 
|  | ++NumDSE; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | }  // CanReuse | 
|  |  | 
|  | // Otherwise we have a situation where we have a two-address instruction | 
|  | // whose mod/ref operand needs to be reloaded.  This reload is already | 
|  | // available in some register "PhysReg", but if we used PhysReg as the | 
|  | // operand to our 2-addr instruction, the instruction would modify | 
|  | // PhysReg.  This isn't cool if something later uses PhysReg and expects | 
|  | // to get its initial value. | 
|  | // | 
|  | // To avoid this problem, and to avoid doing a load right after a store, | 
|  | // we emit a copy from PhysReg into the designated register for this | 
|  | // operand. | 
|  | unsigned DesignatedReg = VRM.getPhys(VirtReg); | 
|  | assert(DesignatedReg && "Must map virtreg to physreg!"); | 
|  |  | 
|  | // Note that, if we reused a register for a previous operand, the | 
|  | // register we want to reload into might not actually be | 
|  | // available.  If this occurs, use the register indicated by the | 
|  | // reuser. | 
|  | if (ReusedOperands.hasReuses()) | 
|  | DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, | 
|  | Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
|  |  | 
|  | // If the mapped designated register is actually the physreg we have | 
|  | // incoming, we don't need to inserted a dead copy. | 
|  | if (DesignatedReg == PhysReg) { | 
|  | // If this stack slot value is already available, reuse it! | 
|  | if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
|  | DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; | 
|  | else | 
|  | DOUT << "Reusing SS#" << ReuseSlot; | 
|  | DOUT << " from physreg " << TRI->getName(PhysReg) | 
|  | << " for vreg" << VirtReg | 
|  | << " instead of reloading into same physreg.\n"; | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | ReusedOperands.markClobbered(RReg); | 
|  | ++NumReused; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
|  | RegInfo->setPhysRegUsed(DesignatedReg); | 
|  | ReusedOperands.markClobbered(DesignatedReg); | 
|  | TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC); | 
|  |  | 
|  | MachineInstr *CopyMI = prior(MII); | 
|  | UpdateKills(*CopyMI, RegKills, KillOps); | 
|  |  | 
|  | // This invalidates DesignatedReg. | 
|  | Spills.ClobberPhysReg(DesignatedReg); | 
|  |  | 
|  | Spills.addAvailable(ReuseSlot, &MI, DesignatedReg); | 
|  | unsigned RReg = | 
|  | SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | DOUT << '\t' << *prior(MII); | 
|  | ++NumReused; | 
|  | continue; | 
|  | } // if (PhysReg) | 
|  |  | 
|  | // Otherwise, reload it and remember that we have it. | 
|  | PhysReg = VRM.getPhys(VirtReg); | 
|  | assert(PhysReg && "Must map virtreg to physreg!"); | 
|  |  | 
|  | // Note that, if we reused a register for a previous operand, the | 
|  | // register we want to reload into might not actually be | 
|  | // available.  If this occurs, use the register indicated by the | 
|  | // reuser. | 
|  | if (ReusedOperands.hasReuses()) | 
|  | PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, | 
|  | Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
|  |  | 
|  | RegInfo->setPhysRegUsed(PhysReg); | 
|  | ReusedOperands.markClobbered(PhysReg); | 
|  | if (DoReMat) { | 
|  | ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM); | 
|  | } else { | 
|  | const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
|  | TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC); | 
|  | MachineInstr *LoadMI = prior(MII); | 
|  | VRM.addSpillSlotUse(SSorRMId, LoadMI); | 
|  | ++NumLoads; | 
|  | } | 
|  | // This invalidates PhysReg. | 
|  | Spills.ClobberPhysReg(PhysReg); | 
|  |  | 
|  | // Any stores to this stack slot are not dead anymore. | 
|  | if (!DoReMat) | 
|  | MaybeDeadStores[SSorRMId] = NULL; | 
|  | Spills.addAvailable(SSorRMId, &MI, PhysReg); | 
|  | // Assumes this is the last use. IsKill will be unset if reg is reused | 
|  | // unless it's a two-address operand. | 
|  | if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1) | 
|  | MI.getOperand(i).setIsKill(); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | MI.getOperand(i).setReg(RReg); | 
|  | UpdateKills(*prior(MII), RegKills, KillOps); | 
|  | DOUT << '\t' << *prior(MII); | 
|  | } | 
|  |  | 
|  | DOUT << '\t' << MI; | 
|  |  | 
|  |  | 
|  | // If we have folded references to memory operands, make sure we clear all | 
|  | // physical registers that may contain the value of the spilled virtual | 
|  | // register | 
|  | SmallSet<int, 2> FoldedSS; | 
|  | for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { | 
|  | unsigned VirtReg = I->second.first; | 
|  | VirtRegMap::ModRef MR = I->second.second; | 
|  | DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR; | 
|  |  | 
|  | // MI2VirtMap be can updated which invalidate the iterator. | 
|  | // Increment the iterator first. | 
|  | ++I; | 
|  | int SS = VRM.getStackSlot(VirtReg); | 
|  | if (SS == VirtRegMap::NO_STACK_SLOT) | 
|  | continue; | 
|  | FoldedSS.insert(SS); | 
|  | DOUT << " - StackSlot: " << SS << "\n"; | 
|  |  | 
|  | // If this folded instruction is just a use, check to see if it's a | 
|  | // straight load from the virt reg slot. | 
|  | if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { | 
|  | int FrameIdx; | 
|  | unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); | 
|  | if (DestReg && FrameIdx == SS) { | 
|  | // If this spill slot is available, turn it into a copy (or nothing) | 
|  | // instead of leaving it as a load! | 
|  | if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { | 
|  | DOUT << "Promoted Load To Copy: " << MI; | 
|  | if (DestReg != InReg) { | 
|  | const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); | 
|  | TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); | 
|  | // Revisit the copy so we make sure to notice the effects of the | 
|  | // operation on the destreg (either needing to RA it if it's | 
|  | // virtual or needing to clobber any values if it's physical). | 
|  | NextMII = &MI; | 
|  | --NextMII;  // backtrack to the copy. | 
|  | BackTracked = true; | 
|  | } else { | 
|  | DOUT << "Removing now-noop copy: " << MI; | 
|  | // Unset last kill since it's being reused. | 
|  | InvalidateKill(InReg, RegKills, KillOps); | 
|  | } | 
|  |  | 
|  | VRM.RemoveMachineInstrFromMaps(&MI); | 
|  | MBB.erase(&MI); | 
|  | Erased = true; | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } else { | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | if (PhysReg && | 
|  | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { | 
|  | MBB.insert(MII, NewMIs[0]); | 
|  | VRM.RemoveMachineInstrFromMaps(&MI); | 
|  | MBB.erase(&MI); | 
|  | Erased = true; | 
|  | --NextMII;  // backtrack to the unfolded instruction. | 
|  | BackTracked = true; | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this reference is not a use, any previous store is now dead. | 
|  | // Otherwise, the store to this stack slot is not dead anymore. | 
|  | MachineInstr* DeadStore = MaybeDeadStores[SS]; | 
|  | if (DeadStore) { | 
|  | bool isDead = !(MR & VirtRegMap::isRef); | 
|  | MachineInstr *NewStore = NULL; | 
|  | if (MR & VirtRegMap::isModRef) { | 
|  | unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
|  | SmallVector<MachineInstr*, 4> NewMIs; | 
|  | // We can reuse this physreg as long as we are allowed to clobber | 
|  | // the value and there isn't an earlier def that has already clobbered | 
|  | // the physreg. | 
|  | if (PhysReg && | 
|  | !TII->isStoreToStackSlot(&MI, SS) && // Not profitable! | 
|  | DeadStore->killsRegister(PhysReg) && | 
|  | TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) { | 
|  | MBB.insert(MII, NewMIs[0]); | 
|  | NewStore = NewMIs[1]; | 
|  | MBB.insert(MII, NewStore); | 
|  | VRM.addSpillSlotUse(SS, NewStore); | 
|  | VRM.RemoveMachineInstrFromMaps(&MI); | 
|  | MBB.erase(&MI); | 
|  | Erased = true; | 
|  | --NextMII; | 
|  | --NextMII;  // backtrack to the unfolded instruction. | 
|  | BackTracked = true; | 
|  | isDead = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isDead) {  // Previous store is dead. | 
|  | // If we get here, the store is dead, nuke it now. | 
|  | DOUT << "Removed dead store:\t" << *DeadStore; | 
|  | InvalidateKills(*DeadStore, RegKills, KillOps); | 
|  | VRM.RemoveMachineInstrFromMaps(DeadStore); | 
|  | MBB.erase(DeadStore); | 
|  | if (!NewStore) | 
|  | ++NumDSE; | 
|  | } | 
|  |  | 
|  | MaybeDeadStores[SS] = NULL; | 
|  | if (NewStore) { | 
|  | // Treat this store as a spill merged into a copy. That makes the | 
|  | // stack slot value available. | 
|  | VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the spill slot value is available, and this is a new definition of | 
|  | // the value, the value is not available anymore. | 
|  | if (MR & VirtRegMap::isMod) { | 
|  | // Notice that the value in this stack slot has been modified. | 
|  | Spills.ModifyStackSlotOrReMat(SS); | 
|  |  | 
|  | // If this is *just* a mod of the value, check to see if this is just a | 
|  | // store to the spill slot (i.e. the spill got merged into the copy). If | 
|  | // so, realize that the vreg is available now, and add the store to the | 
|  | // MaybeDeadStore info. | 
|  | int StackSlot; | 
|  | if (!(MR & VirtRegMap::isRef)) { | 
|  | if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && | 
|  | "Src hasn't been allocated yet?"); | 
|  | // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark | 
|  | // this as a potentially dead store in case there is a subsequent | 
|  | // store into the stack slot without a read from it. | 
|  | MaybeDeadStores[StackSlot] = &MI; | 
|  |  | 
|  | // If the stack slot value was previously available in some other | 
|  | // register, change it now.  Otherwise, make the register available, | 
|  | // in PhysReg. | 
|  | Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process all of the spilled defs. | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (!(MO.isRegister() && MO.getReg() && MO.isDef())) | 
|  | continue; | 
|  |  | 
|  | unsigned VirtReg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
|  | // Check to see if this is a noop copy.  If so, eliminate the | 
|  | // instruction before considering the dest reg to be changed. | 
|  | unsigned Src, Dst; | 
|  | if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { | 
|  | ++NumDCE; | 
|  | DOUT << "Removing now-noop copy: " << MI; | 
|  | VRM.RemoveMachineInstrFromMaps(&MI); | 
|  | MBB.erase(&MI); | 
|  | Erased = true; | 
|  | Spills.disallowClobberPhysReg(VirtReg); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  |  | 
|  | // If it's not a no-op copy, it clobbers the value in the destreg. | 
|  | Spills.ClobberPhysReg(VirtReg); | 
|  | ReusedOperands.markClobbered(VirtReg); | 
|  |  | 
|  | // Check to see if this instruction is a load from a stack slot into | 
|  | // a register.  If so, this provides the stack slot value in the reg. | 
|  | int FrameIdx; | 
|  | if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { | 
|  | assert(DestReg == VirtReg && "Unknown load situation!"); | 
|  |  | 
|  | // If it is a folded reference, then it's not safe to clobber. | 
|  | bool Folded = FoldedSS.count(FrameIdx); | 
|  | // Otherwise, if it wasn't available, remember that it is now! | 
|  | Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned SubIdx = MO.getSubReg(); | 
|  | bool DoReMat = VRM.isReMaterialized(VirtReg); | 
|  | if (DoReMat) | 
|  | ReMatDefs.insert(&MI); | 
|  |  | 
|  | // The only vregs left are stack slot definitions. | 
|  | int StackSlot = VRM.getStackSlot(VirtReg); | 
|  | const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); | 
|  |  | 
|  | // If this def is part of a two-address operand, make sure to execute | 
|  | // the store from the correct physical register. | 
|  | unsigned PhysReg; | 
|  | int TiedOp = MI.getDesc().findTiedToSrcOperand(i); | 
|  | if (TiedOp != -1) { | 
|  | PhysReg = MI.getOperand(TiedOp).getReg(); | 
|  | if (SubIdx) { | 
|  | unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); | 
|  | assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && | 
|  | "Can't find corresponding super-register!"); | 
|  | PhysReg = SuperReg; | 
|  | } | 
|  | } else { | 
|  | PhysReg = VRM.getPhys(VirtReg); | 
|  | if (ReusedOperands.isClobbered(PhysReg)) { | 
|  | // Another def has taken the assigned physreg. It must have been a | 
|  | // use&def which got it due to reuse. Undo the reuse! | 
|  | PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, | 
|  | Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(PhysReg && "VR not assigned a physical register?"); | 
|  | RegInfo->setPhysRegUsed(PhysReg); | 
|  | unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
|  | ReusedOperands.markClobbered(RReg); | 
|  | MI.getOperand(i).setReg(RReg); | 
|  |  | 
|  | if (!MO.isDead()) { | 
|  | MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; | 
|  | SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true, | 
|  | LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); | 
|  | NextMII = next(MII); | 
|  |  | 
|  | // Check to see if this is a noop copy.  If so, eliminate the | 
|  | // instruction before considering the dest reg to be changed. | 
|  | { | 
|  | unsigned Src, Dst; | 
|  | if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { | 
|  | ++NumDCE; | 
|  | DOUT << "Removing now-noop copy: " << MI; | 
|  | VRM.RemoveMachineInstrFromMaps(&MI); | 
|  | MBB.erase(&MI); | 
|  | Erased = true; | 
|  | UpdateKills(*LastStore, RegKills, KillOps); | 
|  | goto ProcessNextInst; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | ProcessNextInst: | 
|  | if (!Erased && !BackTracked) { | 
|  | for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II) | 
|  | UpdateKills(*II, RegKills, KillOps); | 
|  | } | 
|  | MII = NextMII; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::Spiller* llvm::createSpiller() { | 
|  | switch (SpillerOpt) { | 
|  | default: assert(0 && "Unreachable!"); | 
|  | case local: | 
|  | return new LocalSpiller(); | 
|  | case simple: | 
|  | return new SimpleSpiller(); | 
|  | } | 
|  | } |