|  | //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a DAG pattern matching instruction selector for X86, | 
|  | // converting from a legalized dag to a X86 dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "x86-isel" | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86ISelLowering.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86RegisterInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden); | 
|  |  | 
|  | STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Pattern Matcher Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses | 
|  | /// SDValue's instead of register numbers for the leaves of the matched | 
|  | /// tree. | 
|  | struct X86ISelAddressMode { | 
|  | enum { | 
|  | RegBase, | 
|  | FrameIndexBase | 
|  | } BaseType; | 
|  |  | 
|  | struct {            // This is really a union, discriminated by BaseType! | 
|  | SDValue Reg; | 
|  | int FrameIndex; | 
|  | } Base; | 
|  |  | 
|  | unsigned Scale; | 
|  | SDValue IndexReg; | 
|  | int32_t Disp; | 
|  | SDValue Segment; | 
|  | GlobalValue *GV; | 
|  | Constant *CP; | 
|  | const char *ES; | 
|  | int JT; | 
|  | unsigned Align;    // CP alignment. | 
|  | unsigned char SymbolFlags;  // X86II::MO_* | 
|  |  | 
|  | X86ISelAddressMode() | 
|  | : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), | 
|  | Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0), | 
|  | SymbolFlags(X86II::MO_NO_FLAG) { | 
|  | } | 
|  |  | 
|  | bool hasSymbolicDisplacement() const { | 
|  | return GV != 0 || CP != 0 || ES != 0 || JT != -1; | 
|  | } | 
|  |  | 
|  | bool hasBaseOrIndexReg() const { | 
|  | return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0; | 
|  | } | 
|  |  | 
|  | /// isRIPRelative - Return true if this addressing mode is already RIP | 
|  | /// relative. | 
|  | bool isRIPRelative() const { | 
|  | if (BaseType != RegBase) return false; | 
|  | if (RegisterSDNode *RegNode = | 
|  | dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode())) | 
|  | return RegNode->getReg() == X86::RIP; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void setBaseReg(SDValue Reg) { | 
|  | BaseType = RegBase; | 
|  | Base.Reg = Reg; | 
|  | } | 
|  |  | 
|  | void dump() { | 
|  | errs() << "X86ISelAddressMode " << this << '\n'; | 
|  | errs() << "Base.Reg "; | 
|  | if (Base.Reg.getNode() != 0) | 
|  | Base.Reg.getNode()->dump(); | 
|  | else | 
|  | errs() << "nul"; | 
|  | errs() << " Base.FrameIndex " << Base.FrameIndex << '\n' | 
|  | << " Scale" << Scale << '\n' | 
|  | << "IndexReg "; | 
|  | if (IndexReg.getNode() != 0) | 
|  | IndexReg.getNode()->dump(); | 
|  | else | 
|  | errs() << "nul"; | 
|  | errs() << " Disp " << Disp << '\n' | 
|  | << "GV "; | 
|  | if (GV) | 
|  | GV->dump(); | 
|  | else | 
|  | errs() << "nul"; | 
|  | errs() << " CP "; | 
|  | if (CP) | 
|  | CP->dump(); | 
|  | else | 
|  | errs() << "nul"; | 
|  | errs() << '\n' | 
|  | << "ES "; | 
|  | if (ES) | 
|  | errs() << ES; | 
|  | else | 
|  | errs() << "nul"; | 
|  | errs() << " JT" << JT << " Align" << Align << '\n'; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// ISel - X86 specific code to select X86 machine instructions for | 
|  | /// SelectionDAG operations. | 
|  | /// | 
|  | class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel { | 
|  | /// X86Lowering - This object fully describes how to lower LLVM code to an | 
|  | /// X86-specific SelectionDAG. | 
|  | X86TargetLowering &X86Lowering; | 
|  |  | 
|  | /// Subtarget - Keep a pointer to the X86Subtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const X86Subtarget *Subtarget; | 
|  |  | 
|  | /// OptForSize - If true, selector should try to optimize for code size | 
|  | /// instead of performance. | 
|  | bool OptForSize; | 
|  |  | 
|  | public: | 
|  | explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(tm, OptLevel), | 
|  | X86Lowering(*tm.getTargetLowering()), | 
|  | Subtarget(&tm.getSubtarget<X86Subtarget>()), | 
|  | OptForSize(false) {} | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "X86 DAG->DAG Instruction Selection"; | 
|  | } | 
|  |  | 
|  | /// InstructionSelect - This callback is invoked by | 
|  | /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. | 
|  | virtual void InstructionSelect(); | 
|  |  | 
|  | virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); | 
|  |  | 
|  | virtual | 
|  | bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const; | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "X86GenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | SDNode *Select(SDValue N); | 
|  | SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); | 
|  | SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT); | 
|  |  | 
|  | bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM); | 
|  | bool MatchLoad(SDValue N, X86ISelAddressMode &AM); | 
|  | bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); | 
|  | bool MatchAddress(SDValue N, X86ISelAddressMode &AM); | 
|  | bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth); | 
|  | bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); | 
|  | bool SelectAddr(SDValue Op, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp); | 
|  | bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, SDValue &Disp); | 
|  | bool SelectScalarSSELoad(SDValue Op, SDValue Pred, | 
|  | SDValue N, SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment, | 
|  | SDValue &InChain, SDValue &OutChain); | 
|  | bool TryFoldLoad(SDValue P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment); | 
|  | void PreprocessForRMW(); | 
|  | void PreprocessForFPConvert(); | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions. | 
|  | virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps); | 
|  |  | 
|  | void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); | 
|  |  | 
|  | inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? | 
|  | CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) : | 
|  | AM.Base.Reg; | 
|  | Scale = getI8Imm(AM.Scale); | 
|  | Index = AM.IndexReg; | 
|  | // These are 32-bit even in 64-bit mode since RIP relative offset | 
|  | // is 32-bit. | 
|  | if (AM.GV) | 
|  | Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp, | 
|  | AM.SymbolFlags); | 
|  | else if (AM.CP) | 
|  | Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, | 
|  | AM.Align, AM.Disp, AM.SymbolFlags); | 
|  | else if (AM.ES) | 
|  | Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); | 
|  | else if (AM.JT != -1) | 
|  | Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); | 
|  | else | 
|  | Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); | 
|  |  | 
|  | if (AM.Segment.getNode()) | 
|  | Segment = AM.Segment; | 
|  | else | 
|  | Segment = CurDAG->getRegister(0, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getI8Imm - Return a target constant with the specified value, of type | 
|  | /// i8. | 
|  | inline SDValue getI8Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i8); | 
|  | } | 
|  |  | 
|  | /// getI16Imm - Return a target constant with the specified value, of type | 
|  | /// i16. | 
|  | inline SDValue getI16Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i16); | 
|  | } | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDValue getI32Imm(unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Return an SDNode that returns the value of | 
|  | /// the global base register. Output instructions required to | 
|  | /// initialize the global base register, if necessary. | 
|  | /// | 
|  | SDNode *getGlobalBaseReg(); | 
|  |  | 
|  | /// getTargetMachine - Return a reference to the TargetMachine, casted | 
|  | /// to the target-specific type. | 
|  | const X86TargetMachine &getTargetMachine() { | 
|  | return static_cast<const X86TargetMachine &>(TM); | 
|  | } | 
|  |  | 
|  | /// getInstrInfo - Return a reference to the TargetInstrInfo, casted | 
|  | /// to the target-specific type. | 
|  | const X86InstrInfo *getInstrInfo() { | 
|  | return getTargetMachine().getInstrInfo(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | unsigned Indent; | 
|  | #endif | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U, | 
|  | SDNode *Root) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  |  | 
|  | if (U == Root) | 
|  | switch (U->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ADD: | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | SDValue Op1 = U->getOperand(1); | 
|  |  | 
|  | // If the other operand is a 8-bit immediate we should fold the immediate | 
|  | // instead. This reduces code size. | 
|  | // e.g. | 
|  | // movl 4(%esp), %eax | 
|  | // addl $4, %eax | 
|  | // vs. | 
|  | // movl $4, %eax | 
|  | // addl 4(%esp), %eax | 
|  | // The former is 2 bytes shorter. In case where the increment is 1, then | 
|  | // the saving can be 4 bytes (by using incl %eax). | 
|  | if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) | 
|  | if (Imm->getAPIntValue().isSignedIntN(8)) | 
|  | return false; | 
|  |  | 
|  | // If the other operand is a TLS address, we should fold it instead. | 
|  | // This produces | 
|  | // movl    %gs:0, %eax | 
|  | // leal    i@NTPOFF(%eax), %eax | 
|  | // instead of | 
|  | // movl    $i@NTPOFF, %eax | 
|  | // addl    %gs:0, %eax | 
|  | // if the block also has an access to a second TLS address this will save | 
|  | // a load. | 
|  | // FIXME: This is probably also true for non TLS addresses. | 
|  | if (Op1.getOpcode() == X86ISD::Wrapper) { | 
|  | SDValue Val = Op1.getOperand(0); | 
|  | if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Proceed to 'generic' cycle finder code | 
|  | return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root); | 
|  | } | 
|  |  | 
|  | /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand | 
|  | /// and move load below the TokenFactor. Replace store's chain operand with | 
|  | /// load's chain result. | 
|  | static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load, | 
|  | SDValue Store, SDValue TF) { | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i) | 
|  | if (Load.getNode() == TF.getOperand(i).getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else | 
|  | Ops.push_back(TF.getOperand(i)); | 
|  | SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size()); | 
|  | SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF, | 
|  | Load.getOperand(1), | 
|  | Load.getOperand(2)); | 
|  | CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1), | 
|  | Store.getOperand(2), Store.getOperand(3)); | 
|  | } | 
|  |  | 
|  | /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. | 
|  | /// | 
|  | static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address, | 
|  | SDValue &Load) { | 
|  | if (N.getOpcode() == ISD::BIT_CONVERT) | 
|  | N = N.getOperand(0); | 
|  |  | 
|  | LoadSDNode *LD = dyn_cast<LoadSDNode>(N); | 
|  | if (!LD || LD->isVolatile()) | 
|  | return false; | 
|  | if (LD->getAddressingMode() != ISD::UNINDEXED) | 
|  | return false; | 
|  |  | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD) | 
|  | return false; | 
|  |  | 
|  | if (N.hasOneUse() && | 
|  | N.getOperand(1) == Address && | 
|  | N.getNode()->isOperandOf(Chain.getNode())) { | 
|  | Load = N; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain | 
|  | /// operand and move load below the call's chain operand. | 
|  | static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load, | 
|  | SDValue Call, SDValue CallSeqStart) { | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | SDValue Chain = CallSeqStart.getOperand(0); | 
|  | if (Chain.getNode() == Load.getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else { | 
|  | assert(Chain.getOpcode() == ISD::TokenFactor && | 
|  | "Unexpected CallSeqStart chain operand"); | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) | 
|  | if (Chain.getOperand(i).getNode() == Load.getNode()) | 
|  | Ops.push_back(Load.getOperand(0)); | 
|  | else | 
|  | Ops.push_back(Chain.getOperand(i)); | 
|  | SDValue NewChain = | 
|  | CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), | 
|  | MVT::Other, &Ops[0], Ops.size()); | 
|  | Ops.clear(); | 
|  | Ops.push_back(NewChain); | 
|  | } | 
|  | for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(CallSeqStart.getOperand(i)); | 
|  | CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size()); | 
|  | CurDAG->UpdateNodeOperands(Load, Call.getOperand(0), | 
|  | Load.getOperand(1), Load.getOperand(2)); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SDValue(Load.getNode(), 1)); | 
|  | for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(Call.getOperand(i)); | 
|  | CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | /// isCalleeLoad - Return true if call address is a load and it can be | 
|  | /// moved below CALLSEQ_START and the chains leading up to the call. | 
|  | /// Return the CALLSEQ_START by reference as a second output. | 
|  | static bool isCalleeLoad(SDValue Callee, SDValue &Chain) { | 
|  | if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) | 
|  | return false; | 
|  | LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); | 
|  | if (!LD || | 
|  | LD->isVolatile() || | 
|  | LD->getAddressingMode() != ISD::UNINDEXED || | 
|  | LD->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | return false; | 
|  |  | 
|  | // Now let's find the callseq_start. | 
|  | while (Chain.getOpcode() != ISD::CALLSEQ_START) { | 
|  | if (!Chain.hasOneUse()) | 
|  | return false; | 
|  | Chain = Chain.getOperand(0); | 
|  | } | 
|  |  | 
|  | if (Chain.getOperand(0).getNode() == Callee.getNode()) | 
|  | return true; | 
|  | if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && | 
|  | Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PreprocessForRMW - Preprocess the DAG to make instruction selection better. | 
|  | /// This is only run if not in -O0 mode. | 
|  | /// This allows the instruction selector to pick more read-modify-write | 
|  | /// instructions. This is a common case: | 
|  | /// | 
|  | ///     [Load chain] | 
|  | ///         ^ | 
|  | ///         | | 
|  | ///       [Load] | 
|  | ///       ^    ^ | 
|  | ///       |    | | 
|  | ///      /      \- | 
|  | ///     /         | | 
|  | /// [TokenFactor] [Op] | 
|  | ///     ^          ^ | 
|  | ///     |          | | 
|  | ///      \        / | 
|  | ///       \      / | 
|  | ///       [Store] | 
|  | /// | 
|  | /// The fact the store's chain operand != load's chain will prevent the | 
|  | /// (store (op (load))) instruction from being selected. We can transform it to: | 
|  | /// | 
|  | ///     [Load chain] | 
|  | ///         ^ | 
|  | ///         | | 
|  | ///    [TokenFactor] | 
|  | ///         ^ | 
|  | ///         | | 
|  | ///       [Load] | 
|  | ///       ^    ^ | 
|  | ///       |    | | 
|  | ///       |     \- | 
|  | ///       |       | | 
|  | ///       |     [Op] | 
|  | ///       |       ^ | 
|  | ///       |       | | 
|  | ///       \      / | 
|  | ///        \    / | 
|  | ///       [Store] | 
|  | void X86DAGToDAGISel::PreprocessForRMW() { | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); I != E; ++I) { | 
|  | if (I->getOpcode() == X86ISD::CALL) { | 
|  | /// Also try moving call address load from outside callseq_start to just | 
|  | /// before the call to allow it to be folded. | 
|  | /// | 
|  | ///     [Load chain] | 
|  | ///         ^ | 
|  | ///         | | 
|  | ///       [Load] | 
|  | ///       ^    ^ | 
|  | ///       |    | | 
|  | ///      /      \-- | 
|  | ///     /          | | 
|  | ///[CALLSEQ_START] | | 
|  | ///     ^          | | 
|  | ///     |          | | 
|  | /// [LOAD/C2Reg]   | | 
|  | ///     |          | | 
|  | ///      \        / | 
|  | ///       \      / | 
|  | ///       [CALL] | 
|  | SDValue Chain = I->getOperand(0); | 
|  | SDValue Load  = I->getOperand(1); | 
|  | if (!isCalleeLoad(Load, Chain)) | 
|  | continue; | 
|  | MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain); | 
|  | ++NumLoadMoved; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!ISD::isNON_TRUNCStore(I)) | 
|  | continue; | 
|  | SDValue Chain = I->getOperand(0); | 
|  |  | 
|  | if (Chain.getNode()->getOpcode() != ISD::TokenFactor) | 
|  | continue; | 
|  |  | 
|  | SDValue N1 = I->getOperand(1); | 
|  | SDValue N2 = I->getOperand(2); | 
|  | if ((N1.getValueType().isFloatingPoint() && | 
|  | !N1.getValueType().isVector()) || | 
|  | !N1.hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | bool RModW = false; | 
|  | SDValue Load; | 
|  | unsigned Opcode = N1.getNode()->getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::ADDC: | 
|  | case ISD::ADDE: | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | SDValue N11 = N1.getOperand(1); | 
|  | RModW = isRMWLoad(N10, Chain, N2, Load); | 
|  | if (!RModW) | 
|  | RModW = isRMWLoad(N11, Chain, N2, Load); | 
|  | break; | 
|  | } | 
|  | case ISD::SUB: | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | case ISD::SUBC: | 
|  | case ISD::SUBE: | 
|  | case X86ISD::SHLD: | 
|  | case X86ISD::SHRD: { | 
|  | SDValue N10 = N1.getOperand(0); | 
|  | RModW = isRMWLoad(N10, Chain, N2, Load); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RModW) { | 
|  | MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain); | 
|  | ++NumLoadMoved; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend | 
|  | /// nodes that target the FP stack to be store and load to the stack.  This is a | 
|  | /// gross hack.  We would like to simply mark these as being illegal, but when | 
|  | /// we do that, legalize produces these when it expands calls, then expands | 
|  | /// these in the same legalize pass.  We would like dag combine to be able to | 
|  | /// hack on these between the call expansion and the node legalization.  As such | 
|  | /// this pass basically does "really late" legalization of these inline with the | 
|  | /// X86 isel pass. | 
|  | void X86DAGToDAGISel::PreprocessForFPConvert() { | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); I != E; ) { | 
|  | SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues. | 
|  | if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) | 
|  | continue; | 
|  |  | 
|  | // If the source and destination are SSE registers, then this is a legal | 
|  | // conversion that should not be lowered. | 
|  | EVT SrcVT = N->getOperand(0).getValueType(); | 
|  | EVT DstVT = N->getValueType(0); | 
|  | bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); | 
|  | bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); | 
|  | if (SrcIsSSE && DstIsSSE) | 
|  | continue; | 
|  |  | 
|  | if (!SrcIsSSE && !DstIsSSE) { | 
|  | // If this is an FPStack extension, it is a noop. | 
|  | if (N->getOpcode() == ISD::FP_EXTEND) | 
|  | continue; | 
|  | // If this is a value-preserving FPStack truncation, it is a noop. | 
|  | if (N->getConstantOperandVal(1)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Here we could have an FP stack truncation or an FPStack <-> SSE convert. | 
|  | // FPStack has extload and truncstore.  SSE can fold direct loads into other | 
|  | // operations.  Based on this, decide what we want to do. | 
|  | EVT MemVT; | 
|  | if (N->getOpcode() == ISD::FP_ROUND) | 
|  | MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'. | 
|  | else | 
|  | MemVT = SrcIsSSE ? SrcVT : DstVT; | 
|  |  | 
|  | SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  |  | 
|  | // FIXME: optimize the case where the src/dest is a load or store? | 
|  | SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, | 
|  | N->getOperand(0), | 
|  | MemTmp, NULL, 0, MemVT); | 
|  | SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, | 
|  | NULL, 0, MemVT); | 
|  |  | 
|  | // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the | 
|  | // extload we created.  This will cause general havok on the dag because | 
|  | // anything below the conversion could be folded into other existing nodes. | 
|  | // To avoid invalidating 'I', back it up to the convert node. | 
|  | --I; | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); | 
|  |  | 
|  | // Now that we did that, the node is dead.  Increment the iterator to the | 
|  | // next node to process, then delete N. | 
|  | ++I; | 
|  | CurDAG->DeleteNode(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel | 
|  | /// when it has created a SelectionDAG for us to codegen. | 
|  | void X86DAGToDAGISel::InstructionSelect() { | 
|  | const Function *F = MF->getFunction(); | 
|  | OptForSize = F->hasFnAttr(Attribute::OptimizeForSize); | 
|  |  | 
|  | DEBUG(BB->dump()); | 
|  | if (OptLevel != CodeGenOpt::None) | 
|  | PreprocessForRMW(); | 
|  |  | 
|  | // FIXME: This should only happen when not compiled with -O0. | 
|  | PreprocessForFPConvert(); | 
|  |  | 
|  | // Codegen the basic block. | 
|  | #ifndef NDEBUG | 
|  | DEBUG(errs() << "===== Instruction selection begins:\n"); | 
|  | Indent = 0; | 
|  | #endif | 
|  | SelectRoot(*CurDAG); | 
|  | #ifndef NDEBUG | 
|  | DEBUG(errs() << "===== Instruction selection ends:\n"); | 
|  | #endif | 
|  |  | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in | 
|  | /// the main function. | 
|  | void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, | 
|  | MachineFrameInfo *MFI) { | 
|  | const TargetInstrInfo *TII = TM.getInstrInfo(); | 
|  | if (Subtarget->isTargetCygMing()) | 
|  | BuildMI(BB, DebugLoc::getUnknownLoc(), | 
|  | TII->get(X86::CALLpcrel32)).addExternalSymbol("__main"); | 
|  | } | 
|  |  | 
|  | void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { | 
|  | // If this is main, emit special code for main. | 
|  | MachineBasicBlock *BB = MF.begin(); | 
|  | if (Fn.hasExternalLinkage() && Fn.getName() == "main") | 
|  | EmitSpecialCodeForMain(BB, MF.getFrameInfo()); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N, | 
|  | X86ISelAddressMode &AM) { | 
|  | assert(N.getOpcode() == X86ISD::SegmentBaseAddress); | 
|  | SDValue Segment = N.getOperand(0); | 
|  |  | 
|  | if (AM.Segment.getNode() == 0) { | 
|  | AM.Segment = Segment; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) { | 
|  | // This optimization is valid because the GNU TLS model defines that | 
|  | // gs:0 (or fs:0 on X86-64) contains its own address. | 
|  | // For more information see http://people.redhat.com/drepper/tls.pdf | 
|  |  | 
|  | SDValue Address = N.getOperand(1); | 
|  | if (Address.getOpcode() == X86ISD::SegmentBaseAddress && | 
|  | !MatchSegmentBaseAddress (Address, AM)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes | 
|  | /// into an addressing mode.  These wrap things that will resolve down into a | 
|  | /// symbol reference.  If no match is possible, this returns true, otherwise it | 
|  | /// returns false. | 
|  | bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { | 
|  | // If the addressing mode already has a symbol as the displacement, we can | 
|  | // never match another symbol. | 
|  | if (AM.hasSymbolicDisplacement()) | 
|  | return true; | 
|  |  | 
|  | SDValue N0 = N.getOperand(0); | 
|  | CodeModel::Model M = TM.getCodeModel(); | 
|  |  | 
|  | // Handle X86-64 rip-relative addresses.  We check this before checking direct | 
|  | // folding because RIP is preferable to non-RIP accesses. | 
|  | if (Subtarget->is64Bit() && | 
|  | // Under X86-64 non-small code model, GV (and friends) are 64-bits, so | 
|  | // they cannot be folded into immediate fields. | 
|  | // FIXME: This can be improved for kernel and other models? | 
|  | (M == CodeModel::Small || M == CodeModel::Kernel) && | 
|  | // Base and index reg must be 0 in order to use %rip as base and lowering | 
|  | // must allow RIP. | 
|  | !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) { | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { | 
|  | int64_t Offset = AM.Disp + G->getOffset(); | 
|  | if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; | 
|  | AM.GV = G->getGlobal(); | 
|  | AM.Disp = Offset; | 
|  | AM.SymbolFlags = G->getTargetFlags(); | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { | 
|  | int64_t Offset = AM.Disp + CP->getOffset(); | 
|  | if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; | 
|  | AM.CP = CP->getConstVal(); | 
|  | AM.Align = CP->getAlignment(); | 
|  | AM.Disp = Offset; | 
|  | AM.SymbolFlags = CP->getTargetFlags(); | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { | 
|  | AM.ES = S->getSymbol(); | 
|  | AM.SymbolFlags = S->getTargetFlags(); | 
|  | } else { | 
|  | JumpTableSDNode *J = cast<JumpTableSDNode>(N0); | 
|  | AM.JT = J->getIndex(); | 
|  | AM.SymbolFlags = J->getTargetFlags(); | 
|  | } | 
|  |  | 
|  | if (N.getOpcode() == X86ISD::WrapperRIP) | 
|  | AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handle the case when globals fit in our immediate field: This is true for | 
|  | // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit | 
|  | // mode, this results in a non-RIP-relative computation. | 
|  | if (!Subtarget->is64Bit() || | 
|  | ((M == CodeModel::Small || M == CodeModel::Kernel) && | 
|  | TM.getRelocationModel() == Reloc::Static)) { | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { | 
|  | AM.GV = G->getGlobal(); | 
|  | AM.Disp += G->getOffset(); | 
|  | AM.SymbolFlags = G->getTargetFlags(); | 
|  | } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { | 
|  | AM.CP = CP->getConstVal(); | 
|  | AM.Align = CP->getAlignment(); | 
|  | AM.Disp += CP->getOffset(); | 
|  | AM.SymbolFlags = CP->getTargetFlags(); | 
|  | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { | 
|  | AM.ES = S->getSymbol(); | 
|  | AM.SymbolFlags = S->getTargetFlags(); | 
|  | } else { | 
|  | JumpTableSDNode *J = cast<JumpTableSDNode>(N0); | 
|  | AM.JT = J->getIndex(); | 
|  | AM.SymbolFlags = J->getTargetFlags(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// MatchAddress - Add the specified node to the specified addressing mode, | 
|  | /// returning true if it cannot be done.  This just pattern matches for the | 
|  | /// addressing mode. | 
|  | bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { | 
|  | if (MatchAddressRecursively(N, AM, 0)) | 
|  | return true; | 
|  |  | 
|  | // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has | 
|  | // a smaller encoding and avoids a scaled-index. | 
|  | if (AM.Scale == 2 && | 
|  | AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base.Reg.getNode() == 0) { | 
|  | AM.Base.Reg = AM.IndexReg; | 
|  | AM.Scale = 1; | 
|  | } | 
|  |  | 
|  | // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, | 
|  | // because it has a smaller encoding. | 
|  | // TODO: Which other code models can use this? | 
|  | if (TM.getCodeModel() == CodeModel::Small && | 
|  | Subtarget->is64Bit() && | 
|  | AM.Scale == 1 && | 
|  | AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base.Reg.getNode() == 0 && | 
|  | AM.IndexReg.getNode() == 0 && | 
|  | AM.SymbolFlags == X86II::MO_NO_FLAG && | 
|  | AM.hasSymbolicDisplacement()) | 
|  | AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, | 
|  | unsigned Depth) { | 
|  | bool is64Bit = Subtarget->is64Bit(); | 
|  | DebugLoc dl = N.getDebugLoc(); | 
|  | DEBUG({ | 
|  | errs() << "MatchAddress: "; | 
|  | AM.dump(); | 
|  | }); | 
|  | // Limit recursion. | 
|  | if (Depth > 5) | 
|  | return MatchAddressBase(N, AM); | 
|  |  | 
|  | CodeModel::Model M = TM.getCodeModel(); | 
|  |  | 
|  | // If this is already a %rip relative address, we can only merge immediates | 
|  | // into it.  Instead of handling this in every case, we handle it here. | 
|  | // RIP relative addressing: %rip + 32-bit displacement! | 
|  | if (AM.isRIPRelative()) { | 
|  | // FIXME: JumpTable and ExternalSymbol address currently don't like | 
|  | // displacements.  It isn't very important, but this should be fixed for | 
|  | // consistency. | 
|  | if (!AM.ES && AM.JT != -1) return true; | 
|  |  | 
|  | if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) { | 
|  | int64_t Val = AM.Disp + Cst->getSExtValue(); | 
|  | if (X86::isOffsetSuitableForCodeModel(Val, M, | 
|  | AM.hasSymbolicDisplacement())) { | 
|  | AM.Disp = Val; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (N.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::Constant: { | 
|  | uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); | 
|  | if (!is64Bit || | 
|  | X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M, | 
|  | AM.hasSymbolicDisplacement())) { | 
|  | AM.Disp += Val; | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86ISD::SegmentBaseAddress: | 
|  | if (!MatchSegmentBaseAddress(N, AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case X86ISD::Wrapper: | 
|  | case X86ISD::WrapperRIP: | 
|  | if (!MatchWrapper(N, AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::LOAD: | 
|  | if (!MatchLoad(N, AM)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ISD::FrameIndex: | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase | 
|  | && AM.Base.Reg.getNode() == 0) { | 
|  | AM.BaseType = X86ISelAddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SHL: | 
|  | if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) | 
|  | break; | 
|  |  | 
|  | if (ConstantSDNode | 
|  | *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { | 
|  | unsigned Val = CN->getZExtValue(); | 
|  | // Note that we handle x<<1 as (,x,2) rather than (x,x) here so | 
|  | // that the base operand remains free for further matching. If | 
|  | // the base doesn't end up getting used, a post-processing step | 
|  | // in MatchAddress turns (,x,2) into (x,x), which is cheaper. | 
|  | if (Val == 1 || Val == 2 || Val == 3) { | 
|  | AM.Scale = 1 << Val; | 
|  | SDValue ShVal = N.getNode()->getOperand(0); | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() && | 
|  | isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) { | 
|  | AM.IndexReg = ShVal.getNode()->getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); | 
|  | uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val); | 
|  | if (!is64Bit || | 
|  | X86::isOffsetSuitableForCodeModel(Disp, M, | 
|  | AM.hasSymbolicDisplacement())) | 
|  | AM.Disp = Disp; | 
|  | else | 
|  | AM.IndexReg = ShVal; | 
|  | } else { | 
|  | AM.IndexReg = ShVal; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | // A mul_lohi where we need the low part can be folded as a plain multiply. | 
|  | if (N.getResNo() != 0) break; | 
|  | // FALL THROUGH | 
|  | case ISD::MUL: | 
|  | case X86ISD::MUL_IMM: | 
|  | // X*[3,5,9] -> X+X*[2,4,8] | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base.Reg.getNode() == 0 && | 
|  | AM.IndexReg.getNode() == 0) { | 
|  | if (ConstantSDNode | 
|  | *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) | 
|  | if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || | 
|  | CN->getZExtValue() == 9) { | 
|  | AM.Scale = unsigned(CN->getZExtValue())-1; | 
|  |  | 
|  | SDValue MulVal = N.getNode()->getOperand(0); | 
|  | SDValue Reg; | 
|  |  | 
|  | // Okay, we know that we have a scale by now.  However, if the scaled | 
|  | // value is an add of something and a constant, we can fold the | 
|  | // constant into the disp field here. | 
|  | if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && | 
|  | isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { | 
|  | Reg = MulVal.getNode()->getOperand(0); | 
|  | ConstantSDNode *AddVal = | 
|  | cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); | 
|  | uint64_t Disp = AM.Disp + AddVal->getSExtValue() * | 
|  | CN->getZExtValue(); | 
|  | if (!is64Bit || | 
|  | X86::isOffsetSuitableForCodeModel(Disp, M, | 
|  | AM.hasSymbolicDisplacement())) | 
|  | AM.Disp = Disp; | 
|  | else | 
|  | Reg = N.getNode()->getOperand(0); | 
|  | } else { | 
|  | Reg = N.getNode()->getOperand(0); | 
|  | } | 
|  |  | 
|  | AM.IndexReg = AM.Base.Reg = Reg; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SUB: { | 
|  | // Given A-B, if A can be completely folded into the address and | 
|  | // the index field with the index field unused, use -B as the index. | 
|  | // This is a win if a has multiple parts that can be folded into | 
|  | // the address. Also, this saves a mov if the base register has | 
|  | // other uses, since it avoids a two-address sub instruction, however | 
|  | // it costs an additional mov if the index register has other uses. | 
|  |  | 
|  | // Test if the LHS of the sub can be folded. | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  | // Test if the index field is free for use. | 
|  | if (AM.IndexReg.getNode() || AM.isRIPRelative()) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  | int Cost = 0; | 
|  | SDValue RHS = N.getNode()->getOperand(1); | 
|  | // If the RHS involves a register with multiple uses, this | 
|  | // transformation incurs an extra mov, due to the neg instruction | 
|  | // clobbering its operand. | 
|  | if (!RHS.getNode()->hasOneUse() || | 
|  | RHS.getNode()->getOpcode() == ISD::CopyFromReg || | 
|  | RHS.getNode()->getOpcode() == ISD::TRUNCATE || | 
|  | RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || | 
|  | (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && | 
|  | RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) | 
|  | ++Cost; | 
|  | // If the base is a register with multiple uses, this | 
|  | // transformation may save a mov. | 
|  | if ((AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | AM.Base.Reg.getNode() && | 
|  | !AM.Base.Reg.getNode()->hasOneUse()) || | 
|  | AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | --Cost; | 
|  | // If the folded LHS was interesting, this transformation saves | 
|  | // address arithmetic. | 
|  | if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + | 
|  | ((AM.Disp != 0) && (Backup.Disp == 0)) + | 
|  | (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) | 
|  | --Cost; | 
|  | // If it doesn't look like it may be an overall win, don't do it. | 
|  | if (Cost >= 0) { | 
|  | AM = Backup; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Ok, the transformation is legal and appears profitable. Go for it. | 
|  | SDValue Zero = CurDAG->getConstant(0, N.getValueType()); | 
|  | SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); | 
|  | AM.IndexReg = Neg; | 
|  | AM.Scale = 1; | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. | 
|  | if (Zero.getNode()->getNodeId() == -1 || | 
|  | Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(N.getNode(), Zero.getNode()); | 
|  | Zero.getNode()->setNodeId(N.getNode()->getNodeId()); | 
|  | } | 
|  | if (Neg.getNode()->getNodeId() == -1 || | 
|  | Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(N.getNode(), Neg.getNode()); | 
|  | Neg.getNode()->setNodeId(N.getNode()->getNodeId()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ISD::ADD: { | 
|  | X86ISelAddressMode Backup = AM; | 
|  | if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) && | 
|  | !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1)) | 
|  | return false; | 
|  | AM = Backup; | 
|  | if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) && | 
|  | !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) | 
|  | return false; | 
|  | AM = Backup; | 
|  |  | 
|  | // If we couldn't fold both operands into the address at the same time, | 
|  | // see if we can just put each operand into a register and fold at least | 
|  | // the add. | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase && | 
|  | !AM.Base.Reg.getNode() && | 
|  | !AM.IndexReg.getNode()) { | 
|  | AM.Base.Reg = N.getNode()->getOperand(0); | 
|  | AM.IndexReg = N.getNode()->getOperand(1); | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::OR: | 
|  | // Handle "X | C" as "X + C" iff X is known to have C bits clear. | 
|  | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { | 
|  | X86ISelAddressMode Backup = AM; | 
|  | uint64_t Offset = CN->getSExtValue(); | 
|  | // Start with the LHS as an addr mode. | 
|  | if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && | 
|  | // Address could not have picked a GV address for the displacement. | 
|  | AM.GV == NULL && | 
|  | // On x86-64, the resultant disp must fit in 32-bits. | 
|  | (!is64Bit || | 
|  | X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M, | 
|  | AM.hasSymbolicDisplacement())) && | 
|  | // Check to see if the LHS & C is zero. | 
|  | CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) { | 
|  | AM.Disp += Offset; | 
|  | return false; | 
|  | } | 
|  | AM = Backup; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::AND: { | 
|  | // Perform some heroic transforms on an and of a constant-count shift | 
|  | // with a constant to enable use of the scaled offset field. | 
|  |  | 
|  | SDValue Shift = N.getOperand(0); | 
|  | if (Shift.getNumOperands() != 2) break; | 
|  |  | 
|  | // Scale must not be used already. | 
|  | if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; | 
|  |  | 
|  | SDValue X = Shift.getOperand(0); | 
|  | ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1)); | 
|  | ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); | 
|  | if (!C1 || !C2) break; | 
|  |  | 
|  | // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This | 
|  | // allows us to convert the shift and and into an h-register extract and | 
|  | // a scaled index. | 
|  | if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) { | 
|  | unsigned ScaleLog = 8 - C1->getZExtValue(); | 
|  | if (ScaleLog > 0 && ScaleLog < 4 && | 
|  | C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) { | 
|  | SDValue Eight = CurDAG->getConstant(8, MVT::i8); | 
|  | SDValue Mask = CurDAG->getConstant(0xff, N.getValueType()); | 
|  | SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), | 
|  | X, Eight); | 
|  | SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(), | 
|  | Srl, Mask); | 
|  | SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8); | 
|  | SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), | 
|  | And, ShlCount); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. | 
|  | if (Eight.getNode()->getNodeId() == -1 || | 
|  | Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(X.getNode(), Eight.getNode()); | 
|  | Eight.getNode()->setNodeId(X.getNode()->getNodeId()); | 
|  | } | 
|  | if (Mask.getNode()->getNodeId() == -1 || | 
|  | Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(X.getNode(), Mask.getNode()); | 
|  | Mask.getNode()->setNodeId(X.getNode()->getNodeId()); | 
|  | } | 
|  | if (Srl.getNode()->getNodeId() == -1 || | 
|  | Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(Shift.getNode(), Srl.getNode()); | 
|  | Srl.getNode()->setNodeId(Shift.getNode()->getNodeId()); | 
|  | } | 
|  | if (And.getNode()->getNodeId() == -1 || | 
|  | And.getNode()->getNodeId() > N.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(N.getNode(), And.getNode()); | 
|  | And.getNode()->setNodeId(N.getNode()->getNodeId()); | 
|  | } | 
|  | if (ShlCount.getNode()->getNodeId() == -1 || | 
|  | ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(X.getNode(), ShlCount.getNode()); | 
|  | ShlCount.getNode()->setNodeId(N.getNode()->getNodeId()); | 
|  | } | 
|  | if (Shl.getNode()->getNodeId() == -1 || | 
|  | Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(N.getNode(), Shl.getNode()); | 
|  | Shl.getNode()->setNodeId(N.getNode()->getNodeId()); | 
|  | } | 
|  | CurDAG->ReplaceAllUsesWith(N, Shl); | 
|  | AM.IndexReg = And; | 
|  | AM.Scale = (1 << ScaleLog); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this | 
|  | // allows us to fold the shift into this addressing mode. | 
|  | if (Shift.getOpcode() != ISD::SHL) break; | 
|  |  | 
|  | // Not likely to be profitable if either the AND or SHIFT node has more | 
|  | // than one use (unless all uses are for address computation). Besides, | 
|  | // isel mechanism requires their node ids to be reused. | 
|  | if (!N.hasOneUse() || !Shift.hasOneUse()) | 
|  | break; | 
|  |  | 
|  | // Verify that the shift amount is something we can fold. | 
|  | unsigned ShiftCst = C1->getZExtValue(); | 
|  | if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3) | 
|  | break; | 
|  |  | 
|  | // Get the new AND mask, this folds to a constant. | 
|  | SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), | 
|  | SDValue(C2, 0), SDValue(C1, 0)); | 
|  | SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, | 
|  | NewANDMask); | 
|  | SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), | 
|  | NewAND, SDValue(C1, 0)); | 
|  |  | 
|  | // Insert the new nodes into the topological ordering. | 
|  | if (C1->getNodeId() > X.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(X.getNode(), C1); | 
|  | C1->setNodeId(X.getNode()->getNodeId()); | 
|  | } | 
|  | if (NewANDMask.getNode()->getNodeId() == -1 || | 
|  | NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode()); | 
|  | NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId()); | 
|  | } | 
|  | if (NewAND.getNode()->getNodeId() == -1 || | 
|  | NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode()); | 
|  | NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId()); | 
|  | } | 
|  | if (NewSHIFT.getNode()->getNodeId() == -1 || | 
|  | NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) { | 
|  | CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode()); | 
|  | NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); | 
|  | } | 
|  |  | 
|  | CurDAG->ReplaceAllUsesWith(N, NewSHIFT); | 
|  |  | 
|  | AM.Scale = 1 << ShiftCst; | 
|  | AM.IndexReg = NewAND; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MatchAddressBase(N, AM); | 
|  | } | 
|  |  | 
|  | /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the | 
|  | /// specified addressing mode without any further recursion. | 
|  | bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { | 
|  | // Is the base register already occupied? | 
|  | if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) { | 
|  | // If so, check to see if the scale index register is set. | 
|  | if (AM.IndexReg.getNode() == 0) { | 
|  | AM.IndexReg = N; | 
|  | AM.Scale = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, we cannot select it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Default, generate it as a register. | 
|  | AM.BaseType = X86ISelAddressMode::RegBase; | 
|  | AM.Base.Reg = N; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectAddr - returns true if it is able pattern match an addressing mode. | 
|  | /// It returns the operands which make up the maximal addressing mode it can | 
|  | /// match by reference. | 
|  | bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment) { | 
|  | X86ISelAddressMode AM; | 
|  | bool Done = false; | 
|  | if (AvoidDupAddrCompute && !N.hasOneUse()) { | 
|  | unsigned Opcode = N.getOpcode(); | 
|  | if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex && | 
|  | Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) { | 
|  | // If we are able to fold N into addressing mode, then we'll allow it even | 
|  | // if N has multiple uses. In general, addressing computation is used as | 
|  | // addresses by all of its uses. But watch out for CopyToReg uses, that | 
|  | // means the address computation is liveout. It will be computed by a LEA | 
|  | // so we want to avoid computing the address twice. | 
|  | for (SDNode::use_iterator UI = N.getNode()->use_begin(), | 
|  | UE = N.getNode()->use_end(); UI != UE; ++UI) { | 
|  | if (UI->getOpcode() == ISD::CopyToReg) { | 
|  | MatchAddressBase(N, AM); | 
|  | Done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Done && MatchAddress(N, AM)) | 
|  | return false; | 
|  |  | 
|  | EVT VT = N.getValueType(); | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) { | 
|  | if (!AM.Base.Reg.getNode()) | 
|  | AM.Base.Reg = CurDAG->getRegister(0, VT); | 
|  | } | 
|  |  | 
|  | if (!AM.IndexReg.getNode()) | 
|  | AM.IndexReg = CurDAG->getRegister(0, VT); | 
|  |  | 
|  | getAddressOperands(AM, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to | 
|  | /// match a load whose top elements are either undef or zeros.  The load flavor | 
|  | /// is derived from the type of N, which is either v4f32 or v2f64. | 
|  | bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred, | 
|  | SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp, SDValue &Segment, | 
|  | SDValue &InChain, | 
|  | SDValue &OutChain) { | 
|  | if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
|  | InChain = N.getOperand(0).getValue(1); | 
|  | if (ISD::isNON_EXTLoad(InChain.getNode()) && | 
|  | InChain.getValue(0).hasOneUse() && | 
|  | N.hasOneUse() && | 
|  | IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(InChain); | 
|  | if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) | 
|  | return false; | 
|  | OutChain = LD->getChain(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also handle the case where we explicitly require zeros in the top | 
|  | // elements.  This is a vector shuffle from the zero vector. | 
|  | if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && | 
|  | // Check to see if the top elements are all zeros (or bitcast of zeros). | 
|  | N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | N.getOperand(0).getNode()->hasOneUse() && | 
|  | ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && | 
|  | N.getOperand(0).getOperand(0).hasOneUse()) { | 
|  | // Okay, this is a zero extending load.  Fold it. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); | 
|  | if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) | 
|  | return false; | 
|  | OutChain = LD->getChain(); | 
|  | InChain = SDValue(LD, 1); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing | 
|  | /// mode it matches can be cost effectively emitted as an LEA instruction. | 
|  | bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp) { | 
|  | X86ISelAddressMode AM; | 
|  |  | 
|  | // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support | 
|  | // segments. | 
|  | SDValue Copy = AM.Segment; | 
|  | SDValue T = CurDAG->getRegister(0, MVT::i32); | 
|  | AM.Segment = T; | 
|  | if (MatchAddress(N, AM)) | 
|  | return false; | 
|  | assert (T == AM.Segment); | 
|  | AM.Segment = Copy; | 
|  |  | 
|  | EVT VT = N.getValueType(); | 
|  | unsigned Complexity = 0; | 
|  | if (AM.BaseType == X86ISelAddressMode::RegBase) | 
|  | if (AM.Base.Reg.getNode()) | 
|  | Complexity = 1; | 
|  | else | 
|  | AM.Base.Reg = CurDAG->getRegister(0, VT); | 
|  | else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) | 
|  | Complexity = 4; | 
|  |  | 
|  | if (AM.IndexReg.getNode()) | 
|  | Complexity++; | 
|  | else | 
|  | AM.IndexReg = CurDAG->getRegister(0, VT); | 
|  |  | 
|  | // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with | 
|  | // a simple shift. | 
|  | if (AM.Scale > 1) | 
|  | Complexity++; | 
|  |  | 
|  | // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA | 
|  | // to a LEA. This is determined with some expermentation but is by no means | 
|  | // optimal (especially for code size consideration). LEA is nice because of | 
|  | // its three-address nature. Tweak the cost function again when we can run | 
|  | // convertToThreeAddress() at register allocation time. | 
|  | if (AM.hasSymbolicDisplacement()) { | 
|  | // For X86-64, we should always use lea to materialize RIP relative | 
|  | // addresses. | 
|  | if (Subtarget->is64Bit()) | 
|  | Complexity = 4; | 
|  | else | 
|  | Complexity += 2; | 
|  | } | 
|  |  | 
|  | if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode())) | 
|  | Complexity++; | 
|  |  | 
|  | // If it isn't worth using an LEA, reject it. | 
|  | if (Complexity <= 2) | 
|  | return false; | 
|  |  | 
|  | SDValue Segment; | 
|  | getAddressOperands(AM, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. | 
|  | bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base, | 
|  | SDValue &Scale, SDValue &Index, | 
|  | SDValue &Disp) { | 
|  | assert(Op.getOpcode() == X86ISD::TLSADDR); | 
|  | assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); | 
|  | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); | 
|  |  | 
|  | X86ISelAddressMode AM; | 
|  | AM.GV = GA->getGlobal(); | 
|  | AM.Disp += GA->getOffset(); | 
|  | AM.Base.Reg = CurDAG->getRegister(0, N.getValueType()); | 
|  | AM.SymbolFlags = GA->getTargetFlags(); | 
|  |  | 
|  | if (N.getValueType() == MVT::i32) { | 
|  | AM.Scale = 1; | 
|  | AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); | 
|  | } else { | 
|  | AM.IndexReg = CurDAG->getRegister(0, MVT::i64); | 
|  | } | 
|  |  | 
|  | SDValue Segment; | 
|  | getAddressOperands(AM, Base, Scale, Index, Disp, Segment); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N, | 
|  | SDValue &Base, SDValue &Scale, | 
|  | SDValue &Index, SDValue &Disp, | 
|  | SDValue &Segment) { | 
|  | if (ISD::isNON_EXTLoad(N.getNode()) && | 
|  | N.hasOneUse() && | 
|  | IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode())) | 
|  | return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Return an SDNode that returns the value of | 
|  | /// the global base register. Output instructions required to | 
|  | /// initialize the global base register, if necessary. | 
|  | /// | 
|  | SDNode *X86DAGToDAGISel::getGlobalBaseReg() { | 
|  | unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); | 
|  | return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); | 
|  | } | 
|  |  | 
|  | static SDNode *FindCallStartFromCall(SDNode *Node) { | 
|  | if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; | 
|  | assert(Node->getOperand(0).getValueType() == MVT::Other && | 
|  | "Node doesn't have a token chain argument!"); | 
|  | return FindCallStartFromCall(Node->getOperand(0).getNode()); | 
|  | } | 
|  |  | 
|  | SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue In1 = Node->getOperand(1); | 
|  | SDValue In2L = Node->getOperand(2); | 
|  | SDValue In2H = Node->getOperand(3); | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) | 
|  | return NULL; | 
|  | SDValue LSI = Node->getOperand(4);    // MemOperand | 
|  | const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain}; | 
|  | return CurDAG->getTargetNode(Opc, Node->getDebugLoc(), | 
|  | MVT::i32, MVT::i32, MVT::Other, Ops, | 
|  | array_lengthof(Ops)); | 
|  | } | 
|  |  | 
|  | SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) { | 
|  | if (Node->hasAnyUseOfValue(0)) | 
|  | return 0; | 
|  |  | 
|  | // Optimize common patterns for __sync_add_and_fetch and | 
|  | // __sync_sub_and_fetch where the result is not used. This allows us | 
|  | // to use "lock" version of add, sub, inc, dec instructions. | 
|  | // FIXME: Do not use special instructions but instead add the "lock" | 
|  | // prefix to the target node somehow. The extra information will then be | 
|  | // transferred to machine instruction and it denotes the prefix. | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDValue Ptr = Node->getOperand(1); | 
|  | SDValue Val = Node->getOperand(2); | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) | 
|  | return 0; | 
|  |  | 
|  | bool isInc = false, isDec = false, isSub = false, isCN = false; | 
|  | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); | 
|  | if (CN) { | 
|  | isCN = true; | 
|  | int64_t CNVal = CN->getSExtValue(); | 
|  | if (CNVal == 1) | 
|  | isInc = true; | 
|  | else if (CNVal == -1) | 
|  | isDec = true; | 
|  | else if (CNVal >= 0) | 
|  | Val = CurDAG->getTargetConstant(CNVal, NVT); | 
|  | else { | 
|  | isSub = true; | 
|  | Val = CurDAG->getTargetConstant(-CNVal, NVT); | 
|  | } | 
|  | } else if (Val.hasOneUse() && | 
|  | Val.getOpcode() == ISD::SUB && | 
|  | X86::isZeroNode(Val.getOperand(0))) { | 
|  | isSub = true; | 
|  | Val = Val.getOperand(1); | 
|  | } | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: return 0; | 
|  | case MVT::i8: | 
|  | if (isInc) | 
|  | Opc = X86::LOCK_INC8m; | 
|  | else if (isDec) | 
|  | Opc = X86::LOCK_DEC8m; | 
|  | else if (isSub) { | 
|  | if (isCN) | 
|  | Opc = X86::LOCK_SUB8mi; | 
|  | else | 
|  | Opc = X86::LOCK_SUB8mr; | 
|  | } else { | 
|  | if (isCN) | 
|  | Opc = X86::LOCK_ADD8mi; | 
|  | else | 
|  | Opc = X86::LOCK_ADD8mr; | 
|  | } | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (isInc) | 
|  | Opc = X86::LOCK_INC16m; | 
|  | else if (isDec) | 
|  | Opc = X86::LOCK_DEC16m; | 
|  | else if (isSub) { | 
|  | if (isCN) { | 
|  | if (Predicate_i16immSExt8(Val.getNode())) | 
|  | Opc = X86::LOCK_SUB16mi8; | 
|  | else | 
|  | Opc = X86::LOCK_SUB16mi; | 
|  | } else | 
|  | Opc = X86::LOCK_SUB16mr; | 
|  | } else { | 
|  | if (isCN) { | 
|  | if (Predicate_i16immSExt8(Val.getNode())) | 
|  | Opc = X86::LOCK_ADD16mi8; | 
|  | else | 
|  | Opc = X86::LOCK_ADD16mi; | 
|  | } else | 
|  | Opc = X86::LOCK_ADD16mr; | 
|  | } | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (isInc) | 
|  | Opc = X86::LOCK_INC32m; | 
|  | else if (isDec) | 
|  | Opc = X86::LOCK_DEC32m; | 
|  | else if (isSub) { | 
|  | if (isCN) { | 
|  | if (Predicate_i32immSExt8(Val.getNode())) | 
|  | Opc = X86::LOCK_SUB32mi8; | 
|  | else | 
|  | Opc = X86::LOCK_SUB32mi; | 
|  | } else | 
|  | Opc = X86::LOCK_SUB32mr; | 
|  | } else { | 
|  | if (isCN) { | 
|  | if (Predicate_i32immSExt8(Val.getNode())) | 
|  | Opc = X86::LOCK_ADD32mi8; | 
|  | else | 
|  | Opc = X86::LOCK_ADD32mi; | 
|  | } else | 
|  | Opc = X86::LOCK_ADD32mr; | 
|  | } | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (isInc) | 
|  | Opc = X86::LOCK_INC64m; | 
|  | else if (isDec) | 
|  | Opc = X86::LOCK_DEC64m; | 
|  | else if (isSub) { | 
|  | Opc = X86::LOCK_SUB64mr; | 
|  | if (isCN) { | 
|  | if (Predicate_i64immSExt8(Val.getNode())) | 
|  | Opc = X86::LOCK_SUB64mi8; | 
|  | else if (Predicate_i64immSExt32(Val.getNode())) | 
|  | Opc = X86::LOCK_SUB64mi32; | 
|  | } | 
|  | } else { | 
|  | Opc = X86::LOCK_ADD64mr; | 
|  | if (isCN) { | 
|  | if (Predicate_i64immSExt8(Val.getNode())) | 
|  | Opc = X86::LOCK_ADD64mi8; | 
|  | else if (Predicate_i64immSExt32(Val.getNode())) | 
|  | Opc = X86::LOCK_ADD64mi32; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  | SDValue Undef = SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF, | 
|  | dl, NVT), 0); | 
|  | SDValue MemOp = CurDAG->getMemOperand(cast<MemSDNode>(Node)->getMemOperand()); | 
|  | if (isInc || isDec) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, MemOp, Chain }; | 
|  | SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 7), 0); | 
|  | SDValue RetVals[] = { Undef, Ret }; | 
|  | return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); | 
|  | } else { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, MemOp, Chain }; | 
|  | SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 8), 0); | 
|  | SDValue RetVals[] = { Undef, Ret }; | 
|  | return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDNode *X86DAGToDAGISel::Select(SDValue N) { | 
|  | SDNode *Node = N.getNode(); | 
|  | EVT NVT = Node->getValueType(0); | 
|  | unsigned Opc, MOpc; | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | DebugLoc dl = Node->getDebugLoc(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent, ' ') << "Selecting: "; | 
|  | Node->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | Indent += 2; | 
|  | #endif | 
|  |  | 
|  | if (Node->isMachineOpcode()) { | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent-2, ' ') << "== "; | 
|  | Node->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | Indent -= 2; | 
|  | #endif | 
|  | return NULL;   // Already selected. | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case X86ISD::GlobalBaseReg: | 
|  | return getGlobalBaseReg(); | 
|  |  | 
|  | case X86ISD::ATOMOR64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMOR6432); | 
|  | case X86ISD::ATOMXOR64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMXOR6432); | 
|  | case X86ISD::ATOMADD64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMADD6432); | 
|  | case X86ISD::ATOMSUB64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMSUB6432); | 
|  | case X86ISD::ATOMNAND64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMNAND6432); | 
|  | case X86ISD::ATOMAND64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMAND6432); | 
|  | case X86ISD::ATOMSWAP64_DAG: | 
|  | return SelectAtomic64(Node, X86::ATOMSWAP6432); | 
|  |  | 
|  | case ISD::ATOMIC_LOAD_ADD: { | 
|  | SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT); | 
|  | if (RetVal) | 
|  | return RetVal; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | bool isSigned = Opcode == ISD::SMUL_LOHI; | 
|  | if (!isSigned) { | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break; | 
|  | case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; | 
|  | case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; | 
|  | case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; | 
|  | } | 
|  | } else { | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break; | 
|  | case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; | 
|  | case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; | 
|  | case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LoReg, HiReg; | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break; | 
|  | case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break; | 
|  | case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; | 
|  | case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; | 
|  | } | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | // Multiply is commmutative. | 
|  | if (!foldedLoad) { | 
|  | foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | if (foldedLoad) | 
|  | std::swap(N0, N1); | 
|  | } | 
|  |  | 
|  | SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, | 
|  | N0, SDValue()).getValue(1); | 
|  |  | 
|  | if (foldedLoad) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), | 
|  | InFlag }; | 
|  | SDNode *CNode = | 
|  | CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, | 
|  | array_lengthof(Ops)); | 
|  | InFlag = SDValue(CNode, 1); | 
|  | // Update the chain. | 
|  | ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); | 
|  | } else { | 
|  | InFlag = | 
|  | SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0); | 
|  | } | 
|  |  | 
|  | // Copy the low half of the result, if it is needed. | 
|  | if (!N.getValue(0).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | ReplaceUses(N.getValue(0), Result); | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent-2, ' ') << "=> "; | 
|  | Result.getNode()->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | #endif | 
|  | } | 
|  | // Copy the high half of the result, if it is needed. | 
|  | if (!N.getValue(1).use_empty()) { | 
|  | SDValue Result; | 
|  | if (HiReg == X86::AH && Subtarget->is64Bit()) { | 
|  | // Prevent use of AH in a REX instruction by referencing AX instead. | 
|  | // Shift it down 8 bits. | 
|  | Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | X86::AX, MVT::i16, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16, | 
|  | Result, | 
|  | CurDAG->getTargetConstant(8, MVT::i8)), 0); | 
|  | // Then truncate it down to i8. | 
|  | Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, | 
|  | MVT::i8, Result); | 
|  | } else { | 
|  | Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | HiReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | } | 
|  | ReplaceUses(N.getValue(1), Result); | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent-2, ' ') << "=> "; | 
|  | Result.getNode()->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | Indent -= 2; | 
|  | #endif | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | bool isSigned = Opcode == ISD::SDIVREM; | 
|  | if (!isSigned) { | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break; | 
|  | case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; | 
|  | case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; | 
|  | case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; | 
|  | } | 
|  | } else { | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break; | 
|  | case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; | 
|  | case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; | 
|  | case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LoReg, HiReg; | 
|  | unsigned ClrOpcode, SExtOpcode; | 
|  | switch (NVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Unsupported VT!"); | 
|  | case MVT::i8: | 
|  | LoReg = X86::AL;  HiReg = X86::AH; | 
|  | ClrOpcode  = 0; | 
|  | SExtOpcode = X86::CBW; | 
|  | break; | 
|  | case MVT::i16: | 
|  | LoReg = X86::AX;  HiReg = X86::DX; | 
|  | ClrOpcode  = X86::MOV16r0; | 
|  | SExtOpcode = X86::CWD; | 
|  | break; | 
|  | case MVT::i32: | 
|  | LoReg = X86::EAX; HiReg = X86::EDX; | 
|  | ClrOpcode  = X86::MOV32r0; | 
|  | SExtOpcode = X86::CDQ; | 
|  | break; | 
|  | case MVT::i64: | 
|  | LoReg = X86::RAX; HiReg = X86::RDX; | 
|  | ClrOpcode  = ~0U; // NOT USED. | 
|  | SExtOpcode = X86::CQO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; | 
|  | bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); | 
|  | bool signBitIsZero = CurDAG->SignBitIsZero(N0); | 
|  |  | 
|  | SDValue InFlag; | 
|  | if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { | 
|  | // Special case for div8, just use a move with zero extension to AX to | 
|  | // clear the upper 8 bits (AH). | 
|  | SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; | 
|  | if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; | 
|  | Move = | 
|  | SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16, | 
|  | MVT::Other, Ops, | 
|  | array_lengthof(Ops)), 0); | 
|  | Chain = Move.getValue(1); | 
|  | ReplaceUses(N0.getValue(1), Chain); | 
|  | } else { | 
|  | Move = | 
|  | SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0); | 
|  | Chain = CurDAG->getEntryNode(); | 
|  | } | 
|  | Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue()); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | InFlag = | 
|  | CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, N0, SDValue()).getValue(1); | 
|  | if (isSigned && !signBitIsZero) { | 
|  | // Sign extend the low part into the high part. | 
|  | InFlag = | 
|  | SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0); | 
|  | } else { | 
|  | // Zero out the high part, effectively zero extending the input. | 
|  | SDValue ClrNode; | 
|  |  | 
|  | if (NVT.getSimpleVT() == MVT::i64) { | 
|  | ClrNode = SDValue(CurDAG->getTargetNode(X86::MOV32r0, dl, MVT::i32), | 
|  | 0); | 
|  | // We just did a 32-bit clear, insert it into a 64-bit register to | 
|  | // clear the whole 64-bit reg. | 
|  | SDValue Undef = | 
|  | SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF, | 
|  | dl, MVT::i64), 0); | 
|  | SDValue SubRegNo = | 
|  | CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32); | 
|  | ClrNode = | 
|  | SDValue(CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl, | 
|  | MVT::i64, Undef, ClrNode, SubRegNo), | 
|  | 0); | 
|  | } else { | 
|  | ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT), 0); | 
|  | } | 
|  |  | 
|  | InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg, | 
|  | ClrNode, InFlag).getValue(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (foldedLoad) { | 
|  | SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), | 
|  | InFlag }; | 
|  | SDNode *CNode = | 
|  | CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, | 
|  | array_lengthof(Ops)); | 
|  | InFlag = SDValue(CNode, 1); | 
|  | // Update the chain. | 
|  | ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); | 
|  | } else { | 
|  | InFlag = | 
|  | SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0); | 
|  | } | 
|  |  | 
|  | // Copy the division (low) result, if it is needed. | 
|  | if (!N.getValue(0).use_empty()) { | 
|  | SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | LoReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | ReplaceUses(N.getValue(0), Result); | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent-2, ' ') << "=> "; | 
|  | Result.getNode()->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | #endif | 
|  | } | 
|  | // Copy the remainder (high) result, if it is needed. | 
|  | if (!N.getValue(1).use_empty()) { | 
|  | SDValue Result; | 
|  | if (HiReg == X86::AH && Subtarget->is64Bit()) { | 
|  | // Prevent use of AH in a REX instruction by referencing AX instead. | 
|  | // Shift it down 8 bits. | 
|  | Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | X86::AX, MVT::i16, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16, | 
|  | Result, | 
|  | CurDAG->getTargetConstant(8, MVT::i8)), | 
|  | 0); | 
|  | // Then truncate it down to i8. | 
|  | Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, | 
|  | MVT::i8, Result); | 
|  | } else { | 
|  | Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, | 
|  | HiReg, NVT, InFlag); | 
|  | InFlag = Result.getValue(2); | 
|  | } | 
|  | ReplaceUses(N.getValue(1), Result); | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent-2, ' ') << "=> "; | 
|  | Result.getNode()->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | Indent -= 2; | 
|  | #endif | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | case X86ISD::CMP: { | 
|  | SDValue N0 = Node->getOperand(0); | 
|  | SDValue N1 = Node->getOperand(1); | 
|  |  | 
|  | // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to | 
|  | // use a smaller encoding. | 
|  | if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && | 
|  | N0.getValueType() != MVT::i8 && | 
|  | X86::isZeroNode(N1)) { | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); | 
|  | if (!C) break; | 
|  |  | 
|  | // For example, convert "testl %eax, $8" to "testb %al, $8" | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0) { | 
|  | SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // On x86-32, only the ABCD registers have 8-bit subregisters. | 
|  | if (!Subtarget->is64Bit()) { | 
|  | TargetRegisterClass *TRC = 0; | 
|  | switch (N0.getValueType().getSimpleVT().SimpleTy) { | 
|  | case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; | 
|  | case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; | 
|  | default: llvm_unreachable("Unsupported TEST operand type!"); | 
|  | } | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); | 
|  | Reg = SDValue(CurDAG->getTargetNode(X86::COPY_TO_REGCLASS, dl, | 
|  | Reg.getValueType(), Reg, RC), 0); | 
|  | } | 
|  |  | 
|  | // Extract the l-register. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, | 
|  | MVT::i8, Reg); | 
|  |  | 
|  | // Emit a testb. | 
|  | return CurDAG->getTargetNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); | 
|  | } | 
|  |  | 
|  | // For example, "testl %eax, $2048" to "testb %ah, $8". | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0) { | 
|  | // Shift the immediate right by 8 bits. | 
|  | SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, | 
|  | MVT::i8); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // Put the value in an ABCD register. | 
|  | TargetRegisterClass *TRC = 0; | 
|  | switch (N0.getValueType().getSimpleVT().SimpleTy) { | 
|  | case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; | 
|  | case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; | 
|  | case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; | 
|  | default: llvm_unreachable("Unsupported TEST operand type!"); | 
|  | } | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); | 
|  | Reg = SDValue(CurDAG->getTargetNode(X86::COPY_TO_REGCLASS, dl, | 
|  | Reg.getValueType(), Reg, RC), 0); | 
|  |  | 
|  | // Extract the h-register. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl, | 
|  | MVT::i8, Reg); | 
|  |  | 
|  | // Emit a testb. No special NOREX tricks are needed since there's | 
|  | // only one GPR operand! | 
|  | return CurDAG->getTargetNode(X86::TEST8ri, dl, MVT::i32, | 
|  | Subreg, ShiftedImm); | 
|  | } | 
|  |  | 
|  | // For example, "testl %eax, $32776" to "testw %ax, $32776". | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && | 
|  | N0.getValueType() != MVT::i16) { | 
|  | SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // Extract the 16-bit subregister. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl, | 
|  | MVT::i16, Reg); | 
|  |  | 
|  | // Emit a testw. | 
|  | return CurDAG->getTargetNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); | 
|  | } | 
|  |  | 
|  | // For example, "testq %rax, $268468232" to "testl %eax, $268468232". | 
|  | if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && | 
|  | N0.getValueType() == MVT::i64) { | 
|  | SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); | 
|  | SDValue Reg = N0.getNode()->getOperand(0); | 
|  |  | 
|  | // Extract the 32-bit subregister. | 
|  | SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl, | 
|  | MVT::i32, Reg); | 
|  |  | 
|  | // Emit a testl. | 
|  | return CurDAG->getTargetNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDNode *ResNode = SelectCode(N); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | DEBUG({ | 
|  | errs() << std::string(Indent-2, ' ') << "=> "; | 
|  | if (ResNode == NULL || ResNode == N.getNode()) | 
|  | N.getNode()->dump(CurDAG); | 
|  | else | 
|  | ResNode->dump(CurDAG); | 
|  | errs() << '\n'; | 
|  | }); | 
|  | Indent -= 2; | 
|  | #endif | 
|  |  | 
|  | return ResNode; | 
|  | } | 
|  |  | 
|  | bool X86DAGToDAGISel:: | 
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | SDValue Op0, Op1, Op2, Op3, Op4; | 
|  | switch (ConstraintCode) { | 
|  | case 'o':   // offsetable        ?? | 
|  | case 'v':   // not offsetable    ?? | 
|  | default: return true; | 
|  | case 'm':   // memory | 
|  | if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | OutOps.push_back(Op0); | 
|  | OutOps.push_back(Op1); | 
|  | OutOps.push_back(Op2); | 
|  | OutOps.push_back(Op3); | 
|  | OutOps.push_back(Op4); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// createX86ISelDag - This pass converts a legalized DAG into a | 
|  | /// X86-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, | 
|  | llvm::CodeGenOpt::Level OptLevel) { | 
|  | return new X86DAGToDAGISel(TM, OptLevel); | 
|  | } |