|  | //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass deletes dead arguments from internal functions.  Dead argument | 
|  | // elimination removes arguments which are directly dead, as well as arguments | 
|  | // only passed into function calls as dead arguments of other functions.  This | 
|  | // pass also deletes dead return values in a similar way. | 
|  | // | 
|  | // This pass is often useful as a cleanup pass to run after aggressive | 
|  | // interprocedural passes, which add possibly-dead arguments or return values. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "deadargelim" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Constant.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include <map> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); | 
|  | STATISTIC(NumRetValsEliminated  , "Number of unused return values removed"); | 
|  |  | 
|  | namespace { | 
|  | /// DAE - The dead argument elimination pass. | 
|  | /// | 
|  | class DAE : public ModulePass { | 
|  | public: | 
|  |  | 
|  | /// Struct that represents (part of) either a return value or a function | 
|  | /// argument.  Used so that arguments and return values can be used | 
|  | /// interchangably. | 
|  | struct RetOrArg { | 
|  | RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), | 
|  | IsArg(IsArg) {} | 
|  | const Function *F; | 
|  | unsigned Idx; | 
|  | bool IsArg; | 
|  |  | 
|  | /// Make RetOrArg comparable, so we can put it into a map. | 
|  | bool operator<(const RetOrArg &O) const { | 
|  | if (F != O.F) | 
|  | return F < O.F; | 
|  | else if (Idx != O.Idx) | 
|  | return Idx < O.Idx; | 
|  | else | 
|  | return IsArg < O.IsArg; | 
|  | } | 
|  |  | 
|  | /// Make RetOrArg comparable, so we can easily iterate the multimap. | 
|  | bool operator==(const RetOrArg &O) const { | 
|  | return F == O.F && Idx == O.Idx && IsArg == O.IsArg; | 
|  | } | 
|  |  | 
|  | std::string getDescription() const { | 
|  | return std::string((IsArg ? "Argument #" : "Return value #")) | 
|  | + utostr(Idx) + " of function " + F->getNameStr(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Liveness enum - During our initial pass over the program, we determine | 
|  | /// that things are either alive or maybe alive. We don't mark anything | 
|  | /// explicitly dead (even if we know they are), since anything not alive | 
|  | /// with no registered uses (in Uses) will never be marked alive and will | 
|  | /// thus become dead in the end. | 
|  | enum Liveness { Live, MaybeLive }; | 
|  |  | 
|  | /// Convenience wrapper | 
|  | RetOrArg CreateRet(const Function *F, unsigned Idx) { | 
|  | return RetOrArg(F, Idx, false); | 
|  | } | 
|  | /// Convenience wrapper | 
|  | RetOrArg CreateArg(const Function *F, unsigned Idx) { | 
|  | return RetOrArg(F, Idx, true); | 
|  | } | 
|  |  | 
|  | typedef std::multimap<RetOrArg, RetOrArg> UseMap; | 
|  | /// This maps a return value or argument to any MaybeLive return values or | 
|  | /// arguments it uses. This allows the MaybeLive values to be marked live | 
|  | /// when any of its users is marked live. | 
|  | /// For example (indices are left out for clarity): | 
|  | ///  - Uses[ret F] = ret G | 
|  | ///    This means that F calls G, and F returns the value returned by G. | 
|  | ///  - Uses[arg F] = ret G | 
|  | ///    This means that some function calls G and passes its result as an | 
|  | ///    argument to F. | 
|  | ///  - Uses[ret F] = arg F | 
|  | ///    This means that F returns one of its own arguments. | 
|  | ///  - Uses[arg F] = arg G | 
|  | ///    This means that G calls F and passes one of its own (G's) arguments | 
|  | ///    directly to F. | 
|  | UseMap Uses; | 
|  |  | 
|  | typedef std::set<RetOrArg> LiveSet; | 
|  | typedef std::set<const Function*> LiveFuncSet; | 
|  |  | 
|  | /// This set contains all values that have been determined to be live. | 
|  | LiveSet LiveValues; | 
|  | /// This set contains all values that are cannot be changed in any way. | 
|  | LiveFuncSet LiveFunctions; | 
|  |  | 
|  | typedef SmallVector<RetOrArg, 5> UseVector; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | DAE() : ModulePass(&ID) {} | 
|  | bool runOnModule(Module &M); | 
|  |  | 
|  | virtual bool ShouldHackArguments() const { return false; } | 
|  |  | 
|  | private: | 
|  | Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses); | 
|  | Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses, | 
|  | unsigned RetValNum = 0); | 
|  | Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses); | 
|  |  | 
|  | void SurveyFunction(const Function &F); | 
|  | void MarkValue(const RetOrArg &RA, Liveness L, | 
|  | const UseVector &MaybeLiveUses); | 
|  | void MarkLive(const RetOrArg &RA); | 
|  | void MarkLive(const Function &F); | 
|  | void PropagateLiveness(const RetOrArg &RA); | 
|  | bool RemoveDeadStuffFromFunction(Function *F); | 
|  | bool DeleteDeadVarargs(Function &Fn); | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | char DAE::ID = 0; | 
|  | static RegisterPass<DAE> | 
|  | X("deadargelim", "Dead Argument Elimination"); | 
|  |  | 
|  | namespace { | 
|  | /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but | 
|  | /// deletes arguments to functions which are external.  This is only for use | 
|  | /// by bugpoint. | 
|  | struct DAH : public DAE { | 
|  | static char ID; | 
|  | virtual bool ShouldHackArguments() const { return true; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char DAH::ID = 0; | 
|  | static RegisterPass<DAH> | 
|  | Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)"); | 
|  |  | 
|  | /// createDeadArgEliminationPass - This pass removes arguments from functions | 
|  | /// which are not used by the body of the function. | 
|  | /// | 
|  | ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } | 
|  | ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } | 
|  |  | 
|  | /// DeleteDeadVarargs - If this is an function that takes a ... list, and if | 
|  | /// llvm.vastart is never called, the varargs list is dead for the function. | 
|  | bool DAE::DeleteDeadVarargs(Function &Fn) { | 
|  | assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); | 
|  | if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; | 
|  |  | 
|  | // Ensure that the function is only directly called. | 
|  | if (Fn.hasAddressTaken()) | 
|  | return false; | 
|  |  | 
|  | // Okay, we know we can transform this function if safe.  Scan its body | 
|  | // looking for calls to llvm.vastart. | 
|  | for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::vastart) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we get here, there are no calls to llvm.vastart in the function body, | 
|  | // remove the "..." and adjust all the calls. | 
|  |  | 
|  | // Start by computing a new prototype for the function, which is the same as | 
|  | // the old function, but doesn't have isVarArg set. | 
|  | const FunctionType *FTy = Fn.getFunctionType(); | 
|  |  | 
|  | std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end()); | 
|  | FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), | 
|  | Params, false); | 
|  | unsigned NumArgs = Params.size(); | 
|  |  | 
|  | // Create the new function body and insert it into the module... | 
|  | Function *NF = Function::Create(NFTy, Fn.getLinkage()); | 
|  | NF->copyAttributesFrom(&Fn); | 
|  | Fn.getParent()->getFunctionList().insert(&Fn, NF); | 
|  | NF->takeName(&Fn); | 
|  |  | 
|  | // Loop over all of the callers of the function, transforming the call sites | 
|  | // to pass in a smaller number of arguments into the new function. | 
|  | // | 
|  | std::vector<Value*> Args; | 
|  | while (!Fn.use_empty()) { | 
|  | CallSite CS = CallSite::get(Fn.use_back()); | 
|  | Instruction *Call = CS.getInstruction(); | 
|  |  | 
|  | // Pass all the same arguments. | 
|  | Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs); | 
|  |  | 
|  | // Drop any attributes that were on the vararg arguments. | 
|  | AttrListPtr PAL = CS.getAttributes(); | 
|  | if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) { | 
|  | SmallVector<AttributeWithIndex, 8> AttributesVec; | 
|  | for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i) | 
|  | AttributesVec.push_back(PAL.getSlot(i)); | 
|  | if (Attributes FnAttrs = PAL.getFnAttributes()) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); | 
|  | PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()); | 
|  | } | 
|  |  | 
|  | Instruction *New; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args.begin(), Args.end(), "", Call); | 
|  | cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); | 
|  | cast<InvokeInst>(New)->setAttributes(PAL); | 
|  | } else { | 
|  | New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call); | 
|  | cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); | 
|  | cast<CallInst>(New)->setAttributes(PAL); | 
|  | if (cast<CallInst>(Call)->isTailCall()) | 
|  | cast<CallInst>(New)->setTailCall(); | 
|  | } | 
|  | Args.clear(); | 
|  |  | 
|  | if (!Call->use_empty()) | 
|  | Call->replaceAllUsesWith(New); | 
|  |  | 
|  | New->takeName(Call); | 
|  |  | 
|  | // Finally, remove the old call from the program, reducing the use-count of | 
|  | // F. | 
|  | Call->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Since we have now created the new function, splice the body of the old | 
|  | // function right into the new function, leaving the old rotting hulk of the | 
|  | // function empty. | 
|  | NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); | 
|  |  | 
|  | // Loop over the argument list, transfering uses of the old arguments over to | 
|  | // the new arguments, also transfering over the names as well.  While we're at | 
|  | // it, remove the dead arguments from the DeadArguments list. | 
|  | // | 
|  | for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), | 
|  | I2 = NF->arg_begin(); I != E; ++I, ++I2) { | 
|  | // Move the name and users over to the new version. | 
|  | I->replaceAllUsesWith(I2); | 
|  | I2->takeName(I); | 
|  | } | 
|  |  | 
|  | // Finally, nuke the old function. | 
|  | Fn.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Convenience function that returns the number of return values. It returns 0 | 
|  | /// for void functions and 1 for functions not returning a struct. It returns | 
|  | /// the number of struct elements for functions returning a struct. | 
|  | static unsigned NumRetVals(const Function *F) { | 
|  | if (F->getReturnType()->isVoidTy()) | 
|  | return 0; | 
|  | else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) | 
|  | return STy->getNumElements(); | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not | 
|  | /// live, it adds Use to the MaybeLiveUses argument. Returns the determined | 
|  | /// liveness of Use. | 
|  | DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) { | 
|  | // We're live if our use or its Function is already marked as live. | 
|  | if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) | 
|  | return Live; | 
|  |  | 
|  | // We're maybe live otherwise, but remember that we must become live if | 
|  | // Use becomes live. | 
|  | MaybeLiveUses.push_back(Use); | 
|  | return MaybeLive; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SurveyUse - This looks at a single use of an argument or return value | 
|  | /// and determines if it should be alive or not. Adds this use to MaybeLiveUses | 
|  | /// if it causes the used value to become MaybeLive. | 
|  | /// | 
|  | /// RetValNum is the return value number to use when this use is used in a | 
|  | /// return instruction. This is used in the recursion, you should always leave | 
|  | /// it at 0. | 
|  | DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U, | 
|  | UseVector &MaybeLiveUses, unsigned RetValNum) { | 
|  | const User *V = *U; | 
|  | if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { | 
|  | // The value is returned from a function. It's only live when the | 
|  | // function's return value is live. We use RetValNum here, for the case | 
|  | // that U is really a use of an insertvalue instruction that uses the | 
|  | // orginal Use. | 
|  | RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum); | 
|  | // We might be live, depending on the liveness of Use. | 
|  | return MarkIfNotLive(Use, MaybeLiveUses); | 
|  | } | 
|  | if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { | 
|  | if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex() | 
|  | && IV->hasIndices()) | 
|  | // The use we are examining is inserted into an aggregate. Our liveness | 
|  | // depends on all uses of that aggregate, but if it is used as a return | 
|  | // value, only index at which we were inserted counts. | 
|  | RetValNum = *IV->idx_begin(); | 
|  |  | 
|  | // Note that if we are used as the aggregate operand to the insertvalue, | 
|  | // we don't change RetValNum, but do survey all our uses. | 
|  |  | 
|  | Liveness Result = MaybeLive; | 
|  | for (Value::const_use_iterator I = IV->use_begin(), | 
|  | E = V->use_end(); I != E; ++I) { | 
|  | Result = SurveyUse(I, MaybeLiveUses, RetValNum); | 
|  | if (Result == Live) | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | if (ImmutableCallSite CS = V) { | 
|  | const Function *F = CS.getCalledFunction(); | 
|  | if (F) { | 
|  | // Used in a direct call. | 
|  |  | 
|  | // Find the argument number. We know for sure that this use is an | 
|  | // argument, since if it was the function argument this would be an | 
|  | // indirect call and the we know can't be looking at a value of the | 
|  | // label type (for the invoke instruction). | 
|  | unsigned ArgNo = CS.getArgumentNo(U); | 
|  |  | 
|  | if (ArgNo >= F->getFunctionType()->getNumParams()) | 
|  | // The value is passed in through a vararg! Must be live. | 
|  | return Live; | 
|  |  | 
|  | assert(CS.getArgument(ArgNo) | 
|  | == CS->getOperand(U.getOperandNo()) | 
|  | && "Argument is not where we expected it"); | 
|  |  | 
|  | // Value passed to a normal call. It's only live when the corresponding | 
|  | // argument to the called function turns out live. | 
|  | RetOrArg Use = CreateArg(F, ArgNo); | 
|  | return MarkIfNotLive(Use, MaybeLiveUses); | 
|  | } | 
|  | } | 
|  | // Used in any other way? Value must be live. | 
|  | return Live; | 
|  | } | 
|  |  | 
|  | /// SurveyUses - This looks at all the uses of the given value | 
|  | /// Returns the Liveness deduced from the uses of this value. | 
|  | /// | 
|  | /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If | 
|  | /// the result is Live, MaybeLiveUses might be modified but its content should | 
|  | /// be ignored (since it might not be complete). | 
|  | DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) { | 
|  | // Assume it's dead (which will only hold if there are no uses at all..). | 
|  | Liveness Result = MaybeLive; | 
|  | // Check each use. | 
|  | for (Value::const_use_iterator I = V->use_begin(), | 
|  | E = V->use_end(); I != E; ++I) { | 
|  | Result = SurveyUse(I, MaybeLiveUses); | 
|  | if (Result == Live) | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // SurveyFunction - This performs the initial survey of the specified function, | 
|  | // checking out whether or not it uses any of its incoming arguments or whether | 
|  | // any callers use the return value.  This fills in the LiveValues set and Uses | 
|  | // map. | 
|  | // | 
|  | // We consider arguments of non-internal functions to be intrinsically alive as | 
|  | // well as arguments to functions which have their "address taken". | 
|  | // | 
|  | void DAE::SurveyFunction(const Function &F) { | 
|  | unsigned RetCount = NumRetVals(&F); | 
|  | // Assume all return values are dead | 
|  | typedef SmallVector<Liveness, 5> RetVals; | 
|  | RetVals RetValLiveness(RetCount, MaybeLive); | 
|  |  | 
|  | typedef SmallVector<UseVector, 5> RetUses; | 
|  | // These vectors map each return value to the uses that make it MaybeLive, so | 
|  | // we can add those to the Uses map if the return value really turns out to be | 
|  | // MaybeLive. Initialized to a list of RetCount empty lists. | 
|  | RetUses MaybeLiveRetUses(RetCount); | 
|  |  | 
|  | for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) | 
|  | if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() | 
|  | != F.getFunctionType()->getReturnType()) { | 
|  | // We don't support old style multiple return values. | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) { | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n"); | 
|  | // Keep track of the number of live retvals, so we can skip checks once all | 
|  | // of them turn out to be live. | 
|  | unsigned NumLiveRetVals = 0; | 
|  | const Type *STy = dyn_cast<StructType>(F.getReturnType()); | 
|  | // Loop all uses of the function. | 
|  | for (Value::const_use_iterator I = F.use_begin(), E = F.use_end(); | 
|  | I != E; ++I) { | 
|  | // If the function is PASSED IN as an argument, its address has been | 
|  | // taken. | 
|  | ImmutableCallSite CS(*I); | 
|  | if (!CS || !CS.isCallee(I)) { | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this use is anything other than a call site, the function is alive. | 
|  | const Instruction *TheCall = CS.getInstruction(); | 
|  | if (!TheCall) {   // Not a direct call site? | 
|  | MarkLive(F); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we end up here, we are looking at a direct call to our function. | 
|  |  | 
|  | // Now, check how our return value(s) is/are used in this caller. Don't | 
|  | // bother checking return values if all of them are live already. | 
|  | if (NumLiveRetVals != RetCount) { | 
|  | if (STy) { | 
|  | // Check all uses of the return value. | 
|  | for (Value::const_use_iterator I = TheCall->use_begin(), | 
|  | E = TheCall->use_end(); I != E; ++I) { | 
|  | const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I); | 
|  | if (Ext && Ext->hasIndices()) { | 
|  | // This use uses a part of our return value, survey the uses of | 
|  | // that part and store the results for this index only. | 
|  | unsigned Idx = *Ext->idx_begin(); | 
|  | if (RetValLiveness[Idx] != Live) { | 
|  | RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); | 
|  | if (RetValLiveness[Idx] == Live) | 
|  | NumLiveRetVals++; | 
|  | } | 
|  | } else { | 
|  | // Used by something else than extractvalue. Mark all return | 
|  | // values as live. | 
|  | for (unsigned i = 0; i != RetCount; ++i ) | 
|  | RetValLiveness[i] = Live; | 
|  | NumLiveRetVals = RetCount; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Single return value | 
|  | RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]); | 
|  | if (RetValLiveness[0] == Live) | 
|  | NumLiveRetVals = RetCount; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we've inspected all callers, record the liveness of our return values. | 
|  | for (unsigned i = 0; i != RetCount; ++i) | 
|  | MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); | 
|  |  | 
|  | DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n"); | 
|  |  | 
|  | // Now, check all of our arguments. | 
|  | unsigned i = 0; | 
|  | UseVector MaybeLiveArgUses; | 
|  | for (Function::const_arg_iterator AI = F.arg_begin(), | 
|  | E = F.arg_end(); AI != E; ++AI, ++i) { | 
|  | // See what the effect of this use is (recording any uses that cause | 
|  | // MaybeLive in MaybeLiveArgUses). | 
|  | Liveness Result = SurveyUses(AI, MaybeLiveArgUses); | 
|  | // Mark the result. | 
|  | MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); | 
|  | // Clear the vector again for the next iteration. | 
|  | MaybeLiveArgUses.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MarkValue - This function marks the liveness of RA depending on L. If L is | 
|  | /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, | 
|  | /// such that RA will be marked live if any use in MaybeLiveUses gets marked | 
|  | /// live later on. | 
|  | void DAE::MarkValue(const RetOrArg &RA, Liveness L, | 
|  | const UseVector &MaybeLiveUses) { | 
|  | switch (L) { | 
|  | case Live: MarkLive(RA); break; | 
|  | case MaybeLive: | 
|  | { | 
|  | // Note any uses of this value, so this return value can be | 
|  | // marked live whenever one of the uses becomes live. | 
|  | for (UseVector::const_iterator UI = MaybeLiveUses.begin(), | 
|  | UE = MaybeLiveUses.end(); UI != UE; ++UI) | 
|  | Uses.insert(std::make_pair(*UI, RA)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MarkLive - Mark the given Function as alive, meaning that it cannot be | 
|  | /// changed in any way. Additionally, | 
|  | /// mark any values that are used as this function's parameters or by its return | 
|  | /// values (according to Uses) live as well. | 
|  | void DAE::MarkLive(const Function &F) { | 
|  | DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n"); | 
|  | // Mark the function as live. | 
|  | LiveFunctions.insert(&F); | 
|  | // Mark all arguments as live. | 
|  | for (unsigned i = 0, e = F.arg_size(); i != e; ++i) | 
|  | PropagateLiveness(CreateArg(&F, i)); | 
|  | // Mark all return values as live. | 
|  | for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) | 
|  | PropagateLiveness(CreateRet(&F, i)); | 
|  | } | 
|  |  | 
|  | /// MarkLive - Mark the given return value or argument as live. Additionally, | 
|  | /// mark any values that are used by this value (according to Uses) live as | 
|  | /// well. | 
|  | void DAE::MarkLive(const RetOrArg &RA) { | 
|  | if (LiveFunctions.count(RA.F)) | 
|  | return; // Function was already marked Live. | 
|  |  | 
|  | if (!LiveValues.insert(RA).second) | 
|  | return; // We were already marked Live. | 
|  |  | 
|  | DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n"); | 
|  | PropagateLiveness(RA); | 
|  | } | 
|  |  | 
|  | /// PropagateLiveness - Given that RA is a live value, propagate it's liveness | 
|  | /// to any other values it uses (according to Uses). | 
|  | void DAE::PropagateLiveness(const RetOrArg &RA) { | 
|  | // We don't use upper_bound (or equal_range) here, because our recursive call | 
|  | // to ourselves is likely to cause the upper_bound (which is the first value | 
|  | // not belonging to RA) to become erased and the iterator invalidated. | 
|  | UseMap::iterator Begin = Uses.lower_bound(RA); | 
|  | UseMap::iterator E = Uses.end(); | 
|  | UseMap::iterator I; | 
|  | for (I = Begin; I != E && I->first == RA; ++I) | 
|  | MarkLive(I->second); | 
|  |  | 
|  | // Erase RA from the Uses map (from the lower bound to wherever we ended up | 
|  | // after the loop). | 
|  | Uses.erase(Begin, I); | 
|  | } | 
|  |  | 
|  | // RemoveDeadStuffFromFunction - Remove any arguments and return values from F | 
|  | // that are not in LiveValues. Transform the function and all of the callees of | 
|  | // the function to not have these arguments and return values. | 
|  | // | 
|  | bool DAE::RemoveDeadStuffFromFunction(Function *F) { | 
|  | // Don't modify fully live functions | 
|  | if (LiveFunctions.count(F)) | 
|  | return false; | 
|  |  | 
|  | // Start by computing a new prototype for the function, which is the same as | 
|  | // the old function, but has fewer arguments and a different return type. | 
|  | const FunctionType *FTy = F->getFunctionType(); | 
|  | std::vector<const Type*> Params; | 
|  |  | 
|  | // Set up to build a new list of parameter attributes. | 
|  | SmallVector<AttributeWithIndex, 8> AttributesVec; | 
|  | const AttrListPtr &PAL = F->getAttributes(); | 
|  |  | 
|  | // The existing function return attributes. | 
|  | Attributes RAttrs = PAL.getRetAttributes(); | 
|  | Attributes FnAttrs = PAL.getFnAttributes(); | 
|  |  | 
|  | // Find out the new return value. | 
|  |  | 
|  | const Type *RetTy = FTy->getReturnType(); | 
|  | const Type *NRetTy = NULL; | 
|  | unsigned RetCount = NumRetVals(F); | 
|  |  | 
|  | // -1 means unused, other numbers are the new index | 
|  | SmallVector<int, 5> NewRetIdxs(RetCount, -1); | 
|  | std::vector<const Type*> RetTypes; | 
|  | if (RetTy->isVoidTy()) { | 
|  | NRetTy = RetTy; | 
|  | } else { | 
|  | const StructType *STy = dyn_cast<StructType>(RetTy); | 
|  | if (STy) | 
|  | // Look at each of the original return values individually. | 
|  | for (unsigned i = 0; i != RetCount; ++i) { | 
|  | RetOrArg Ret = CreateRet(F, i); | 
|  | if (LiveValues.erase(Ret)) { | 
|  | RetTypes.push_back(STy->getElementType(i)); | 
|  | NewRetIdxs[i] = RetTypes.size() - 1; | 
|  | } else { | 
|  | ++NumRetValsEliminated; | 
|  | DEBUG(dbgs() << "DAE - Removing return value " << i << " from " | 
|  | << F->getName() << "\n"); | 
|  | } | 
|  | } | 
|  | else | 
|  | // We used to return a single value. | 
|  | if (LiveValues.erase(CreateRet(F, 0))) { | 
|  | RetTypes.push_back(RetTy); | 
|  | NewRetIdxs[0] = 0; | 
|  | } else { | 
|  | DEBUG(dbgs() << "DAE - Removing return value from " << F->getName() | 
|  | << "\n"); | 
|  | ++NumRetValsEliminated; | 
|  | } | 
|  | if (RetTypes.size() > 1) | 
|  | // More than one return type? Return a struct with them. Also, if we used | 
|  | // to return a struct and didn't change the number of return values, | 
|  | // return a struct again. This prevents changing {something} into | 
|  | // something and {} into void. | 
|  | // Make the new struct packed if we used to return a packed struct | 
|  | // already. | 
|  | NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); | 
|  | else if (RetTypes.size() == 1) | 
|  | // One return type? Just a simple value then, but only if we didn't use to | 
|  | // return a struct with that simple value before. | 
|  | NRetTy = RetTypes.front(); | 
|  | else if (RetTypes.size() == 0) | 
|  | // No return types? Make it void, but only if we didn't use to return {}. | 
|  | NRetTy = Type::getVoidTy(F->getContext()); | 
|  | } | 
|  |  | 
|  | assert(NRetTy && "No new return type found?"); | 
|  |  | 
|  | // Remove any incompatible attributes, but only if we removed all return | 
|  | // values. Otherwise, ensure that we don't have any conflicting attributes | 
|  | // here. Currently, this should not be possible, but special handling might be | 
|  | // required when new return value attributes are added. | 
|  | if (NRetTy->isVoidTy()) | 
|  | RAttrs &= ~Attribute::typeIncompatible(NRetTy); | 
|  | else | 
|  | assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0 | 
|  | && "Return attributes no longer compatible?"); | 
|  |  | 
|  | if (RAttrs) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs)); | 
|  |  | 
|  | // Remember which arguments are still alive. | 
|  | SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); | 
|  | // Construct the new parameter list from non-dead arguments. Also construct | 
|  | // a new set of parameter attributes to correspond. Skip the first parameter | 
|  | // attribute, since that belongs to the return value. | 
|  | unsigned i = 0; | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I, ++i) { | 
|  | RetOrArg Arg = CreateArg(F, i); | 
|  | if (LiveValues.erase(Arg)) { | 
|  | Params.push_back(I->getType()); | 
|  | ArgAlive[i] = true; | 
|  |  | 
|  | // Get the original parameter attributes (skipping the first one, that is | 
|  | // for the return value. | 
|  | if (Attributes Attrs = PAL.getParamAttributes(i + 1)) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs)); | 
|  | } else { | 
|  | ++NumArgumentsEliminated; | 
|  | DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName() | 
|  | << ") from " << F->getName() << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FnAttrs != Attribute::None) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); | 
|  |  | 
|  | // Reconstruct the AttributesList based on the vector we constructed. | 
|  | AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), | 
|  | AttributesVec.end()); | 
|  |  | 
|  | // Create the new function type based on the recomputed parameters. | 
|  | FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); | 
|  |  | 
|  | // No change? | 
|  | if (NFTy == FTy) | 
|  | return false; | 
|  |  | 
|  | // Create the new function body and insert it into the module... | 
|  | Function *NF = Function::Create(NFTy, F->getLinkage()); | 
|  | NF->copyAttributesFrom(F); | 
|  | NF->setAttributes(NewPAL); | 
|  | // Insert the new function before the old function, so we won't be processing | 
|  | // it again. | 
|  | F->getParent()->getFunctionList().insert(F, NF); | 
|  | NF->takeName(F); | 
|  |  | 
|  | // Loop over all of the callers of the function, transforming the call sites | 
|  | // to pass in a smaller number of arguments into the new function. | 
|  | // | 
|  | std::vector<Value*> Args; | 
|  | while (!F->use_empty()) { | 
|  | CallSite CS = CallSite::get(F->use_back()); | 
|  | Instruction *Call = CS.getInstruction(); | 
|  |  | 
|  | AttributesVec.clear(); | 
|  | const AttrListPtr &CallPAL = CS.getAttributes(); | 
|  |  | 
|  | // The call return attributes. | 
|  | Attributes RAttrs = CallPAL.getRetAttributes(); | 
|  | Attributes FnAttrs = CallPAL.getFnAttributes(); | 
|  | // Adjust in case the function was changed to return void. | 
|  | RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType()); | 
|  | if (RAttrs) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs)); | 
|  |  | 
|  | // Declare these outside of the loops, so we can reuse them for the second | 
|  | // loop, which loops the varargs. | 
|  | CallSite::arg_iterator I = CS.arg_begin(); | 
|  | unsigned i = 0; | 
|  | // Loop over those operands, corresponding to the normal arguments to the | 
|  | // original function, and add those that are still alive. | 
|  | for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) | 
|  | if (ArgAlive[i]) { | 
|  | Args.push_back(*I); | 
|  | // Get original parameter attributes, but skip return attributes. | 
|  | if (Attributes Attrs = CallPAL.getParamAttributes(i + 1)) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); | 
|  | } | 
|  |  | 
|  | // Push any varargs arguments on the list. Don't forget their attributes. | 
|  | for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { | 
|  | Args.push_back(*I); | 
|  | if (Attributes Attrs = CallPAL.getParamAttributes(i + 1)) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); | 
|  | } | 
|  |  | 
|  | if (FnAttrs != Attribute::None) | 
|  | AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); | 
|  |  | 
|  | // Reconstruct the AttributesList based on the vector we constructed. | 
|  | AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(), | 
|  | AttributesVec.end()); | 
|  |  | 
|  | Instruction *New; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args.begin(), Args.end(), "", Call); | 
|  | cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); | 
|  | cast<InvokeInst>(New)->setAttributes(NewCallPAL); | 
|  | } else { | 
|  | New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call); | 
|  | cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); | 
|  | cast<CallInst>(New)->setAttributes(NewCallPAL); | 
|  | if (cast<CallInst>(Call)->isTailCall()) | 
|  | cast<CallInst>(New)->setTailCall(); | 
|  | } | 
|  | Args.clear(); | 
|  |  | 
|  | if (!Call->use_empty()) { | 
|  | if (New->getType() == Call->getType()) { | 
|  | // Return type not changed? Just replace users then. | 
|  | Call->replaceAllUsesWith(New); | 
|  | New->takeName(Call); | 
|  | } else if (New->getType()->isVoidTy()) { | 
|  | // Our return value has uses, but they will get removed later on. | 
|  | // Replace by null for now. | 
|  | Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); | 
|  | } else { | 
|  | assert(RetTy->isStructTy() && | 
|  | "Return type changed, but not into a void. The old return type" | 
|  | " must have been a struct!"); | 
|  | Instruction *InsertPt = Call; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | BasicBlock::iterator IP = II->getNormalDest()->begin(); | 
|  | while (isa<PHINode>(IP)) ++IP; | 
|  | InsertPt = IP; | 
|  | } | 
|  |  | 
|  | // We used to return a struct. Instead of doing smart stuff with all the | 
|  | // uses of this struct, we will just rebuild it using | 
|  | // extract/insertvalue chaining and let instcombine clean that up. | 
|  | // | 
|  | // Start out building up our return value from undef | 
|  | Value *RetVal = UndefValue::get(RetTy); | 
|  | for (unsigned i = 0; i != RetCount; ++i) | 
|  | if (NewRetIdxs[i] != -1) { | 
|  | Value *V; | 
|  | if (RetTypes.size() > 1) | 
|  | // We are still returning a struct, so extract the value from our | 
|  | // return value | 
|  | V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", | 
|  | InsertPt); | 
|  | else | 
|  | // We are now returning a single element, so just insert that | 
|  | V = New; | 
|  | // Insert the value at the old position | 
|  | RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); | 
|  | } | 
|  | // Now, replace all uses of the old call instruction with the return | 
|  | // struct we built | 
|  | Call->replaceAllUsesWith(RetVal); | 
|  | New->takeName(Call); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, remove the old call from the program, reducing the use-count of | 
|  | // F. | 
|  | Call->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Since we have now created the new function, splice the body of the old | 
|  | // function right into the new function, leaving the old rotting hulk of the | 
|  | // function empty. | 
|  | NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); | 
|  |  | 
|  | // Loop over the argument list, transfering uses of the old arguments over to | 
|  | // the new arguments, also transfering over the names as well. | 
|  | i = 0; | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), | 
|  | I2 = NF->arg_begin(); I != E; ++I, ++i) | 
|  | if (ArgAlive[i]) { | 
|  | // If this is a live argument, move the name and users over to the new | 
|  | // version. | 
|  | I->replaceAllUsesWith(I2); | 
|  | I2->takeName(I); | 
|  | ++I2; | 
|  | } else { | 
|  | // If this argument is dead, replace any uses of it with null constants | 
|  | // (these are guaranteed to become unused later on). | 
|  | I->replaceAllUsesWith(Constant::getNullValue(I->getType())); | 
|  | } | 
|  |  | 
|  | // If we change the return value of the function we must rewrite any return | 
|  | // instructions.  Check this now. | 
|  | if (F->getReturnType() != NF->getReturnType()) | 
|  | for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { | 
|  | Value *RetVal; | 
|  |  | 
|  | if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) { | 
|  | RetVal = 0; | 
|  | } else { | 
|  | assert (RetTy->isStructTy()); | 
|  | // The original return value was a struct, insert | 
|  | // extractvalue/insertvalue chains to extract only the values we need | 
|  | // to return and insert them into our new result. | 
|  | // This does generate messy code, but we'll let it to instcombine to | 
|  | // clean that up. | 
|  | Value *OldRet = RI->getOperand(0); | 
|  | // Start out building up our return value from undef | 
|  | RetVal = UndefValue::get(NRetTy); | 
|  | for (unsigned i = 0; i != RetCount; ++i) | 
|  | if (NewRetIdxs[i] != -1) { | 
|  | ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, | 
|  | "oldret", RI); | 
|  | if (RetTypes.size() > 1) { | 
|  | // We're still returning a struct, so reinsert the value into | 
|  | // our new return value at the new index | 
|  |  | 
|  | RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], | 
|  | "newret", RI); | 
|  | } else { | 
|  | // We are now only returning a simple value, so just return the | 
|  | // extracted value. | 
|  | RetVal = EV; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Replace the return instruction with one returning the new return | 
|  | // value (possibly 0 if we became void). | 
|  | ReturnInst::Create(F->getContext(), RetVal, RI); | 
|  | BB->getInstList().erase(RI); | 
|  | } | 
|  |  | 
|  | // Now that the old function is dead, delete it. | 
|  | F->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DAE::runOnModule(Module &M) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // First pass: Do a simple check to see if any functions can have their "..." | 
|  | // removed.  We can do this if they never call va_start.  This loop cannot be | 
|  | // fused with the next loop, because deleting a function invalidates | 
|  | // information computed while surveying other functions. | 
|  | DEBUG(dbgs() << "DAE - Deleting dead varargs\n"); | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { | 
|  | Function &F = *I++; | 
|  | if (F.getFunctionType()->isVarArg()) | 
|  | Changed |= DeleteDeadVarargs(F); | 
|  | } | 
|  |  | 
|  | // Second phase:loop through the module, determining which arguments are live. | 
|  | // We assume all arguments are dead unless proven otherwise (allowing us to | 
|  | // determine that dead arguments passed into recursive functions are dead). | 
|  | // | 
|  | DEBUG(dbgs() << "DAE - Determining liveness\n"); | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | SurveyFunction(*I); | 
|  |  | 
|  | // Now, remove all dead arguments and return values from each function in | 
|  | // turn. | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { | 
|  | // Increment now, because the function will probably get removed (ie. | 
|  | // replaced by a new one). | 
|  | Function *F = I++; | 
|  | Changed |= RemoveDeadStuffFromFunction(F); | 
|  | } | 
|  | return Changed; | 
|  | } |