| //===- InputFiles.cpp -----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "Driver.h" |
| #include "ELFCreator.h" |
| #include "Error.h" |
| #include "InputSection.h" |
| #include "LinkerScript.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/LTO/LTO.h" |
| #include "llvm/MC/StringTableBuilder.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::sys::fs; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| std::vector<InputFile *> InputFile::Pool; |
| |
| // Deletes all InputFile instances created so far. |
| void InputFile::freePool() { |
| // Files are freed in reverse order so that files created |
| // from other files (e.g. object files extracted from archives) |
| // are freed in the proper order. |
| for (int I = Pool.size() - 1; I >= 0; --I) |
| delete Pool[I]; |
| } |
| |
| // Returns "(internal)", "foo.a(bar.o)" or "baz.o". |
| std::string elf::getFilename(const InputFile *F) { |
| if (!F) |
| return "(internal)"; |
| if (!F->ArchiveName.empty()) |
| return (F->ArchiveName + "(" + F->getName() + ")").str(); |
| return F->getName(); |
| } |
| |
| template <class ELFT> static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { |
| std::error_code EC; |
| ELFFile<ELFT> F(MB.getBuffer(), EC); |
| if (EC) |
| fatal(EC, "failed to read " + MB.getBufferIdentifier()); |
| return F; |
| } |
| |
| template <class ELFT> static ELFKind getELFKind() { |
| if (ELFT::TargetEndianness == support::little) |
| return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; |
| return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; |
| } |
| |
| template <class ELFT> |
| ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) |
| : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { |
| EKind = getELFKind<ELFT>(); |
| EMachine = ELFObj.getHeader()->e_machine; |
| } |
| |
| template <class ELFT> |
| typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { |
| if (!Symtab) |
| return Elf_Sym_Range(nullptr, nullptr); |
| Elf_Sym_Range Syms = ELFObj.symbols(Symtab); |
| uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); |
| uint32_t FirstNonLocal = Symtab->sh_info; |
| if (FirstNonLocal == 0 || FirstNonLocal > NumSymbols) |
| fatal(getFilename(this) + ": invalid sh_info in symbol table"); |
| |
| if (OnlyGlobals) |
| return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); |
| return makeArrayRef(Syms.begin(), Syms.end()); |
| } |
| |
| template <class ELFT> |
| uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { |
| uint32_t I = Sym.st_shndx; |
| if (I == ELF::SHN_XINDEX) |
| return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); |
| if (I >= ELF::SHN_LORESERVE) |
| return 0; |
| return I; |
| } |
| |
| template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { |
| if (!Symtab) |
| return; |
| StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); |
| } |
| |
| template <class ELFT> |
| elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) |
| : ELFFileBase<ELFT>(Base::ObjectKind, M) {} |
| |
| template <class ELFT> |
| ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { |
| if (!this->Symtab) |
| return this->SymbolBodies; |
| uint32_t FirstNonLocal = this->Symtab->sh_info; |
| return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); |
| } |
| |
| template <class ELFT> |
| ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { |
| if (!this->Symtab) |
| return this->SymbolBodies; |
| uint32_t FirstNonLocal = this->Symtab->sh_info; |
| return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); |
| } |
| |
| template <class ELFT> |
| ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { |
| if (!this->Symtab) |
| return this->SymbolBodies; |
| return makeArrayRef(this->SymbolBodies).slice(1); |
| } |
| |
| template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { |
| if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) |
| return MipsOptions->Reginfo->ri_gp_value; |
| if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) |
| return MipsReginfo->Reginfo->ri_gp_value; |
| return 0; |
| } |
| |
| template <class ELFT> |
| void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { |
| // Read section and symbol tables. |
| initializeSections(ComdatGroups); |
| initializeSymbols(); |
| if (Config->GcSections && Config->EMachine == EM_ARM) |
| initializeReverseDependencies(); |
| } |
| |
| // Sections with SHT_GROUP and comdat bits define comdat section groups. |
| // They are identified and deduplicated by group name. This function |
| // returns a group name. |
| template <class ELFT> |
| StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { |
| const ELFFile<ELFT> &Obj = this->ELFObj; |
| const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); |
| const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); |
| StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); |
| return check(Sym->getName(Strtab)); |
| } |
| |
| template <class ELFT> |
| ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> |
| elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { |
| const ELFFile<ELFT> &Obj = this->ELFObj; |
| ArrayRef<Elf_Word> Entries = |
| check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); |
| if (Entries.empty() || Entries[0] != GRP_COMDAT) |
| fatal(getFilename(this) + ": unsupported SHT_GROUP format"); |
| return Entries.slice(1); |
| } |
| |
| template <class ELFT> |
| bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { |
| // We don't merge sections if -O0 (default is -O1). This makes sometimes |
| // the linker significantly faster, although the output will be bigger. |
| if (Config->Optimize == 0) |
| return false; |
| |
| // Do not merge sections if generating a relocatable object. It makes |
| // the code simpler because we do not need to update relocation addends |
| // to reflect changes introduced by merging. Instead of that we write |
| // such "merge" sections into separate OutputSections and keep SHF_MERGE |
| // / SHF_STRINGS flags and sh_entsize value to be able to perform merging |
| // later during a final linking. |
| if (Config->Relocatable) |
| return false; |
| |
| // A mergeable section with size 0 is useless because they don't have |
| // any data to merge. A mergeable string section with size 0 can be |
| // argued as invalid because it doesn't end with a null character. |
| // We'll avoid a mess by handling them as if they were non-mergeable. |
| if (Sec.sh_size == 0) |
| return false; |
| |
| // Check for sh_entsize. The ELF spec is not clear about the zero |
| // sh_entsize. It says that "the member [sh_entsize] contains 0 if |
| // the section does not hold a table of fixed-size entries". We know |
| // that Rust 1.13 produces a string mergeable section with a zero |
| // sh_entsize. Here we just accept it rather than being picky about it. |
| uintX_t EntSize = Sec.sh_entsize; |
| if (EntSize == 0) |
| return false; |
| if (Sec.sh_size % EntSize) |
| fatal(getFilename(this) + |
| ": SHF_MERGE section size must be a multiple of sh_entsize"); |
| |
| uintX_t Flags = Sec.sh_flags; |
| if (!(Flags & SHF_MERGE)) |
| return false; |
| if (Flags & SHF_WRITE) |
| fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); |
| |
| // Don't try to merge if the alignment is larger than the sh_entsize and this |
| // is not SHF_STRINGS. |
| // |
| // Since this is not a SHF_STRINGS, we would need to pad after every entity. |
| // It would be equivalent for the producer of the .o to just set a larger |
| // sh_entsize. |
| if (Flags & SHF_STRINGS) |
| return true; |
| |
| return Sec.sh_addralign <= EntSize; |
| } |
| |
| template <class ELFT> |
| void elf::ObjectFile<ELFT>::initializeSections( |
| DenseSet<StringRef> &ComdatGroups) { |
| uint64_t Size = this->ELFObj.getNumSections(); |
| Sections.resize(Size); |
| unsigned I = -1; |
| const ELFFile<ELFT> &Obj = this->ELFObj; |
| for (const Elf_Shdr &Sec : Obj.sections()) { |
| ++I; |
| if (Sections[I] == &InputSection<ELFT>::Discarded) |
| continue; |
| |
| // SHF_EXCLUDE'ed sections are discarded by the linker. However, |
| // if -r is given, we'll let the final link discard such sections. |
| // This is compatible with GNU. |
| if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { |
| Sections[I] = &InputSection<ELFT>::Discarded; |
| continue; |
| } |
| |
| switch (Sec.sh_type) { |
| case SHT_GROUP: |
| Sections[I] = &InputSection<ELFT>::Discarded; |
| if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) |
| continue; |
| for (uint32_t SecIndex : getShtGroupEntries(Sec)) { |
| if (SecIndex >= Size) |
| fatal(getFilename(this) + ": invalid section index in group: " + |
| Twine(SecIndex)); |
| Sections[SecIndex] = &InputSection<ELFT>::Discarded; |
| } |
| break; |
| case SHT_SYMTAB: |
| this->Symtab = &Sec; |
| break; |
| case SHT_SYMTAB_SHNDX: |
| this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); |
| break; |
| case SHT_STRTAB: |
| case SHT_NULL: |
| break; |
| default: |
| Sections[I] = createInputSection(Sec); |
| } |
| } |
| } |
| |
| // .ARM.exidx sections have a reverse dependency on the InputSection they |
| // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. |
| template <class ELFT> |
| void elf::ObjectFile<ELFT>::initializeReverseDependencies() { |
| unsigned I = -1; |
| for (const Elf_Shdr &Sec : this->ELFObj.sections()) { |
| ++I; |
| if ((Sections[I] == &InputSection<ELFT>::Discarded) || |
| !(Sec.sh_flags & SHF_LINK_ORDER)) |
| continue; |
| if (Sec.sh_link >= Sections.size()) |
| fatal(getFilename(this) + ": invalid sh_link index: " + |
| Twine(Sec.sh_link)); |
| auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]); |
| IS->DependentSection = Sections[I]; |
| } |
| } |
| |
| template <class ELFT> |
| InputSectionBase<ELFT> * |
| elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { |
| uint32_t Idx = Sec.sh_info; |
| if (Idx >= Sections.size()) |
| fatal(getFilename(this) + ": invalid relocated section index: " + |
| Twine(Idx)); |
| InputSectionBase<ELFT> *Target = Sections[Idx]; |
| |
| // Strictly speaking, a relocation section must be included in the |
| // group of the section it relocates. However, LLVM 3.3 and earlier |
| // would fail to do so, so we gracefully handle that case. |
| if (Target == &InputSection<ELFT>::Discarded) |
| return nullptr; |
| |
| if (!Target) |
| fatal(getFilename(this) + ": unsupported relocation reference"); |
| return Target; |
| } |
| |
| template <class ELFT> |
| InputSectionBase<ELFT> * |
| elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { |
| StringRef Name = check(this->ELFObj.getSectionName(&Sec)); |
| |
| switch (Sec.sh_type) { |
| case SHT_ARM_ATTRIBUTES: |
| // FIXME: ARM meta-data section. At present attributes are ignored, |
| // they can be used to reason about object compatibility. |
| return &InputSection<ELFT>::Discarded; |
| case SHT_MIPS_REGINFO: |
| if (MipsReginfo) |
| fatal(getFilename(this) + |
| ": multiple SHT_MIPS_REGINFO sections are not allowed"); |
| MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); |
| return MipsReginfo.get(); |
| case SHT_MIPS_OPTIONS: |
| if (MipsOptions) |
| fatal(getFilename(this) + |
| ": multiple SHT_MIPS_OPTIONS sections are not allowed"); |
| MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); |
| return MipsOptions.get(); |
| case SHT_MIPS_ABIFLAGS: |
| if (MipsAbiFlags) |
| fatal(getFilename(this) + |
| ": multiple SHT_MIPS_ABIFLAGS sections are not allowed"); |
| MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); |
| return MipsAbiFlags.get(); |
| case SHT_RELA: |
| case SHT_REL: { |
| // This section contains relocation information. |
| // If -r is given, we do not interpret or apply relocation |
| // but just copy relocation sections to output. |
| if (Config->Relocatable) |
| return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); |
| |
| // Find the relocation target section and associate this |
| // section with it. |
| InputSectionBase<ELFT> *Target = getRelocTarget(Sec); |
| if (!Target) |
| return nullptr; |
| if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { |
| S->RelocSections.push_back(&Sec); |
| return nullptr; |
| } |
| if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { |
| if (S->RelocSection) |
| fatal(getFilename(this) + |
| ": multiple relocation sections to .eh_frame are not supported"); |
| S->RelocSection = &Sec; |
| return nullptr; |
| } |
| fatal(getFilename(this) + |
| ": relocations pointing to SHF_MERGE are not supported"); |
| } |
| } |
| |
| // .note.GNU-stack is a marker section to control the presence of |
| // PT_GNU_STACK segment in outputs. Since the presence of the segment |
| // is controlled only by the command line option (-z execstack) in LLD, |
| // .note.GNU-stack is ignored. |
| if (Name == ".note.GNU-stack") |
| return &InputSection<ELFT>::Discarded; |
| |
| if (Name == ".note.GNU-split-stack") { |
| error("objects using splitstacks are not supported"); |
| return &InputSection<ELFT>::Discarded; |
| } |
| |
| if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) |
| return &InputSection<ELFT>::Discarded; |
| |
| // The linker merges EH (exception handling) frames and creates a |
| // .eh_frame_hdr section for runtime. So we handle them with a special |
| // class. For relocatable outputs, they are just passed through. |
| if (Name == ".eh_frame" && !Config->Relocatable) |
| return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); |
| |
| if (shouldMerge(Sec)) |
| return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); |
| return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); |
| } |
| |
| template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { |
| this->initStringTable(); |
| Elf_Sym_Range Syms = this->getElfSymbols(false); |
| uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); |
| SymbolBodies.reserve(NumSymbols); |
| for (const Elf_Sym &Sym : Syms) |
| SymbolBodies.push_back(createSymbolBody(&Sym)); |
| } |
| |
| template <class ELFT> |
| InputSectionBase<ELFT> * |
| elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { |
| uint32_t Index = this->getSectionIndex(Sym); |
| if (Index >= Sections.size()) |
| fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); |
| InputSectionBase<ELFT> *S = Sections[Index]; |
| |
| // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 |
| // could generate broken objects. STT_SECTION symbols can be |
| // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. |
| // In this case it is fine for section to be null here as we |
| // do not allocate sections of these types. |
| if (!S) { |
| if (Index == 0 || Sym.getType() == STT_SECTION) |
| return nullptr; |
| fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); |
| } |
| |
| if (S == &InputSectionBase<ELFT>::Discarded) |
| return S; |
| return S->Repl; |
| } |
| |
| template <class ELFT> |
| SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { |
| int Binding = Sym->getBinding(); |
| InputSectionBase<ELFT> *Sec = getSection(*Sym); |
| if (Binding == STB_LOCAL) { |
| if (Sym->st_shndx == SHN_UNDEF) |
| return new (this->Alloc) |
| Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); |
| return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); |
| } |
| |
| StringRef Name = check(Sym->getName(this->StringTable)); |
| |
| switch (Sym->st_shndx) { |
| case SHN_UNDEF: |
| return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, |
| Sym->getType(), |
| /*CanOmitFromDynSym*/ false, this) |
| ->body(); |
| case SHN_COMMON: |
| if (Sym->st_value == 0 || Sym->st_value >= UINT32_MAX) |
| fatal(getFilename(this) + ": common symbol '" + Name + |
| "' has invalid alignment: " + Twine(Sym->st_value)); |
| return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value, |
| Binding, Sym->st_other, |
| Sym->getType(), this) |
| ->body(); |
| } |
| |
| switch (Binding) { |
| default: |
| fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); |
| case STB_GLOBAL: |
| case STB_WEAK: |
| case STB_GNU_UNIQUE: |
| if (Sec == &InputSection<ELFT>::Discarded) |
| return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, |
| Sym->getType(), |
| /*CanOmitFromDynSym*/ false, |
| this) |
| ->body(); |
| return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); |
| } |
| } |
| |
| template <class ELFT> void ArchiveFile::parse() { |
| File = check(Archive::create(MB), "failed to parse archive"); |
| |
| // Read the symbol table to construct Lazy objects. |
| for (const Archive::Symbol &Sym : File->symbols()) |
| Symtab<ELFT>::X->addLazyArchive(this, Sym); |
| } |
| |
| // Returns a buffer pointing to a member file containing a given symbol. |
| std::pair<MemoryBufferRef, uint64_t> |
| ArchiveFile::getMember(const Archive::Symbol *Sym) { |
| Archive::Child C = |
| check(Sym->getMember(), |
| "could not get the member for symbol " + Sym->getName()); |
| |
| if (!Seen.insert(C.getChildOffset()).second) |
| return {MemoryBufferRef(), 0}; |
| |
| MemoryBufferRef Ret = |
| check(C.getMemoryBufferRef(), |
| "could not get the buffer for the member defining symbol " + |
| Sym->getName()); |
| |
| if (C.getParent()->isThin() && Driver->Cpio) |
| Driver->Cpio->append(relativeToRoot(check(C.getFullName())), |
| Ret.getBuffer()); |
| if (C.getParent()->isThin()) |
| return {Ret, 0}; |
| return {Ret, C.getChildOffset()}; |
| } |
| |
| template <class ELFT> |
| SharedFile<ELFT>::SharedFile(MemoryBufferRef M) |
| : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} |
| |
| template <class ELFT> |
| const typename ELFT::Shdr * |
| SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { |
| uint32_t Index = this->getSectionIndex(Sym); |
| if (Index == 0) |
| return nullptr; |
| return check(this->ELFObj.getSection(Index)); |
| } |
| |
| // Partially parse the shared object file so that we can call |
| // getSoName on this object. |
| template <class ELFT> void SharedFile<ELFT>::parseSoName() { |
| typedef typename ELFT::Dyn Elf_Dyn; |
| typedef typename ELFT::uint uintX_t; |
| const Elf_Shdr *DynamicSec = nullptr; |
| |
| const ELFFile<ELFT> Obj = this->ELFObj; |
| for (const Elf_Shdr &Sec : Obj.sections()) { |
| switch (Sec.sh_type) { |
| default: |
| continue; |
| case SHT_DYNSYM: |
| this->Symtab = &Sec; |
| break; |
| case SHT_DYNAMIC: |
| DynamicSec = &Sec; |
| break; |
| case SHT_SYMTAB_SHNDX: |
| this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); |
| break; |
| case SHT_GNU_versym: |
| this->VersymSec = &Sec; |
| break; |
| case SHT_GNU_verdef: |
| this->VerdefSec = &Sec; |
| break; |
| } |
| } |
| |
| this->initStringTable(); |
| |
| // DSOs are identified by soname, and they usually contain |
| // DT_SONAME tag in their header. But if they are missing, |
| // filenames are used as default sonames. |
| SoName = sys::path::filename(this->getName()); |
| |
| if (!DynamicSec) |
| return; |
| |
| ArrayRef<Elf_Dyn> Arr = |
| check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), |
| getFilename(this) + ": getSectionContentsAsArray failed"); |
| for (const Elf_Dyn &Dyn : Arr) { |
| if (Dyn.d_tag == DT_SONAME) { |
| uintX_t Val = Dyn.getVal(); |
| if (Val >= this->StringTable.size()) |
| fatal(getFilename(this) + ": invalid DT_SONAME entry"); |
| SoName = StringRef(this->StringTable.data() + Val); |
| return; |
| } |
| } |
| } |
| |
| // Parse the version definitions in the object file if present. Returns a vector |
| // whose nth element contains a pointer to the Elf_Verdef for version identifier |
| // n. Version identifiers that are not definitions map to nullptr. The array |
| // always has at least length 1. |
| template <class ELFT> |
| std::vector<const typename ELFT::Verdef *> |
| SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { |
| std::vector<const Elf_Verdef *> Verdefs(1); |
| // We only need to process symbol versions for this DSO if it has both a |
| // versym and a verdef section, which indicates that the DSO contains symbol |
| // version definitions. |
| if (!VersymSec || !VerdefSec) |
| return Verdefs; |
| |
| // The location of the first global versym entry. |
| Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + |
| VersymSec->sh_offset) + |
| this->Symtab->sh_info; |
| |
| // We cannot determine the largest verdef identifier without inspecting |
| // every Elf_Verdef, but both bfd and gold assign verdef identifiers |
| // sequentially starting from 1, so we predict that the largest identifier |
| // will be VerdefCount. |
| unsigned VerdefCount = VerdefSec->sh_info; |
| Verdefs.resize(VerdefCount + 1); |
| |
| // Build the Verdefs array by following the chain of Elf_Verdef objects |
| // from the start of the .gnu.version_d section. |
| const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; |
| for (unsigned I = 0; I != VerdefCount; ++I) { |
| auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); |
| Verdef += CurVerdef->vd_next; |
| unsigned VerdefIndex = CurVerdef->vd_ndx; |
| if (Verdefs.size() <= VerdefIndex) |
| Verdefs.resize(VerdefIndex + 1); |
| Verdefs[VerdefIndex] = CurVerdef; |
| } |
| |
| return Verdefs; |
| } |
| |
| // Fully parse the shared object file. This must be called after parseSoName(). |
| template <class ELFT> void SharedFile<ELFT>::parseRest() { |
| // Create mapping from version identifiers to Elf_Verdef entries. |
| const Elf_Versym *Versym = nullptr; |
| std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); |
| |
| Elf_Sym_Range Syms = this->getElfSymbols(true); |
| for (const Elf_Sym &Sym : Syms) { |
| unsigned VersymIndex = 0; |
| if (Versym) { |
| VersymIndex = Versym->vs_index; |
| ++Versym; |
| } |
| |
| StringRef Name = check(Sym.getName(this->StringTable)); |
| if (Sym.isUndefined()) { |
| Undefs.push_back(Name); |
| continue; |
| } |
| |
| if (Versym) { |
| // Ignore local symbols and non-default versions. |
| if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) |
| continue; |
| } |
| |
| const Elf_Verdef *V = |
| VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; |
| elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); |
| } |
| } |
| |
| static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { |
| Triple T(getBitcodeTargetTriple(MB, Driver->Context)); |
| if (T.isLittleEndian()) |
| return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; |
| return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; |
| } |
| |
| static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { |
| Triple T(getBitcodeTargetTriple(MB, Driver->Context)); |
| switch (T.getArch()) { |
| case Triple::aarch64: |
| return EM_AARCH64; |
| case Triple::arm: |
| return EM_ARM; |
| case Triple::mips: |
| case Triple::mipsel: |
| case Triple::mips64: |
| case Triple::mips64el: |
| return EM_MIPS; |
| case Triple::ppc: |
| return EM_PPC; |
| case Triple::ppc64: |
| return EM_PPC64; |
| case Triple::x86: |
| return T.isOSIAMCU() ? EM_IAMCU : EM_386; |
| case Triple::x86_64: |
| return EM_X86_64; |
| default: |
| fatal(MB.getBufferIdentifier() + |
| ": could not infer e_machine from bitcode target triple " + T.str()); |
| } |
| } |
| |
| BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { |
| EKind = getBitcodeELFKind(MB); |
| EMachine = getBitcodeMachineKind(MB); |
| } |
| |
| static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { |
| switch (GvVisibility) { |
| case GlobalValue::DefaultVisibility: |
| return STV_DEFAULT; |
| case GlobalValue::HiddenVisibility: |
| return STV_HIDDEN; |
| case GlobalValue::ProtectedVisibility: |
| return STV_PROTECTED; |
| } |
| llvm_unreachable("unknown visibility"); |
| } |
| |
| template <class ELFT> |
| static Symbol *createBitcodeSymbol(DenseSet<StringRef> &KeptComdats, |
| DenseSet<StringRef> &ComdatGroups, |
| const lto::InputFile::Symbol &ObjSym, |
| StringSaver &Saver, BitcodeFile *F) { |
| StringRef NameRef = Saver.save(ObjSym.getName()); |
| uint32_t Flags = ObjSym.getFlags(); |
| uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; |
| |
| uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; |
| uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); |
| bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); |
| |
| StringRef C = check(ObjSym.getComdat()); |
| if (!C.empty()) { |
| bool Keep = KeptComdats.count(C); |
| if (!Keep) { |
| StringRef N = Saver.save(C); |
| if (ComdatGroups.insert(N).second) { |
| Keep = true; |
| KeptComdats.insert(C); |
| } |
| } |
| if (!Keep) |
| return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, |
| CanOmitFromDynSym, F); |
| } |
| |
| if (Flags & BasicSymbolRef::SF_Undefined) |
| return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, |
| CanOmitFromDynSym, F); |
| |
| if (Flags & BasicSymbolRef::SF_Common) |
| return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), |
| ObjSym.getCommonAlignment(), Binding, |
| Visibility, STT_OBJECT, F); |
| |
| return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, |
| CanOmitFromDynSym, F); |
| } |
| |
| template <class ELFT> |
| void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { |
| |
| // Here we pass a new MemoryBufferRef which is identified by ArchiveName |
| // (the fully resolved path of the archive) + member name + offset of the |
| // member in the archive. |
| // ThinLTO uses the MemoryBufferRef identifier to access its internal |
| // data structures and if two archives define two members with the same name, |
| // this causes a collision which result in only one of the objects being |
| // taken into consideration at LTO time (which very likely causes undefined |
| // symbols later in the link stage). |
| Obj = check(lto::InputFile::create(MemoryBufferRef( |
| MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() + |
| utostr(OffsetInArchive))))); |
| DenseSet<StringRef> KeptComdats; |
| for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) |
| Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ComdatGroups, |
| ObjSym, Saver, this)); |
| } |
| |
| template <template <class> class T> |
| static InputFile *createELFFile(MemoryBufferRef MB) { |
| unsigned char Size; |
| unsigned char Endian; |
| std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); |
| if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) |
| fatal("invalid data encoding: " + MB.getBufferIdentifier()); |
| |
| InputFile *Obj; |
| if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) |
| Obj = new T<ELF32LE>(MB); |
| else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) |
| Obj = new T<ELF32BE>(MB); |
| else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) |
| Obj = new T<ELF64LE>(MB); |
| else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) |
| Obj = new T<ELF64BE>(MB); |
| else |
| fatal("invalid file class: " + MB.getBufferIdentifier()); |
| |
| if (!Config->FirstElf) |
| Config->FirstElf = Obj; |
| return Obj; |
| } |
| |
| // Wraps a binary blob with an ELF header and footer |
| // so that we can link it as a regular ELF file. |
| template <class ELFT> InputFile *BinaryFile::createELF() { |
| typedef typename ELFT::uint uintX_t; |
| typedef typename ELFT::Sym Elf_Sym; |
| |
| // Fill the ELF file header. |
| ELFCreator<ELFT> File(ET_REL, Config->EMachine); |
| auto DataSec = File.addSection(".data"); |
| DataSec.Header->sh_flags = SHF_ALLOC; |
| DataSec.Header->sh_size = MB.getBufferSize(); |
| DataSec.Header->sh_type = SHT_PROGBITS; |
| DataSec.Header->sh_addralign = 8; |
| |
| // Replace non-alphanumeric characters with '_'. |
| std::string Filepath = MB.getBufferIdentifier(); |
| std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(), |
| [](char C) { return isalnum(C) ? C : '_'; }); |
| |
| // Add _start, _end and _size symbols. |
| auto AddSym = [&](std::string Name, uintX_t SecIdx, uintX_t Value) { |
| Elf_Sym *Sym = File.addSymbol("_binary_" + Filepath + Name); |
| Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); |
| Sym->st_shndx = SecIdx; |
| Sym->st_value = Value; |
| }; |
| AddSym("_start", DataSec.Index, 0); |
| AddSym("_end", DataSec.Index, MB.getBufferSize()); |
| AddSym("_size", SHN_ABS, MB.getBufferSize()); |
| |
| // Fix the ELF file layout and write it down to ELFData uint8_t vector. |
| size_t Size = File.layout(); |
| ELFData.resize(Size); |
| File.writeTo(ELFData.data()); |
| |
| // Fill .data section with actual data. |
| memcpy(ELFData.data() + DataSec.Header->sh_offset, MB.getBufferStart(), |
| MB.getBufferSize()); |
| |
| return createELFFile<ObjectFile>(MemoryBufferRef( |
| StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier())); |
| } |
| |
| static bool isBitcode(MemoryBufferRef MB) { |
| using namespace sys::fs; |
| return identify_magic(MB.getBuffer()) == file_magic::bitcode; |
| } |
| |
| InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, |
| uint64_t OffsetInArchive) { |
| InputFile *F = |
| isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB); |
| F->ArchiveName = ArchiveName; |
| F->OffsetInArchive = OffsetInArchive; |
| return F; |
| } |
| |
| InputFile *elf::createSharedFile(MemoryBufferRef MB) { |
| return createELFFile<SharedFile>(MB); |
| } |
| |
| MemoryBufferRef LazyObjectFile::getBuffer() { |
| if (Seen) |
| return MemoryBufferRef(); |
| Seen = true; |
| return MB; |
| } |
| |
| template <class ELFT> void LazyObjectFile::parse() { |
| for (StringRef Sym : getSymbols()) |
| Symtab<ELFT>::X->addLazyObject(Sym, *this); |
| } |
| |
| template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::Sym Elf_Sym; |
| typedef typename ELFT::SymRange Elf_Sym_Range; |
| |
| const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); |
| for (const Elf_Shdr &Sec : Obj.sections()) { |
| if (Sec.sh_type != SHT_SYMTAB) |
| continue; |
| Elf_Sym_Range Syms = Obj.symbols(&Sec); |
| uint32_t FirstNonLocal = Sec.sh_info; |
| StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); |
| std::vector<StringRef> V; |
| for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) |
| if (Sym.st_shndx != SHN_UNDEF) |
| V.push_back(check(Sym.getName(StringTable))); |
| return V; |
| } |
| return {}; |
| } |
| |
| std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { |
| std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); |
| std::vector<StringRef> V; |
| for (const lto::InputFile::Symbol &Sym : Obj->symbols()) |
| if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) |
| V.push_back(Saver.save(Sym.getName())); |
| return V; |
| } |
| |
| // Returns a vector of globally-visible defined symbol names. |
| std::vector<StringRef> LazyObjectFile::getSymbols() { |
| if (isBitcode(this->MB)) |
| return getBitcodeSymbols(); |
| |
| unsigned char Size; |
| unsigned char Endian; |
| std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); |
| if (Size == ELFCLASS32) { |
| if (Endian == ELFDATA2LSB) |
| return getElfSymbols<ELF32LE>(); |
| return getElfSymbols<ELF32BE>(); |
| } |
| if (Endian == ELFDATA2LSB) |
| return getElfSymbols<ELF64LE>(); |
| return getElfSymbols<ELF64BE>(); |
| } |
| |
| template void ArchiveFile::parse<ELF32LE>(); |
| template void ArchiveFile::parse<ELF32BE>(); |
| template void ArchiveFile::parse<ELF64LE>(); |
| template void ArchiveFile::parse<ELF64BE>(); |
| |
| template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); |
| template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); |
| template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); |
| template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); |
| |
| template void LazyObjectFile::parse<ELF32LE>(); |
| template void LazyObjectFile::parse<ELF32BE>(); |
| template void LazyObjectFile::parse<ELF64LE>(); |
| template void LazyObjectFile::parse<ELF64BE>(); |
| |
| template class elf::ELFFileBase<ELF32LE>; |
| template class elf::ELFFileBase<ELF32BE>; |
| template class elf::ELFFileBase<ELF64LE>; |
| template class elf::ELFFileBase<ELF64BE>; |
| |
| template class elf::ObjectFile<ELF32LE>; |
| template class elf::ObjectFile<ELF32BE>; |
| template class elf::ObjectFile<ELF64LE>; |
| template class elf::ObjectFile<ELF64BE>; |
| |
| template class elf::SharedFile<ELF32LE>; |
| template class elf::SharedFile<ELF32BE>; |
| template class elf::SharedFile<ELF64LE>; |
| template class elf::SharedFile<ELF64BE>; |
| |
| template InputFile *BinaryFile::createELF<ELF32LE>(); |
| template InputFile *BinaryFile::createELF<ELF32BE>(); |
| template InputFile *BinaryFile::createELF<ELF64LE>(); |
| template InputFile *BinaryFile::createELF<ELF64BE>(); |