|  | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs loop invariant code motion, attempting to remove as much | 
|  | // code from the body of a loop as possible.  It does this by either hoisting | 
|  | // code into the preheader block, or by sinking code to the exit blocks if it is | 
|  | // safe.  This pass also promotes must-aliased memory locations in the loop to | 
|  | // live in registers, thus hoisting and sinking "invariant" loads and stores. | 
|  | // | 
|  | // This pass uses alias analysis for two purposes: | 
|  | // | 
|  | //  1. Moving loop invariant loads and calls out of loops.  If we can determine | 
|  | //     that a load or call inside of a loop never aliases anything stored to, | 
|  | //     we can hoist it or sink it like any other instruction. | 
|  | //  2. Scalar Promotion of Memory - If there is a store instruction inside of | 
|  | //     the loop, we try to move the store to happen AFTER the loop instead of | 
|  | //     inside of the loop.  This can only happen if a few conditions are true: | 
|  | //       A. The pointer stored through is loop invariant | 
|  | //       B. There are no stores or loads in the loop which _may_ alias the | 
|  | //          pointer.  There are no calls in the loop which mod/ref the pointer. | 
|  | //     If these conditions are true, we can promote the loads and stores in the | 
|  | //     loop of the pointer to use a temporary alloca'd variable.  We then use | 
|  | //     the mem2reg functionality to construct the appropriate SSA form for the | 
|  | //     variable. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "licm" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AliasSetTracker.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Transforms/Utils/PromoteMemToReg.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumSunk      , "Number of instructions sunk out of loop"); | 
|  | STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop"); | 
|  | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); | 
|  | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); | 
|  | STATISTIC(NumPromoted  , "Number of memory locations promoted to registers"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisablePromotion("disable-licm-promotion", cl::Hidden, | 
|  | cl::desc("Disable memory promotion in LICM pass")); | 
|  |  | 
|  | namespace { | 
|  | struct LICM : public LoopPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LICM() : LoopPass(&ID) {} | 
|  |  | 
|  | virtual bool runOnLoop(Loop *L, LPPassManager &LPM); | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG... | 
|  | /// | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<LoopInfo>(); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg) | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addPreserved<ScalarEvolution>(); | 
|  | AU.addPreserved<DominanceFrontier>(); | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | } | 
|  |  | 
|  | bool doFinalization() { | 
|  | // Free the values stored in the map | 
|  | for (std::map<Loop *, AliasSetTracker *>::iterator | 
|  | I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I) | 
|  | delete I->second; | 
|  |  | 
|  | LoopToAliasMap.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Various analyses that we use... | 
|  | AliasAnalysis *AA;       // Current AliasAnalysis information | 
|  | LoopInfo      *LI;       // Current LoopInfo | 
|  | DominatorTree *DT;       // Dominator Tree for the current Loop... | 
|  | DominanceFrontier *DF;   // Current Dominance Frontier | 
|  |  | 
|  | // State that is updated as we process loops | 
|  | bool Changed;            // Set to true when we change anything. | 
|  | BasicBlock *Preheader;   // The preheader block of the current loop... | 
|  | Loop *CurLoop;           // The current loop we are working on... | 
|  | AliasSetTracker *CurAST; // AliasSet information for the current loop... | 
|  | std::map<Loop *, AliasSetTracker *> LoopToAliasMap; | 
|  |  | 
|  | /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. | 
|  | void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L); | 
|  |  | 
|  | /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias | 
|  | /// set. | 
|  | void deleteAnalysisValue(Value *V, Loop *L); | 
|  |  | 
|  | /// SinkRegion - Walk the specified region of the CFG (defined by all blocks | 
|  | /// dominated by the specified block, and that are in the current loop) in | 
|  | /// reverse depth first order w.r.t the DominatorTree.  This allows us to | 
|  | /// visit uses before definitions, allowing us to sink a loop body in one | 
|  | /// pass without iteration. | 
|  | /// | 
|  | void SinkRegion(DomTreeNode *N); | 
|  |  | 
|  | /// HoistRegion - Walk the specified region of the CFG (defined by all | 
|  | /// blocks dominated by the specified block, and that are in the current | 
|  | /// loop) in depth first order w.r.t the DominatorTree.  This allows us to | 
|  | /// visit definitions before uses, allowing us to hoist a loop body in one | 
|  | /// pass without iteration. | 
|  | /// | 
|  | void HoistRegion(DomTreeNode *N); | 
|  |  | 
|  | /// inSubLoop - Little predicate that returns true if the specified basic | 
|  | /// block is in a subloop of the current one, not the current one itself. | 
|  | /// | 
|  | bool inSubLoop(BasicBlock *BB) { | 
|  | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); | 
|  | for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I) | 
|  | if ((*I)->contains(BB)) | 
|  | return true;  // A subloop actually contains this block! | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isExitBlockDominatedByBlockInLoop - This method checks to see if the | 
|  | /// specified exit block of the loop is dominated by the specified block | 
|  | /// that is in the body of the loop.  We use these constraints to | 
|  | /// dramatically limit the amount of the dominator tree that needs to be | 
|  | /// searched. | 
|  | bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock, | 
|  | BasicBlock *BlockInLoop) const { | 
|  | // If the block in the loop is the loop header, it must be dominated! | 
|  | BasicBlock *LoopHeader = CurLoop->getHeader(); | 
|  | if (BlockInLoop == LoopHeader) | 
|  | return true; | 
|  |  | 
|  | DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop); | 
|  | DomTreeNode *IDom            = DT->getNode(ExitBlock); | 
|  |  | 
|  | // Because the exit block is not in the loop, we know we have to get _at | 
|  | // least_ its immediate dominator. | 
|  | IDom = IDom->getIDom(); | 
|  |  | 
|  | while (IDom && IDom != BlockInLoopNode) { | 
|  | // If we have got to the header of the loop, then the instructions block | 
|  | // did not dominate the exit node, so we can't hoist it. | 
|  | if (IDom->getBlock() == LoopHeader) | 
|  | return false; | 
|  |  | 
|  | // Get next Immediate Dominator. | 
|  | IDom = IDom->getIDom(); | 
|  | }; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// sink - When an instruction is found to only be used outside of the loop, | 
|  | /// this function moves it to the exit blocks and patches up SSA form as | 
|  | /// needed. | 
|  | /// | 
|  | void sink(Instruction &I); | 
|  |  | 
|  | /// hoist - When an instruction is found to only use loop invariant operands | 
|  | /// that is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | void hoist(Instruction &I); | 
|  |  | 
|  | /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it | 
|  | /// is not a trapping instruction or if it is a trapping instruction and is | 
|  | /// guaranteed to execute. | 
|  | /// | 
|  | bool isSafeToExecuteUnconditionally(Instruction &I); | 
|  |  | 
|  | /// pointerInvalidatedByLoop - Return true if the body of this loop may | 
|  | /// store into the memory location pointed to by V. | 
|  | /// | 
|  | bool pointerInvalidatedByLoop(Value *V, unsigned Size) { | 
|  | // Check to see if any of the basic blocks in CurLoop invalidate *V. | 
|  | return CurAST->getAliasSetForPointer(V, Size).isMod(); | 
|  | } | 
|  |  | 
|  | bool canSinkOrHoistInst(Instruction &I); | 
|  | bool isLoopInvariantInst(Instruction &I); | 
|  | bool isNotUsedInLoop(Instruction &I); | 
|  |  | 
|  | /// PromoteValuesInLoop - Look at the stores in the loop and promote as many | 
|  | /// to scalars as we can. | 
|  | /// | 
|  | void PromoteValuesInLoop(); | 
|  |  | 
|  | /// FindPromotableValuesInLoop - Check the current loop for stores to | 
|  | /// definite pointers, which are not loaded and stored through may aliases. | 
|  | /// If these are found, create an alloca for the value, add it to the | 
|  | /// PromotedValues list, and keep track of the mapping from value to | 
|  | /// alloca... | 
|  | /// | 
|  | void FindPromotableValuesInLoop( | 
|  | std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues, | 
|  | std::map<Value*, AllocaInst*> &Val2AlMap); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char LICM::ID = 0; | 
|  | static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion"); | 
|  |  | 
|  | Pass *llvm::createLICMPass() { return new LICM(); } | 
|  |  | 
|  | /// Hoist expressions out of the specified loop. Note, alias info for inner | 
|  | /// loop is not preserved so it is not a good idea to run LICM multiple | 
|  | /// times on one loop. | 
|  | /// | 
|  | bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) { | 
|  | Changed = false; | 
|  |  | 
|  | // Get our Loop and Alias Analysis information... | 
|  | LI = &getAnalysis<LoopInfo>(); | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  | DF = &getAnalysis<DominanceFrontier>(); | 
|  | DT = &getAnalysis<DominatorTree>(); | 
|  |  | 
|  | CurAST = new AliasSetTracker(*AA); | 
|  | // Collect Alias info from subloops | 
|  | for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end(); | 
|  | LoopItr != LoopItrE; ++LoopItr) { | 
|  | Loop *InnerL = *LoopItr; | 
|  | AliasSetTracker *InnerAST = LoopToAliasMap[InnerL]; | 
|  | assert (InnerAST && "Where is my AST?"); | 
|  |  | 
|  | // What if InnerLoop was modified by other passes ? | 
|  | CurAST->add(*InnerAST); | 
|  | } | 
|  |  | 
|  | CurLoop = L; | 
|  |  | 
|  | // Get the preheader block to move instructions into... | 
|  | Preheader = L->getLoopPreheader(); | 
|  |  | 
|  | // Loop over the body of this loop, looking for calls, invokes, and stores. | 
|  | // Because subloops have already been incorporated into AST, we skip blocks in | 
|  | // subloops. | 
|  | // | 
|  | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); | 
|  | I != E; ++I) { | 
|  | BasicBlock *BB = *I; | 
|  | if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops... | 
|  | CurAST->add(*BB);                 // Incorporate the specified basic block | 
|  | } | 
|  |  | 
|  | // We want to visit all of the instructions in this loop... that are not parts | 
|  | // of our subloops (they have already had their invariants hoisted out of | 
|  | // their loop, into this loop, so there is no need to process the BODIES of | 
|  | // the subloops). | 
|  | // | 
|  | // Traverse the body of the loop in depth first order on the dominator tree so | 
|  | // that we are guaranteed to see definitions before we see uses.  This allows | 
|  | // us to sink instructions in one pass, without iteration.  After sinking | 
|  | // instructions, we perform another pass to hoist them out of the loop. | 
|  | // | 
|  | if (L->hasDedicatedExits()) | 
|  | SinkRegion(DT->getNode(L->getHeader())); | 
|  | if (Preheader) | 
|  | HoistRegion(DT->getNode(L->getHeader())); | 
|  |  | 
|  | // Now that all loop invariants have been removed from the loop, promote any | 
|  | // memory references to scalars that we can... | 
|  | if (!DisablePromotion && Preheader && L->hasDedicatedExits()) | 
|  | PromoteValuesInLoop(); | 
|  |  | 
|  | // Clear out loops state information for the next iteration | 
|  | CurLoop = 0; | 
|  | Preheader = 0; | 
|  |  | 
|  | LoopToAliasMap[L] = CurAST; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// SinkRegion - Walk the specified region of the CFG (defined by all blocks | 
|  | /// dominated by the specified block, and that are in the current loop) in | 
|  | /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit | 
|  | /// uses before definitions, allowing us to sink a loop body in one pass without | 
|  | /// iteration. | 
|  | /// | 
|  | void LICM::SinkRegion(DomTreeNode *N) { | 
|  | assert(N != 0 && "Null dominator tree node?"); | 
|  | BasicBlock *BB = N->getBlock(); | 
|  |  | 
|  | // If this subregion is not in the top level loop at all, exit. | 
|  | if (!CurLoop->contains(BB)) return; | 
|  |  | 
|  | // We are processing blocks in reverse dfo, so process children first... | 
|  | const std::vector<DomTreeNode*> &Children = N->getChildren(); | 
|  | for (unsigned i = 0, e = Children.size(); i != e; ++i) | 
|  | SinkRegion(Children[i]); | 
|  |  | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB)) return; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) { | 
|  | Instruction &I = *--II; | 
|  |  | 
|  | // Check to see if we can sink this instruction to the exit blocks | 
|  | // of the loop.  We can do this if the all users of the instruction are | 
|  | // outside of the loop.  In this case, it doesn't even matter if the | 
|  | // operands of the instruction are loop invariant. | 
|  | // | 
|  | if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) { | 
|  | ++II; | 
|  | sink(I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// HoistRegion - Walk the specified region of the CFG (defined by all blocks | 
|  | /// dominated by the specified block, and that are in the current loop) in depth | 
|  | /// first order w.r.t the DominatorTree.  This allows us to visit definitions | 
|  | /// before uses, allowing us to hoist a loop body in one pass without iteration. | 
|  | /// | 
|  | void LICM::HoistRegion(DomTreeNode *N) { | 
|  | assert(N != 0 && "Null dominator tree node?"); | 
|  | BasicBlock *BB = N->getBlock(); | 
|  |  | 
|  | // If this subregion is not in the top level loop at all, exit. | 
|  | if (!CurLoop->contains(BB)) return; | 
|  |  | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (!inSubLoop(BB)) | 
|  | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) { | 
|  | Instruction &I = *II++; | 
|  |  | 
|  | // Try hoisting the instruction out to the preheader.  We can only do this | 
|  | // if all of the operands of the instruction are loop invariant and if it | 
|  | // is safe to hoist the instruction. | 
|  | // | 
|  | if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) && | 
|  | isSafeToExecuteUnconditionally(I)) | 
|  | hoist(I); | 
|  | } | 
|  |  | 
|  | const std::vector<DomTreeNode*> &Children = N->getChildren(); | 
|  | for (unsigned i = 0, e = Children.size(); i != e; ++i) | 
|  | HoistRegion(Children[i]); | 
|  | } | 
|  |  | 
|  | /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this | 
|  | /// instruction. | 
|  | /// | 
|  | bool LICM::canSinkOrHoistInst(Instruction &I) { | 
|  | // Loads have extra constraints we have to verify before we can hoist them. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { | 
|  | if (LI->isVolatile()) | 
|  | return false;        // Don't hoist volatile loads! | 
|  |  | 
|  | // Loads from constant memory are always safe to move, even if they end up | 
|  | // in the same alias set as something that ends up being modified. | 
|  | if (AA->pointsToConstantMemory(LI->getOperand(0))) | 
|  | return true; | 
|  |  | 
|  | // Don't hoist loads which have may-aliased stores in loop. | 
|  | unsigned Size = 0; | 
|  | if (LI->getType()->isSized()) | 
|  | Size = AA->getTypeStoreSize(LI->getType()); | 
|  | return !pointerInvalidatedByLoop(LI->getOperand(0), Size); | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { | 
|  | // Handle obvious cases efficiently. | 
|  | AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI); | 
|  | if (Behavior == AliasAnalysis::DoesNotAccessMemory) | 
|  | return true; | 
|  | else if (Behavior == AliasAnalysis::OnlyReadsMemory) { | 
|  | // If this call only reads from memory and there are no writes to memory | 
|  | // in the loop, we can hoist or sink the call as appropriate. | 
|  | bool FoundMod = false; | 
|  | for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); | 
|  | I != E; ++I) { | 
|  | AliasSet &AS = *I; | 
|  | if (!AS.isForwardingAliasSet() && AS.isMod()) { | 
|  | FoundMod = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!FoundMod) return true; | 
|  | } | 
|  |  | 
|  | // FIXME: This should use mod/ref information to see if we can hoist or sink | 
|  | // the call. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise these instructions are hoistable/sinkable | 
|  | return isa<BinaryOperator>(I) || isa<CastInst>(I) || | 
|  | isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || | 
|  | isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || | 
|  | isa<ShuffleVectorInst>(I); | 
|  | } | 
|  |  | 
|  | /// isNotUsedInLoop - Return true if the only users of this instruction are | 
|  | /// outside of the loop.  If this is true, we can sink the instruction to the | 
|  | /// exit blocks of the loop. | 
|  | /// | 
|  | bool LICM::isNotUsedInLoop(Instruction &I) { | 
|  | for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) { | 
|  | Instruction *User = cast<Instruction>(*UI); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(User)) { | 
|  | // PHI node uses occur in predecessor blocks! | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == &I) | 
|  | if (CurLoop->contains(PN->getIncomingBlock(i))) | 
|  | return false; | 
|  | } else if (CurLoop->contains(User)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isLoopInvariantInst - Return true if all operands of this instruction are | 
|  | /// loop invariant.  We also filter out non-hoistable instructions here just for | 
|  | /// efficiency. | 
|  | /// | 
|  | bool LICM::isLoopInvariantInst(Instruction &I) { | 
|  | // The instruction is loop invariant if all of its operands are loop-invariant | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | if (!CurLoop->isLoopInvariant(I.getOperand(i))) | 
|  | return false; | 
|  |  | 
|  | // If we got this far, the instruction is loop invariant! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// sink - When an instruction is found to only be used outside of the loop, | 
|  | /// this function moves it to the exit blocks and patches up SSA form as needed. | 
|  | /// This method is guaranteed to remove the original instruction from its | 
|  | /// position, and may either delete it or move it to outside of the loop. | 
|  | /// | 
|  | void LICM::sink(Instruction &I) { | 
|  | DEBUG(dbgs() << "LICM sinking instruction: " << I); | 
|  |  | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | CurLoop->getExitBlocks(ExitBlocks); | 
|  |  | 
|  | if (isa<LoadInst>(I)) ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) ++NumMovedCalls; | 
|  | ++NumSunk; | 
|  | Changed = true; | 
|  |  | 
|  | // The case where there is only a single exit node of this loop is common | 
|  | // enough that we handle it as a special (more efficient) case.  It is more | 
|  | // efficient to handle because there are no PHI nodes that need to be placed. | 
|  | if (ExitBlocks.size() == 1) { | 
|  | if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) { | 
|  | // Instruction is not used, just delete it. | 
|  | CurAST->deleteValue(&I); | 
|  | // If I has users in unreachable blocks, eliminate. | 
|  | // If I is not void type then replaceAllUsesWith undef. | 
|  | // This allows ValueHandlers and custom metadata to adjust itself. | 
|  | if (!I.getType()->isVoidTy()) | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | I.eraseFromParent(); | 
|  | } else { | 
|  | // Move the instruction to the start of the exit block, after any PHI | 
|  | // nodes in it. | 
|  | I.removeFromParent(); | 
|  | BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI(); | 
|  | ExitBlocks[0]->getInstList().insert(InsertPt, &I); | 
|  | } | 
|  | } else if (ExitBlocks.empty()) { | 
|  | // The instruction is actually dead if there ARE NO exit blocks. | 
|  | CurAST->deleteValue(&I); | 
|  | // If I has users in unreachable blocks, eliminate. | 
|  | // If I is not void type then replaceAllUsesWith undef. | 
|  | // This allows ValueHandlers and custom metadata to adjust itself. | 
|  | if (!I.getType()->isVoidTy()) | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | I.eraseFromParent(); | 
|  | } else { | 
|  | // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to | 
|  | // do all of the hard work of inserting PHI nodes as necessary.  We convert | 
|  | // the value into a stack object to get it to do this. | 
|  |  | 
|  | // Firstly, we create a stack object to hold the value... | 
|  | AllocaInst *AI = 0; | 
|  |  | 
|  | if (!I.getType()->isVoidTy()) { | 
|  | AI = new AllocaInst(I.getType(), 0, I.getName(), | 
|  | I.getParent()->getParent()->getEntryBlock().begin()); | 
|  | CurAST->add(AI); | 
|  | } | 
|  |  | 
|  | // Secondly, insert load instructions for each use of the instruction | 
|  | // outside of the loop. | 
|  | while (!I.use_empty()) { | 
|  | Instruction *U = cast<Instruction>(I.use_back()); | 
|  |  | 
|  | // If the user is a PHI Node, we actually have to insert load instructions | 
|  | // in all predecessor blocks, not in the PHI block itself! | 
|  | if (PHINode *UPN = dyn_cast<PHINode>(U)) { | 
|  | // Only insert into each predecessor once, so that we don't have | 
|  | // different incoming values from the same block! | 
|  | std::map<BasicBlock*, Value*> InsertedBlocks; | 
|  | for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i) | 
|  | if (UPN->getIncomingValue(i) == &I) { | 
|  | BasicBlock *Pred = UPN->getIncomingBlock(i); | 
|  | Value *&PredVal = InsertedBlocks[Pred]; | 
|  | if (!PredVal) { | 
|  | // Insert a new load instruction right before the terminator in | 
|  | // the predecessor block. | 
|  | PredVal = new LoadInst(AI, "", Pred->getTerminator()); | 
|  | CurAST->add(cast<LoadInst>(PredVal)); | 
|  | } | 
|  |  | 
|  | UPN->setIncomingValue(i, PredVal); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | LoadInst *L = new LoadInst(AI, "", U); | 
|  | U->replaceUsesOfWith(&I, L); | 
|  | CurAST->add(L); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Thirdly, insert a copy of the instruction in each exit block of the loop | 
|  | // that is dominated by the instruction, storing the result into the memory | 
|  | // location.  Be careful not to insert the instruction into any particular | 
|  | // basic block more than once. | 
|  | std::set<BasicBlock*> InsertedBlocks; | 
|  | BasicBlock *InstOrigBB = I.getParent(); | 
|  |  | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = ExitBlocks[i]; | 
|  |  | 
|  | if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) { | 
|  | // If we haven't already processed this exit block, do so now. | 
|  | if (InsertedBlocks.insert(ExitBlock).second) { | 
|  | // Insert the code after the last PHI node... | 
|  | BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI(); | 
|  |  | 
|  | // If this is the first exit block processed, just move the original | 
|  | // instruction, otherwise clone the original instruction and insert | 
|  | // the copy. | 
|  | Instruction *New; | 
|  | if (InsertedBlocks.size() == 1) { | 
|  | I.removeFromParent(); | 
|  | ExitBlock->getInstList().insert(InsertPt, &I); | 
|  | New = &I; | 
|  | } else { | 
|  | New = I.clone(); | 
|  | CurAST->copyValue(&I, New); | 
|  | if (!I.getName().empty()) | 
|  | New->setName(I.getName()+".le"); | 
|  | ExitBlock->getInstList().insert(InsertPt, New); | 
|  | } | 
|  |  | 
|  | // Now that we have inserted the instruction, store it into the alloca | 
|  | if (AI) new StoreInst(New, AI, InsertPt); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the instruction doesn't dominate any exit blocks, it must be dead. | 
|  | if (InsertedBlocks.empty()) { | 
|  | CurAST->deleteValue(&I); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Finally, promote the fine value to SSA form. | 
|  | if (AI) { | 
|  | std::vector<AllocaInst*> Allocas; | 
|  | Allocas.push_back(AI); | 
|  | PromoteMemToReg(Allocas, *DT, *DF, CurAST); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hoist - When an instruction is found to only use loop invariant operands | 
|  | /// that is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | void LICM::hoist(Instruction &I) { | 
|  | DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " | 
|  | << I << "\n"); | 
|  |  | 
|  | // Remove the instruction from its current basic block... but don't delete the | 
|  | // instruction. | 
|  | I.removeFromParent(); | 
|  |  | 
|  | // Insert the new node in Preheader, before the terminator. | 
|  | Preheader->getInstList().insert(Preheader->getTerminator(), &I); | 
|  |  | 
|  | if (isa<LoadInst>(I)) ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) ++NumMovedCalls; | 
|  | ++NumHoisted; | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is | 
|  | /// not a trapping instruction or if it is a trapping instruction and is | 
|  | /// guaranteed to execute. | 
|  | /// | 
|  | bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) { | 
|  | // If it is not a trapping instruction, it is always safe to hoist. | 
|  | if (Inst.isSafeToSpeculativelyExecute()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we have to check to make sure that the instruction dominates all | 
|  | // of the exit blocks.  If it doesn't, then there is a path out of the loop | 
|  | // which does not execute this instruction, so we can't hoist it. | 
|  |  | 
|  | // If the instruction is in the header block for the loop (which is very | 
|  | // common), it is always guaranteed to dominate the exit blocks.  Since this | 
|  | // is a common case, and can save some work, check it now. | 
|  | if (Inst.getParent() == CurLoop->getHeader()) | 
|  | return true; | 
|  |  | 
|  | // Get the exit blocks for the current loop. | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | CurLoop->getExitBlocks(ExitBlocks); | 
|  |  | 
|  | // For each exit block, get the DT node and walk up the DT until the | 
|  | // instruction's basic block is found or we exit the loop. | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) | 
|  | if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// PromoteValuesInLoop - Try to promote memory values to scalars by sinking | 
|  | /// stores out of the loop and moving loads to before the loop.  We do this by | 
|  | /// looping over the stores in the loop, looking for stores to Must pointers | 
|  | /// which are loop invariant.  We promote these memory locations to use allocas | 
|  | /// instead.  These allocas can easily be raised to register values by the | 
|  | /// PromoteMem2Reg functionality. | 
|  | /// | 
|  | void LICM::PromoteValuesInLoop() { | 
|  | // PromotedValues - List of values that are promoted out of the loop.  Each | 
|  | // value has an alloca instruction for it, and a canonical version of the | 
|  | // pointer. | 
|  | std::vector<std::pair<AllocaInst*, Value*> > PromotedValues; | 
|  | std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca | 
|  |  | 
|  | FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap); | 
|  | if (ValueToAllocaMap.empty()) return;   // If there are values to promote. | 
|  |  | 
|  | Changed = true; | 
|  | NumPromoted += PromotedValues.size(); | 
|  |  | 
|  | std::vector<Value*> PointerValueNumbers; | 
|  |  | 
|  | // Emit a copy from the value into the alloca'd value in the loop preheader | 
|  | TerminatorInst *LoopPredInst = Preheader->getTerminator(); | 
|  | for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) { | 
|  | Value *Ptr = PromotedValues[i].second; | 
|  |  | 
|  | // If we are promoting a pointer value, update alias information for the | 
|  | // inserted load. | 
|  | Value *LoadValue = 0; | 
|  | if (cast<PointerType>(Ptr->getType())->getElementType()->isPointerTy()) { | 
|  | // Locate a load or store through the pointer, and assign the same value | 
|  | // to LI as we are loading or storing.  Since we know that the value is | 
|  | // stored in this loop, this will always succeed. | 
|  | for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end(); | 
|  | UI != E; ++UI) { | 
|  | User *U = *UI; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
|  | LoadValue = LI; | 
|  | break; | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | if (SI->getOperand(1) == Ptr) { | 
|  | LoadValue = SI->getOperand(0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(LoadValue && "No store through the pointer found!"); | 
|  | PointerValueNumbers.push_back(LoadValue);  // Remember this for later. | 
|  | } | 
|  |  | 
|  | // Load from the memory we are promoting. | 
|  | LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst); | 
|  |  | 
|  | if (LoadValue) CurAST->copyValue(LoadValue, LI); | 
|  |  | 
|  | // Store into the temporary alloca. | 
|  | new StoreInst(LI, PromotedValues[i].first, LoopPredInst); | 
|  | } | 
|  |  | 
|  | // Scan the basic blocks in the loop, replacing uses of our pointers with | 
|  | // uses of the allocas in question. | 
|  | // | 
|  | for (Loop::block_iterator I = CurLoop->block_begin(), | 
|  | E = CurLoop->block_end(); I != E; ++I) { | 
|  | BasicBlock *BB = *I; | 
|  | // Rewrite all loads and stores in the block of the pointer... | 
|  | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(II)) { | 
|  | std::map<Value*, AllocaInst*>::iterator | 
|  | I = ValueToAllocaMap.find(L->getOperand(0)); | 
|  | if (I != ValueToAllocaMap.end()) | 
|  | L->setOperand(0, I->second);    // Rewrite load instruction... | 
|  | } else if (StoreInst *S = dyn_cast<StoreInst>(II)) { | 
|  | std::map<Value*, AllocaInst*>::iterator | 
|  | I = ValueToAllocaMap.find(S->getOperand(1)); | 
|  | if (I != ValueToAllocaMap.end()) | 
|  | S->setOperand(1, I->second);    // Rewrite store instruction... | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that the body of the loop uses the allocas instead of the original | 
|  | // memory locations, insert code to copy the alloca value back into the | 
|  | // original memory location on all exits from the loop.  Note that we only | 
|  | // want to insert one copy of the code in each exit block, though the loop may | 
|  | // exit to the same block more than once. | 
|  | // | 
|  | SmallPtrSet<BasicBlock*, 16> ProcessedBlocks; | 
|  |  | 
|  | SmallVector<BasicBlock*, 8> ExitBlocks; | 
|  | CurLoop->getExitBlocks(ExitBlocks); | 
|  | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { | 
|  | if (!ProcessedBlocks.insert(ExitBlocks[i])) | 
|  | continue; | 
|  |  | 
|  | // Copy all of the allocas into their memory locations. | 
|  | BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI(); | 
|  | Instruction *InsertPos = BI; | 
|  | unsigned PVN = 0; | 
|  | for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) { | 
|  | // Load from the alloca. | 
|  | LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos); | 
|  |  | 
|  | // If this is a pointer type, update alias info appropriately. | 
|  | if (LI->getType()->isPointerTy()) | 
|  | CurAST->copyValue(PointerValueNumbers[PVN++], LI); | 
|  |  | 
|  | // Store into the memory we promoted. | 
|  | new StoreInst(LI, PromotedValues[i].second, InsertPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have done the deed, use the mem2reg functionality to promote | 
|  | // all of the new allocas we just created into real SSA registers. | 
|  | // | 
|  | std::vector<AllocaInst*> PromotedAllocas; | 
|  | PromotedAllocas.reserve(PromotedValues.size()); | 
|  | for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) | 
|  | PromotedAllocas.push_back(PromotedValues[i].first); | 
|  | PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST); | 
|  | } | 
|  |  | 
|  | /// FindPromotableValuesInLoop - Check the current loop for stores to definite | 
|  | /// pointers, which are not loaded and stored through may aliases and are safe | 
|  | /// for promotion.  If these are found, create an alloca for the value, add it | 
|  | /// to the PromotedValues list, and keep track of the mapping from value to | 
|  | /// alloca. | 
|  | void LICM::FindPromotableValuesInLoop( | 
|  | std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues, | 
|  | std::map<Value*, AllocaInst*> &ValueToAllocaMap) { | 
|  | Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin(); | 
|  |  | 
|  | // Loop over all of the alias sets in the tracker object. | 
|  | for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); | 
|  | I != E; ++I) { | 
|  | AliasSet &AS = *I; | 
|  | // We can promote this alias set if it has a store, if it is a "Must" alias | 
|  | // set, if the pointer is loop invariant, and if we are not eliminating any | 
|  | // volatile loads or stores. | 
|  | if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || | 
|  | AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue())) | 
|  | continue; | 
|  |  | 
|  | assert(!AS.empty() && | 
|  | "Must alias set should have at least one pointer element in it!"); | 
|  | Value *V = AS.begin()->getValue(); | 
|  |  | 
|  | // Check that all of the pointers in the alias set have the same type.  We | 
|  | // cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes. | 
|  | { | 
|  | bool PointerOk = true; | 
|  | for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I) | 
|  | if (V->getType() != I->getValue()->getType()) { | 
|  | PointerOk = false; | 
|  | break; | 
|  | } | 
|  | if (!PointerOk) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // It isn't safe to promote a load/store from the loop if the load/store is | 
|  | // conditional.  For example, turning: | 
|  | // | 
|  | //    for () { if (c) *P += 1; } | 
|  | // | 
|  | // into: | 
|  | // | 
|  | //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp; | 
|  | // | 
|  | // is not safe, because *P may only be valid to access if 'c' is true. | 
|  | // | 
|  | // It is safe to promote P if all uses are direct load/stores and if at | 
|  | // least one is guaranteed to be executed. | 
|  | bool GuaranteedToExecute = false; | 
|  | bool InvalidInst = false; | 
|  | for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | // Ignore instructions not in this loop. | 
|  | Instruction *Use = dyn_cast<Instruction>(*UI); | 
|  | if (!Use || !CurLoop->contains(Use)) | 
|  | continue; | 
|  |  | 
|  | if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) { | 
|  | InvalidInst = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!GuaranteedToExecute) | 
|  | GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use); | 
|  | } | 
|  |  | 
|  | // If there is an non-load/store instruction in the loop, we can't promote | 
|  | // it.  If there isn't a guaranteed-to-execute instruction, we can't | 
|  | // promote. | 
|  | if (InvalidInst || !GuaranteedToExecute) | 
|  | continue; | 
|  |  | 
|  | const Type *Ty = cast<PointerType>(V->getType())->getElementType(); | 
|  | AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart); | 
|  | PromotedValues.push_back(std::make_pair(AI, V)); | 
|  |  | 
|  | // Update the AST and alias analysis. | 
|  | CurAST->copyValue(V, AI); | 
|  |  | 
|  | for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I) | 
|  | ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI)); | 
|  |  | 
|  | DEBUG(dbgs() << "LICM: Promoting value: " << *V << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. | 
|  | void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) { | 
|  | AliasSetTracker *AST = LoopToAliasMap[L]; | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | AST->copyValue(From, To); | 
|  | } | 
|  |  | 
|  | /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias | 
|  | /// set. | 
|  | void LICM::deleteAnalysisValue(Value *V, Loop *L) { | 
|  | AliasSetTracker *AST = LoopToAliasMap[L]; | 
|  | if (!AST) | 
|  | return; | 
|  |  | 
|  | AST->deleteValue(V); | 
|  | } |