|  | //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of the scalar evolution analysis | 
|  | // engine, which is used primarily to analyze expressions involving induction | 
|  | // variables in loops. | 
|  | // | 
|  | // There are several aspects to this library.  First is the representation of | 
|  | // scalar expressions, which are represented as subclasses of the SCEV class. | 
|  | // These classes are used to represent certain types of subexpressions that we | 
|  | // can handle. We only create one SCEV of a particular shape, so | 
|  | // pointer-comparisons for equality are legal. | 
|  | // | 
|  | // One important aspect of the SCEV objects is that they are never cyclic, even | 
|  | // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If | 
|  | // the PHI node is one of the idioms that we can represent (e.g., a polynomial | 
|  | // recurrence) then we represent it directly as a recurrence node, otherwise we | 
|  | // represent it as a SCEVUnknown node. | 
|  | // | 
|  | // In addition to being able to represent expressions of various types, we also | 
|  | // have folders that are used to build the *canonical* representation for a | 
|  | // particular expression.  These folders are capable of using a variety of | 
|  | // rewrite rules to simplify the expressions. | 
|  | // | 
|  | // Once the folders are defined, we can implement the more interesting | 
|  | // higher-level code, such as the code that recognizes PHI nodes of various | 
|  | // types, computes the execution count of a loop, etc. | 
|  | // | 
|  | // TODO: We should use these routines and value representations to implement | 
|  | // dependence analysis! | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // There are several good references for the techniques used in this analysis. | 
|  | // | 
|  | //  Chains of recurrences -- a method to expedite the evaluation | 
|  | //  of closed-form functions | 
|  | //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima | 
|  | // | 
|  | //  On computational properties of chains of recurrences | 
|  | //  Eugene V. Zima | 
|  | // | 
|  | //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization | 
|  | //  Robert A. van Engelen | 
|  | // | 
|  | //  Efficient Symbolic Analysis for Optimizing Compilers | 
|  | //  Robert A. van Engelen | 
|  | // | 
|  | //  Using the chains of recurrences algebra for data dependence testing and | 
|  | //  induction variable substitution | 
|  | //  MS Thesis, Johnie Birch | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/EquivalenceClasses.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/ScopeExit.h" | 
|  | #include "llvm/ADT/Sequence.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/SaveAndRestore.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <climits> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "scalar-evolution" | 
|  |  | 
|  | STATISTIC(NumArrayLenItCounts, | 
|  | "Number of trip counts computed with array length"); | 
|  | STATISTIC(NumTripCountsComputed, | 
|  | "Number of loops with predictable loop counts"); | 
|  | STATISTIC(NumTripCountsNotComputed, | 
|  | "Number of loops without predictable loop counts"); | 
|  | STATISTIC(NumBruteForceTripCountsComputed, | 
|  | "Number of loops with trip counts computed by force"); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, | 
|  | cl::desc("Maximum number of iterations SCEV will " | 
|  | "symbolically execute a constant " | 
|  | "derived loop"), | 
|  | cl::init(100)); | 
|  |  | 
|  | // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. | 
|  | static cl::opt<bool> VerifySCEV( | 
|  | "verify-scev", cl::Hidden, | 
|  | cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); | 
|  | static cl::opt<bool> | 
|  | VerifySCEVMap("verify-scev-maps", cl::Hidden, | 
|  | cl::desc("Verify no dangling value in ScalarEvolution's " | 
|  | "ExprValueMap (slow)")); | 
|  |  | 
|  | static cl::opt<unsigned> MulOpsInlineThreshold( | 
|  | "scev-mulops-inline-threshold", cl::Hidden, | 
|  | cl::desc("Threshold for inlining multiplication operands into a SCEV"), | 
|  | cl::init(32)); | 
|  |  | 
|  | static cl::opt<unsigned> AddOpsInlineThreshold( | 
|  | "scev-addops-inline-threshold", cl::Hidden, | 
|  | cl::desc("Threshold for inlining addition operands into a SCEV"), | 
|  | cl::init(500)); | 
|  |  | 
|  | static cl::opt<unsigned> MaxSCEVCompareDepth( | 
|  | "scalar-evolution-max-scev-compare-depth", cl::Hidden, | 
|  | cl::desc("Maximum depth of recursive SCEV complexity comparisons"), | 
|  | cl::init(32)); | 
|  |  | 
|  | static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( | 
|  | "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, | 
|  | cl::desc("Maximum depth of recursive SCEV operations implication analysis"), | 
|  | cl::init(2)); | 
|  |  | 
|  | static cl::opt<unsigned> MaxValueCompareDepth( | 
|  | "scalar-evolution-max-value-compare-depth", cl::Hidden, | 
|  | cl::desc("Maximum depth of recursive value complexity comparisons"), | 
|  | cl::init(2)); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, | 
|  | cl::desc("Maximum depth of recursive arithmetics"), | 
|  | cl::init(32)); | 
|  |  | 
|  | static cl::opt<unsigned> MaxConstantEvolvingDepth( | 
|  | "scalar-evolution-max-constant-evolving-depth", cl::Hidden, | 
|  | cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, | 
|  | cl::desc("Maximum depth of recursive SExt/ZExt"), | 
|  | cl::init(8)); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, | 
|  | cl::desc("Max coefficients in AddRec during evolving"), | 
|  | cl::init(16)); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           SCEV class definitions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Implementation of the SCEV class. | 
|  | // | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void SCEV::dump() const { | 
|  | print(dbgs()); | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void SCEV::print(raw_ostream &OS) const { | 
|  | switch (static_cast<SCEVTypes>(getSCEVType())) { | 
|  | case scConstant: | 
|  | cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); | 
|  | return; | 
|  | case scTruncate: { | 
|  | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); | 
|  | const SCEV *Op = Trunc->getOperand(); | 
|  | OS << "(trunc " << *Op->getType() << " " << *Op << " to " | 
|  | << *Trunc->getType() << ")"; | 
|  | return; | 
|  | } | 
|  | case scZeroExtend: { | 
|  | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); | 
|  | const SCEV *Op = ZExt->getOperand(); | 
|  | OS << "(zext " << *Op->getType() << " " << *Op << " to " | 
|  | << *ZExt->getType() << ")"; | 
|  | return; | 
|  | } | 
|  | case scSignExtend: { | 
|  | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); | 
|  | const SCEV *Op = SExt->getOperand(); | 
|  | OS << "(sext " << *Op->getType() << " " << *Op << " to " | 
|  | << *SExt->getType() << ")"; | 
|  | return; | 
|  | } | 
|  | case scAddRecExpr: { | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); | 
|  | OS << "{" << *AR->getOperand(0); | 
|  | for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) | 
|  | OS << ",+," << *AR->getOperand(i); | 
|  | OS << "}<"; | 
|  | if (AR->hasNoUnsignedWrap()) | 
|  | OS << "nuw><"; | 
|  | if (AR->hasNoSignedWrap()) | 
|  | OS << "nsw><"; | 
|  | if (AR->hasNoSelfWrap() && | 
|  | !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) | 
|  | OS << "nw><"; | 
|  | AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ">"; | 
|  | return; | 
|  | } | 
|  | case scAddExpr: | 
|  | case scMulExpr: | 
|  | case scUMaxExpr: | 
|  | case scSMaxExpr: { | 
|  | const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); | 
|  | const char *OpStr = nullptr; | 
|  | switch (NAry->getSCEVType()) { | 
|  | case scAddExpr: OpStr = " + "; break; | 
|  | case scMulExpr: OpStr = " * "; break; | 
|  | case scUMaxExpr: OpStr = " umax "; break; | 
|  | case scSMaxExpr: OpStr = " smax "; break; | 
|  | } | 
|  | OS << "("; | 
|  | for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); | 
|  | I != E; ++I) { | 
|  | OS << **I; | 
|  | if (std::next(I) != E) | 
|  | OS << OpStr; | 
|  | } | 
|  | OS << ")"; | 
|  | switch (NAry->getSCEVType()) { | 
|  | case scAddExpr: | 
|  | case scMulExpr: | 
|  | if (NAry->hasNoUnsignedWrap()) | 
|  | OS << "<nuw>"; | 
|  | if (NAry->hasNoSignedWrap()) | 
|  | OS << "<nsw>"; | 
|  | } | 
|  | return; | 
|  | } | 
|  | case scUDivExpr: { | 
|  | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); | 
|  | OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; | 
|  | return; | 
|  | } | 
|  | case scUnknown: { | 
|  | const SCEVUnknown *U = cast<SCEVUnknown>(this); | 
|  | Type *AllocTy; | 
|  | if (U->isSizeOf(AllocTy)) { | 
|  | OS << "sizeof(" << *AllocTy << ")"; | 
|  | return; | 
|  | } | 
|  | if (U->isAlignOf(AllocTy)) { | 
|  | OS << "alignof(" << *AllocTy << ")"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Type *CTy; | 
|  | Constant *FieldNo; | 
|  | if (U->isOffsetOf(CTy, FieldNo)) { | 
|  | OS << "offsetof(" << *CTy << ", "; | 
|  | FieldNo->printAsOperand(OS, false); | 
|  | OS << ")"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise just print it normally. | 
|  | U->getValue()->printAsOperand(OS, false); | 
|  | return; | 
|  | } | 
|  | case scCouldNotCompute: | 
|  | OS << "***COULDNOTCOMPUTE***"; | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("Unknown SCEV kind!"); | 
|  | } | 
|  |  | 
|  | Type *SCEV::getType() const { | 
|  | switch (static_cast<SCEVTypes>(getSCEVType())) { | 
|  | case scConstant: | 
|  | return cast<SCEVConstant>(this)->getType(); | 
|  | case scTruncate: | 
|  | case scZeroExtend: | 
|  | case scSignExtend: | 
|  | return cast<SCEVCastExpr>(this)->getType(); | 
|  | case scAddRecExpr: | 
|  | case scMulExpr: | 
|  | case scUMaxExpr: | 
|  | case scSMaxExpr: | 
|  | return cast<SCEVNAryExpr>(this)->getType(); | 
|  | case scAddExpr: | 
|  | return cast<SCEVAddExpr>(this)->getType(); | 
|  | case scUDivExpr: | 
|  | return cast<SCEVUDivExpr>(this)->getType(); | 
|  | case scUnknown: | 
|  | return cast<SCEVUnknown>(this)->getType(); | 
|  | case scCouldNotCompute: | 
|  | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); | 
|  | } | 
|  | llvm_unreachable("Unknown SCEV kind!"); | 
|  | } | 
|  |  | 
|  | bool SCEV::isZero() const { | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | 
|  | return SC->getValue()->isZero(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SCEV::isOne() const { | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | 
|  | return SC->getValue()->isOne(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SCEV::isAllOnesValue() const { | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | 
|  | return SC->getValue()->isMinusOne(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SCEV::isNonConstantNegative() const { | 
|  | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); | 
|  | if (!Mul) return false; | 
|  |  | 
|  | // If there is a constant factor, it will be first. | 
|  | const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); | 
|  | if (!SC) return false; | 
|  |  | 
|  | // Return true if the value is negative, this matches things like (-42 * V). | 
|  | return SC->getAPInt().isNegative(); | 
|  | } | 
|  |  | 
|  | SCEVCouldNotCompute::SCEVCouldNotCompute() : | 
|  | SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} | 
|  |  | 
|  | bool SCEVCouldNotCompute::classof(const SCEV *S) { | 
|  | return S->getSCEVType() == scCouldNotCompute; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scConstant); | 
|  | ID.AddPointer(V); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getConstant(const APInt &Val) { | 
|  | return getConstant(ConstantInt::get(getContext(), Val)); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { | 
|  | IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); | 
|  | return getConstant(ConstantInt::get(ITy, V, isSigned)); | 
|  | } | 
|  |  | 
|  | SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, | 
|  | unsigned SCEVTy, const SCEV *op, Type *ty) | 
|  | : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} | 
|  |  | 
|  | SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, | 
|  | const SCEV *op, Type *ty) | 
|  | : SCEVCastExpr(ID, scTruncate, op, ty) { | 
|  | assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot truncate non-integer value!"); | 
|  | } | 
|  |  | 
|  | SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, | 
|  | const SCEV *op, Type *ty) | 
|  | : SCEVCastExpr(ID, scZeroExtend, op, ty) { | 
|  | assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot zero extend non-integer value!"); | 
|  | } | 
|  |  | 
|  | SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, | 
|  | const SCEV *op, Type *ty) | 
|  | : SCEVCastExpr(ID, scSignExtend, op, ty) { | 
|  | assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot sign extend non-integer value!"); | 
|  | } | 
|  |  | 
|  | void SCEVUnknown::deleted() { | 
|  | // Clear this SCEVUnknown from various maps. | 
|  | SE->forgetMemoizedResults(this); | 
|  |  | 
|  | // Remove this SCEVUnknown from the uniquing map. | 
|  | SE->UniqueSCEVs.RemoveNode(this); | 
|  |  | 
|  | // Release the value. | 
|  | setValPtr(nullptr); | 
|  | } | 
|  |  | 
|  | void SCEVUnknown::allUsesReplacedWith(Value *New) { | 
|  | // Remove this SCEVUnknown from the uniquing map. | 
|  | SE->UniqueSCEVs.RemoveNode(this); | 
|  |  | 
|  | // Update this SCEVUnknown to point to the new value. This is needed | 
|  | // because there may still be outstanding SCEVs which still point to | 
|  | // this SCEVUnknown. | 
|  | setValPtr(New); | 
|  | } | 
|  |  | 
|  | bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { | 
|  | if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) | 
|  | if (VCE->getOpcode() == Instruction::PtrToInt) | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr && | 
|  | CE->getOperand(0)->isNullValue() && | 
|  | CE->getNumOperands() == 2) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) | 
|  | if (CI->isOne()) { | 
|  | AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) | 
|  | ->getElementType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { | 
|  | if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) | 
|  | if (VCE->getOpcode() == Instruction::PtrToInt) | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr && | 
|  | CE->getOperand(0)->isNullValue()) { | 
|  | Type *Ty = | 
|  | cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) | 
|  | if (!STy->isPacked() && | 
|  | CE->getNumOperands() == 3 && | 
|  | CE->getOperand(1)->isNullValue()) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) | 
|  | if (CI->isOne() && | 
|  | STy->getNumElements() == 2 && | 
|  | STy->getElementType(0)->isIntegerTy(1)) { | 
|  | AllocTy = STy->getElementType(1); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { | 
|  | if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) | 
|  | if (VCE->getOpcode() == Instruction::PtrToInt) | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr && | 
|  | CE->getNumOperands() == 3 && | 
|  | CE->getOperand(0)->isNullValue() && | 
|  | CE->getOperand(1)->isNullValue()) { | 
|  | Type *Ty = | 
|  | cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); | 
|  | // Ignore vector types here so that ScalarEvolutionExpander doesn't | 
|  | // emit getelementptrs that index into vectors. | 
|  | if (Ty->isStructTy() || Ty->isArrayTy()) { | 
|  | CTy = Ty; | 
|  | FieldNo = CE->getOperand(2); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                               SCEV Utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Compare the two values \p LV and \p RV in terms of their "complexity" where | 
|  | /// "complexity" is a partial (and somewhat ad-hoc) relation used to order | 
|  | /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that | 
|  | /// have been previously deemed to be "equally complex" by this routine.  It is | 
|  | /// intended to avoid exponential time complexity in cases like: | 
|  | /// | 
|  | ///   %a = f(%x, %y) | 
|  | ///   %b = f(%a, %a) | 
|  | ///   %c = f(%b, %b) | 
|  | /// | 
|  | ///   %d = f(%x, %y) | 
|  | ///   %e = f(%d, %d) | 
|  | ///   %f = f(%e, %e) | 
|  | /// | 
|  | ///   CompareValueComplexity(%f, %c) | 
|  | /// | 
|  | /// Since we do not continue running this routine on expression trees once we | 
|  | /// have seen unequal values, there is no need to track them in the cache. | 
|  | static int | 
|  | CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, | 
|  | const LoopInfo *const LI, Value *LV, Value *RV, | 
|  | unsigned Depth) { | 
|  | if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) | 
|  | return 0; | 
|  |  | 
|  | // Order pointer values after integer values. This helps SCEVExpander form | 
|  | // GEPs. | 
|  | bool LIsPointer = LV->getType()->isPointerTy(), | 
|  | RIsPointer = RV->getType()->isPointerTy(); | 
|  | if (LIsPointer != RIsPointer) | 
|  | return (int)LIsPointer - (int)RIsPointer; | 
|  |  | 
|  | // Compare getValueID values. | 
|  | unsigned LID = LV->getValueID(), RID = RV->getValueID(); | 
|  | if (LID != RID) | 
|  | return (int)LID - (int)RID; | 
|  |  | 
|  | // Sort arguments by their position. | 
|  | if (const auto *LA = dyn_cast<Argument>(LV)) { | 
|  | const auto *RA = cast<Argument>(RV); | 
|  | unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); | 
|  | return (int)LArgNo - (int)RArgNo; | 
|  | } | 
|  |  | 
|  | if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { | 
|  | const auto *RGV = cast<GlobalValue>(RV); | 
|  |  | 
|  | const auto IsGVNameSemantic = [&](const GlobalValue *GV) { | 
|  | auto LT = GV->getLinkage(); | 
|  | return !(GlobalValue::isPrivateLinkage(LT) || | 
|  | GlobalValue::isInternalLinkage(LT)); | 
|  | }; | 
|  |  | 
|  | // Use the names to distinguish the two values, but only if the | 
|  | // names are semantically important. | 
|  | if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) | 
|  | return LGV->getName().compare(RGV->getName()); | 
|  | } | 
|  |  | 
|  | // For instructions, compare their loop depth, and their operand count.  This | 
|  | // is pretty loose. | 
|  | if (const auto *LInst = dyn_cast<Instruction>(LV)) { | 
|  | const auto *RInst = cast<Instruction>(RV); | 
|  |  | 
|  | // Compare loop depths. | 
|  | const BasicBlock *LParent = LInst->getParent(), | 
|  | *RParent = RInst->getParent(); | 
|  | if (LParent != RParent) { | 
|  | unsigned LDepth = LI->getLoopDepth(LParent), | 
|  | RDepth = LI->getLoopDepth(RParent); | 
|  | if (LDepth != RDepth) | 
|  | return (int)LDepth - (int)RDepth; | 
|  | } | 
|  |  | 
|  | // Compare the number of operands. | 
|  | unsigned LNumOps = LInst->getNumOperands(), | 
|  | RNumOps = RInst->getNumOperands(); | 
|  | if (LNumOps != RNumOps) | 
|  | return (int)LNumOps - (int)RNumOps; | 
|  |  | 
|  | for (unsigned Idx : seq(0u, LNumOps)) { | 
|  | int Result = | 
|  | CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), | 
|  | RInst->getOperand(Idx), Depth + 1); | 
|  | if (Result != 0) | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | EqCacheValue.unionSets(LV, RV); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Return negative, zero, or positive, if LHS is less than, equal to, or greater | 
|  | // than RHS, respectively. A three-way result allows recursive comparisons to be | 
|  | // more efficient. | 
|  | static int CompareSCEVComplexity( | 
|  | EquivalenceClasses<const SCEV *> &EqCacheSCEV, | 
|  | EquivalenceClasses<const Value *> &EqCacheValue, | 
|  | const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, | 
|  | DominatorTree &DT, unsigned Depth = 0) { | 
|  | // Fast-path: SCEVs are uniqued so we can do a quick equality check. | 
|  | if (LHS == RHS) | 
|  | return 0; | 
|  |  | 
|  | // Primarily, sort the SCEVs by their getSCEVType(). | 
|  | unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); | 
|  | if (LType != RType) | 
|  | return (int)LType - (int)RType; | 
|  |  | 
|  | if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) | 
|  | return 0; | 
|  | // Aside from the getSCEVType() ordering, the particular ordering | 
|  | // isn't very important except that it's beneficial to be consistent, | 
|  | // so that (a + b) and (b + a) don't end up as different expressions. | 
|  | switch (static_cast<SCEVTypes>(LType)) { | 
|  | case scUnknown: { | 
|  | const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); | 
|  | const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); | 
|  |  | 
|  | int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), | 
|  | RU->getValue(), Depth + 1); | 
|  | if (X == 0) | 
|  | EqCacheSCEV.unionSets(LHS, RHS); | 
|  | return X; | 
|  | } | 
|  |  | 
|  | case scConstant: { | 
|  | const SCEVConstant *LC = cast<SCEVConstant>(LHS); | 
|  | const SCEVConstant *RC = cast<SCEVConstant>(RHS); | 
|  |  | 
|  | // Compare constant values. | 
|  | const APInt &LA = LC->getAPInt(); | 
|  | const APInt &RA = RC->getAPInt(); | 
|  | unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); | 
|  | if (LBitWidth != RBitWidth) | 
|  | return (int)LBitWidth - (int)RBitWidth; | 
|  | return LA.ult(RA) ? -1 : 1; | 
|  | } | 
|  |  | 
|  | case scAddRecExpr: { | 
|  | const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); | 
|  | const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); | 
|  |  | 
|  | // There is always a dominance between two recs that are used by one SCEV, | 
|  | // so we can safely sort recs by loop header dominance. We require such | 
|  | // order in getAddExpr. | 
|  | const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); | 
|  | if (LLoop != RLoop) { | 
|  | const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); | 
|  | assert(LHead != RHead && "Two loops share the same header?"); | 
|  | if (DT.dominates(LHead, RHead)) | 
|  | return 1; | 
|  | else | 
|  | assert(DT.dominates(RHead, LHead) && | 
|  | "No dominance between recurrences used by one SCEV?"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Addrec complexity grows with operand count. | 
|  | unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); | 
|  | if (LNumOps != RNumOps) | 
|  | return (int)LNumOps - (int)RNumOps; | 
|  |  | 
|  | // Compare NoWrap flags. | 
|  | if (LA->getNoWrapFlags() != RA->getNoWrapFlags()) | 
|  | return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags(); | 
|  |  | 
|  | // Lexicographically compare. | 
|  | for (unsigned i = 0; i != LNumOps; ++i) { | 
|  | int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, | 
|  | LA->getOperand(i), RA->getOperand(i), DT, | 
|  | Depth + 1); | 
|  | if (X != 0) | 
|  | return X; | 
|  | } | 
|  | EqCacheSCEV.unionSets(LHS, RHS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case scAddExpr: | 
|  | case scMulExpr: | 
|  | case scSMaxExpr: | 
|  | case scUMaxExpr: { | 
|  | const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); | 
|  | const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); | 
|  |  | 
|  | // Lexicographically compare n-ary expressions. | 
|  | unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); | 
|  | if (LNumOps != RNumOps) | 
|  | return (int)LNumOps - (int)RNumOps; | 
|  |  | 
|  | // Compare NoWrap flags. | 
|  | if (LC->getNoWrapFlags() != RC->getNoWrapFlags()) | 
|  | return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags(); | 
|  |  | 
|  | for (unsigned i = 0; i != LNumOps; ++i) { | 
|  | int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, | 
|  | LC->getOperand(i), RC->getOperand(i), DT, | 
|  | Depth + 1); | 
|  | if (X != 0) | 
|  | return X; | 
|  | } | 
|  | EqCacheSCEV.unionSets(LHS, RHS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case scUDivExpr: { | 
|  | const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); | 
|  | const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); | 
|  |  | 
|  | // Lexicographically compare udiv expressions. | 
|  | int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), | 
|  | RC->getLHS(), DT, Depth + 1); | 
|  | if (X != 0) | 
|  | return X; | 
|  | X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), | 
|  | RC->getRHS(), DT, Depth + 1); | 
|  | if (X == 0) | 
|  | EqCacheSCEV.unionSets(LHS, RHS); | 
|  | return X; | 
|  | } | 
|  |  | 
|  | case scTruncate: | 
|  | case scZeroExtend: | 
|  | case scSignExtend: { | 
|  | const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); | 
|  | const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); | 
|  |  | 
|  | // Compare cast expressions by operand. | 
|  | int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, | 
|  | LC->getOperand(), RC->getOperand(), DT, | 
|  | Depth + 1); | 
|  | if (X == 0) | 
|  | EqCacheSCEV.unionSets(LHS, RHS); | 
|  | return X; | 
|  | } | 
|  |  | 
|  | case scCouldNotCompute: | 
|  | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); | 
|  | } | 
|  | llvm_unreachable("Unknown SCEV kind!"); | 
|  | } | 
|  |  | 
|  | /// Given a list of SCEV objects, order them by their complexity, and group | 
|  | /// objects of the same complexity together by value.  When this routine is | 
|  | /// finished, we know that any duplicates in the vector are consecutive and that | 
|  | /// complexity is monotonically increasing. | 
|  | /// | 
|  | /// Note that we go take special precautions to ensure that we get deterministic | 
|  | /// results from this routine.  In other words, we don't want the results of | 
|  | /// this to depend on where the addresses of various SCEV objects happened to | 
|  | /// land in memory. | 
|  | static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, | 
|  | LoopInfo *LI, DominatorTree &DT) { | 
|  | if (Ops.size() < 2) return;  // Noop | 
|  |  | 
|  | EquivalenceClasses<const SCEV *> EqCacheSCEV; | 
|  | EquivalenceClasses<const Value *> EqCacheValue; | 
|  | if (Ops.size() == 2) { | 
|  | // This is the common case, which also happens to be trivially simple. | 
|  | // Special case it. | 
|  | const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; | 
|  | if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) | 
|  | std::swap(LHS, RHS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do the rough sort by complexity. | 
|  | std::stable_sort(Ops.begin(), Ops.end(), | 
|  | [&](const SCEV *LHS, const SCEV *RHS) { | 
|  | return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, | 
|  | LHS, RHS, DT) < 0; | 
|  | }); | 
|  |  | 
|  | // Now that we are sorted by complexity, group elements of the same | 
|  | // complexity.  Note that this is, at worst, N^2, but the vector is likely to | 
|  | // be extremely short in practice.  Note that we take this approach because we | 
|  | // do not want to depend on the addresses of the objects we are grouping. | 
|  | for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { | 
|  | const SCEV *S = Ops[i]; | 
|  | unsigned Complexity = S->getSCEVType(); | 
|  |  | 
|  | // If there are any objects of the same complexity and same value as this | 
|  | // one, group them. | 
|  | for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { | 
|  | if (Ops[j] == S) { // Found a duplicate. | 
|  | // Move it to immediately after i'th element. | 
|  | std::swap(Ops[i+1], Ops[j]); | 
|  | ++i;   // no need to rescan it. | 
|  | if (i == e-2) return;  // Done! | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the size of the SCEV S. | 
|  | static inline int sizeOfSCEV(const SCEV *S) { | 
|  | struct FindSCEVSize { | 
|  | int Size = 0; | 
|  |  | 
|  | FindSCEVSize() = default; | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | ++Size; | 
|  | // Keep looking at all operands of S. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isDone() const { | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | FindSCEVSize F; | 
|  | SCEVTraversal<FindSCEVSize> ST(F); | 
|  | ST.visitAll(S); | 
|  | return F.Size; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { | 
|  | public: | 
|  | // Computes the Quotient and Remainder of the division of Numerator by | 
|  | // Denominator. | 
|  | static void divide(ScalarEvolution &SE, const SCEV *Numerator, | 
|  | const SCEV *Denominator, const SCEV **Quotient, | 
|  | const SCEV **Remainder) { | 
|  | assert(Numerator && Denominator && "Uninitialized SCEV"); | 
|  |  | 
|  | SCEVDivision D(SE, Numerator, Denominator); | 
|  |  | 
|  | // Check for the trivial case here to avoid having to check for it in the | 
|  | // rest of the code. | 
|  | if (Numerator == Denominator) { | 
|  | *Quotient = D.One; | 
|  | *Remainder = D.Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Numerator->isZero()) { | 
|  | *Quotient = D.Zero; | 
|  | *Remainder = D.Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // A simple case when N/1. The quotient is N. | 
|  | if (Denominator->isOne()) { | 
|  | *Quotient = Numerator; | 
|  | *Remainder = D.Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Split the Denominator when it is a product. | 
|  | if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { | 
|  | const SCEV *Q, *R; | 
|  | *Quotient = Numerator; | 
|  | for (const SCEV *Op : T->operands()) { | 
|  | divide(SE, *Quotient, Op, &Q, &R); | 
|  | *Quotient = Q; | 
|  |  | 
|  | // Bail out when the Numerator is not divisible by one of the terms of | 
|  | // the Denominator. | 
|  | if (!R->isZero()) { | 
|  | *Quotient = D.Zero; | 
|  | *Remainder = Numerator; | 
|  | return; | 
|  | } | 
|  | } | 
|  | *Remainder = D.Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | D.visit(Numerator); | 
|  | *Quotient = D.Quotient; | 
|  | *Remainder = D.Remainder; | 
|  | } | 
|  |  | 
|  | // Except in the trivial case described above, we do not know how to divide | 
|  | // Expr by Denominator for the following functions with empty implementation. | 
|  | void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} | 
|  | void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} | 
|  | void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} | 
|  | void visitUDivExpr(const SCEVUDivExpr *Numerator) {} | 
|  | void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} | 
|  | void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} | 
|  | void visitUnknown(const SCEVUnknown *Numerator) {} | 
|  | void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} | 
|  |  | 
|  | void visitConstant(const SCEVConstant *Numerator) { | 
|  | if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { | 
|  | APInt NumeratorVal = Numerator->getAPInt(); | 
|  | APInt DenominatorVal = D->getAPInt(); | 
|  | uint32_t NumeratorBW = NumeratorVal.getBitWidth(); | 
|  | uint32_t DenominatorBW = DenominatorVal.getBitWidth(); | 
|  |  | 
|  | if (NumeratorBW > DenominatorBW) | 
|  | DenominatorVal = DenominatorVal.sext(NumeratorBW); | 
|  | else if (NumeratorBW < DenominatorBW) | 
|  | NumeratorVal = NumeratorVal.sext(DenominatorBW); | 
|  |  | 
|  | APInt QuotientVal(NumeratorVal.getBitWidth(), 0); | 
|  | APInt RemainderVal(NumeratorVal.getBitWidth(), 0); | 
|  | APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); | 
|  | Quotient = SE.getConstant(QuotientVal); | 
|  | Remainder = SE.getConstant(RemainderVal); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { | 
|  | const SCEV *StartQ, *StartR, *StepQ, *StepR; | 
|  | if (!Numerator->isAffine()) | 
|  | return cannotDivide(Numerator); | 
|  | divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); | 
|  | divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); | 
|  | // Bail out if the types do not match. | 
|  | Type *Ty = Denominator->getType(); | 
|  | if (Ty != StartQ->getType() || Ty != StartR->getType() || | 
|  | Ty != StepQ->getType() || Ty != StepR->getType()) | 
|  | return cannotDivide(Numerator); | 
|  | Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), | 
|  | Numerator->getNoWrapFlags()); | 
|  | Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), | 
|  | Numerator->getNoWrapFlags()); | 
|  | } | 
|  |  | 
|  | void visitAddExpr(const SCEVAddExpr *Numerator) { | 
|  | SmallVector<const SCEV *, 2> Qs, Rs; | 
|  | Type *Ty = Denominator->getType(); | 
|  |  | 
|  | for (const SCEV *Op : Numerator->operands()) { | 
|  | const SCEV *Q, *R; | 
|  | divide(SE, Op, Denominator, &Q, &R); | 
|  |  | 
|  | // Bail out if types do not match. | 
|  | if (Ty != Q->getType() || Ty != R->getType()) | 
|  | return cannotDivide(Numerator); | 
|  |  | 
|  | Qs.push_back(Q); | 
|  | Rs.push_back(R); | 
|  | } | 
|  |  | 
|  | if (Qs.size() == 1) { | 
|  | Quotient = Qs[0]; | 
|  | Remainder = Rs[0]; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Quotient = SE.getAddExpr(Qs); | 
|  | Remainder = SE.getAddExpr(Rs); | 
|  | } | 
|  |  | 
|  | void visitMulExpr(const SCEVMulExpr *Numerator) { | 
|  | SmallVector<const SCEV *, 2> Qs; | 
|  | Type *Ty = Denominator->getType(); | 
|  |  | 
|  | bool FoundDenominatorTerm = false; | 
|  | for (const SCEV *Op : Numerator->operands()) { | 
|  | // Bail out if types do not match. | 
|  | if (Ty != Op->getType()) | 
|  | return cannotDivide(Numerator); | 
|  |  | 
|  | if (FoundDenominatorTerm) { | 
|  | Qs.push_back(Op); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check whether Denominator divides one of the product operands. | 
|  | const SCEV *Q, *R; | 
|  | divide(SE, Op, Denominator, &Q, &R); | 
|  | if (!R->isZero()) { | 
|  | Qs.push_back(Op); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Bail out if types do not match. | 
|  | if (Ty != Q->getType()) | 
|  | return cannotDivide(Numerator); | 
|  |  | 
|  | FoundDenominatorTerm = true; | 
|  | Qs.push_back(Q); | 
|  | } | 
|  |  | 
|  | if (FoundDenominatorTerm) { | 
|  | Remainder = Zero; | 
|  | if (Qs.size() == 1) | 
|  | Quotient = Qs[0]; | 
|  | else | 
|  | Quotient = SE.getMulExpr(Qs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!isa<SCEVUnknown>(Denominator)) | 
|  | return cannotDivide(Numerator); | 
|  |  | 
|  | // The Remainder is obtained by replacing Denominator by 0 in Numerator. | 
|  | ValueToValueMap RewriteMap; | 
|  | RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = | 
|  | cast<SCEVConstant>(Zero)->getValue(); | 
|  | Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); | 
|  |  | 
|  | if (Remainder->isZero()) { | 
|  | // The Quotient is obtained by replacing Denominator by 1 in Numerator. | 
|  | RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = | 
|  | cast<SCEVConstant>(One)->getValue(); | 
|  | Quotient = | 
|  | SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Quotient is (Numerator - Remainder) divided by Denominator. | 
|  | const SCEV *Q, *R; | 
|  | const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); | 
|  | // This SCEV does not seem to simplify: fail the division here. | 
|  | if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) | 
|  | return cannotDivide(Numerator); | 
|  | divide(SE, Diff, Denominator, &Q, &R); | 
|  | if (R != Zero) | 
|  | return cannotDivide(Numerator); | 
|  | Quotient = Q; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, | 
|  | const SCEV *Denominator) | 
|  | : SE(S), Denominator(Denominator) { | 
|  | Zero = SE.getZero(Denominator->getType()); | 
|  | One = SE.getOne(Denominator->getType()); | 
|  |  | 
|  | // We generally do not know how to divide Expr by Denominator. We | 
|  | // initialize the division to a "cannot divide" state to simplify the rest | 
|  | // of the code. | 
|  | cannotDivide(Numerator); | 
|  | } | 
|  |  | 
|  | // Convenience function for giving up on the division. We set the quotient to | 
|  | // be equal to zero and the remainder to be equal to the numerator. | 
|  | void cannotDivide(const SCEV *Numerator) { | 
|  | Quotient = Zero; | 
|  | Remainder = Numerator; | 
|  | } | 
|  |  | 
|  | ScalarEvolution &SE; | 
|  | const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Simple SCEV method implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Compute BC(It, K).  The result has width W.  Assume, K > 0. | 
|  | static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, | 
|  | ScalarEvolution &SE, | 
|  | Type *ResultTy) { | 
|  | // Handle the simplest case efficiently. | 
|  | if (K == 1) | 
|  | return SE.getTruncateOrZeroExtend(It, ResultTy); | 
|  |  | 
|  | // We are using the following formula for BC(It, K): | 
|  | // | 
|  | //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! | 
|  | // | 
|  | // Suppose, W is the bitwidth of the return value.  We must be prepared for | 
|  | // overflow.  Hence, we must assure that the result of our computation is | 
|  | // equal to the accurate one modulo 2^W.  Unfortunately, division isn't | 
|  | // safe in modular arithmetic. | 
|  | // | 
|  | // However, this code doesn't use exactly that formula; the formula it uses | 
|  | // is something like the following, where T is the number of factors of 2 in | 
|  | // K! (i.e. trailing zeros in the binary representation of K!), and ^ is | 
|  | // exponentiation: | 
|  | // | 
|  | //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) | 
|  | // | 
|  | // This formula is trivially equivalent to the previous formula.  However, | 
|  | // this formula can be implemented much more efficiently.  The trick is that | 
|  | // K! / 2^T is odd, and exact division by an odd number *is* safe in modular | 
|  | // arithmetic.  To do exact division in modular arithmetic, all we have | 
|  | // to do is multiply by the inverse.  Therefore, this step can be done at | 
|  | // width W. | 
|  | // | 
|  | // The next issue is how to safely do the division by 2^T.  The way this | 
|  | // is done is by doing the multiplication step at a width of at least W + T | 
|  | // bits.  This way, the bottom W+T bits of the product are accurate. Then, | 
|  | // when we perform the division by 2^T (which is equivalent to a right shift | 
|  | // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get | 
|  | // truncated out after the division by 2^T. | 
|  | // | 
|  | // In comparison to just directly using the first formula, this technique | 
|  | // is much more efficient; using the first formula requires W * K bits, | 
|  | // but this formula less than W + K bits. Also, the first formula requires | 
|  | // a division step, whereas this formula only requires multiplies and shifts. | 
|  | // | 
|  | // It doesn't matter whether the subtraction step is done in the calculation | 
|  | // width or the input iteration count's width; if the subtraction overflows, | 
|  | // the result must be zero anyway.  We prefer here to do it in the width of | 
|  | // the induction variable because it helps a lot for certain cases; CodeGen | 
|  | // isn't smart enough to ignore the overflow, which leads to much less | 
|  | // efficient code if the width of the subtraction is wider than the native | 
|  | // register width. | 
|  | // | 
|  | // (It's possible to not widen at all by pulling out factors of 2 before | 
|  | // the multiplication; for example, K=2 can be calculated as | 
|  | // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires | 
|  | // extra arithmetic, so it's not an obvious win, and it gets | 
|  | // much more complicated for K > 3.) | 
|  |  | 
|  | // Protection from insane SCEVs; this bound is conservative, | 
|  | // but it probably doesn't matter. | 
|  | if (K > 1000) | 
|  | return SE.getCouldNotCompute(); | 
|  |  | 
|  | unsigned W = SE.getTypeSizeInBits(ResultTy); | 
|  |  | 
|  | // Calculate K! / 2^T and T; we divide out the factors of two before | 
|  | // multiplying for calculating K! / 2^T to avoid overflow. | 
|  | // Other overflow doesn't matter because we only care about the bottom | 
|  | // W bits of the result. | 
|  | APInt OddFactorial(W, 1); | 
|  | unsigned T = 1; | 
|  | for (unsigned i = 3; i <= K; ++i) { | 
|  | APInt Mult(W, i); | 
|  | unsigned TwoFactors = Mult.countTrailingZeros(); | 
|  | T += TwoFactors; | 
|  | Mult.lshrInPlace(TwoFactors); | 
|  | OddFactorial *= Mult; | 
|  | } | 
|  |  | 
|  | // We need at least W + T bits for the multiplication step | 
|  | unsigned CalculationBits = W + T; | 
|  |  | 
|  | // Calculate 2^T, at width T+W. | 
|  | APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); | 
|  |  | 
|  | // Calculate the multiplicative inverse of K! / 2^T; | 
|  | // this multiplication factor will perform the exact division by | 
|  | // K! / 2^T. | 
|  | APInt Mod = APInt::getSignedMinValue(W+1); | 
|  | APInt MultiplyFactor = OddFactorial.zext(W+1); | 
|  | MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); | 
|  | MultiplyFactor = MultiplyFactor.trunc(W); | 
|  |  | 
|  | // Calculate the product, at width T+W | 
|  | IntegerType *CalculationTy = IntegerType::get(SE.getContext(), | 
|  | CalculationBits); | 
|  | const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); | 
|  | for (unsigned i = 1; i != K; ++i) { | 
|  | const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); | 
|  | Dividend = SE.getMulExpr(Dividend, | 
|  | SE.getTruncateOrZeroExtend(S, CalculationTy)); | 
|  | } | 
|  |  | 
|  | // Divide by 2^T | 
|  | const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); | 
|  |  | 
|  | // Truncate the result, and divide by K! / 2^T. | 
|  |  | 
|  | return SE.getMulExpr(SE.getConstant(MultiplyFactor), | 
|  | SE.getTruncateOrZeroExtend(DivResult, ResultTy)); | 
|  | } | 
|  |  | 
|  | /// Return the value of this chain of recurrences at the specified iteration | 
|  | /// number.  We can evaluate this recurrence by multiplying each element in the | 
|  | /// chain by the binomial coefficient corresponding to it.  In other words, we | 
|  | /// can evaluate {A,+,B,+,C,+,D} as: | 
|  | /// | 
|  | ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) | 
|  | /// | 
|  | /// where BC(It, k) stands for binomial coefficient. | 
|  | const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, | 
|  | ScalarEvolution &SE) const { | 
|  | const SCEV *Result = getStart(); | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { | 
|  | // The computation is correct in the face of overflow provided that the | 
|  | // multiplication is performed _after_ the evaluation of the binomial | 
|  | // coefficient. | 
|  | const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); | 
|  | if (isa<SCEVCouldNotCompute>(Coeff)) | 
|  | return Coeff; | 
|  |  | 
|  | Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    SCEV Expression folder implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, | 
|  | Type *Ty) { | 
|  | assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && | 
|  | "This is not a truncating conversion!"); | 
|  | assert(isSCEVable(Ty) && | 
|  | "This is not a conversion to a SCEVable type!"); | 
|  | Ty = getEffectiveSCEVType(Ty); | 
|  |  | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scTruncate); | 
|  | ID.AddPointer(Op); | 
|  | ID.AddPointer(Ty); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  |  | 
|  | // Fold if the operand is constant. | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | 
|  | return getConstant( | 
|  | cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); | 
|  |  | 
|  | // trunc(trunc(x)) --> trunc(x) | 
|  | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) | 
|  | return getTruncateExpr(ST->getOperand(), Ty); | 
|  |  | 
|  | // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing | 
|  | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) | 
|  | return getTruncateOrSignExtend(SS->getOperand(), Ty); | 
|  |  | 
|  | // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing | 
|  | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | 
|  | return getTruncateOrZeroExtend(SZ->getOperand(), Ty); | 
|  |  | 
|  | // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can | 
|  | // eliminate all the truncates, or we replace other casts with truncates. | 
|  | if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | bool hasTrunc = false; | 
|  | for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { | 
|  | const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); | 
|  | if (!isa<SCEVCastExpr>(SA->getOperand(i))) | 
|  | hasTrunc = isa<SCEVTruncateExpr>(S); | 
|  | Operands.push_back(S); | 
|  | } | 
|  | if (!hasTrunc) | 
|  | return getAddExpr(Operands); | 
|  | // In spite we checked in the beginning that ID is not in the cache, | 
|  | // it is possible that during recursion and different modification | 
|  | // ID came to cache, so if we found it, just return it. | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can | 
|  | // eliminate all the truncates, or we replace other casts with truncates. | 
|  | if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | bool hasTrunc = false; | 
|  | for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { | 
|  | const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); | 
|  | if (!isa<SCEVCastExpr>(SM->getOperand(i))) | 
|  | hasTrunc = isa<SCEVTruncateExpr>(S); | 
|  | Operands.push_back(S); | 
|  | } | 
|  | if (!hasTrunc) | 
|  | return getMulExpr(Operands); | 
|  | // In spite we checked in the beginning that ID is not in the cache, | 
|  | // it is possible that during recursion and different modification | 
|  | // ID came to cache, so if we found it, just return it. | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // If the input value is a chrec scev, truncate the chrec's operands. | 
|  | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | for (const SCEV *Op : AddRec->operands()) | 
|  | Operands.push_back(getTruncateExpr(Op, Ty)); | 
|  | return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); | 
|  | } | 
|  |  | 
|  | // The cast wasn't folded; create an explicit cast node. We can reuse | 
|  | // the existing insert position since if we get here, we won't have | 
|  | // made any changes which would invalidate it. | 
|  | SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), | 
|  | Op, Ty); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // Get the limit of a recurrence such that incrementing by Step cannot cause | 
|  | // signed overflow as long as the value of the recurrence within the | 
|  | // loop does not exceed this limit before incrementing. | 
|  | static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, | 
|  | ICmpInst::Predicate *Pred, | 
|  | ScalarEvolution *SE) { | 
|  | unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); | 
|  | if (SE->isKnownPositive(Step)) { | 
|  | *Pred = ICmpInst::ICMP_SLT; | 
|  | return SE->getConstant(APInt::getSignedMinValue(BitWidth) - | 
|  | SE->getSignedRangeMax(Step)); | 
|  | } | 
|  | if (SE->isKnownNegative(Step)) { | 
|  | *Pred = ICmpInst::ICMP_SGT; | 
|  | return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - | 
|  | SE->getSignedRangeMin(Step)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Get the limit of a recurrence such that incrementing by Step cannot cause | 
|  | // unsigned overflow as long as the value of the recurrence within the loop does | 
|  | // not exceed this limit before incrementing. | 
|  | static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, | 
|  | ICmpInst::Predicate *Pred, | 
|  | ScalarEvolution *SE) { | 
|  | unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); | 
|  | *Pred = ICmpInst::ICMP_ULT; | 
|  |  | 
|  | return SE->getConstant(APInt::getMinValue(BitWidth) - | 
|  | SE->getUnsignedRangeMax(Step)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct ExtendOpTraitsBase { | 
|  | typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, | 
|  | unsigned); | 
|  | }; | 
|  |  | 
|  | // Used to make code generic over signed and unsigned overflow. | 
|  | template <typename ExtendOp> struct ExtendOpTraits { | 
|  | // Members present: | 
|  | // | 
|  | // static const SCEV::NoWrapFlags WrapType; | 
|  | // | 
|  | // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; | 
|  | // | 
|  | // static const SCEV *getOverflowLimitForStep(const SCEV *Step, | 
|  | //                                           ICmpInst::Predicate *Pred, | 
|  | //                                           ScalarEvolution *SE); | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { | 
|  | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; | 
|  |  | 
|  | static const GetExtendExprTy GetExtendExpr; | 
|  |  | 
|  | static const SCEV *getOverflowLimitForStep(const SCEV *Step, | 
|  | ICmpInst::Predicate *Pred, | 
|  | ScalarEvolution *SE) { | 
|  | return getSignedOverflowLimitForStep(Step, Pred, SE); | 
|  | } | 
|  | }; | 
|  |  | 
|  | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< | 
|  | SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; | 
|  |  | 
|  | template <> | 
|  | struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { | 
|  | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; | 
|  |  | 
|  | static const GetExtendExprTy GetExtendExpr; | 
|  |  | 
|  | static const SCEV *getOverflowLimitForStep(const SCEV *Step, | 
|  | ICmpInst::Predicate *Pred, | 
|  | ScalarEvolution *SE) { | 
|  | return getUnsignedOverflowLimitForStep(Step, Pred, SE); | 
|  | } | 
|  | }; | 
|  |  | 
|  | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< | 
|  | SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // The recurrence AR has been shown to have no signed/unsigned wrap or something | 
|  | // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as | 
|  | // easily prove NSW/NUW for its preincrement or postincrement sibling. This | 
|  | // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + | 
|  | // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the | 
|  | // expression "Step + sext/zext(PreIncAR)" is congruent with | 
|  | // "sext/zext(PostIncAR)" | 
|  | template <typename ExtendOpTy> | 
|  | static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, | 
|  | ScalarEvolution *SE, unsigned Depth) { | 
|  | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; | 
|  | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; | 
|  |  | 
|  | const Loop *L = AR->getLoop(); | 
|  | const SCEV *Start = AR->getStart(); | 
|  | const SCEV *Step = AR->getStepRecurrence(*SE); | 
|  |  | 
|  | // Check for a simple looking step prior to loop entry. | 
|  | const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); | 
|  | if (!SA) | 
|  | return nullptr; | 
|  |  | 
|  | // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV | 
|  | // subtraction is expensive. For this purpose, perform a quick and dirty | 
|  | // difference, by checking for Step in the operand list. | 
|  | SmallVector<const SCEV *, 4> DiffOps; | 
|  | for (const SCEV *Op : SA->operands()) | 
|  | if (Op != Step) | 
|  | DiffOps.push_back(Op); | 
|  |  | 
|  | if (DiffOps.size() == SA->getNumOperands()) | 
|  | return nullptr; | 
|  |  | 
|  | // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + | 
|  | // `Step`: | 
|  |  | 
|  | // 1. NSW/NUW flags on the step increment. | 
|  | auto PreStartFlags = | 
|  | ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); | 
|  | const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); | 
|  | const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( | 
|  | SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); | 
|  |  | 
|  | // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies | 
|  | // "S+X does not sign/unsign-overflow". | 
|  | // | 
|  |  | 
|  | const SCEV *BECount = SE->getBackedgeTakenCount(L); | 
|  | if (PreAR && PreAR->getNoWrapFlags(WrapType) && | 
|  | !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) | 
|  | return PreStart; | 
|  |  | 
|  | // 2. Direct overflow check on the step operation's expression. | 
|  | unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); | 
|  | Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); | 
|  | const SCEV *OperandExtendedStart = | 
|  | SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), | 
|  | (SE->*GetExtendExpr)(Step, WideTy, Depth)); | 
|  | if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { | 
|  | if (PreAR && AR->getNoWrapFlags(WrapType)) { | 
|  | // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW | 
|  | // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then | 
|  | // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact. | 
|  | const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); | 
|  | } | 
|  | return PreStart; | 
|  | } | 
|  |  | 
|  | // 3. Loop precondition. | 
|  | ICmpInst::Predicate Pred; | 
|  | const SCEV *OverflowLimit = | 
|  | ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); | 
|  |  | 
|  | if (OverflowLimit && | 
|  | SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) | 
|  | return PreStart; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Get the normalized zero or sign extended expression for this AddRec's Start. | 
|  | template <typename ExtendOpTy> | 
|  | static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, | 
|  | ScalarEvolution *SE, | 
|  | unsigned Depth) { | 
|  | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; | 
|  |  | 
|  | const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); | 
|  | if (!PreStart) | 
|  | return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); | 
|  |  | 
|  | return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, | 
|  | Depth), | 
|  | (SE->*GetExtendExpr)(PreStart, Ty, Depth)); | 
|  | } | 
|  |  | 
|  | // Try to prove away overflow by looking at "nearby" add recurrences.  A | 
|  | // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it | 
|  | // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. | 
|  | // | 
|  | // Formally: | 
|  | // | 
|  | //     {S,+,X} == {S-T,+,X} + T | 
|  | //  => Ext({S,+,X}) == Ext({S-T,+,X} + T) | 
|  | // | 
|  | // If ({S-T,+,X} + T) does not overflow  ... (1) | 
|  | // | 
|  | //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) | 
|  | // | 
|  | // If {S-T,+,X} does not overflow  ... (2) | 
|  | // | 
|  | //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) | 
|  | //      == {Ext(S-T)+Ext(T),+,Ext(X)} | 
|  | // | 
|  | // If (S-T)+T does not overflow  ... (3) | 
|  | // | 
|  | //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} | 
|  | //      == {Ext(S),+,Ext(X)} == LHS | 
|  | // | 
|  | // Thus, if (1), (2) and (3) are true for some T, then | 
|  | //   Ext({S,+,X}) == {Ext(S),+,Ext(X)} | 
|  | // | 
|  | // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) | 
|  | // does not overflow" restricted to the 0th iteration.  Therefore we only need | 
|  | // to check for (1) and (2). | 
|  | // | 
|  | // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T | 
|  | // is `Delta` (defined below). | 
|  | template <typename ExtendOpTy> | 
|  | bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, | 
|  | const SCEV *Step, | 
|  | const Loop *L) { | 
|  | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; | 
|  |  | 
|  | // We restrict `Start` to a constant to prevent SCEV from spending too much | 
|  | // time here.  It is correct (but more expensive) to continue with a | 
|  | // non-constant `Start` and do a general SCEV subtraction to compute | 
|  | // `PreStart` below. | 
|  | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); | 
|  | if (!StartC) | 
|  | return false; | 
|  |  | 
|  | APInt StartAI = StartC->getAPInt(); | 
|  |  | 
|  | for (unsigned Delta : {-2, -1, 1, 2}) { | 
|  | const SCEV *PreStart = getConstant(StartAI - Delta); | 
|  |  | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scAddRecExpr); | 
|  | ID.AddPointer(PreStart); | 
|  | ID.AddPointer(Step); | 
|  | ID.AddPointer(L); | 
|  | void *IP = nullptr; | 
|  | const auto *PreAR = | 
|  | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | 
|  |  | 
|  | // Give up if we don't already have the add recurrence we need because | 
|  | // actually constructing an add recurrence is relatively expensive. | 
|  | if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2) | 
|  | const SCEV *DeltaS = getConstant(StartC->getType(), Delta); | 
|  | ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( | 
|  | DeltaS, &Pred, this); | 
|  | if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { | 
|  | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && | 
|  | "This is not an extending conversion!"); | 
|  | assert(isSCEVable(Ty) && | 
|  | "This is not a conversion to a SCEVable type!"); | 
|  | Ty = getEffectiveSCEVType(Ty); | 
|  |  | 
|  | // Fold if the operand is constant. | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | 
|  | return getConstant( | 
|  | cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); | 
|  |  | 
|  | // zext(zext(x)) --> zext(x) | 
|  | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | 
|  | return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); | 
|  |  | 
|  | // Before doing any expensive analysis, check to see if we've already | 
|  | // computed a SCEV for this Op and Ty. | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scZeroExtend); | 
|  | ID.AddPointer(Op); | 
|  | ID.AddPointer(Ty); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | if (Depth > MaxExtDepth) { | 
|  | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), | 
|  | Op, Ty); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // zext(trunc(x)) --> zext(x) or x or trunc(x) | 
|  | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { | 
|  | // It's possible the bits taken off by the truncate were all zero bits. If | 
|  | // so, we should be able to simplify this further. | 
|  | const SCEV *X = ST->getOperand(); | 
|  | ConstantRange CR = getUnsignedRange(X); | 
|  | unsigned TruncBits = getTypeSizeInBits(ST->getType()); | 
|  | unsigned NewBits = getTypeSizeInBits(Ty); | 
|  | if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( | 
|  | CR.zextOrTrunc(NewBits))) | 
|  | return getTruncateOrZeroExtend(X, Ty); | 
|  | } | 
|  |  | 
|  | // If the input value is a chrec scev, and we can prove that the value | 
|  | // did not overflow the old, smaller, value, we can zero extend all of the | 
|  | // operands (often constants).  This allows analysis of something like | 
|  | // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; } | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) | 
|  | if (AR->isAffine()) { | 
|  | const SCEV *Start = AR->getStart(); | 
|  | const SCEV *Step = AR->getStepRecurrence(*this); | 
|  | unsigned BitWidth = getTypeSizeInBits(AR->getType()); | 
|  | const Loop *L = AR->getLoop(); | 
|  |  | 
|  | if (!AR->hasNoUnsignedWrap()) { | 
|  | auto NewFlags = proveNoWrapViaConstantRanges(AR); | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); | 
|  | } | 
|  |  | 
|  | // If we have special knowledge that this addrec won't overflow, | 
|  | // we don't need to do any further analysis. | 
|  | if (AR->hasNoUnsignedWrap()) | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), | 
|  | getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); | 
|  |  | 
|  | // Check whether the backedge-taken count is SCEVCouldNotCompute. | 
|  | // Note that this serves two purposes: It filters out loops that are | 
|  | // simply not analyzable, and it covers the case where this code is | 
|  | // being called from within backedge-taken count analysis, such that | 
|  | // attempting to ask for the backedge-taken count would likely result | 
|  | // in infinite recursion. In the later case, the analysis code will | 
|  | // cope with a conservative value, and it will take care to purge | 
|  | // that value once it has finished. | 
|  | const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); | 
|  | if (!isa<SCEVCouldNotCompute>(MaxBECount)) { | 
|  | // Manually compute the final value for AR, checking for | 
|  | // overflow. | 
|  |  | 
|  | // Check whether the backedge-taken count can be losslessly casted to | 
|  | // the addrec's type. The count is always unsigned. | 
|  | const SCEV *CastedMaxBECount = | 
|  | getTruncateOrZeroExtend(MaxBECount, Start->getType()); | 
|  | const SCEV *RecastedMaxBECount = | 
|  | getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); | 
|  | if (MaxBECount == RecastedMaxBECount) { | 
|  | Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); | 
|  | // Check whether Start+Step*MaxBECount has no unsigned overflow. | 
|  | const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, | 
|  | SCEV::FlagAnyWrap, | 
|  | Depth + 1), | 
|  | WideTy, Depth + 1); | 
|  | const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); | 
|  | const SCEV *WideMaxBECount = | 
|  | getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); | 
|  | const SCEV *OperandExtendedAdd = | 
|  | getAddExpr(WideStart, | 
|  | getMulExpr(WideMaxBECount, | 
|  | getZeroExtendExpr(Step, WideTy, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (ZAdd == OperandExtendedAdd) { | 
|  | // Cache knowledge of AR NUW, which is propagated to this AddRec. | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); | 
|  | // Return the expression with the addrec on the outside. | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | 
|  | Depth + 1), | 
|  | getZeroExtendExpr(Step, Ty, Depth + 1), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | // Similar to above, only this time treat the step value as signed. | 
|  | // This covers loops that count down. | 
|  | OperandExtendedAdd = | 
|  | getAddExpr(WideStart, | 
|  | getMulExpr(WideMaxBECount, | 
|  | getSignExtendExpr(Step, WideTy, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (ZAdd == OperandExtendedAdd) { | 
|  | // Cache knowledge of AR NW, which is propagated to this AddRec. | 
|  | // Negative step causes unsigned wrap, but it still can't self-wrap. | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); | 
|  | // Return the expression with the addrec on the outside. | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | 
|  | Depth + 1), | 
|  | getSignExtendExpr(Step, Ty, Depth + 1), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Normally, in the cases we can prove no-overflow via a | 
|  | // backedge guarding condition, we can also compute a backedge | 
|  | // taken count for the loop.  The exceptions are assumptions and | 
|  | // guards present in the loop -- SCEV is not great at exploiting | 
|  | // these to compute max backedge taken counts, but can still use | 
|  | // these to prove lack of overflow.  Use this fact to avoid | 
|  | // doing extra work that may not pay off. | 
|  | if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || | 
|  | !AC.assumptions().empty()) { | 
|  | // If the backedge is guarded by a comparison with the pre-inc | 
|  | // value the addrec is safe. Also, if the entry is guarded by | 
|  | // a comparison with the start value and the backedge is | 
|  | // guarded by a comparison with the post-inc value, the addrec | 
|  | // is safe. | 
|  | if (isKnownPositive(Step)) { | 
|  | const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - | 
|  | getUnsignedRangeMax(Step)); | 
|  | if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || | 
|  | isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { | 
|  | // Cache knowledge of AR NUW, which is propagated to this | 
|  | // AddRec. | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); | 
|  | // Return the expression with the addrec on the outside. | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | 
|  | Depth + 1), | 
|  | getZeroExtendExpr(Step, Ty, Depth + 1), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | } else if (isKnownNegative(Step)) { | 
|  | const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - | 
|  | getSignedRangeMin(Step)); | 
|  | if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || | 
|  | isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { | 
|  | // Cache knowledge of AR NW, which is propagated to this | 
|  | // AddRec.  Negative step causes unsigned wrap, but it | 
|  | // still can't self-wrap. | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); | 
|  | // Return the expression with the addrec on the outside. | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | 
|  | Depth + 1), | 
|  | getSignExtendExpr(Step, Ty, Depth + 1), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), | 
|  | getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { | 
|  | // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> | 
|  | if (SA->hasNoUnsignedWrap()) { | 
|  | // If the addition does not unsign overflow then we can, by definition, | 
|  | // commute the zero extension with the addition operation. | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | for (const auto *Op : SA->operands()) | 
|  | Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); | 
|  | return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The cast wasn't folded; create an explicit cast node. | 
|  | // Recompute the insert position, as it may have been invalidated. | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), | 
|  | Op, Ty); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { | 
|  | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && | 
|  | "This is not an extending conversion!"); | 
|  | assert(isSCEVable(Ty) && | 
|  | "This is not a conversion to a SCEVable type!"); | 
|  | Ty = getEffectiveSCEVType(Ty); | 
|  |  | 
|  | // Fold if the operand is constant. | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | 
|  | return getConstant( | 
|  | cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); | 
|  |  | 
|  | // sext(sext(x)) --> sext(x) | 
|  | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) | 
|  | return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); | 
|  |  | 
|  | // sext(zext(x)) --> zext(x) | 
|  | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | 
|  | return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); | 
|  |  | 
|  | // Before doing any expensive analysis, check to see if we've already | 
|  | // computed a SCEV for this Op and Ty. | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scSignExtend); | 
|  | ID.AddPointer(Op); | 
|  | ID.AddPointer(Ty); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | // Limit recursion depth. | 
|  | if (Depth > MaxExtDepth) { | 
|  | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), | 
|  | Op, Ty); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | // sext(trunc(x)) --> sext(x) or x or trunc(x) | 
|  | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { | 
|  | // It's possible the bits taken off by the truncate were all sign bits. If | 
|  | // so, we should be able to simplify this further. | 
|  | const SCEV *X = ST->getOperand(); | 
|  | ConstantRange CR = getSignedRange(X); | 
|  | unsigned TruncBits = getTypeSizeInBits(ST->getType()); | 
|  | unsigned NewBits = getTypeSizeInBits(Ty); | 
|  | if (CR.truncate(TruncBits).signExtend(NewBits).contains( | 
|  | CR.sextOrTrunc(NewBits))) | 
|  | return getTruncateOrSignExtend(X, Ty); | 
|  | } | 
|  |  | 
|  | // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 | 
|  | if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { | 
|  | if (SA->getNumOperands() == 2) { | 
|  | auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); | 
|  | auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); | 
|  | if (SMul && SC1) { | 
|  | if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { | 
|  | const APInt &C1 = SC1->getAPInt(); | 
|  | const APInt &C2 = SC2->getAPInt(); | 
|  | if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && | 
|  | C2.ugt(C1) && C2.isPowerOf2()) | 
|  | return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1), | 
|  | getSignExtendExpr(SMul, Ty, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> | 
|  | if (SA->hasNoSignedWrap()) { | 
|  | // If the addition does not sign overflow then we can, by definition, | 
|  | // commute the sign extension with the addition operation. | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | for (const auto *Op : SA->operands()) | 
|  | Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); | 
|  | return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); | 
|  | } | 
|  | } | 
|  | // If the input value is a chrec scev, and we can prove that the value | 
|  | // did not overflow the old, smaller, value, we can sign extend all of the | 
|  | // operands (often constants).  This allows analysis of something like | 
|  | // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; } | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) | 
|  | if (AR->isAffine()) { | 
|  | const SCEV *Start = AR->getStart(); | 
|  | const SCEV *Step = AR->getStepRecurrence(*this); | 
|  | unsigned BitWidth = getTypeSizeInBits(AR->getType()); | 
|  | const Loop *L = AR->getLoop(); | 
|  |  | 
|  | if (!AR->hasNoSignedWrap()) { | 
|  | auto NewFlags = proveNoWrapViaConstantRanges(AR); | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); | 
|  | } | 
|  |  | 
|  | // If we have special knowledge that this addrec won't overflow, | 
|  | // we don't need to do any further analysis. | 
|  | if (AR->hasNoSignedWrap()) | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), | 
|  | getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); | 
|  |  | 
|  | // Check whether the backedge-taken count is SCEVCouldNotCompute. | 
|  | // Note that this serves two purposes: It filters out loops that are | 
|  | // simply not analyzable, and it covers the case where this code is | 
|  | // being called from within backedge-taken count analysis, such that | 
|  | // attempting to ask for the backedge-taken count would likely result | 
|  | // in infinite recursion. In the later case, the analysis code will | 
|  | // cope with a conservative value, and it will take care to purge | 
|  | // that value once it has finished. | 
|  | const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); | 
|  | if (!isa<SCEVCouldNotCompute>(MaxBECount)) { | 
|  | // Manually compute the final value for AR, checking for | 
|  | // overflow. | 
|  |  | 
|  | // Check whether the backedge-taken count can be losslessly casted to | 
|  | // the addrec's type. The count is always unsigned. | 
|  | const SCEV *CastedMaxBECount = | 
|  | getTruncateOrZeroExtend(MaxBECount, Start->getType()); | 
|  | const SCEV *RecastedMaxBECount = | 
|  | getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); | 
|  | if (MaxBECount == RecastedMaxBECount) { | 
|  | Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); | 
|  | // Check whether Start+Step*MaxBECount has no signed overflow. | 
|  | const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, | 
|  | SCEV::FlagAnyWrap, | 
|  | Depth + 1), | 
|  | WideTy, Depth + 1); | 
|  | const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); | 
|  | const SCEV *WideMaxBECount = | 
|  | getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); | 
|  | const SCEV *OperandExtendedAdd = | 
|  | getAddExpr(WideStart, | 
|  | getMulExpr(WideMaxBECount, | 
|  | getSignExtendExpr(Step, WideTy, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (SAdd == OperandExtendedAdd) { | 
|  | // Cache knowledge of AR NSW, which is propagated to this AddRec. | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); | 
|  | // Return the expression with the addrec on the outside. | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, | 
|  | Depth + 1), | 
|  | getSignExtendExpr(Step, Ty, Depth + 1), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | // Similar to above, only this time treat the step value as unsigned. | 
|  | // This covers loops that count up with an unsigned step. | 
|  | OperandExtendedAdd = | 
|  | getAddExpr(WideStart, | 
|  | getMulExpr(WideMaxBECount, | 
|  | getZeroExtendExpr(Step, WideTy, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (SAdd == OperandExtendedAdd) { | 
|  | // If AR wraps around then | 
|  | // | 
|  | //    abs(Step) * MaxBECount > unsigned-max(AR->getType()) | 
|  | // => SAdd != OperandExtendedAdd | 
|  | // | 
|  | // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> | 
|  | // (SAdd == OperandExtendedAdd => AR is NW) | 
|  |  | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); | 
|  |  | 
|  | // Return the expression with the addrec on the outside. | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, | 
|  | Depth + 1), | 
|  | getZeroExtendExpr(Step, Ty, Depth + 1), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Normally, in the cases we can prove no-overflow via a | 
|  | // backedge guarding condition, we can also compute a backedge | 
|  | // taken count for the loop.  The exceptions are assumptions and | 
|  | // guards present in the loop -- SCEV is not great at exploiting | 
|  | // these to compute max backedge taken counts, but can still use | 
|  | // these to prove lack of overflow.  Use this fact to avoid | 
|  | // doing extra work that may not pay off. | 
|  |  | 
|  | if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || | 
|  | !AC.assumptions().empty()) { | 
|  | // If the backedge is guarded by a comparison with the pre-inc | 
|  | // value the addrec is safe. Also, if the entry is guarded by | 
|  | // a comparison with the start value and the backedge is | 
|  | // guarded by a comparison with the post-inc value, the addrec | 
|  | // is safe. | 
|  | ICmpInst::Predicate Pred; | 
|  | const SCEV *OverflowLimit = | 
|  | getSignedOverflowLimitForStep(Step, &Pred, this); | 
|  | if (OverflowLimit && | 
|  | (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || | 
|  | isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { | 
|  | // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), | 
|  | getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If Start and Step are constants, check if we can apply this | 
|  | // transformation: | 
|  | // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 | 
|  | auto *SC1 = dyn_cast<SCEVConstant>(Start); | 
|  | auto *SC2 = dyn_cast<SCEVConstant>(Step); | 
|  | if (SC1 && SC2) { | 
|  | const APInt &C1 = SC1->getAPInt(); | 
|  | const APInt &C2 = SC2->getAPInt(); | 
|  | if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && | 
|  | C2.isPowerOf2()) { | 
|  | Start = getSignExtendExpr(Start, Ty, Depth + 1); | 
|  | const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, | 
|  | AR->getNoWrapFlags()); | 
|  | return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { | 
|  | const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); | 
|  | return getAddRecExpr( | 
|  | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), | 
|  | getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the input value is provably positive and we could not simplify | 
|  | // away the sext build a zext instead. | 
|  | if (isKnownNonNegative(Op)) | 
|  | return getZeroExtendExpr(Op, Ty, Depth + 1); | 
|  |  | 
|  | // The cast wasn't folded; create an explicit cast node. | 
|  | // Recompute the insert position, as it may have been invalidated. | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), | 
|  | Op, Ty); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// getAnyExtendExpr - Return a SCEV for the given operand extended with | 
|  | /// unspecified bits out to the given type. | 
|  | const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, | 
|  | Type *Ty) { | 
|  | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && | 
|  | "This is not an extending conversion!"); | 
|  | assert(isSCEVable(Ty) && | 
|  | "This is not a conversion to a SCEVable type!"); | 
|  | Ty = getEffectiveSCEVType(Ty); | 
|  |  | 
|  | // Sign-extend negative constants. | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | 
|  | if (SC->getAPInt().isNegative()) | 
|  | return getSignExtendExpr(Op, Ty); | 
|  |  | 
|  | // Peel off a truncate cast. | 
|  | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { | 
|  | const SCEV *NewOp = T->getOperand(); | 
|  | if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) | 
|  | return getAnyExtendExpr(NewOp, Ty); | 
|  | return getTruncateOrNoop(NewOp, Ty); | 
|  | } | 
|  |  | 
|  | // Next try a zext cast. If the cast is folded, use it. | 
|  | const SCEV *ZExt = getZeroExtendExpr(Op, Ty); | 
|  | if (!isa<SCEVZeroExtendExpr>(ZExt)) | 
|  | return ZExt; | 
|  |  | 
|  | // Next try a sext cast. If the cast is folded, use it. | 
|  | const SCEV *SExt = getSignExtendExpr(Op, Ty); | 
|  | if (!isa<SCEVSignExtendExpr>(SExt)) | 
|  | return SExt; | 
|  |  | 
|  | // Force the cast to be folded into the operands of an addrec. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | for (const SCEV *Op : AR->operands()) | 
|  | Ops.push_back(getAnyExtendExpr(Op, Ty)); | 
|  | return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); | 
|  | } | 
|  |  | 
|  | // If the expression is obviously signed, use the sext cast value. | 
|  | if (isa<SCEVSMaxExpr>(Op)) | 
|  | return SExt; | 
|  |  | 
|  | // Absent any other information, use the zext cast value. | 
|  | return ZExt; | 
|  | } | 
|  |  | 
|  | /// Process the given Ops list, which is a list of operands to be added under | 
|  | /// the given scale, update the given map. This is a helper function for | 
|  | /// getAddRecExpr. As an example of what it does, given a sequence of operands | 
|  | /// that would form an add expression like this: | 
|  | /// | 
|  | ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) | 
|  | /// | 
|  | /// where A and B are constants, update the map with these values: | 
|  | /// | 
|  | ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) | 
|  | /// | 
|  | /// and add 13 + A*B*29 to AccumulatedConstant. | 
|  | /// This will allow getAddRecExpr to produce this: | 
|  | /// | 
|  | ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) | 
|  | /// | 
|  | /// This form often exposes folding opportunities that are hidden in | 
|  | /// the original operand list. | 
|  | /// | 
|  | /// Return true iff it appears that any interesting folding opportunities | 
|  | /// may be exposed. This helps getAddRecExpr short-circuit extra work in | 
|  | /// the common case where no interesting opportunities are present, and | 
|  | /// is also used as a check to avoid infinite recursion. | 
|  | static bool | 
|  | CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, | 
|  | SmallVectorImpl<const SCEV *> &NewOps, | 
|  | APInt &AccumulatedConstant, | 
|  | const SCEV *const *Ops, size_t NumOperands, | 
|  | const APInt &Scale, | 
|  | ScalarEvolution &SE) { | 
|  | bool Interesting = false; | 
|  |  | 
|  | // Iterate over the add operands. They are sorted, with constants first. | 
|  | unsigned i = 0; | 
|  | while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { | 
|  | ++i; | 
|  | // Pull a buried constant out to the outside. | 
|  | if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) | 
|  | Interesting = true; | 
|  | AccumulatedConstant += Scale * C->getAPInt(); | 
|  | } | 
|  |  | 
|  | // Next comes everything else. We're especially interested in multiplies | 
|  | // here, but they're in the middle, so just visit the rest with one loop. | 
|  | for (; i != NumOperands; ++i) { | 
|  | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); | 
|  | if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { | 
|  | APInt NewScale = | 
|  | Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); | 
|  | if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { | 
|  | // A multiplication of a constant with another add; recurse. | 
|  | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); | 
|  | Interesting |= | 
|  | CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, | 
|  | Add->op_begin(), Add->getNumOperands(), | 
|  | NewScale, SE); | 
|  | } else { | 
|  | // A multiplication of a constant with some other value. Update | 
|  | // the map. | 
|  | SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); | 
|  | const SCEV *Key = SE.getMulExpr(MulOps); | 
|  | auto Pair = M.insert({Key, NewScale}); | 
|  | if (Pair.second) { | 
|  | NewOps.push_back(Pair.first->first); | 
|  | } else { | 
|  | Pair.first->second += NewScale; | 
|  | // The map already had an entry for this value, which may indicate | 
|  | // a folding opportunity. | 
|  | Interesting = true; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // An ordinary operand. Update the map. | 
|  | std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = | 
|  | M.insert({Ops[i], Scale}); | 
|  | if (Pair.second) { | 
|  | NewOps.push_back(Pair.first->first); | 
|  | } else { | 
|  | Pair.first->second += Scale; | 
|  | // The map already had an entry for this value, which may indicate | 
|  | // a folding opportunity. | 
|  | Interesting = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Interesting; | 
|  | } | 
|  |  | 
|  | // We're trying to construct a SCEV of type `Type' with `Ops' as operands and | 
|  | // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of | 
|  | // can't-overflow flags for the operation if possible. | 
|  | static SCEV::NoWrapFlags | 
|  | StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, | 
|  | const SmallVectorImpl<const SCEV *> &Ops, | 
|  | SCEV::NoWrapFlags Flags) { | 
|  | using namespace std::placeholders; | 
|  |  | 
|  | using OBO = OverflowingBinaryOperator; | 
|  |  | 
|  | bool CanAnalyze = | 
|  | Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; | 
|  | (void)CanAnalyze; | 
|  | assert(CanAnalyze && "don't call from other places!"); | 
|  |  | 
|  | int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; | 
|  | SCEV::NoWrapFlags SignOrUnsignWrap = | 
|  | ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); | 
|  |  | 
|  | // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. | 
|  | auto IsKnownNonNegative = [&](const SCEV *S) { | 
|  | return SE->isKnownNonNegative(S); | 
|  | }; | 
|  |  | 
|  | if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) | 
|  | Flags = | 
|  | ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); | 
|  |  | 
|  | SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); | 
|  |  | 
|  | if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && | 
|  | Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { | 
|  |  | 
|  | // (A + C) --> (A + C)<nsw> if the addition does not sign overflow | 
|  | // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow | 
|  |  | 
|  | const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); | 
|  | if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { | 
|  | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | Instruction::Add, C, OBO::NoSignedWrap); | 
|  | if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) | 
|  | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); | 
|  | } | 
|  | if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { | 
|  | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | Instruction::Add, C, OBO::NoUnsignedWrap); | 
|  | if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) | 
|  | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { | 
|  | return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); | 
|  | } | 
|  |  | 
|  | /// Get a canonical add expression, or something simpler if possible. | 
|  | const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, | 
|  | SCEV::NoWrapFlags Flags, | 
|  | unsigned Depth) { | 
|  | assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && | 
|  | "only nuw or nsw allowed"); | 
|  | assert(!Ops.empty() && "Cannot get empty add!"); | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | #ifndef NDEBUG | 
|  | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | 
|  | for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
|  | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && | 
|  | "SCEVAddExpr operand types don't match!"); | 
|  | #endif | 
|  |  | 
|  | // Sort by complexity, this groups all similar expression types together. | 
|  | GroupByComplexity(Ops, &LI, DT); | 
|  |  | 
|  | Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); | 
|  |  | 
|  | // If there are any constants, fold them together. | 
|  | unsigned Idx = 0; | 
|  | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
|  | ++Idx; | 
|  | assert(Idx < Ops.size()); | 
|  | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
|  | // We found two constants, fold them together! | 
|  | Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); | 
|  | if (Ops.size() == 2) return Ops[0]; | 
|  | Ops.erase(Ops.begin()+1);  // Erase the folded element | 
|  | LHSC = cast<SCEVConstant>(Ops[0]); | 
|  | } | 
|  |  | 
|  | // If we are left with a constant zero being added, strip it off. | 
|  | if (LHSC->getValue()->isZero()) { | 
|  | Ops.erase(Ops.begin()); | 
|  | --Idx; | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | } | 
|  |  | 
|  | // Limit recursion calls depth. | 
|  | if (Depth > MaxArithDepth) | 
|  | return getOrCreateAddExpr(Ops, Flags); | 
|  |  | 
|  | // Okay, check to see if the same value occurs in the operand list more than | 
|  | // once.  If so, merge them together into an multiply expression.  Since we | 
|  | // sorted the list, these values are required to be adjacent. | 
|  | Type *Ty = Ops[0]->getType(); | 
|  | bool FoundMatch = false; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) | 
|  | if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2 | 
|  | // Scan ahead to count how many equal operands there are. | 
|  | unsigned Count = 2; | 
|  | while (i+Count != e && Ops[i+Count] == Ops[i]) | 
|  | ++Count; | 
|  | // Merge the values into a multiply. | 
|  | const SCEV *Scale = getConstant(Ty, Count); | 
|  | const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (Ops.size() == Count) | 
|  | return Mul; | 
|  | Ops[i] = Mul; | 
|  | Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); | 
|  | --i; e -= Count - 1; | 
|  | FoundMatch = true; | 
|  | } | 
|  | if (FoundMatch) | 
|  | return getAddExpr(Ops, Flags, Depth + 1); | 
|  |  | 
|  | // Check for truncates. If all the operands are truncated from the same | 
|  | // type, see if factoring out the truncate would permit the result to be | 
|  | // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) | 
|  | // if the contents of the resulting outer trunc fold to something simple. | 
|  | auto FindTruncSrcType = [&]() -> Type * { | 
|  | // We're ultimately looking to fold an addrec of truncs and muls of only | 
|  | // constants and truncs, so if we find any other types of SCEV | 
|  | // as operands of the addrec then we bail and return nullptr here. | 
|  | // Otherwise, we return the type of the operand of a trunc that we find. | 
|  | if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) | 
|  | return T->getOperand()->getType(); | 
|  | if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { | 
|  | const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); | 
|  | if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) | 
|  | return T->getOperand()->getType(); | 
|  | } | 
|  | return nullptr; | 
|  | }; | 
|  | if (auto *SrcType = FindTruncSrcType()) { | 
|  | SmallVector<const SCEV *, 8> LargeOps; | 
|  | bool Ok = true; | 
|  | // Check all the operands to see if they can be represented in the | 
|  | // source type of the truncate. | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { | 
|  | if (T->getOperand()->getType() != SrcType) { | 
|  | Ok = false; | 
|  | break; | 
|  | } | 
|  | LargeOps.push_back(T->getOperand()); | 
|  | } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { | 
|  | LargeOps.push_back(getAnyExtendExpr(C, SrcType)); | 
|  | } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { | 
|  | SmallVector<const SCEV *, 8> LargeMulOps; | 
|  | for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { | 
|  | if (const SCEVTruncateExpr *T = | 
|  | dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { | 
|  | if (T->getOperand()->getType() != SrcType) { | 
|  | Ok = false; | 
|  | break; | 
|  | } | 
|  | LargeMulOps.push_back(T->getOperand()); | 
|  | } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { | 
|  | LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); | 
|  | } else { | 
|  | Ok = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Ok) | 
|  | LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); | 
|  | } else { | 
|  | Ok = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Ok) { | 
|  | // Evaluate the expression in the larger type. | 
|  | const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); | 
|  | // If it folds to something simple, use it. Otherwise, don't. | 
|  | if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) | 
|  | return getTruncateExpr(Fold, Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip past any other cast SCEVs. | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // If there are add operands they would be next. | 
|  | if (Idx < Ops.size()) { | 
|  | bool DeletedAdd = false; | 
|  | while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { | 
|  | if (Ops.size() > AddOpsInlineThreshold || | 
|  | Add->getNumOperands() > AddOpsInlineThreshold) | 
|  | break; | 
|  | // If we have an add, expand the add operands onto the end of the operands | 
|  | // list. | 
|  | Ops.erase(Ops.begin()+Idx); | 
|  | Ops.append(Add->op_begin(), Add->op_end()); | 
|  | DeletedAdd = true; | 
|  | } | 
|  |  | 
|  | // If we deleted at least one add, we added operands to the end of the list, | 
|  | // and they are not necessarily sorted.  Recurse to resort and resimplify | 
|  | // any operands we just acquired. | 
|  | if (DeletedAdd) | 
|  | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  |  | 
|  | // Skip over the add expression until we get to a multiply. | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // Check to see if there are any folding opportunities present with | 
|  | // operands multiplied by constant values. | 
|  | if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { | 
|  | uint64_t BitWidth = getTypeSizeInBits(Ty); | 
|  | DenseMap<const SCEV *, APInt> M; | 
|  | SmallVector<const SCEV *, 8> NewOps; | 
|  | APInt AccumulatedConstant(BitWidth, 0); | 
|  | if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, | 
|  | Ops.data(), Ops.size(), | 
|  | APInt(BitWidth, 1), *this)) { | 
|  | struct APIntCompare { | 
|  | bool operator()(const APInt &LHS, const APInt &RHS) const { | 
|  | return LHS.ult(RHS); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Some interesting folding opportunity is present, so its worthwhile to | 
|  | // re-generate the operands list. Group the operands by constant scale, | 
|  | // to avoid multiplying by the same constant scale multiple times. | 
|  | std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; | 
|  | for (const SCEV *NewOp : NewOps) | 
|  | MulOpLists[M.find(NewOp)->second].push_back(NewOp); | 
|  | // Re-generate the operands list. | 
|  | Ops.clear(); | 
|  | if (AccumulatedConstant != 0) | 
|  | Ops.push_back(getConstant(AccumulatedConstant)); | 
|  | for (auto &MulOp : MulOpLists) | 
|  | if (MulOp.first != 0) | 
|  | Ops.push_back(getMulExpr( | 
|  | getConstant(MulOp.first), | 
|  | getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1)); | 
|  | if (Ops.empty()) | 
|  | return getZero(Ty); | 
|  | if (Ops.size() == 1) | 
|  | return Ops[0]; | 
|  | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are adding something to a multiply expression, make sure the | 
|  | // something is not already an operand of the multiply.  If so, merge it into | 
|  | // the multiply. | 
|  | for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { | 
|  | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); | 
|  | for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { | 
|  | const SCEV *MulOpSCEV = Mul->getOperand(MulOp); | 
|  | if (isa<SCEVConstant>(MulOpSCEV)) | 
|  | continue; | 
|  | for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) | 
|  | if (MulOpSCEV == Ops[AddOp]) { | 
|  | // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1)) | 
|  | const SCEV *InnerMul = Mul->getOperand(MulOp == 0); | 
|  | if (Mul->getNumOperands() != 2) { | 
|  | // If the multiply has more than two operands, we must get the | 
|  | // Y*Z term. | 
|  | SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), | 
|  | Mul->op_begin()+MulOp); | 
|  | MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); | 
|  | InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; | 
|  | const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (Ops.size() == 2) return OuterMul; | 
|  | if (AddOp < Idx) { | 
|  | Ops.erase(Ops.begin()+AddOp); | 
|  | Ops.erase(Ops.begin()+Idx-1); | 
|  | } else { | 
|  | Ops.erase(Ops.begin()+Idx); | 
|  | Ops.erase(Ops.begin()+AddOp-1); | 
|  | } | 
|  | Ops.push_back(OuterMul); | 
|  | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  |  | 
|  | // Check this multiply against other multiplies being added together. | 
|  | for (unsigned OtherMulIdx = Idx+1; | 
|  | OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); | 
|  | ++OtherMulIdx) { | 
|  | const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); | 
|  | // If MulOp occurs in OtherMul, we can fold the two multiplies | 
|  | // together. | 
|  | for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); | 
|  | OMulOp != e; ++OMulOp) | 
|  | if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { | 
|  | // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) | 
|  | const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); | 
|  | if (Mul->getNumOperands() != 2) { | 
|  | SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), | 
|  | Mul->op_begin()+MulOp); | 
|  | MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); | 
|  | InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); | 
|  | if (OtherMul->getNumOperands() != 2) { | 
|  | SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), | 
|  | OtherMul->op_begin()+OMulOp); | 
|  | MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); | 
|  | InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; | 
|  | const SCEV *InnerMulSum = | 
|  | getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | if (Ops.size() == 2) return OuterMul; | 
|  | Ops.erase(Ops.begin()+Idx); | 
|  | Ops.erase(Ops.begin()+OtherMulIdx-1); | 
|  | Ops.push_back(OuterMul); | 
|  | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are any add recurrences in the operands list, see if any other | 
|  | // added values are loop invariant.  If so, we can fold them into the | 
|  | // recurrence. | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // Scan over all recurrences, trying to fold loop invariants into them. | 
|  | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { | 
|  | // Scan all of the other operands to this add and add them to the vector if | 
|  | // they are loop invariant w.r.t. the recurrence. | 
|  | SmallVector<const SCEV *, 8> LIOps; | 
|  | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); | 
|  | const Loop *AddRecLoop = AddRec->getLoop(); | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { | 
|  | LIOps.push_back(Ops[i]); | 
|  | Ops.erase(Ops.begin()+i); | 
|  | --i; --e; | 
|  | } | 
|  |  | 
|  | // If we found some loop invariants, fold them into the recurrence. | 
|  | if (!LIOps.empty()) { | 
|  | //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step} | 
|  | LIOps.push_back(AddRec->getStart()); | 
|  |  | 
|  | SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), | 
|  | AddRec->op_end()); | 
|  | // This follows from the fact that the no-wrap flags on the outer add | 
|  | // expression are applicable on the 0th iteration, when the add recurrence | 
|  | // will be equal to its start value. | 
|  | AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); | 
|  |  | 
|  | // Build the new addrec. Propagate the NUW and NSW flags if both the | 
|  | // outer add and the inner addrec are guaranteed to have no overflow. | 
|  | // Always propagate NW. | 
|  | Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); | 
|  | const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); | 
|  |  | 
|  | // If all of the other operands were loop invariant, we are done. | 
|  | if (Ops.size() == 1) return NewRec; | 
|  |  | 
|  | // Otherwise, add the folded AddRec by the non-invariant parts. | 
|  | for (unsigned i = 0;; ++i) | 
|  | if (Ops[i] == AddRec) { | 
|  | Ops[i] = NewRec; | 
|  | break; | 
|  | } | 
|  | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  |  | 
|  | // Okay, if there weren't any loop invariants to be folded, check to see if | 
|  | // there are multiple AddRec's with the same loop induction variable being | 
|  | // added together.  If so, we can fold them. | 
|  | for (unsigned OtherIdx = Idx+1; | 
|  | OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); | 
|  | ++OtherIdx) { | 
|  | // We expect the AddRecExpr's to be sorted in reverse dominance order, | 
|  | // so that the 1st found AddRecExpr is dominated by all others. | 
|  | assert(DT.dominates( | 
|  | cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), | 
|  | AddRec->getLoop()->getHeader()) && | 
|  | "AddRecExprs are not sorted in reverse dominance order?"); | 
|  | if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { | 
|  | // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L> | 
|  | SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), | 
|  | AddRec->op_end()); | 
|  | for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); | 
|  | ++OtherIdx) { | 
|  | const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); | 
|  | if (OtherAddRec->getLoop() == AddRecLoop) { | 
|  | for (unsigned i = 0, e = OtherAddRec->getNumOperands(); | 
|  | i != e; ++i) { | 
|  | if (i >= AddRecOps.size()) { | 
|  | AddRecOps.append(OtherAddRec->op_begin()+i, | 
|  | OtherAddRec->op_end()); | 
|  | break; | 
|  | } | 
|  | SmallVector<const SCEV *, 2> TwoOps = { | 
|  | AddRecOps[i], OtherAddRec->getOperand(i)}; | 
|  | AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; | 
|  | } | 
|  | } | 
|  | // Step size has changed, so we cannot guarantee no self-wraparound. | 
|  | Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); | 
|  | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise couldn't fold anything into this recurrence.  Move onto the | 
|  | // next one. | 
|  | } | 
|  |  | 
|  | // Okay, it looks like we really DO need an add expr.  Check to see if we | 
|  | // already have one, otherwise create a new one. | 
|  | return getOrCreateAddExpr(Ops, Flags); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, | 
|  | SCEV::NoWrapFlags Flags) { | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scAddExpr); | 
|  | for (const SCEV *Op : Ops) | 
|  | ID.AddPointer(Op); | 
|  | void *IP = nullptr; | 
|  | SCEVAddExpr *S = | 
|  | static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | 
|  | if (!S) { | 
|  | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | 
|  | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | 
|  | S = new (SCEVAllocator) | 
|  | SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | } | 
|  | S->setNoWrapFlags(Flags); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, | 
|  | SCEV::NoWrapFlags Flags) { | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scMulExpr); | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | ID.AddPointer(Ops[i]); | 
|  | void *IP = nullptr; | 
|  | SCEVMulExpr *S = | 
|  | static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | 
|  | if (!S) { | 
|  | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | 
|  | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | 
|  | S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), | 
|  | O, Ops.size()); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | } | 
|  | S->setNoWrapFlags(Flags); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { | 
|  | uint64_t k = i*j; | 
|  | if (j > 1 && k / j != i) Overflow = true; | 
|  | return k; | 
|  | } | 
|  |  | 
|  | /// Compute the result of "n choose k", the binomial coefficient.  If an | 
|  | /// intermediate computation overflows, Overflow will be set and the return will | 
|  | /// be garbage. Overflow is not cleared on absence of overflow. | 
|  | static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { | 
|  | // We use the multiplicative formula: | 
|  | //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . | 
|  | // At each iteration, we take the n-th term of the numeral and divide by the | 
|  | // (k-n)th term of the denominator.  This division will always produce an | 
|  | // integral result, and helps reduce the chance of overflow in the | 
|  | // intermediate computations. However, we can still overflow even when the | 
|  | // final result would fit. | 
|  |  | 
|  | if (n == 0 || n == k) return 1; | 
|  | if (k > n) return 0; | 
|  |  | 
|  | if (k > n/2) | 
|  | k = n-k; | 
|  |  | 
|  | uint64_t r = 1; | 
|  | for (uint64_t i = 1; i <= k; ++i) { | 
|  | r = umul_ov(r, n-(i-1), Overflow); | 
|  | r /= i; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /// Determine if any of the operands in this SCEV are a constant or if | 
|  | /// any of the add or multiply expressions in this SCEV contain a constant. | 
|  | static bool containsConstantInAddMulChain(const SCEV *StartExpr) { | 
|  | struct FindConstantInAddMulChain { | 
|  | bool FoundConstant = false; | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | FoundConstant |= isa<SCEVConstant>(S); | 
|  | return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); | 
|  | } | 
|  |  | 
|  | bool isDone() const { | 
|  | return FoundConstant; | 
|  | } | 
|  | }; | 
|  |  | 
|  | FindConstantInAddMulChain F; | 
|  | SCEVTraversal<FindConstantInAddMulChain> ST(F); | 
|  | ST.visitAll(StartExpr); | 
|  | return F.FoundConstant; | 
|  | } | 
|  |  | 
|  | /// Get a canonical multiply expression, or something simpler if possible. | 
|  | const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, | 
|  | SCEV::NoWrapFlags Flags, | 
|  | unsigned Depth) { | 
|  | assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && | 
|  | "only nuw or nsw allowed"); | 
|  | assert(!Ops.empty() && "Cannot get empty mul!"); | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | #ifndef NDEBUG | 
|  | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | 
|  | for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
|  | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && | 
|  | "SCEVMulExpr operand types don't match!"); | 
|  | #endif | 
|  |  | 
|  | // Sort by complexity, this groups all similar expression types together. | 
|  | GroupByComplexity(Ops, &LI, DT); | 
|  |  | 
|  | Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); | 
|  |  | 
|  | // Limit recursion calls depth. | 
|  | if (Depth > MaxArithDepth) | 
|  | return getOrCreateMulExpr(Ops, Flags); | 
|  |  | 
|  | // If there are any constants, fold them together. | 
|  | unsigned Idx = 0; | 
|  | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
|  |  | 
|  | // C1*(C2+V) -> C1*C2 + C1*V | 
|  | if (Ops.size() == 2) | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) | 
|  | // If any of Add's ops are Adds or Muls with a constant, | 
|  | // apply this transformation as well. | 
|  | if (Add->getNumOperands() == 2) | 
|  | // TODO: There are some cases where this transformation is not | 
|  | // profitable, for example: | 
|  | // Add = (C0 + X) * Y + Z. | 
|  | // Maybe the scope of this transformation should be narrowed down. | 
|  | if (containsConstantInAddMulChain(Add)) | 
|  | return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | getMulExpr(LHSC, Add->getOperand(1), | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  |  | 
|  | ++Idx; | 
|  | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
|  | // We found two constants, fold them together! | 
|  | ConstantInt *Fold = | 
|  | ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); | 
|  | Ops[0] = getConstant(Fold); | 
|  | Ops.erase(Ops.begin()+1);  // Erase the folded element | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | LHSC = cast<SCEVConstant>(Ops[0]); | 
|  | } | 
|  |  | 
|  | // If we are left with a constant one being multiplied, strip it off. | 
|  | if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { | 
|  | Ops.erase(Ops.begin()); | 
|  | --Idx; | 
|  | } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { | 
|  | // If we have a multiply of zero, it will always be zero. | 
|  | return Ops[0]; | 
|  | } else if (Ops[0]->isAllOnesValue()) { | 
|  | // If we have a mul by -1 of an add, try distributing the -1 among the | 
|  | // add operands. | 
|  | if (Ops.size() == 2) { | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { | 
|  | SmallVector<const SCEV *, 4> NewOps; | 
|  | bool AnyFolded = false; | 
|  | for (const SCEV *AddOp : Add->operands()) { | 
|  | const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, | 
|  | Depth + 1); | 
|  | if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; | 
|  | NewOps.push_back(Mul); | 
|  | } | 
|  | if (AnyFolded) | 
|  | return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { | 
|  | // Negation preserves a recurrence's no self-wrap property. | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | for (const SCEV *AddRecOp : AddRec->operands()) | 
|  | Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, | 
|  | Depth + 1)); | 
|  |  | 
|  | return getAddRecExpr(Operands, AddRec->getLoop(), | 
|  | AddRec->getNoWrapFlags(SCEV::FlagNW)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) | 
|  | return Ops[0]; | 
|  | } | 
|  |  | 
|  | // Skip over the add expression until we get to a multiply. | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // If there are mul operands inline them all into this expression. | 
|  | if (Idx < Ops.size()) { | 
|  | bool DeletedMul = false; | 
|  | while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { | 
|  | if (Ops.size() > MulOpsInlineThreshold) | 
|  | break; | 
|  | // If we have an mul, expand the mul operands onto the end of the | 
|  | // operands list. | 
|  | Ops.erase(Ops.begin()+Idx); | 
|  | Ops.append(Mul->op_begin(), Mul->op_end()); | 
|  | DeletedMul = true; | 
|  | } | 
|  |  | 
|  | // If we deleted at least one mul, we added operands to the end of the | 
|  | // list, and they are not necessarily sorted.  Recurse to resort and | 
|  | // resimplify any operands we just acquired. | 
|  | if (DeletedMul) | 
|  | return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  |  | 
|  | // If there are any add recurrences in the operands list, see if any other | 
|  | // added values are loop invariant.  If so, we can fold them into the | 
|  | // recurrence. | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // Scan over all recurrences, trying to fold loop invariants into them. | 
|  | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { | 
|  | // Scan all of the other operands to this mul and add them to the vector | 
|  | // if they are loop invariant w.r.t. the recurrence. | 
|  | SmallVector<const SCEV *, 8> LIOps; | 
|  | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); | 
|  | const Loop *AddRecLoop = AddRec->getLoop(); | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { | 
|  | LIOps.push_back(Ops[i]); | 
|  | Ops.erase(Ops.begin()+i); | 
|  | --i; --e; | 
|  | } | 
|  |  | 
|  | // If we found some loop invariants, fold them into the recurrence. | 
|  | if (!LIOps.empty()) { | 
|  | //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step} | 
|  | SmallVector<const SCEV *, 4> NewOps; | 
|  | NewOps.reserve(AddRec->getNumOperands()); | 
|  | const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); | 
|  | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) | 
|  | NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), | 
|  | SCEV::FlagAnyWrap, Depth + 1)); | 
|  |  | 
|  | // Build the new addrec. Propagate the NUW and NSW flags if both the | 
|  | // outer mul and the inner addrec are guaranteed to have no overflow. | 
|  | // | 
|  | // No self-wrap cannot be guaranteed after changing the step size, but | 
|  | // will be inferred if either NUW or NSW is true. | 
|  | Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); | 
|  | const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); | 
|  |  | 
|  | // If all of the other operands were loop invariant, we are done. | 
|  | if (Ops.size() == 1) return NewRec; | 
|  |  | 
|  | // Otherwise, multiply the folded AddRec by the non-invariant parts. | 
|  | for (unsigned i = 0;; ++i) | 
|  | if (Ops[i] == AddRec) { | 
|  | Ops[i] = NewRec; | 
|  | break; | 
|  | } | 
|  | return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  |  | 
|  | // Okay, if there weren't any loop invariants to be folded, check to see | 
|  | // if there are multiple AddRec's with the same loop induction variable | 
|  | // being multiplied together.  If so, we can fold them. | 
|  |  | 
|  | // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> | 
|  | // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ | 
|  | //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z | 
|  | //   ]]],+,...up to x=2n}. | 
|  | // Note that the arguments to choose() are always integers with values | 
|  | // known at compile time, never SCEV objects. | 
|  | // | 
|  | // The implementation avoids pointless extra computations when the two | 
|  | // addrec's are of different length (mathematically, it's equivalent to | 
|  | // an infinite stream of zeros on the right). | 
|  | bool OpsModified = false; | 
|  | for (unsigned OtherIdx = Idx+1; | 
|  | OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); | 
|  | ++OtherIdx) { | 
|  | const SCEVAddRecExpr *OtherAddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); | 
|  | if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) | 
|  | continue; | 
|  |  | 
|  | // Limit max number of arguments to avoid creation of unreasonably big | 
|  | // SCEVAddRecs with very complex operands. | 
|  | if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > | 
|  | MaxAddRecSize) | 
|  | continue; | 
|  |  | 
|  | bool Overflow = false; | 
|  | Type *Ty = AddRec->getType(); | 
|  | bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; | 
|  | SmallVector<const SCEV*, 7> AddRecOps; | 
|  | for (int x = 0, xe = AddRec->getNumOperands() + | 
|  | OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { | 
|  | const SCEV *Term = getZero(Ty); | 
|  | for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { | 
|  | uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); | 
|  | for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), | 
|  | ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); | 
|  | z < ze && !Overflow; ++z) { | 
|  | uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); | 
|  | uint64_t Coeff; | 
|  | if (LargerThan64Bits) | 
|  | Coeff = umul_ov(Coeff1, Coeff2, Overflow); | 
|  | else | 
|  | Coeff = Coeff1*Coeff2; | 
|  | const SCEV *CoeffTerm = getConstant(Ty, Coeff); | 
|  | const SCEV *Term1 = AddRec->getOperand(y-z); | 
|  | const SCEV *Term2 = OtherAddRec->getOperand(z); | 
|  | Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2, | 
|  | SCEV::FlagAnyWrap, Depth + 1), | 
|  | SCEV::FlagAnyWrap, Depth + 1); | 
|  | } | 
|  | } | 
|  | AddRecOps.push_back(Term); | 
|  | } | 
|  | if (!Overflow) { | 
|  | const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), | 
|  | SCEV::FlagAnyWrap); | 
|  | if (Ops.size() == 2) return NewAddRec; | 
|  | Ops[Idx] = NewAddRec; | 
|  | Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; | 
|  | OpsModified = true; | 
|  | AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); | 
|  | if (!AddRec) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (OpsModified) | 
|  | return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | 
|  |  | 
|  | // Otherwise couldn't fold anything into this recurrence.  Move onto the | 
|  | // next one. | 
|  | } | 
|  |  | 
|  | // Okay, it looks like we really DO need an mul expr.  Check to see if we | 
|  | // already have one, otherwise create a new one. | 
|  | return getOrCreateMulExpr(Ops, Flags); | 
|  | } | 
|  |  | 
|  | /// Represents an unsigned remainder expression based on unsigned division. | 
|  | const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | assert(getEffectiveSCEVType(LHS->getType()) == | 
|  | getEffectiveSCEVType(RHS->getType()) && | 
|  | "SCEVURemExpr operand types don't match!"); | 
|  |  | 
|  | // Short-circuit easy cases | 
|  | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | 
|  | // If constant is one, the result is trivial | 
|  | if (RHSC->getValue()->isOne()) | 
|  | return getZero(LHS->getType()); // X urem 1 --> 0 | 
|  |  | 
|  | // If constant is a power of two, fold into a zext(trunc(LHS)). | 
|  | if (RHSC->getAPInt().isPowerOf2()) { | 
|  | Type *FullTy = LHS->getType(); | 
|  | Type *TruncTy = | 
|  | IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); | 
|  | return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) | 
|  | const SCEV *UDiv = getUDivExpr(LHS, RHS); | 
|  | const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); | 
|  | return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); | 
|  | } | 
|  |  | 
|  | /// Get a canonical unsigned division expression, or something simpler if | 
|  | /// possible. | 
|  | const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | assert(getEffectiveSCEVType(LHS->getType()) == | 
|  | getEffectiveSCEVType(RHS->getType()) && | 
|  | "SCEVUDivExpr operand types don't match!"); | 
|  |  | 
|  | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | 
|  | if (RHSC->getValue()->isOne()) | 
|  | return LHS;                               // X udiv 1 --> x | 
|  | // If the denominator is zero, the result of the udiv is undefined. Don't | 
|  | // try to analyze it, because the resolution chosen here may differ from | 
|  | // the resolution chosen in other parts of the compiler. | 
|  | if (!RHSC->getValue()->isZero()) { | 
|  | // Determine if the division can be folded into the operands of | 
|  | // its operands. | 
|  | // TODO: Generalize this to non-constants by using known-bits information. | 
|  | Type *Ty = LHS->getType(); | 
|  | unsigned LZ = RHSC->getAPInt().countLeadingZeros(); | 
|  | unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; | 
|  | // For non-power-of-two values, effectively round the value up to the | 
|  | // nearest power of two. | 
|  | if (!RHSC->getAPInt().isPowerOf2()) | 
|  | ++MaxShiftAmt; | 
|  | IntegerType *ExtTy = | 
|  | IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) | 
|  | if (const SCEVConstant *Step = | 
|  | dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { | 
|  | // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. | 
|  | const APInt &StepInt = Step->getAPInt(); | 
|  | const APInt &DivInt = RHSC->getAPInt(); | 
|  | if (!StepInt.urem(DivInt) && | 
|  | getZeroExtendExpr(AR, ExtTy) == | 
|  | getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), | 
|  | getZeroExtendExpr(Step, ExtTy), | 
|  | AR->getLoop(), SCEV::FlagAnyWrap)) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | for (const SCEV *Op : AR->operands()) | 
|  | Operands.push_back(getUDivExpr(Op, RHS)); | 
|  | return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); | 
|  | } | 
|  | /// Get a canonical UDivExpr for a recurrence. | 
|  | /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. | 
|  | // We can currently only fold X%N if X is constant. | 
|  | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); | 
|  | if (StartC && !DivInt.urem(StepInt) && | 
|  | getZeroExtendExpr(AR, ExtTy) == | 
|  | getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), | 
|  | getZeroExtendExpr(Step, ExtTy), | 
|  | AR->getLoop(), SCEV::FlagAnyWrap)) { | 
|  | const APInt &StartInt = StartC->getAPInt(); | 
|  | const APInt &StartRem = StartInt.urem(StepInt); | 
|  | if (StartRem != 0) | 
|  | LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, | 
|  | AR->getLoop(), SCEV::FlagNW); | 
|  | } | 
|  | } | 
|  | // (A*B)/C --> A*(B/C) if safe and B/C can be folded. | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | for (const SCEV *Op : M->operands()) | 
|  | Operands.push_back(getZeroExtendExpr(Op, ExtTy)); | 
|  | if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) | 
|  | // Find an operand that's safely divisible. | 
|  | for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { | 
|  | const SCEV *Op = M->getOperand(i); | 
|  | const SCEV *Div = getUDivExpr(Op, RHSC); | 
|  | if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { | 
|  | Operands = SmallVector<const SCEV *, 4>(M->op_begin(), | 
|  | M->op_end()); | 
|  | Operands[i] = Div; | 
|  | return getMulExpr(Operands); | 
|  | } | 
|  | } | 
|  | } | 
|  | // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. | 
|  | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | for (const SCEV *Op : A->operands()) | 
|  | Operands.push_back(getZeroExtendExpr(Op, ExtTy)); | 
|  | if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { | 
|  | Operands.clear(); | 
|  | for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { | 
|  | const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); | 
|  | if (isa<SCEVUDivExpr>(Op) || | 
|  | getMulExpr(Op, RHS) != A->getOperand(i)) | 
|  | break; | 
|  | Operands.push_back(Op); | 
|  | } | 
|  | if (Operands.size() == A->getNumOperands()) | 
|  | return getAddExpr(Operands); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold if both operands are constant. | 
|  | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { | 
|  | Constant *LHSCV = LHSC->getValue(); | 
|  | Constant *RHSCV = RHSC->getValue(); | 
|  | return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, | 
|  | RHSCV))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scUDivExpr); | 
|  | ID.AddPointer(LHS); | 
|  | ID.AddPointer(RHS); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), | 
|  | LHS, RHS); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { | 
|  | APInt A = C1->getAPInt().abs(); | 
|  | APInt B = C2->getAPInt().abs(); | 
|  | uint32_t ABW = A.getBitWidth(); | 
|  | uint32_t BBW = B.getBitWidth(); | 
|  |  | 
|  | if (ABW > BBW) | 
|  | B = B.zext(ABW); | 
|  | else if (ABW < BBW) | 
|  | A = A.zext(BBW); | 
|  |  | 
|  | return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); | 
|  | } | 
|  |  | 
|  | /// Get a canonical unsigned division expression, or something simpler if | 
|  | /// possible. There is no representation for an exact udiv in SCEV IR, but we | 
|  | /// can attempt to remove factors from the LHS and RHS.  We can't do this when | 
|  | /// it's not exact because the udiv may be clearing bits. | 
|  | const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | // TODO: we could try to find factors in all sorts of things, but for now we | 
|  | // just deal with u/exact (multiply, constant). See SCEVDivision towards the | 
|  | // end of this file for inspiration. | 
|  |  | 
|  | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); | 
|  | if (!Mul || !Mul->hasNoUnsignedWrap()) | 
|  | return getUDivExpr(LHS, RHS); | 
|  |  | 
|  | if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { | 
|  | // If the mulexpr multiplies by a constant, then that constant must be the | 
|  | // first element of the mulexpr. | 
|  | if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { | 
|  | if (LHSCst == RHSCst) { | 
|  | SmallVector<const SCEV *, 2> Operands; | 
|  | Operands.append(Mul->op_begin() + 1, Mul->op_end()); | 
|  | return getMulExpr(Operands); | 
|  | } | 
|  |  | 
|  | // We can't just assume that LHSCst divides RHSCst cleanly, it could be | 
|  | // that there's a factor provided by one of the other terms. We need to | 
|  | // check. | 
|  | APInt Factor = gcd(LHSCst, RHSCst); | 
|  | if (!Factor.isIntN(1)) { | 
|  | LHSCst = | 
|  | cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); | 
|  | RHSCst = | 
|  | cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); | 
|  | SmallVector<const SCEV *, 2> Operands; | 
|  | Operands.push_back(LHSCst); | 
|  | Operands.append(Mul->op_begin() + 1, Mul->op_end()); | 
|  | LHS = getMulExpr(Operands); | 
|  | RHS = RHSCst; | 
|  | Mul = dyn_cast<SCEVMulExpr>(LHS); | 
|  | if (!Mul) | 
|  | return getUDivExactExpr(LHS, RHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { | 
|  | if (Mul->getOperand(i) == RHS) { | 
|  | SmallVector<const SCEV *, 2> Operands; | 
|  | Operands.append(Mul->op_begin(), Mul->op_begin() + i); | 
|  | Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); | 
|  | return getMulExpr(Operands); | 
|  | } | 
|  | } | 
|  |  | 
|  | return getUDivExpr(LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// Get an add recurrence expression for the specified loop.  Simplify the | 
|  | /// expression as much as possible. | 
|  | const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, | 
|  | const Loop *L, | 
|  | SCEV::NoWrapFlags Flags) { | 
|  | SmallVector<const SCEV *, 4> Operands; | 
|  | Operands.push_back(Start); | 
|  | if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) | 
|  | if (StepChrec->getLoop() == L) { | 
|  | Operands.append(StepChrec->op_begin(), StepChrec->op_end()); | 
|  | return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); | 
|  | } | 
|  |  | 
|  | Operands.push_back(Step); | 
|  | return getAddRecExpr(Operands, L, Flags); | 
|  | } | 
|  |  | 
|  | /// Get an add recurrence expression for the specified loop.  Simplify the | 
|  | /// expression as much as possible. | 
|  | const SCEV * | 
|  | ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, | 
|  | const Loop *L, SCEV::NoWrapFlags Flags) { | 
|  | if (Operands.size() == 1) return Operands[0]; | 
|  | #ifndef NDEBUG | 
|  | Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); | 
|  | for (unsigned i = 1, e = Operands.size(); i != e; ++i) | 
|  | assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && | 
|  | "SCEVAddRecExpr operand types don't match!"); | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
|  | assert(isLoopInvariant(Operands[i], L) && | 
|  | "SCEVAddRecExpr operand is not loop-invariant!"); | 
|  | #endif | 
|  |  | 
|  | if (Operands.back()->isZero()) { | 
|  | Operands.pop_back(); | 
|  | return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X | 
|  | } | 
|  |  | 
|  | // It's tempting to want to call getMaxBackedgeTakenCount count here and | 
|  | // use that information to infer NUW and NSW flags. However, computing a | 
|  | // BE count requires calling getAddRecExpr, so we may not yet have a | 
|  | // meaningful BE count at this point (and if we don't, we'd be stuck | 
|  | // with a SCEVCouldNotCompute as the cached BE count). | 
|  |  | 
|  | Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); | 
|  |  | 
|  | // Canonicalize nested AddRecs in by nesting them in order of loop depth. | 
|  | if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { | 
|  | const Loop *NestedLoop = NestedAR->getLoop(); | 
|  | if (L->contains(NestedLoop) | 
|  | ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) | 
|  | : (!NestedLoop->contains(L) && | 
|  | DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { | 
|  | SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), | 
|  | NestedAR->op_end()); | 
|  | Operands[0] = NestedAR->getStart(); | 
|  | // AddRecs require their operands be loop-invariant with respect to their | 
|  | // loops. Don't perform this transformation if it would break this | 
|  | // requirement. | 
|  | bool AllInvariant = all_of( | 
|  | Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); | 
|  |  | 
|  | if (AllInvariant) { | 
|  | // Create a recurrence for the outer loop with the same step size. | 
|  | // | 
|  | // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the | 
|  | // inner recurrence has the same property. | 
|  | SCEV::NoWrapFlags OuterFlags = | 
|  | maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); | 
|  |  | 
|  | NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); | 
|  | AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { | 
|  | return isLoopInvariant(Op, NestedLoop); | 
|  | }); | 
|  |  | 
|  | if (AllInvariant) { | 
|  | // Ok, both add recurrences are valid after the transformation. | 
|  | // | 
|  | // The inner recurrence keeps its NW flag but only keeps NUW/NSW if | 
|  | // the outer recurrence has the same property. | 
|  | SCEV::NoWrapFlags InnerFlags = | 
|  | maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); | 
|  | return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); | 
|  | } | 
|  | } | 
|  | // Reset Operands to its original state. | 
|  | Operands[0] = NestedAR; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, it looks like we really DO need an addrec expr.  Check to see if we | 
|  | // already have one, otherwise create a new one. | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scAddRecExpr); | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
|  | ID.AddPointer(Operands[i]); | 
|  | ID.AddPointer(L); | 
|  | void *IP = nullptr; | 
|  | SCEVAddRecExpr *S = | 
|  | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | 
|  | if (!S) { | 
|  | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); | 
|  | std::uninitialized_copy(Operands.begin(), Operands.end(), O); | 
|  | S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), | 
|  | O, Operands.size(), L); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | } | 
|  | S->setNoWrapFlags(Flags); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getGEPExpr(GEPOperator *GEP, | 
|  | const SmallVectorImpl<const SCEV *> &IndexExprs) { | 
|  | const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); | 
|  | // getSCEV(Base)->getType() has the same address space as Base->getType() | 
|  | // because SCEV::getType() preserves the address space. | 
|  | Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); | 
|  | // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP | 
|  | // instruction to its SCEV, because the Instruction may be guarded by control | 
|  | // flow and the no-overflow bits may not be valid for the expression in any | 
|  | // context. This can be fixed similarly to how these flags are handled for | 
|  | // adds. | 
|  | SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW | 
|  | : SCEV::FlagAnyWrap; | 
|  |  | 
|  | const SCEV *TotalOffset = getZero(IntPtrTy); | 
|  | // The array size is unimportant. The first thing we do on CurTy is getting | 
|  | // its element type. | 
|  | Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); | 
|  | for (const SCEV *IndexExpr : IndexExprs) { | 
|  | // Compute the (potentially symbolic) offset in bytes for this index. | 
|  | if (StructType *STy = dyn_cast<StructType>(CurTy)) { | 
|  | // For a struct, add the member offset. | 
|  | ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); | 
|  | unsigned FieldNo = Index->getZExtValue(); | 
|  | const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); | 
|  |  | 
|  | // Add the field offset to the running total offset. | 
|  | TotalOffset = getAddExpr(TotalOffset, FieldOffset); | 
|  |  | 
|  | // Update CurTy to the type of the field at Index. | 
|  | CurTy = STy->getTypeAtIndex(Index); | 
|  | } else { | 
|  | // Update CurTy to its element type. | 
|  | CurTy = cast<SequentialType>(CurTy)->getElementType(); | 
|  | // For an array, add the element offset, explicitly scaled. | 
|  | const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); | 
|  | // Getelementptr indices are signed. | 
|  | IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); | 
|  |  | 
|  | // Multiply the index by the element size to compute the element offset. | 
|  | const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); | 
|  |  | 
|  | // Add the element offset to the running total offset. | 
|  | TotalOffset = getAddExpr(TotalOffset, LocalOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the total offset from all the GEP indices to the base. | 
|  | return getAddExpr(BaseExpr, TotalOffset, Wrap); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; | 
|  | return getSMaxExpr(Ops); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
|  | assert(!Ops.empty() && "Cannot get empty smax!"); | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | #ifndef NDEBUG | 
|  | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | 
|  | for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
|  | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && | 
|  | "SCEVSMaxExpr operand types don't match!"); | 
|  | #endif | 
|  |  | 
|  | // Sort by complexity, this groups all similar expression types together. | 
|  | GroupByComplexity(Ops, &LI, DT); | 
|  |  | 
|  | // If there are any constants, fold them together. | 
|  | unsigned Idx = 0; | 
|  | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
|  | ++Idx; | 
|  | assert(Idx < Ops.size()); | 
|  | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
|  | // We found two constants, fold them together! | 
|  | ConstantInt *Fold = ConstantInt::get( | 
|  | getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); | 
|  | Ops[0] = getConstant(Fold); | 
|  | Ops.erase(Ops.begin()+1);  // Erase the folded element | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | LHSC = cast<SCEVConstant>(Ops[0]); | 
|  | } | 
|  |  | 
|  | // If we are left with a constant minimum-int, strip it off. | 
|  | if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { | 
|  | Ops.erase(Ops.begin()); | 
|  | --Idx; | 
|  | } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { | 
|  | // If we have an smax with a constant maximum-int, it will always be | 
|  | // maximum-int. | 
|  | return Ops[0]; | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | } | 
|  |  | 
|  | // Find the first SMax | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // Check to see if one of the operands is an SMax. If so, expand its operands | 
|  | // onto our operand list, and recurse to simplify. | 
|  | if (Idx < Ops.size()) { | 
|  | bool DeletedSMax = false; | 
|  | while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { | 
|  | Ops.erase(Ops.begin()+Idx); | 
|  | Ops.append(SMax->op_begin(), SMax->op_end()); | 
|  | DeletedSMax = true; | 
|  | } | 
|  |  | 
|  | if (DeletedSMax) | 
|  | return getSMaxExpr(Ops); | 
|  | } | 
|  |  | 
|  | // Okay, check to see if the same value occurs in the operand list twice.  If | 
|  | // so, delete one.  Since we sorted the list, these values are required to | 
|  | // be adjacent. | 
|  | for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) | 
|  | //  X smax Y smax Y  -->  X smax Y | 
|  | //  X smax Y         -->  X, if X is always greater than Y | 
|  | if (Ops[i] == Ops[i+1] || | 
|  | isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { | 
|  | Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); | 
|  | --i; --e; | 
|  | } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { | 
|  | Ops.erase(Ops.begin()+i, Ops.begin()+i+1); | 
|  | --i; --e; | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  |  | 
|  | assert(!Ops.empty() && "Reduced smax down to nothing!"); | 
|  |  | 
|  | // Okay, it looks like we really DO need an smax expr.  Check to see if we | 
|  | // already have one, otherwise create a new one. | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scSMaxExpr); | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | ID.AddPointer(Ops[i]); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | 
|  | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | 
|  | SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), | 
|  | O, Ops.size()); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; | 
|  | return getUMaxExpr(Ops); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
|  | assert(!Ops.empty() && "Cannot get empty umax!"); | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | #ifndef NDEBUG | 
|  | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | 
|  | for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
|  | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && | 
|  | "SCEVUMaxExpr operand types don't match!"); | 
|  | #endif | 
|  |  | 
|  | // Sort by complexity, this groups all similar expression types together. | 
|  | GroupByComplexity(Ops, &LI, DT); | 
|  |  | 
|  | // If there are any constants, fold them together. | 
|  | unsigned Idx = 0; | 
|  | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
|  | ++Idx; | 
|  | assert(Idx < Ops.size()); | 
|  | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
|  | // We found two constants, fold them together! | 
|  | ConstantInt *Fold = ConstantInt::get( | 
|  | getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); | 
|  | Ops[0] = getConstant(Fold); | 
|  | Ops.erase(Ops.begin()+1);  // Erase the folded element | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | LHSC = cast<SCEVConstant>(Ops[0]); | 
|  | } | 
|  |  | 
|  | // If we are left with a constant minimum-int, strip it off. | 
|  | if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { | 
|  | Ops.erase(Ops.begin()); | 
|  | --Idx; | 
|  | } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { | 
|  | // If we have an umax with a constant maximum-int, it will always be | 
|  | // maximum-int. | 
|  | return Ops[0]; | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  | } | 
|  |  | 
|  | // Find the first UMax | 
|  | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) | 
|  | ++Idx; | 
|  |  | 
|  | // Check to see if one of the operands is a UMax. If so, expand its operands | 
|  | // onto our operand list, and recurse to simplify. | 
|  | if (Idx < Ops.size()) { | 
|  | bool DeletedUMax = false; | 
|  | while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { | 
|  | Ops.erase(Ops.begin()+Idx); | 
|  | Ops.append(UMax->op_begin(), UMax->op_end()); | 
|  | DeletedUMax = true; | 
|  | } | 
|  |  | 
|  | if (DeletedUMax) | 
|  | return getUMaxExpr(Ops); | 
|  | } | 
|  |  | 
|  | // Okay, check to see if the same value occurs in the operand list twice.  If | 
|  | // so, delete one.  Since we sorted the list, these values are required to | 
|  | // be adjacent. | 
|  | for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) | 
|  | //  X umax Y umax Y  -->  X umax Y | 
|  | //  X umax Y         -->  X, if X is always greater than Y | 
|  | if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning( | 
|  | ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) { | 
|  | Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); | 
|  | --i; --e; | 
|  | } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i], | 
|  | Ops[i + 1])) { | 
|  | Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); | 
|  | --i; --e; | 
|  | } | 
|  |  | 
|  | if (Ops.size() == 1) return Ops[0]; | 
|  |  | 
|  | assert(!Ops.empty() && "Reduced umax down to nothing!"); | 
|  |  | 
|  | // Okay, it looks like we really DO need a umax expr.  Check to see if we | 
|  | // already have one, otherwise create a new one. | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scUMaxExpr); | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | ID.AddPointer(Ops[i]); | 
|  | void *IP = nullptr; | 
|  | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
|  | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | 
|  | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | 
|  | SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), | 
|  | O, Ops.size()); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | addToLoopUseLists(S); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; | 
|  | return getSMinExpr(Ops); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
|  | // ~smax(~x, ~y, ~z) == smin(x, y, z). | 
|  | SmallVector<const SCEV *, 2> NotOps; | 
|  | for (auto *S : Ops) | 
|  | NotOps.push_back(getNotSCEV(S)); | 
|  | return getNotSCEV(getSMaxExpr(NotOps)); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; | 
|  | return getUMinExpr(Ops); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
|  | assert(!Ops.empty() && "At least one operand must be!"); | 
|  | // Trivial case. | 
|  | if (Ops.size() == 1) | 
|  | return Ops[0]; | 
|  |  | 
|  | // ~umax(~x, ~y, ~z) == umin(x, y, z). | 
|  | SmallVector<const SCEV *, 2> NotOps; | 
|  | for (auto *S : Ops) | 
|  | NotOps.push_back(getNotSCEV(S)); | 
|  | return getNotSCEV(getUMaxExpr(NotOps)); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { | 
|  | // We can bypass creating a target-independent | 
|  | // constant expression and then folding it back into a ConstantInt. | 
|  | // This is just a compile-time optimization. | 
|  | return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, | 
|  | StructType *STy, | 
|  | unsigned FieldNo) { | 
|  | // We can bypass creating a target-independent | 
|  | // constant expression and then folding it back into a ConstantInt. | 
|  | // This is just a compile-time optimization. | 
|  | return getConstant( | 
|  | IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUnknown(Value *V) { | 
|  | // Don't attempt to do anything other than create a SCEVUnknown object | 
|  | // here.  createSCEV only calls getUnknown after checking for all other | 
|  | // interesting possibilities, and any other code that calls getUnknown | 
|  | // is doing so in order to hide a value from SCEV canonicalization. | 
|  |  | 
|  | FoldingSetNodeID ID; | 
|  | ID.AddInteger(scUnknown); | 
|  | ID.AddPointer(V); | 
|  | void *IP = nullptr; | 
|  | if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { | 
|  | assert(cast<SCEVUnknown>(S)->getValue() == V && | 
|  | "Stale SCEVUnknown in uniquing map!"); | 
|  | return S; | 
|  | } | 
|  | SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, | 
|  | FirstUnknown); | 
|  | FirstUnknown = cast<SCEVUnknown>(S); | 
|  | UniqueSCEVs.InsertNode(S, IP); | 
|  | return S; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //            Basic SCEV Analysis and PHI Idiom Recognition Code | 
|  | // | 
|  |  | 
|  | /// Test if values of the given type are analyzable within the SCEV | 
|  | /// framework. This primarily includes integer types, and it can optionally | 
|  | /// include pointer types if the ScalarEvolution class has access to | 
|  | /// target-specific information. | 
|  | bool ScalarEvolution::isSCEVable(Type *Ty) const { | 
|  | // Integers and pointers are always SCEVable. | 
|  | return Ty->isIntegerTy() || Ty->isPointerTy(); | 
|  | } | 
|  |  | 
|  | /// Return the size in bits of the specified type, for which isSCEVable must | 
|  | /// return true. | 
|  | uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { | 
|  | assert(isSCEVable(Ty) && "Type is not SCEVable!"); | 
|  | if (Ty->isPointerTy()) | 
|  | return getDataLayout().getIndexTypeSizeInBits(Ty); | 
|  | return getDataLayout().getTypeSizeInBits(Ty); | 
|  | } | 
|  |  | 
|  | /// Return a type with the same bitwidth as the given type and which represents | 
|  | /// how SCEV will treat the given type, for which isSCEVable must return | 
|  | /// true. For pointer types, this is the pointer-sized integer type. | 
|  | Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { | 
|  | assert(isSCEVable(Ty) && "Type is not SCEVable!"); | 
|  |  | 
|  | if (Ty->isIntegerTy()) | 
|  | return Ty; | 
|  |  | 
|  | // The only other support type is pointer. | 
|  | assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); | 
|  | return getDataLayout().getIntPtrType(Ty); | 
|  | } | 
|  |  | 
|  | Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { | 
|  | return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getCouldNotCompute() { | 
|  | return CouldNotCompute.get(); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::checkValidity(const SCEV *S) const { | 
|  | bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { | 
|  | auto *SU = dyn_cast<SCEVUnknown>(S); | 
|  | return SU && SU->getValue() == nullptr; | 
|  | }); | 
|  |  | 
|  | return !ContainsNulls; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { | 
|  | HasRecMapType::iterator I = HasRecMap.find(S); | 
|  | if (I != HasRecMap.end()) | 
|  | return I->second; | 
|  |  | 
|  | bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); | 
|  | HasRecMap.insert({S, FoundAddRec}); | 
|  | return FoundAddRec; | 
|  | } | 
|  |  | 
|  | /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. | 
|  | /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an | 
|  | /// offset I, then return {S', I}, else return {\p S, nullptr}. | 
|  | static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { | 
|  | const auto *Add = dyn_cast<SCEVAddExpr>(S); | 
|  | if (!Add) | 
|  | return {S, nullptr}; | 
|  |  | 
|  | if (Add->getNumOperands() != 2) | 
|  | return {S, nullptr}; | 
|  |  | 
|  | auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); | 
|  | if (!ConstOp) | 
|  | return {S, nullptr}; | 
|  |  | 
|  | return {Add->getOperand(1), ConstOp->getValue()}; | 
|  | } | 
|  |  | 
|  | /// Return the ValueOffsetPair set for \p S. \p S can be represented | 
|  | /// by the value and offset from any ValueOffsetPair in the set. | 
|  | SetVector<ScalarEvolution::ValueOffsetPair> * | 
|  | ScalarEvolution::getSCEVValues(const SCEV *S) { | 
|  | ExprValueMapType::iterator SI = ExprValueMap.find_as(S); | 
|  | if (SI == ExprValueMap.end()) | 
|  | return nullptr; | 
|  | #ifndef NDEBUG | 
|  | if (VerifySCEVMap) { | 
|  | // Check there is no dangling Value in the set returned. | 
|  | for (const auto &VE : SI->second) | 
|  | assert(ValueExprMap.count(VE.first)); | 
|  | } | 
|  | #endif | 
|  | return &SI->second; | 
|  | } | 
|  |  | 
|  | /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) | 
|  | /// cannot be used separately. eraseValueFromMap should be used to remove | 
|  | /// V from ValueExprMap and ExprValueMap at the same time. | 
|  | void ScalarEvolution::eraseValueFromMap(Value *V) { | 
|  | ValueExprMapType::iterator I = ValueExprMap.find_as(V); | 
|  | if (I != ValueExprMap.end()) { | 
|  | const SCEV *S = I->second; | 
|  | // Remove {V, 0} from the set of ExprValueMap[S] | 
|  | if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) | 
|  | SV->remove({V, nullptr}); | 
|  |  | 
|  | // Remove {V, Offset} from the set of ExprValueMap[Stripped] | 
|  | const SCEV *Stripped; | 
|  | ConstantInt *Offset; | 
|  | std::tie(Stripped, Offset) = splitAddExpr(S); | 
|  | if (Offset != nullptr) { | 
|  | if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) | 
|  | SV->remove({V, Offset}); | 
|  | } | 
|  | ValueExprMap.erase(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether value has nuw/nsw/exact set but SCEV does not. | 
|  | /// TODO: In reality it is better to check the poison recursevely | 
|  | /// but this is better than nothing. | 
|  | static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { | 
|  | if (auto *I = dyn_cast<Instruction>(V)) { | 
|  | if (isa<OverflowingBinaryOperator>(I)) { | 
|  | if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { | 
|  | if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) | 
|  | return true; | 
|  | if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) | 
|  | return true; | 
|  | } | 
|  | } else if (isa<PossiblyExactOperator>(I) && I->isExact()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return an existing SCEV if it exists, otherwise analyze the expression and | 
|  | /// create a new one. | 
|  | const SCEV *ScalarEvolution::getSCEV(Value *V) { | 
|  | assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); | 
|  |  | 
|  | const SCEV *S = getExistingSCEV(V); | 
|  | if (S == nullptr) { | 
|  | S = createSCEV(V); | 
|  | // During PHI resolution, it is possible to create two SCEVs for the same | 
|  | // V, so it is needed to double check whether V->S is inserted into | 
|  | // ValueExprMap before insert S->{V, 0} into ExprValueMap. | 
|  | std::pair<ValueExprMapType::iterator, bool> Pair = | 
|  | ValueExprMap.insert({SCEVCallbackVH(V, this), S}); | 
|  | if (Pair.second && !SCEVLostPoisonFlags(S, V)) { | 
|  | ExprValueMap[S].insert({V, nullptr}); | 
|  |  | 
|  | // If S == Stripped + Offset, add Stripped -> {V, Offset} into | 
|  | // ExprValueMap. | 
|  | const SCEV *Stripped = S; | 
|  | ConstantInt *Offset = nullptr; | 
|  | std::tie(Stripped, Offset) = splitAddExpr(S); | 
|  | // If stripped is SCEVUnknown, don't bother to save | 
|  | // Stripped -> {V, offset}. It doesn't simplify and sometimes even | 
|  | // increase the complexity of the expansion code. | 
|  | // If V is GetElementPtrInst, don't save Stripped -> {V, offset} | 
|  | // because it may generate add/sub instead of GEP in SCEV expansion. | 
|  | if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && | 
|  | !isa<GetElementPtrInst>(V)) | 
|  | ExprValueMap[Stripped].insert({V, Offset}); | 
|  | } | 
|  | } | 
|  | return S; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { | 
|  | assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); | 
|  |  | 
|  | ValueExprMapType::iterator I = ValueExprMap.find_as(V); | 
|  | if (I != ValueExprMap.end()) { | 
|  | const SCEV *S = I->second; | 
|  | if (checkValidity(S)) | 
|  | return S; | 
|  | eraseValueFromMap(V); | 
|  | forgetMemoizedResults(S); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return a SCEV corresponding to -V = -1*V | 
|  | const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, | 
|  | SCEV::NoWrapFlags Flags) { | 
|  | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) | 
|  | return getConstant( | 
|  | cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); | 
|  |  | 
|  | Type *Ty = V->getType(); | 
|  | Ty = getEffectiveSCEVType(Ty); | 
|  | return getMulExpr( | 
|  | V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); | 
|  | } | 
|  |  | 
|  | /// Return a SCEV corresponding to ~V = -1-V | 
|  | const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { | 
|  | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) | 
|  | return getConstant( | 
|  | cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); | 
|  |  | 
|  | Type *Ty = V->getType(); | 
|  | Ty = getEffectiveSCEVType(Ty); | 
|  | const SCEV *AllOnes = | 
|  | getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); | 
|  | return getMinusSCEV(AllOnes, V); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, | 
|  | SCEV::NoWrapFlags Flags, | 
|  | unsigned Depth) { | 
|  | // Fast path: X - X --> 0. | 
|  | if (LHS == RHS) | 
|  | return getZero(LHS->getType()); | 
|  |  | 
|  | // We represent LHS - RHS as LHS + (-1)*RHS. This transformation | 
|  | // makes it so that we cannot make much use of NUW. | 
|  | auto AddFlags = SCEV::FlagAnyWrap; | 
|  | const bool RHSIsNotMinSigned = | 
|  | !getSignedRangeMin(RHS).isMinSignedValue(); | 
|  | if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { | 
|  | // Let M be the minimum representable signed value. Then (-1)*RHS | 
|  | // signed-wraps if and only if RHS is M. That can happen even for | 
|  | // a NSW subtraction because e.g. (-1)*M signed-wraps even though | 
|  | // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + | 
|  | // (-1)*RHS, we need to prove that RHS != M. | 
|  | // | 
|  | // If LHS is non-negative and we know that LHS - RHS does not | 
|  | // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap | 
|  | // either by proving that RHS > M or that LHS >= 0. | 
|  | if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { | 
|  | AddFlags = SCEV::FlagNSW; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - | 
|  | // RHS is NSW and LHS >= 0. | 
|  | // | 
|  | // The difficulty here is that the NSW flag may have been proven | 
|  | // relative to a loop that is to be found in a recurrence in LHS and | 
|  | // not in RHS. Applying NSW to (-1)*M may then let the NSW have a | 
|  | // larger scope than intended. | 
|  | auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; | 
|  |  | 
|  | return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { | 
|  | Type *SrcTy = V->getType(); | 
|  | assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot truncate or zero extend with non-integer arguments!"); | 
|  | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
|  | return V;  // No conversion | 
|  | if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) | 
|  | return getTruncateExpr(V, Ty); | 
|  | return getZeroExtendExpr(V, Ty); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, | 
|  | Type *Ty) { | 
|  | Type *SrcTy = V->getType(); | 
|  | assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot truncate or zero extend with non-integer arguments!"); | 
|  | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
|  | return V;  // No conversion | 
|  | if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) | 
|  | return getTruncateExpr(V, Ty); | 
|  | return getSignExtendExpr(V, Ty); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { | 
|  | Type *SrcTy = V->getType(); | 
|  | assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot noop or zero extend with non-integer arguments!"); | 
|  | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && | 
|  | "getNoopOrZeroExtend cannot truncate!"); | 
|  | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
|  | return V;  // No conversion | 
|  | return getZeroExtendExpr(V, Ty); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { | 
|  | Type *SrcTy = V->getType(); | 
|  | assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot noop or sign extend with non-integer arguments!"); | 
|  | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && | 
|  | "getNoopOrSignExtend cannot truncate!"); | 
|  | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
|  | return V;  // No conversion | 
|  | return getSignExtendExpr(V, Ty); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { | 
|  | Type *SrcTy = V->getType(); | 
|  | assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot noop or any extend with non-integer arguments!"); | 
|  | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && | 
|  | "getNoopOrAnyExtend cannot truncate!"); | 
|  | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
|  | return V;  // No conversion | 
|  | return getAnyExtendExpr(V, Ty); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { | 
|  | Type *SrcTy = V->getType(); | 
|  | assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && | 
|  | (Ty->isIntegerTy() || Ty->isPointerTy()) && | 
|  | "Cannot truncate or noop with non-integer arguments!"); | 
|  | assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && | 
|  | "getTruncateOrNoop cannot extend!"); | 
|  | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
|  | return V;  // No conversion | 
|  | return getTruncateExpr(V, Ty); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | const SCEV *PromotedLHS = LHS; | 
|  | const SCEV *PromotedRHS = RHS; | 
|  |  | 
|  | if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) | 
|  | PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); | 
|  | else | 
|  | PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); | 
|  |  | 
|  | return getUMaxExpr(PromotedLHS, PromotedRHS); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; | 
|  | return getUMinFromMismatchedTypes(Ops); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( | 
|  | SmallVectorImpl<const SCEV *> &Ops) { | 
|  | assert(!Ops.empty() && "At least one operand must be!"); | 
|  | // Trivial case. | 
|  | if (Ops.size() == 1) | 
|  | return Ops[0]; | 
|  |  | 
|  | // Find the max type first. | 
|  | Type *MaxType = nullptr; | 
|  | for (auto *S : Ops) | 
|  | if (MaxType) | 
|  | MaxType = getWiderType(MaxType, S->getType()); | 
|  | else | 
|  | MaxType = S->getType(); | 
|  |  | 
|  | // Extend all ops to max type. | 
|  | SmallVector<const SCEV *, 2> PromotedOps; | 
|  | for (auto *S : Ops) | 
|  | PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); | 
|  |  | 
|  | // Generate umin. | 
|  | return getUMinExpr(PromotedOps); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { | 
|  | // A pointer operand may evaluate to a nonpointer expression, such as null. | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return V; | 
|  |  | 
|  | if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { | 
|  | return getPointerBase(Cast->getOperand()); | 
|  | } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { | 
|  | const SCEV *PtrOp = nullptr; | 
|  | for (const SCEV *NAryOp : NAry->operands()) { | 
|  | if (NAryOp->getType()->isPointerTy()) { | 
|  | // Cannot find the base of an expression with multiple pointer operands. | 
|  | if (PtrOp) | 
|  | return V; | 
|  | PtrOp = NAryOp; | 
|  | } | 
|  | } | 
|  | if (!PtrOp) | 
|  | return V; | 
|  | return getPointerBase(PtrOp); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// Push users of the given Instruction onto the given Worklist. | 
|  | static void | 
|  | PushDefUseChildren(Instruction *I, | 
|  | SmallVectorImpl<Instruction *> &Worklist) { | 
|  | // Push the def-use children onto the Worklist stack. | 
|  | for (User *U : I->users()) | 
|  | Worklist.push_back(cast<Instruction>(U)); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { | 
|  | SmallVector<Instruction *, 16> Worklist; | 
|  | PushDefUseChildren(PN, Worklist); | 
|  |  | 
|  | SmallPtrSet<Instruction *, 8> Visited; | 
|  | Visited.insert(PN); | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *I = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(I).second) | 
|  | continue; | 
|  |  | 
|  | auto It = ValueExprMap.find_as(static_cast<Value *>(I)); | 
|  | if (It != ValueExprMap.end()) { | 
|  | const SCEV *Old = It->second; | 
|  |  | 
|  | // Short-circuit the def-use traversal if the symbolic name | 
|  | // ceases to appear in expressions. | 
|  | if (Old != SymName && !hasOperand(Old, SymName)) | 
|  | continue; | 
|  |  | 
|  | // SCEVUnknown for a PHI either means that it has an unrecognized | 
|  | // structure, it's a PHI that's in the progress of being computed | 
|  | // by createNodeForPHI, or it's a single-value PHI. In the first case, | 
|  | // additional loop trip count information isn't going to change anything. | 
|  | // In the second case, createNodeForPHI will perform the necessary | 
|  | // updates on its own when it gets to that point. In the third, we do | 
|  | // want to forget the SCEVUnknown. | 
|  | if (!isa<PHINode>(I) || | 
|  | !isa<SCEVUnknown>(Old) || | 
|  | (I != PN && Old == SymName)) { | 
|  | eraseValueFromMap(It->first); | 
|  | forgetMemoizedResults(Old); | 
|  | } | 
|  | } | 
|  |  | 
|  | PushDefUseChildren(I, Worklist); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start | 
|  | /// expression in case its Loop is L. If it is not L then | 
|  | /// if IgnoreOtherLoops is true then use AddRec itself | 
|  | /// otherwise rewrite cannot be done. | 
|  | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. | 
|  | class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { | 
|  | public: | 
|  | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, | 
|  | bool IgnoreOtherLoops = true) { | 
|  | SCEVInitRewriter Rewriter(L, SE); | 
|  | const SCEV *Result = Rewriter.visit(S); | 
|  | if (Rewriter.hasSeenLoopVariantSCEVUnknown()) | 
|  | return SE.getCouldNotCompute(); | 
|  | return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops | 
|  | ? SE.getCouldNotCompute() | 
|  | : Result; | 
|  | } | 
|  |  | 
|  | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | 
|  | if (!SE.isLoopInvariant(Expr, L)) | 
|  | SeenLoopVariantSCEVUnknown = true; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | 
|  | // Only re-write AddRecExprs for this loop. | 
|  | if (Expr->getLoop() == L) | 
|  | return Expr->getStart(); | 
|  | SeenOtherLoops = true; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } | 
|  |  | 
|  | bool hasSeenOtherLoops() { return SeenOtherLoops; } | 
|  |  | 
|  | private: | 
|  | explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) | 
|  | : SCEVRewriteVisitor(SE), L(L) {} | 
|  |  | 
|  | const Loop *L; | 
|  | bool SeenLoopVariantSCEVUnknown = false; | 
|  | bool SeenOtherLoops = false; | 
|  | }; | 
|  |  | 
|  | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post | 
|  | /// increment expression in case its Loop is L. If it is not L then | 
|  | /// use AddRec itself. | 
|  | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. | 
|  | class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { | 
|  | public: | 
|  | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { | 
|  | SCEVPostIncRewriter Rewriter(L, SE); | 
|  | const SCEV *Result = Rewriter.visit(S); | 
|  | return Rewriter.hasSeenLoopVariantSCEVUnknown() | 
|  | ? SE.getCouldNotCompute() | 
|  | : Result; | 
|  | } | 
|  |  | 
|  | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | 
|  | if (!SE.isLoopInvariant(Expr, L)) | 
|  | SeenLoopVariantSCEVUnknown = true; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | 
|  | // Only re-write AddRecExprs for this loop. | 
|  | if (Expr->getLoop() == L) | 
|  | return Expr->getPostIncExpr(SE); | 
|  | SeenOtherLoops = true; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } | 
|  |  | 
|  | bool hasSeenOtherLoops() { return SeenOtherLoops; } | 
|  |  | 
|  | private: | 
|  | explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) | 
|  | : SCEVRewriteVisitor(SE), L(L) {} | 
|  |  | 
|  | const Loop *L; | 
|  | bool SeenLoopVariantSCEVUnknown = false; | 
|  | bool SeenOtherLoops = false; | 
|  | }; | 
|  |  | 
|  | /// This class evaluates the compare condition by matching it against the | 
|  | /// condition of loop latch. If there is a match we assume a true value | 
|  | /// for the condition while building SCEV nodes. | 
|  | class SCEVBackedgeConditionFolder | 
|  | : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { | 
|  | public: | 
|  | static const SCEV *rewrite(const SCEV *S, const Loop *L, | 
|  | ScalarEvolution &SE) { | 
|  | bool IsPosBECond = false; | 
|  | Value *BECond = nullptr; | 
|  | if (BasicBlock *Latch = L->getLoopLatch()) { | 
|  | BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); | 
|  | if (BI && BI->isConditional()) { | 
|  | assert(BI->getSuccessor(0) != BI->getSuccessor(1) && | 
|  | "Both outgoing branches should not target same header!"); | 
|  | BECond = BI->getCondition(); | 
|  | IsPosBECond = BI->getSuccessor(0) == L->getHeader(); | 
|  | } else { | 
|  | return S; | 
|  | } | 
|  | } | 
|  | SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); | 
|  | return Rewriter.visit(S); | 
|  | } | 
|  |  | 
|  | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | 
|  | const SCEV *Result = Expr; | 
|  | bool InvariantF = SE.isLoopInvariant(Expr, L); | 
|  |  | 
|  | if (!InvariantF) { | 
|  | Instruction *I = cast<Instruction>(Expr->getValue()); | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Select: { | 
|  | SelectInst *SI = cast<SelectInst>(I); | 
|  | Optional<const SCEV *> Res = | 
|  | compareWithBackedgeCondition(SI->getCondition()); | 
|  | if (Res.hasValue()) { | 
|  | bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); | 
|  | Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | Optional<const SCEV *> Res = compareWithBackedgeCondition(I); | 
|  | if (Res.hasValue()) | 
|  | Result = Res.getValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | private: | 
|  | explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, | 
|  | bool IsPosBECond, ScalarEvolution &SE) | 
|  | : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), | 
|  | IsPositiveBECond(IsPosBECond) {} | 
|  |  | 
|  | Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); | 
|  |  | 
|  | const Loop *L; | 
|  | /// Loop back condition. | 
|  | Value *BackedgeCond = nullptr; | 
|  | /// Set to true if loop back is on positive branch condition. | 
|  | bool IsPositiveBECond; | 
|  | }; | 
|  |  | 
|  | Optional<const SCEV *> | 
|  | SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { | 
|  |  | 
|  | // If value matches the backedge condition for loop latch, | 
|  | // then return a constant evolution node based on loopback | 
|  | // branch taken. | 
|  | if (BackedgeCond == IC) | 
|  | return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) | 
|  | : SE.getZero(Type::getInt1Ty(SE.getContext())); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { | 
|  | public: | 
|  | static const SCEV *rewrite(const SCEV *S, const Loop *L, | 
|  | ScalarEvolution &SE) { | 
|  | SCEVShiftRewriter Rewriter(L, SE); | 
|  | const SCEV *Result = Rewriter.visit(S); | 
|  | return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | 
|  | // Only allow AddRecExprs for this loop. | 
|  | if (!SE.isLoopInvariant(Expr, L)) | 
|  | Valid = false; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | 
|  | if (Expr->getLoop() == L && Expr->isAffine()) | 
|  | return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); | 
|  | Valid = false; | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | bool isValid() { return Valid; } | 
|  |  | 
|  | private: | 
|  | explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) | 
|  | : SCEVRewriteVisitor(SE), L(L) {} | 
|  |  | 
|  | const Loop *L; | 
|  | bool Valid = true; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | SCEV::NoWrapFlags | 
|  | ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { | 
|  | if (!AR->isAffine()) | 
|  | return SCEV::FlagAnyWrap; | 
|  |  | 
|  | using OBO = OverflowingBinaryOperator; | 
|  |  | 
|  | SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; | 
|  |  | 
|  | if (!AR->hasNoSignedWrap()) { | 
|  | ConstantRange AddRecRange = getSignedRange(AR); | 
|  | ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); | 
|  |  | 
|  | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | Instruction::Add, IncRange, OBO::NoSignedWrap); | 
|  | if (NSWRegion.contains(AddRecRange)) | 
|  | Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); | 
|  | } | 
|  |  | 
|  | if (!AR->hasNoUnsignedWrap()) { | 
|  | ConstantRange AddRecRange = getUnsignedRange(AR); | 
|  | ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); | 
|  |  | 
|  | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | Instruction::Add, IncRange, OBO::NoUnsignedWrap); | 
|  | if (NUWRegion.contains(AddRecRange)) | 
|  | Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Represents an abstract binary operation.  This may exist as a | 
|  | /// normal instruction or constant expression, or may have been | 
|  | /// derived from an expression tree. | 
|  | struct BinaryOp { | 
|  | unsigned Opcode; | 
|  | Value *LHS; | 
|  | Value *RHS; | 
|  | bool IsNSW = false; | 
|  | bool IsNUW = false; | 
|  |  | 
|  | /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or | 
|  | /// constant expression. | 
|  | Operator *Op = nullptr; | 
|  |  | 
|  | explicit BinaryOp(Operator *Op) | 
|  | : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), | 
|  | Op(Op) { | 
|  | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { | 
|  | IsNSW = OBO->hasNoSignedWrap(); | 
|  | IsNUW = OBO->hasNoUnsignedWrap(); | 
|  | } | 
|  | } | 
|  |  | 
|  | explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, | 
|  | bool IsNUW = false) | 
|  | : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Try to map \p V into a BinaryOp, and return \c None on failure. | 
|  | static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { | 
|  | auto *Op = dyn_cast<Operator>(V); | 
|  | if (!Op) | 
|  | return None; | 
|  |  | 
|  | // Implementation detail: all the cleverness here should happen without | 
|  | // creating new SCEV expressions -- our caller knowns tricks to avoid creating | 
|  | // SCEV expressions when possible, and we should not break that. | 
|  |  | 
|  | switch (Op->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Shl: | 
|  | return BinaryOp(Op); | 
|  |  | 
|  | case Instruction::Xor: | 
|  | if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) | 
|  | // If the RHS of the xor is a signmask, then this is just an add. | 
|  | // Instcombine turns add of signmask into xor as a strength reduction step. | 
|  | if (RHSC->getValue().isSignMask()) | 
|  | return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); | 
|  | return BinaryOp(Op); | 
|  |  | 
|  | case Instruction::LShr: | 
|  | // Turn logical shift right of a constant into a unsigned divide. | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { | 
|  | uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); | 
|  |  | 
|  | // If the shift count is not less than the bitwidth, the result of | 
|  | // the shift is undefined. Don't try to analyze it, because the | 
|  | // resolution chosen here may differ from the resolution chosen in | 
|  | // other parts of the compiler. | 
|  | if (SA->getValue().ult(BitWidth)) { | 
|  | Constant *X = | 
|  | ConstantInt::get(SA->getContext(), | 
|  | APInt::getOneBitSet(BitWidth, SA->getZExtValue())); | 
|  | return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); | 
|  | } | 
|  | } | 
|  | return BinaryOp(Op); | 
|  |  | 
|  | case Instruction::ExtractValue: { | 
|  | auto *EVI = cast<ExtractValueInst>(Op); | 
|  | if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) | 
|  | break; | 
|  |  | 
|  | auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); | 
|  | if (!CI) | 
|  | break; | 
|  |  | 
|  | if (auto *F = CI->getCalledFunction()) | 
|  | switch (F->getIntrinsicID()) { | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) | 
|  | return BinaryOp(Instruction::Add, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1)); | 
|  |  | 
|  | // Now that we know that all uses of the arithmetic-result component of | 
|  | // CI are guarded by the overflow check, we can go ahead and pretend | 
|  | // that the arithmetic is non-overflowing. | 
|  | if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) | 
|  | return BinaryOp(Instruction::Add, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1), /* IsNSW = */ true, | 
|  | /* IsNUW = */ false); | 
|  | else | 
|  | return BinaryOp(Instruction::Add, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1), /* IsNSW = */ false, | 
|  | /* IsNUW*/ true); | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) | 
|  | return BinaryOp(Instruction::Sub, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1)); | 
|  |  | 
|  | // The same reasoning as sadd/uadd above. | 
|  | if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) | 
|  | return BinaryOp(Instruction::Sub, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1), /* IsNSW = */ true, | 
|  | /* IsNUW = */ false); | 
|  | else | 
|  | return BinaryOp(Instruction::Sub, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1), /* IsNSW = */ false, | 
|  | /* IsNUW = */ true); | 
|  | case Intrinsic::smul_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: | 
|  | return BinaryOp(Instruction::Mul, CI->getArgOperand(0), | 
|  | CI->getArgOperand(1)); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Helper function to createAddRecFromPHIWithCasts. We have a phi | 
|  | /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via | 
|  | /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the | 
|  | /// way. This function checks if \p Op, an operand of this SCEVAddExpr, | 
|  | /// follows one of the following patterns: | 
|  | /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) | 
|  | /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) | 
|  | /// If the SCEV expression of \p Op conforms with one of the expected patterns | 
|  | /// we return the type of the truncation operation, and indicate whether the | 
|  | /// truncated type should be treated as signed/unsigned by setting | 
|  | /// \p Signed to true/false, respectively. | 
|  | static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, | 
|  | bool &Signed, ScalarEvolution &SE) { | 
|  | // The case where Op == SymbolicPHI (that is, with no type conversions on | 
|  | // the way) is handled by the regular add recurrence creating logic and | 
|  | // would have already been triggered in createAddRecForPHI. Reaching it here | 
|  | // means that createAddRecFromPHI had failed for this PHI before (e.g., | 
|  | // because one of the other operands of the SCEVAddExpr updating this PHI is | 
|  | // not invariant). | 
|  | // | 
|  | // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in | 
|  | // this case predicates that allow us to prove that Op == SymbolicPHI will | 
|  | // be added. | 
|  | if (Op == SymbolicPHI) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); | 
|  | unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); | 
|  | if (SourceBits != NewBits) | 
|  | return nullptr; | 
|  |  | 
|  | const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); | 
|  | const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); | 
|  | if (!SExt && !ZExt) | 
|  | return nullptr; | 
|  | const SCEVTruncateExpr *Trunc = | 
|  | SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) | 
|  | : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); | 
|  | if (!Trunc) | 
|  | return nullptr; | 
|  | const SCEV *X = Trunc->getOperand(); | 
|  | if (X != SymbolicPHI) | 
|  | return nullptr; | 
|  | Signed = SExt != nullptr; | 
|  | return Trunc->getType(); | 
|  | } | 
|  |  | 
|  | static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { | 
|  | if (!PN->getType()->isIntegerTy()) | 
|  | return nullptr; | 
|  | const Loop *L = LI.getLoopFor(PN->getParent()); | 
|  | if (!L || L->getHeader() != PN->getParent()) | 
|  | return nullptr; | 
|  | return L; | 
|  | } | 
|  |  | 
|  | // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the | 
|  | // computation that updates the phi follows the following pattern: | 
|  | //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum | 
|  | // which correspond to a phi->trunc->sext/zext->add->phi update chain. | 
|  | // If so, try to see if it can be rewritten as an AddRecExpr under some | 
|  | // Predicates. If successful, return them as a pair. Also cache the results | 
|  | // of the analysis. | 
|  | // | 
|  | // Example usage scenario: | 
|  | //    Say the Rewriter is called for the following SCEV: | 
|  | //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) | 
|  | //    where: | 
|  | //         %X = phi i64 (%Start, %BEValue) | 
|  | //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), | 
|  | //    and call this function with %SymbolicPHI = %X. | 
|  | // | 
|  | //    The analysis will find that the value coming around the backedge has | 
|  | //    the following SCEV: | 
|  | //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) | 
|  | //    Upon concluding that this matches the desired pattern, the function | 
|  | //    will return the pair {NewAddRec, SmallPredsVec} where: | 
|  | //         NewAddRec = {%Start,+,%Step} | 
|  | //         SmallPredsVec = {P1, P2, P3} as follows: | 
|  | //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> | 
|  | //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) | 
|  | //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) | 
|  | //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec | 
|  | //    under the predicates {P1,P2,P3}. | 
|  | //    This predicated rewrite will be cached in PredicatedSCEVRewrites: | 
|  | //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} | 
|  | // | 
|  | // TODO's: | 
|  | // | 
|  | // 1) Extend the Induction descriptor to also support inductions that involve | 
|  | //    casts: When needed (namely, when we are called in the context of the | 
|  | //    vectorizer induction analysis), a Set of cast instructions will be | 
|  | //    populated by this method, and provided back to isInductionPHI. This is | 
|  | //    needed to allow the vectorizer to properly record them to be ignored by | 
|  | //    the cost model and to avoid vectorizing them (otherwise these casts, | 
|  | //    which are redundant under the runtime overflow checks, will be | 
|  | //    vectorized, which can be costly). | 
|  | // | 
|  | // 2) Support additional induction/PHISCEV patterns: We also want to support | 
|  | //    inductions where the sext-trunc / zext-trunc operations (partly) occur | 
|  | //    after the induction update operation (the induction increment): | 
|  | // | 
|  | //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) | 
|  | //    which correspond to a phi->add->trunc->sext/zext->phi update chain. | 
|  | // | 
|  | //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) | 
|  | //    which correspond to a phi->trunc->add->sext/zext->phi update chain. | 
|  | // | 
|  | // 3) Outline common code with createAddRecFromPHI to avoid duplication. | 
|  | Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | 
|  | ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { | 
|  | SmallVector<const SCEVPredicate *, 3> Predicates; | 
|  |  | 
|  | // *** Part1: Analyze if we have a phi-with-cast pattern for which we can | 
|  | // return an AddRec expression under some predicate. | 
|  |  | 
|  | auto *PN = cast<PHINode>(SymbolicPHI->getValue()); | 
|  | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); | 
|  | assert(L && "Expecting an integer loop header phi"); | 
|  |  | 
|  | // The loop may have multiple entrances or multiple exits; we can analyze | 
|  | // this phi as an addrec if it has a unique entry value and a unique | 
|  | // backedge value. | 
|  | Value *BEValueV = nullptr, *StartValueV = nullptr; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = PN->getIncomingValue(i); | 
|  | if (L->contains(PN->getIncomingBlock(i))) { | 
|  | if (!BEValueV) { | 
|  | BEValueV = V; | 
|  | } else if (BEValueV != V) { | 
|  | BEValueV = nullptr; | 
|  | break; | 
|  | } | 
|  | } else if (!StartValueV) { | 
|  | StartValueV = V; | 
|  | } else if (StartValueV != V) { | 
|  | StartValueV = nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!BEValueV || !StartValueV) | 
|  | return None; | 
|  |  | 
|  | const SCEV *BEValue = getSCEV(BEValueV); | 
|  |  | 
|  | // If the value coming around the backedge is an add with the symbolic | 
|  | // value we just inserted, possibly with casts that we can ignore under | 
|  | // an appropriate runtime guard, then we found a simple induction variable! | 
|  | const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); | 
|  | if (!Add) | 
|  | return None; | 
|  |  | 
|  | // If there is a single occurrence of the symbolic value, possibly | 
|  | // casted, replace it with a recurrence. | 
|  | unsigned FoundIndex = Add->getNumOperands(); | 
|  | Type *TruncTy = nullptr; | 
|  | bool Signed; | 
|  | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | 
|  | if ((TruncTy = | 
|  | isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) | 
|  | if (FoundIndex == e) { | 
|  | FoundIndex = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (FoundIndex == Add->getNumOperands()) | 
|  | return None; | 
|  |  | 
|  | // Create an add with everything but the specified operand. | 
|  | SmallVector<const SCEV *, 8> Ops; | 
|  | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | 
|  | if (i != FoundIndex) | 
|  | Ops.push_back(Add->getOperand(i)); | 
|  | const SCEV *Accum = getAddExpr(Ops); | 
|  |  | 
|  | // The runtime checks will not be valid if the step amount is | 
|  | // varying inside the loop. | 
|  | if (!isLoopInvariant(Accum, L)) | 
|  | return None; | 
|  |  | 
|  | // *** Part2: Create the predicates | 
|  |  | 
|  | // Analysis was successful: we have a phi-with-cast pattern for which we | 
|  | // can return an AddRec expression under the following predicates: | 
|  | // | 
|  | // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) | 
|  | //     fits within the truncated type (does not overflow) for i = 0 to n-1. | 
|  | // P2: An Equal predicate that guarantees that | 
|  | //     Start = (Ext ix (Trunc iy (Start) to ix) to iy) | 
|  | // P3: An Equal predicate that guarantees that | 
|  | //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) | 
|  | // | 
|  | // As we next prove, the above predicates guarantee that: | 
|  | //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) | 
|  | // | 
|  | // | 
|  | // More formally, we want to prove that: | 
|  | //     Expr(i+1) = Start + (i+1) * Accum | 
|  | //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum | 
|  | // | 
|  | // Given that: | 
|  | // 1) Expr(0) = Start | 
|  | // 2) Expr(1) = Start + Accum | 
|  | //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 | 
|  | // 3) Induction hypothesis (step i): | 
|  | //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum | 
|  | // | 
|  | // Proof: | 
|  | //  Expr(i+1) = | 
|  | //   = Start + (i+1)*Accum | 
|  | //   = (Start + i*Accum) + Accum | 
|  | //   = Expr(i) + Accum | 
|  | //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum | 
|  | //                                                             :: from step i | 
|  | // | 
|  | //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum | 
|  | // | 
|  | //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) | 
|  | //     + (Ext ix (Trunc iy (Accum) to ix) to iy) | 
|  | //     + Accum                                                     :: from P3 | 
|  | // | 
|  | //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) | 
|  | //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y) | 
|  | // | 
|  | //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum | 
|  | //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum | 
|  | // | 
|  | // By induction, the same applies to all iterations 1<=i<n: | 
|  | // | 
|  |  | 
|  | // Create a truncated addrec for which we will add a no overflow check (P1). | 
|  | const SCEV *StartVal = getSCEV(StartValueV); | 
|  | const SCEV *PHISCEV = | 
|  | getAddRecExpr(getTruncateExpr(StartVal, TruncTy), | 
|  | getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); | 
|  |  | 
|  | // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. | 
|  | // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV | 
|  | // will be constant. | 
|  | // | 
|  | //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't | 
|  | // add P1. | 
|  | if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { | 
|  | SCEVWrapPredicate::IncrementWrapFlags AddedFlags = | 
|  | Signed ? SCEVWrapPredicate::IncrementNSSW | 
|  | : SCEVWrapPredicate::IncrementNUSW; | 
|  | const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); | 
|  | Predicates.push_back(AddRecPred); | 
|  | } | 
|  |  | 
|  | // Create the Equal Predicates P2,P3: | 
|  |  | 
|  | // It is possible that the predicates P2 and/or P3 are computable at | 
|  | // compile time due to StartVal and/or Accum being constants. | 
|  | // If either one is, then we can check that now and escape if either P2 | 
|  | // or P3 is false. | 
|  |  | 
|  | // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) | 
|  | // for each of StartVal and Accum | 
|  | auto getExtendedExpr = [&](const SCEV *Expr, | 
|  | bool CreateSignExtend) -> const SCEV * { | 
|  | assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); | 
|  | const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); | 
|  | const SCEV *ExtendedExpr = | 
|  | CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) | 
|  | : getZeroExtendExpr(TruncatedExpr, Expr->getType()); | 
|  | return ExtendedExpr; | 
|  | }; | 
|  |  | 
|  | // Given: | 
|  | //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy | 
|  | //               = getExtendedExpr(Expr) | 
|  | // Determine whether the predicate P: Expr == ExtendedExpr | 
|  | // is known to be false at compile time | 
|  | auto PredIsKnownFalse = [&](const SCEV *Expr, | 
|  | const SCEV *ExtendedExpr) -> bool { | 
|  | return Expr != ExtendedExpr && | 
|  | isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); | 
|  | }; | 
|  |  | 
|  | const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); | 
|  | if (PredIsKnownFalse(StartVal, StartExtended)) { | 
|  | LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // The Step is always Signed (because the overflow checks are either | 
|  | // NSSW or NUSW) | 
|  | const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); | 
|  | if (PredIsKnownFalse(Accum, AccumExtended)) { | 
|  | LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | auto AppendPredicate = [&](const SCEV *Expr, | 
|  | const SCEV *ExtendedExpr) -> void { | 
|  | if (Expr != ExtendedExpr && | 
|  | !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { | 
|  | const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); | 
|  | LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); | 
|  | Predicates.push_back(Pred); | 
|  | } | 
|  | }; | 
|  |  | 
|  | AppendPredicate(StartVal, StartExtended); | 
|  | AppendPredicate(Accum, AccumExtended); | 
|  |  | 
|  | // *** Part3: Predicates are ready. Now go ahead and create the new addrec in | 
|  | // which the casts had been folded away. The caller can rewrite SymbolicPHI | 
|  | // into NewAR if it will also add the runtime overflow checks specified in | 
|  | // Predicates. | 
|  | auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); | 
|  |  | 
|  | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = | 
|  | std::make_pair(NewAR, Predicates); | 
|  | // Remember the result of the analysis for this SCEV at this locayyytion. | 
|  | PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; | 
|  | return PredRewrite; | 
|  | } | 
|  |  | 
|  | Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | 
|  | ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { | 
|  | auto *PN = cast<PHINode>(SymbolicPHI->getValue()); | 
|  | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); | 
|  | if (!L) | 
|  | return None; | 
|  |  | 
|  | // Check to see if we already analyzed this PHI. | 
|  | auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); | 
|  | if (I != PredicatedSCEVRewrites.end()) { | 
|  | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = | 
|  | I->second; | 
|  | // Analysis was done before and failed to create an AddRec: | 
|  | if (Rewrite.first == SymbolicPHI) | 
|  | return None; | 
|  | // Analysis was done before and succeeded to create an AddRec under | 
|  | // a predicate: | 
|  | assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); | 
|  | assert(!(Rewrite.second).empty() && "Expected to find Predicates"); | 
|  | return Rewrite; | 
|  | } | 
|  |  | 
|  | Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | 
|  | Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); | 
|  |  | 
|  | // Record in the cache that the analysis failed | 
|  | if (!Rewrite) { | 
|  | SmallVector<const SCEVPredicate *, 3> Predicates; | 
|  | PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; | 
|  | return None; | 
|  | } | 
|  |  | 
|  | return Rewrite; | 
|  | } | 
|  |  | 
|  | // FIXME: This utility is currently required because the Rewriter currently | 
|  | // does not rewrite this expression: | 
|  | // {0, +, (sext ix (trunc iy to ix) to iy)} | 
|  | // into {0, +, %step}, | 
|  | // even when the following Equal predicate exists: | 
|  | // "%step == (sext ix (trunc iy to ix) to iy)". | 
|  | bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( | 
|  | const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { | 
|  | if (AR1 == AR2) | 
|  | return true; | 
|  |  | 
|  | auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { | 
|  | if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && | 
|  | !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) | 
|  | return false; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || | 
|  | !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// A helper function for createAddRecFromPHI to handle simple cases. | 
|  | /// | 
|  | /// This function tries to find an AddRec expression for the simplest (yet most | 
|  | /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). | 
|  | /// If it fails, createAddRecFromPHI will use a more general, but slow, | 
|  | /// technique for finding the AddRec expression. | 
|  | const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, | 
|  | Value *BEValueV, | 
|  | Value *StartValueV) { | 
|  | const Loop *L = LI.getLoopFor(PN->getParent()); | 
|  | assert(L && L->getHeader() == PN->getParent()); | 
|  | assert(BEValueV && StartValueV); | 
|  |  | 
|  | auto BO = MatchBinaryOp(BEValueV, DT); | 
|  | if (!BO) | 
|  | return nullptr; | 
|  |  | 
|  | if (BO->Opcode != Instruction::Add) | 
|  | return nullptr; | 
|  |  | 
|  | const SCEV *Accum = nullptr; | 
|  | if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) | 
|  | Accum = getSCEV(BO->RHS); | 
|  | else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) | 
|  | Accum = getSCEV(BO->LHS); | 
|  |  | 
|  | if (!Accum) | 
|  | return nullptr; | 
|  |  | 
|  | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | 
|  | if (BO->IsNUW) | 
|  | Flags = setFlags(Flags, SCEV::FlagNUW); | 
|  | if (BO->IsNSW) | 
|  | Flags = setFlags(Flags, SCEV::FlagNSW); | 
|  |  | 
|  | const SCEV *StartVal = getSCEV(StartValueV); | 
|  | const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); | 
|  |  | 
|  | ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; | 
|  |  | 
|  | // We can add Flags to the post-inc expression only if we | 
|  | // know that it is *undefined behavior* for BEValueV to | 
|  | // overflow. | 
|  | if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) | 
|  | if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) | 
|  | (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); | 
|  |  | 
|  | return PHISCEV; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { | 
|  | const Loop *L = LI.getLoopFor(PN->getParent()); | 
|  | if (!L || L->getHeader() != PN->getParent()) | 
|  | return nullptr; | 
|  |  | 
|  | // The loop may have multiple entrances or multiple exits; we can analyze | 
|  | // this phi as an addrec if it has a unique entry value and a unique | 
|  | // backedge value. | 
|  | Value *BEValueV = nullptr, *StartValueV = nullptr; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = PN->getIncomingValue(i); | 
|  | if (L->contains(PN->getIncomingBlock(i))) { | 
|  | if (!BEValueV) { | 
|  | BEValueV = V; | 
|  | } else if (BEValueV != V) { | 
|  | BEValueV = nullptr; | 
|  | break; | 
|  | } | 
|  | } else if (!StartValueV) { | 
|  | StartValueV = V; | 
|  | } else if (StartValueV != V) { | 
|  | StartValueV = nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!BEValueV || !StartValueV) | 
|  | return nullptr; | 
|  |  | 
|  | assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && | 
|  | "PHI node already processed?"); | 
|  |  | 
|  | // First, try to find AddRec expression without creating a fictituos symbolic | 
|  | // value for PN. | 
|  | if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) | 
|  | return S; | 
|  |  | 
|  | // Handle PHI node value symbolically. | 
|  | const SCEV *SymbolicName = getUnknown(PN); | 
|  | ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); | 
|  |  | 
|  | // Using this symbolic name for the PHI, analyze the value coming around | 
|  | // the back-edge. | 
|  | const SCEV *BEValue = getSCEV(BEValueV); | 
|  |  | 
|  | // NOTE: If BEValue is loop invariant, we know that the PHI node just | 
|  | // has a special value for the first iteration of the loop. | 
|  |  | 
|  | // If the value coming around the backedge is an add with the symbolic | 
|  | // value we just inserted, then we found a simple induction variable! | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { | 
|  | // If there is a single occurrence of the symbolic value, replace it | 
|  | // with a recurrence. | 
|  | unsigned FoundIndex = Add->getNumOperands(); | 
|  | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | 
|  | if (Add->getOperand(i) == SymbolicName) | 
|  | if (FoundIndex == e) { | 
|  | FoundIndex = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (FoundIndex != Add->getNumOperands()) { | 
|  | // Create an add with everything but the specified operand. | 
|  | SmallVector<const SCEV *, 8> Ops; | 
|  | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | 
|  | if (i != FoundIndex) | 
|  | Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), | 
|  | L, *this)); | 
|  | const SCEV *Accum = getAddExpr(Ops); | 
|  |  | 
|  | // This is not a valid addrec if the step amount is varying each | 
|  | // loop iteration, but is not itself an addrec in this loop. | 
|  | if (isLoopInvariant(Accum, L) || | 
|  | (isa<SCEVAddRecExpr>(Accum) && | 
|  | cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { | 
|  | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | 
|  |  | 
|  | if (auto BO = MatchBinaryOp(BEValueV, DT)) { | 
|  | if (BO->Opcode == Instruction::Add && BO->LHS == PN) { | 
|  | if (BO->IsNUW) | 
|  | Flags = setFlags(Flags, SCEV::FlagNUW); | 
|  | if (BO->IsNSW) | 
|  | Flags = setFlags(Flags, SCEV::FlagNSW); | 
|  | } | 
|  | } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { | 
|  | // If the increment is an inbounds GEP, then we know the address | 
|  | // space cannot be wrapped around. We cannot make any guarantee | 
|  | // about signed or unsigned overflow because pointers are | 
|  | // unsigned but we may have a negative index from the base | 
|  | // pointer. We can guarantee that no unsigned wrap occurs if the | 
|  | // indices form a positive value. | 
|  | if (GEP->isInBounds() && GEP->getOperand(0) == PN) { | 
|  | Flags = setFlags(Flags, SCEV::FlagNW); | 
|  |  | 
|  | const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); | 
|  | if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) | 
|  | Flags = setFlags(Flags, SCEV::FlagNUW); | 
|  | } | 
|  |  | 
|  | // We cannot transfer nuw and nsw flags from subtraction | 
|  | // operations -- sub nuw X, Y is not the same as add nuw X, -Y | 
|  | // for instance. | 
|  | } | 
|  |  | 
|  | const SCEV *StartVal = getSCEV(StartValueV); | 
|  | const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); | 
|  |  | 
|  | // Okay, for the entire analysis of this edge we assumed the PHI | 
|  | // to be symbolic.  We now need to go back and purge all of the | 
|  | // entries for the scalars that use the symbolic expression. | 
|  | forgetSymbolicName(PN, SymbolicName); | 
|  | ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; | 
|  |  | 
|  | // We can add Flags to the post-inc expression only if we | 
|  | // know that it is *undefined behavior* for BEValueV to | 
|  | // overflow. | 
|  | if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) | 
|  | if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) | 
|  | (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); | 
|  |  | 
|  | return PHISCEV; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Otherwise, this could be a loop like this: | 
|  | //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; } | 
|  | // In this case, j = {1,+,1}  and BEValue is j. | 
|  | // Because the other in-value of i (0) fits the evolution of BEValue | 
|  | // i really is an addrec evolution. | 
|  | // | 
|  | // We can generalize this saying that i is the shifted value of BEValue | 
|  | // by one iteration: | 
|  | //   PHI(f(0), f({1,+,1})) --> f({0,+,1}) | 
|  | const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); | 
|  | const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); | 
|  | if (Shifted != getCouldNotCompute() && | 
|  | Start != getCouldNotCompute()) { | 
|  | const SCEV *StartVal = getSCEV(StartValueV); | 
|  | if (Start == StartVal) { | 
|  | // Okay, for the entire analysis of this edge we assumed the PHI | 
|  | // to be symbolic.  We now need to go back and purge all of the | 
|  | // entries for the scalars that use the symbolic expression. | 
|  | forgetSymbolicName(PN, SymbolicName); | 
|  | ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; | 
|  | return Shifted; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remove the temporary PHI node SCEV that has been inserted while intending | 
|  | // to create an AddRecExpr for this PHI node. We can not keep this temporary | 
|  | // as it will prevent later (possibly simpler) SCEV expressions to be added | 
|  | // to the ValueExprMap. | 
|  | eraseValueFromMap(PN); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Checks if the SCEV S is available at BB.  S is considered available at BB | 
|  | // if S can be materialized at BB without introducing a fault. | 
|  | static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, | 
|  | BasicBlock *BB) { | 
|  | struct CheckAvailable { | 
|  | bool TraversalDone = false; | 
|  | bool Available = true; | 
|  |  | 
|  | const Loop *L = nullptr;  // The loop BB is in (can be nullptr) | 
|  | BasicBlock *BB = nullptr; | 
|  | DominatorTree &DT; | 
|  |  | 
|  | CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) | 
|  | : L(L), BB(BB), DT(DT) {} | 
|  |  | 
|  | bool setUnavailable() { | 
|  | TraversalDone = true; | 
|  | Available = false; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | switch (S->getSCEVType()) { | 
|  | case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: | 
|  | case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: | 
|  | // These expressions are available if their operand(s) is/are. | 
|  | return true; | 
|  |  | 
|  | case scAddRecExpr: { | 
|  | // We allow add recurrences that are on the loop BB is in, or some | 
|  | // outer loop.  This guarantees availability because the value of the | 
|  | // add recurrence at BB is simply the "current" value of the induction | 
|  | // variable.  We can relax this in the future; for instance an add | 
|  | // recurrence on a sibling dominating loop is also available at BB. | 
|  | const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); | 
|  | if (L && (ARLoop == L || ARLoop->contains(L))) | 
|  | return true; | 
|  |  | 
|  | return setUnavailable(); | 
|  | } | 
|  |  | 
|  | case scUnknown: { | 
|  | // For SCEVUnknown, we check for simple dominance. | 
|  | const auto *SU = cast<SCEVUnknown>(S); | 
|  | Value *V = SU->getValue(); | 
|  |  | 
|  | if (isa<Argument>(V)) | 
|  | return false; | 
|  |  | 
|  | if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) | 
|  | return false; | 
|  |  | 
|  | return setUnavailable(); | 
|  | } | 
|  |  | 
|  | case scUDivExpr: | 
|  | case scCouldNotCompute: | 
|  | // We do not try to smart about these at all. | 
|  | return setUnavailable(); | 
|  | } | 
|  | llvm_unreachable("switch should be fully covered!"); | 
|  | } | 
|  |  | 
|  | bool isDone() { return TraversalDone; } | 
|  | }; | 
|  |  | 
|  | CheckAvailable CA(L, BB, DT); | 
|  | SCEVTraversal<CheckAvailable> ST(CA); | 
|  |  | 
|  | ST.visitAll(S); | 
|  | return CA.Available; | 
|  | } | 
|  |  | 
|  | // Try to match a control flow sequence that branches out at BI and merges back | 
|  | // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful | 
|  | // match. | 
|  | static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, | 
|  | Value *&C, Value *&LHS, Value *&RHS) { | 
|  | C = BI->getCondition(); | 
|  |  | 
|  | BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); | 
|  | BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); | 
|  |  | 
|  | if (!LeftEdge.isSingleEdge()) | 
|  | return false; | 
|  |  | 
|  | assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); | 
|  |  | 
|  | Use &LeftUse = Merge->getOperandUse(0); | 
|  | Use &RightUse = Merge->getOperandUse(1); | 
|  |  | 
|  | if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { | 
|  | LHS = LeftUse; | 
|  | RHS = RightUse; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { | 
|  | LHS = RightUse; | 
|  | RHS = LeftUse; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { | 
|  | auto IsReachable = | 
|  | [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; | 
|  | if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { | 
|  | const Loop *L = LI.getLoopFor(PN->getParent()); | 
|  |  | 
|  | // We don't want to break LCSSA, even in a SCEV expression tree. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) | 
|  | return nullptr; | 
|  |  | 
|  | // Try to match | 
|  | // | 
|  | //  br %cond, label %left, label %right | 
|  | // left: | 
|  | //  br label %merge | 
|  | // right: | 
|  | //  br label %merge | 
|  | // merge: | 
|  | //  V = phi [ %x, %left ], [ %y, %right ] | 
|  | // | 
|  | // as "select %cond, %x, %y" | 
|  |  | 
|  | BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); | 
|  | assert(IDom && "At least the entry block should dominate PN"); | 
|  |  | 
|  | auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); | 
|  | Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; | 
|  |  | 
|  | if (BI && BI->isConditional() && | 
|  | BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && | 
|  | IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && | 
|  | IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) | 
|  | return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { | 
|  | if (const SCEV *S = createAddRecFromPHI(PN)) | 
|  | return S; | 
|  |  | 
|  | if (const SCEV *S = createNodeFromSelectLikePHI(PN)) | 
|  | return S; | 
|  |  | 
|  | // If the PHI has a single incoming value, follow that value, unless the | 
|  | // PHI's incoming blocks are in a different loop, in which case doing so | 
|  | // risks breaking LCSSA form. Instcombine would normally zap these, but | 
|  | // it doesn't have DominatorTree information, so it may miss cases. | 
|  | if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) | 
|  | if (LI.replacementPreservesLCSSAForm(PN, V)) | 
|  | return getSCEV(V); | 
|  |  | 
|  | // If it's not a loop phi, we can't handle it yet. | 
|  | return getUnknown(PN); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, | 
|  | Value *Cond, | 
|  | Value *TrueVal, | 
|  | Value *FalseVal) { | 
|  | // Handle "constant" branch or select. This can occur for instance when a | 
|  | // loop pass transforms an inner loop and moves on to process the outer loop. | 
|  | if (auto *CI = dyn_cast<ConstantInt>(Cond)) | 
|  | return getSCEV(CI->isOne() ? TrueVal : FalseVal); | 
|  |  | 
|  | // Try to match some simple smax or umax patterns. | 
|  | auto *ICI = dyn_cast<ICmpInst>(Cond); | 
|  | if (!ICI) | 
|  | return getUnknown(I); | 
|  |  | 
|  | Value *LHS = ICI->getOperand(0); | 
|  | Value *RHS = ICI->getOperand(1); | 
|  |  | 
|  | switch (ICI->getPredicate()) { | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | // a >s b ? a+x : b+x  ->  smax(a, b)+x | 
|  | // a >s b ? b+x : a+x  ->  smin(a, b)+x | 
|  | if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { | 
|  | const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); | 
|  | const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); | 
|  | const SCEV *LA = getSCEV(TrueVal); | 
|  | const SCEV *RA = getSCEV(FalseVal); | 
|  | const SCEV *LDiff = getMinusSCEV(LA, LS); | 
|  | const SCEV *RDiff = getMinusSCEV(RA, RS); | 
|  | if (LDiff == RDiff) | 
|  | return getAddExpr(getSMaxExpr(LS, RS), LDiff); | 
|  | LDiff = getMinusSCEV(LA, RS); | 
|  | RDiff = getMinusSCEV(RA, LS); | 
|  | if (LDiff == RDiff) | 
|  | return getAddExpr(getSMinExpr(LS, RS), LDiff); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // a >u b ? a+x : b+x  ->  umax(a, b)+x | 
|  | // a >u b ? b+x : a+x  ->  umin(a, b)+x | 
|  | if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { | 
|  | const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); | 
|  | const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); | 
|  | const SCEV *LA = getSCEV(TrueVal); | 
|  | const SCEV *RA = getSCEV(FalseVal); | 
|  | const SCEV *LDiff = getMinusSCEV(LA, LS); | 
|  | const SCEV *RDiff = getMinusSCEV(RA, RS); | 
|  | if (LDiff == RDiff) | 
|  | return getAddExpr(getUMaxExpr(LS, RS), LDiff); | 
|  | LDiff = getMinusSCEV(LA, RS); | 
|  | RDiff = getMinusSCEV(RA, LS); | 
|  | if (LDiff == RDiff) | 
|  | return getAddExpr(getUMinExpr(LS, RS), LDiff); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x | 
|  | if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && | 
|  | isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { | 
|  | const SCEV *One = getOne(I->getType()); | 
|  | const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); | 
|  | const SCEV *LA = getSCEV(TrueVal); | 
|  | const SCEV *RA = getSCEV(FalseVal); | 
|  | const SCEV *LDiff = getMinusSCEV(LA, LS); | 
|  | const SCEV *RDiff = getMinusSCEV(RA, One); | 
|  | if (LDiff == RDiff) | 
|  | return getAddExpr(getUMaxExpr(One, LS), LDiff); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_EQ: | 
|  | // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x | 
|  | if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && | 
|  | isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { | 
|  | const SCEV *One = getOne(I->getType()); | 
|  | const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); | 
|  | const SCEV *LA = getSCEV(TrueVal); | 
|  | const SCEV *RA = getSCEV(FalseVal); | 
|  | const SCEV *LDiff = getMinusSCEV(LA, One); | 
|  | const SCEV *RDiff = getMinusSCEV(RA, LS); | 
|  | if (LDiff == RDiff) | 
|  | return getAddExpr(getUMaxExpr(One, LS), LDiff); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return getUnknown(I); | 
|  | } | 
|  |  | 
|  | /// Expand GEP instructions into add and multiply operations. This allows them | 
|  | /// to be analyzed by regular SCEV code. | 
|  | const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { | 
|  | // Don't attempt to analyze GEPs over unsized objects. | 
|  | if (!GEP->getSourceElementType()->isSized()) | 
|  | return getUnknown(GEP); | 
|  |  | 
|  | SmallVector<const SCEV *, 4> IndexExprs; | 
|  | for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) | 
|  | IndexExprs.push_back(getSCEV(*Index)); | 
|  | return getGEPExpr(GEP, IndexExprs); | 
|  | } | 
|  |  | 
|  | uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) | 
|  | return C->getAPInt().countTrailingZeros(); | 
|  |  | 
|  | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) | 
|  | return std::min(GetMinTrailingZeros(T->getOperand()), | 
|  | (uint32_t)getTypeSizeInBits(T->getType())); | 
|  |  | 
|  | if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { | 
|  | uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); | 
|  | return OpRes == getTypeSizeInBits(E->getOperand()->getType()) | 
|  | ? getTypeSizeInBits(E->getType()) | 
|  | : OpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { | 
|  | uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); | 
|  | return OpRes == getTypeSizeInBits(E->getOperand()->getType()) | 
|  | ? getTypeSizeInBits(E->getType()) | 
|  | : OpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { | 
|  | // The result is the min of all operands results. | 
|  | uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); | 
|  | for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) | 
|  | MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); | 
|  | return MinOpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { | 
|  | // The result is the sum of all operands results. | 
|  | uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); | 
|  | uint32_t BitWidth = getTypeSizeInBits(M->getType()); | 
|  | for (unsigned i = 1, e = M->getNumOperands(); | 
|  | SumOpRes != BitWidth && i != e; ++i) | 
|  | SumOpRes = | 
|  | std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); | 
|  | return SumOpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | // The result is the min of all operands results. | 
|  | uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); | 
|  | for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) | 
|  | MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); | 
|  | return MinOpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { | 
|  | // The result is the min of all operands results. | 
|  | uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); | 
|  | for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) | 
|  | MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); | 
|  | return MinOpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { | 
|  | // The result is the min of all operands results. | 
|  | uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); | 
|  | for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) | 
|  | MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); | 
|  | return MinOpRes; | 
|  | } | 
|  |  | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | // For a SCEVUnknown, ask ValueTracking. | 
|  | KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); | 
|  | return Known.countMinTrailingZeros(); | 
|  | } | 
|  |  | 
|  | // SCEVUDivExpr | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { | 
|  | auto I = MinTrailingZerosCache.find(S); | 
|  | if (I != MinTrailingZerosCache.end()) | 
|  | return I->second; | 
|  |  | 
|  | uint32_t Result = GetMinTrailingZerosImpl(S); | 
|  | auto InsertPair = MinTrailingZerosCache.insert({S, Result}); | 
|  | assert(InsertPair.second && "Should insert a new key"); | 
|  | return InsertPair.first->second; | 
|  | } | 
|  |  | 
|  | /// Helper method to assign a range to V from metadata present in the IR. | 
|  | static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) | 
|  | return getConstantRangeFromMetadata(*MD); | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Determine the range for a particular SCEV.  If SignHint is | 
|  | /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges | 
|  | /// with a "cleaner" unsigned (resp. signed) representation. | 
|  | const ConstantRange & | 
|  | ScalarEvolution::getRangeRef(const SCEV *S, | 
|  | ScalarEvolution::RangeSignHint SignHint) { | 
|  | DenseMap<const SCEV *, ConstantRange> &Cache = | 
|  | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges | 
|  | : SignedRanges; | 
|  |  | 
|  | // See if we've computed this range already. | 
|  | DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); | 
|  | if (I != Cache.end()) | 
|  | return I->second; | 
|  |  | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) | 
|  | return setRange(C, SignHint, ConstantRange(C->getAPInt())); | 
|  |  | 
|  | unsigned BitWidth = getTypeSizeInBits(S->getType()); | 
|  | ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); | 
|  |  | 
|  | // If the value has known zeros, the maximum value will have those known zeros | 
|  | // as well. | 
|  | uint32_t TZ = GetMinTrailingZeros(S); | 
|  | if (TZ != 0) { | 
|  | if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) | 
|  | ConservativeResult = | 
|  | ConstantRange(APInt::getMinValue(BitWidth), | 
|  | APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); | 
|  | else | 
|  | ConservativeResult = ConstantRange( | 
|  | APInt::getSignedMinValue(BitWidth), | 
|  | APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); | 
|  | } | 
|  |  | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); | 
|  | for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) | 
|  | X = X.add(getRangeRef(Add->getOperand(i), SignHint)); | 
|  | return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); | 
|  | } | 
|  |  | 
|  | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); | 
|  | for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) | 
|  | X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); | 
|  | return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); | 
|  | } | 
|  |  | 
|  | if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); | 
|  | for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) | 
|  | X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); | 
|  | return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); | 
|  | } | 
|  |  | 
|  | if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); | 
|  | for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) | 
|  | X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); | 
|  | return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); | 
|  | } | 
|  |  | 
|  | if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); | 
|  | ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); | 
|  | return setRange(UDiv, SignHint, | 
|  | ConservativeResult.intersectWith(X.udiv(Y))); | 
|  | } | 
|  |  | 
|  | if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); | 
|  | return setRange(ZExt, SignHint, | 
|  | ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); | 
|  | } | 
|  |  | 
|  | if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); | 
|  | return setRange(SExt, SignHint, | 
|  | ConservativeResult.intersectWith(X.signExtend(BitWidth))); | 
|  | } | 
|  |  | 
|  | if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { | 
|  | ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); | 
|  | return setRange(Trunc, SignHint, | 
|  | ConservativeResult.intersectWith(X.truncate(BitWidth))); | 
|  | } | 
|  |  | 
|  | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | // If there's no unsigned wrap, the value will never be less than its | 
|  | // initial value. | 
|  | if (AddRec->hasNoUnsignedWrap()) | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) | 
|  | if (!C->getValue()->isZero()) | 
|  | ConservativeResult = ConservativeResult.intersectWith( | 
|  | ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); | 
|  |  | 
|  | // If there's no signed wrap, and all the operands have the same sign or | 
|  | // zero, the value won't ever change sign. | 
|  | if (AddRec->hasNoSignedWrap()) { | 
|  | bool AllNonNeg = true; | 
|  | bool AllNonPos = true; | 
|  | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { | 
|  | if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; | 
|  | if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; | 
|  | } | 
|  | if (AllNonNeg) | 
|  | ConservativeResult = ConservativeResult.intersectWith( | 
|  | ConstantRange(APInt(BitWidth, 0), | 
|  | APInt::getSignedMinValue(BitWidth))); | 
|  | else if (AllNonPos) | 
|  | ConservativeResult = ConservativeResult.intersectWith( | 
|  | ConstantRange(APInt::getSignedMinValue(BitWidth), | 
|  | APInt(BitWidth, 1))); | 
|  | } | 
|  |  | 
|  | // TODO: non-affine addrec | 
|  | if (AddRec->isAffine()) { | 
|  | const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); | 
|  | if (!isa<SCEVCouldNotCompute>(MaxBECount) && | 
|  | getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { | 
|  | auto RangeFromAffine = getRangeForAffineAR( | 
|  | AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, | 
|  | BitWidth); | 
|  | if (!RangeFromAffine.isFullSet()) | 
|  | ConservativeResult = | 
|  | ConservativeResult.intersectWith(RangeFromAffine); | 
|  |  | 
|  | auto RangeFromFactoring = getRangeViaFactoring( | 
|  | AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, | 
|  | BitWidth); | 
|  | if (!RangeFromFactoring.isFullSet()) | 
|  | ConservativeResult = | 
|  | ConservativeResult.intersectWith(RangeFromFactoring); | 
|  | } | 
|  | } | 
|  |  | 
|  | return setRange(AddRec, SignHint, std::move(ConservativeResult)); | 
|  | } | 
|  |  | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | // Check if the IR explicitly contains !range metadata. | 
|  | Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); | 
|  | if (MDRange.hasValue()) | 
|  | ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); | 
|  |  | 
|  | // Split here to avoid paying the compile-time cost of calling both | 
|  | // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted | 
|  | // if needed. | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { | 
|  | // For a SCEVUnknown, ask ValueTracking. | 
|  | KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); | 
|  | if (Known.One != ~Known.Zero + 1) | 
|  | ConservativeResult = | 
|  | ConservativeResult.intersectWith(ConstantRange(Known.One, | 
|  | ~Known.Zero + 1)); | 
|  | } else { | 
|  | assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && | 
|  | "generalize as needed!"); | 
|  | unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); | 
|  | if (NS > 1) | 
|  | ConservativeResult = ConservativeResult.intersectWith( | 
|  | ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), | 
|  | APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); | 
|  | } | 
|  |  | 
|  | // A range of Phi is a subset of union of all ranges of its input. | 
|  | if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { | 
|  | // Make sure that we do not run over cycled Phis. | 
|  | if (PendingPhiRanges.insert(Phi).second) { | 
|  | ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); | 
|  | for (auto &Op : Phi->operands()) { | 
|  | auto OpRange = getRangeRef(getSCEV(Op), SignHint); | 
|  | RangeFromOps = RangeFromOps.unionWith(OpRange); | 
|  | // No point to continue if we already have a full set. | 
|  | if (RangeFromOps.isFullSet()) | 
|  | break; | 
|  | } | 
|  | ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); | 
|  | bool Erased = PendingPhiRanges.erase(Phi); | 
|  | assert(Erased && "Failed to erase Phi properly?"); | 
|  | (void) Erased; | 
|  | } | 
|  | } | 
|  |  | 
|  | return setRange(U, SignHint, std::move(ConservativeResult)); | 
|  | } | 
|  |  | 
|  | return setRange(S, SignHint, std::move(ConservativeResult)); | 
|  | } | 
|  |  | 
|  | // Given a StartRange, Step and MaxBECount for an expression compute a range of | 
|  | // values that the expression can take. Initially, the expression has a value | 
|  | // from StartRange and then is changed by Step up to MaxBECount times. Signed | 
|  | // argument defines if we treat Step as signed or unsigned. | 
|  | static ConstantRange getRangeForAffineARHelper(APInt Step, | 
|  | const ConstantRange &StartRange, | 
|  | const APInt &MaxBECount, | 
|  | unsigned BitWidth, bool Signed) { | 
|  | // If either Step or MaxBECount is 0, then the expression won't change, and we | 
|  | // just need to return the initial range. | 
|  | if (Step == 0 || MaxBECount == 0) | 
|  | return StartRange; | 
|  |  | 
|  | // If we don't know anything about the initial value (i.e. StartRange is | 
|  | // FullRange), then we don't know anything about the final range either. | 
|  | // Return FullRange. | 
|  | if (StartRange.isFullSet()) | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  |  | 
|  | // If Step is signed and negative, then we use its absolute value, but we also | 
|  | // note that we're moving in the opposite direction. | 
|  | bool Descending = Signed && Step.isNegative(); | 
|  |  | 
|  | if (Signed) | 
|  | // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: | 
|  | // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. | 
|  | // This equations hold true due to the well-defined wrap-around behavior of | 
|  | // APInt. | 
|  | Step = Step.abs(); | 
|  |  | 
|  | // Check if Offset is more than full span of BitWidth. If it is, the | 
|  | // expression is guaranteed to overflow. | 
|  | if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  |  | 
|  | // Offset is by how much the expression can change. Checks above guarantee no | 
|  | // overflow here. | 
|  | APInt Offset = Step * MaxBECount; | 
|  |  | 
|  | // Minimum value of the final range will match the minimal value of StartRange | 
|  | // if the expression is increasing and will be decreased by Offset otherwise. | 
|  | // Maximum value of the final range will match the maximal value of StartRange | 
|  | // if the expression is decreasing and will be increased by Offset otherwise. | 
|  | APInt StartLower = StartRange.getLower(); | 
|  | APInt StartUpper = StartRange.getUpper() - 1; | 
|  | APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) | 
|  | : (StartUpper + std::move(Offset)); | 
|  |  | 
|  | // It's possible that the new minimum/maximum value will fall into the initial | 
|  | // range (due to wrap around). This means that the expression can take any | 
|  | // value in this bitwidth, and we have to return full range. | 
|  | if (StartRange.contains(MovedBoundary)) | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  |  | 
|  | APInt NewLower = | 
|  | Descending ? std::move(MovedBoundary) : std::move(StartLower); | 
|  | APInt NewUpper = | 
|  | Descending ? std::move(StartUpper) : std::move(MovedBoundary); | 
|  | NewUpper += 1; | 
|  |  | 
|  | // If we end up with full range, return a proper full range. | 
|  | if (NewLower == NewUpper) | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  |  | 
|  | // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. | 
|  | return ConstantRange(std::move(NewLower), std::move(NewUpper)); | 
|  | } | 
|  |  | 
|  | ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, | 
|  | const SCEV *Step, | 
|  | const SCEV *MaxBECount, | 
|  | unsigned BitWidth) { | 
|  | assert(!isa<SCEVCouldNotCompute>(MaxBECount) && | 
|  | getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && | 
|  | "Precondition!"); | 
|  |  | 
|  | MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); | 
|  | APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); | 
|  |  | 
|  | // First, consider step signed. | 
|  | ConstantRange StartSRange = getSignedRange(Start); | 
|  | ConstantRange StepSRange = getSignedRange(Step); | 
|  |  | 
|  | // If Step can be both positive and negative, we need to find ranges for the | 
|  | // maximum absolute step values in both directions and union them. | 
|  | ConstantRange SR = | 
|  | getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, | 
|  | MaxBECountValue, BitWidth, /* Signed = */ true); | 
|  | SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), | 
|  | StartSRange, MaxBECountValue, | 
|  | BitWidth, /* Signed = */ true)); | 
|  |  | 
|  | // Next, consider step unsigned. | 
|  | ConstantRange UR = getRangeForAffineARHelper( | 
|  | getUnsignedRangeMax(Step), getUnsignedRange(Start), | 
|  | MaxBECountValue, BitWidth, /* Signed = */ false); | 
|  |  | 
|  | // Finally, intersect signed and unsigned ranges. | 
|  | return SR.intersectWith(UR); | 
|  | } | 
|  |  | 
|  | ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, | 
|  | const SCEV *Step, | 
|  | const SCEV *MaxBECount, | 
|  | unsigned BitWidth) { | 
|  | //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) | 
|  | // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) | 
|  |  | 
|  | struct SelectPattern { | 
|  | Value *Condition = nullptr; | 
|  | APInt TrueValue; | 
|  | APInt FalseValue; | 
|  |  | 
|  | explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, | 
|  | const SCEV *S) { | 
|  | Optional<unsigned> CastOp; | 
|  | APInt Offset(BitWidth, 0); | 
|  |  | 
|  | assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && | 
|  | "Should be!"); | 
|  |  | 
|  | // Peel off a constant offset: | 
|  | if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { | 
|  | // In the future we could consider being smarter here and handle | 
|  | // {Start+Step,+,Step} too. | 
|  | if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) | 
|  | return; | 
|  |  | 
|  | Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); | 
|  | S = SA->getOperand(1); | 
|  | } | 
|  |  | 
|  | // Peel off a cast operation | 
|  | if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { | 
|  | CastOp = SCast->getSCEVType(); | 
|  | S = SCast->getOperand(); | 
|  | } | 
|  |  | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | auto *SU = dyn_cast<SCEVUnknown>(S); | 
|  | const APInt *TrueVal, *FalseVal; | 
|  | if (!SU || | 
|  | !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), | 
|  | m_APInt(FalseVal)))) { | 
|  | Condition = nullptr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | TrueValue = *TrueVal; | 
|  | FalseValue = *FalseVal; | 
|  |  | 
|  | // Re-apply the cast we peeled off earlier | 
|  | if (CastOp.hasValue()) | 
|  | switch (*CastOp) { | 
|  | default: | 
|  | llvm_unreachable("Unknown SCEV cast type!"); | 
|  |  | 
|  | case scTruncate: | 
|  | TrueValue = TrueValue.trunc(BitWidth); | 
|  | FalseValue = FalseValue.trunc(BitWidth); | 
|  | break; | 
|  | case scZeroExtend: | 
|  | TrueValue = TrueValue.zext(BitWidth); | 
|  | FalseValue = FalseValue.zext(BitWidth); | 
|  | break; | 
|  | case scSignExtend: | 
|  | TrueValue = TrueValue.sext(BitWidth); | 
|  | FalseValue = FalseValue.sext(BitWidth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Re-apply the constant offset we peeled off earlier | 
|  | TrueValue += Offset; | 
|  | FalseValue += Offset; | 
|  | } | 
|  |  | 
|  | bool isRecognized() { return Condition != nullptr; } | 
|  | }; | 
|  |  | 
|  | SelectPattern StartPattern(*this, BitWidth, Start); | 
|  | if (!StartPattern.isRecognized()) | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  |  | 
|  | SelectPattern StepPattern(*this, BitWidth, Step); | 
|  | if (!StepPattern.isRecognized()) | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  |  | 
|  | if (StartPattern.Condition != StepPattern.Condition) { | 
|  | // We don't handle this case today; but we could, by considering four | 
|  | // possibilities below instead of two. I'm not sure if there are cases where | 
|  | // that will help over what getRange already does, though. | 
|  | return ConstantRange(BitWidth, /* isFullSet = */ true); | 
|  | } | 
|  |  | 
|  | // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to | 
|  | // construct arbitrary general SCEV expressions here.  This function is called | 
|  | // from deep in the call stack, and calling getSCEV (on a sext instruction, | 
|  | // say) can end up caching a suboptimal value. | 
|  |  | 
|  | // FIXME: without the explicit `this` receiver below, MSVC errors out with | 
|  | // C2352 and C2512 (otherwise it isn't needed). | 
|  |  | 
|  | const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); | 
|  | const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); | 
|  | const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); | 
|  | const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); | 
|  |  | 
|  | ConstantRange TrueRange = | 
|  | this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); | 
|  | ConstantRange FalseRange = | 
|  | this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); | 
|  |  | 
|  | return TrueRange.unionWith(FalseRange); | 
|  | } | 
|  |  | 
|  | SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { | 
|  | if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; | 
|  | const BinaryOperator *BinOp = cast<BinaryOperator>(V); | 
|  |  | 
|  | // Return early if there are no flags to propagate to the SCEV. | 
|  | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | 
|  | if (BinOp->hasNoUnsignedWrap()) | 
|  | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | 
|  | if (BinOp->hasNoSignedWrap()) | 
|  | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); | 
|  | if (Flags == SCEV::FlagAnyWrap) | 
|  | return SCEV::FlagAnyWrap; | 
|  |  | 
|  | return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { | 
|  | // Here we check that I is in the header of the innermost loop containing I, | 
|  | // since we only deal with instructions in the loop header. The actual loop we | 
|  | // need to check later will come from an add recurrence, but getting that | 
|  | // requires computing the SCEV of the operands, which can be expensive. This | 
|  | // check we can do cheaply to rule out some cases early. | 
|  | Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); | 
|  | if (InnermostContainingLoop == nullptr || | 
|  | InnermostContainingLoop->getHeader() != I->getParent()) | 
|  | return false; | 
|  |  | 
|  | // Only proceed if we can prove that I does not yield poison. | 
|  | if (!programUndefinedIfFullPoison(I)) | 
|  | return false; | 
|  |  | 
|  | // At this point we know that if I is executed, then it does not wrap | 
|  | // according to at least one of NSW or NUW. If I is not executed, then we do | 
|  | // not know if the calculation that I represents would wrap. Multiple | 
|  | // instructions can map to the same SCEV. If we apply NSW or NUW from I to | 
|  | // the SCEV, we must guarantee no wrapping for that SCEV also when it is | 
|  | // derived from other instructions that map to the same SCEV. We cannot make | 
|  | // that guarantee for cases where I is not executed. So we need to find the | 
|  | // loop that I is considered in relation to and prove that I is executed for | 
|  | // every iteration of that loop. That implies that the value that I | 
|  | // calculates does not wrap anywhere in the loop, so then we can apply the | 
|  | // flags to the SCEV. | 
|  | // | 
|  | // We check isLoopInvariant to disambiguate in case we are adding recurrences | 
|  | // from different loops, so that we know which loop to prove that I is | 
|  | // executed in. | 
|  | for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { | 
|  | // I could be an extractvalue from a call to an overflow intrinsic. | 
|  | // TODO: We can do better here in some cases. | 
|  | if (!isSCEVable(I->getOperand(OpIndex)->getType())) | 
|  | return false; | 
|  | const SCEV *Op = getSCEV(I->getOperand(OpIndex)); | 
|  | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { | 
|  | bool AllOtherOpsLoopInvariant = true; | 
|  | for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); | 
|  | ++OtherOpIndex) { | 
|  | if (OtherOpIndex != OpIndex) { | 
|  | const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); | 
|  | if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { | 
|  | AllOtherOpsLoopInvariant = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (AllOtherOpsLoopInvariant && | 
|  | isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { | 
|  | // If we know that \c I can never be poison period, then that's enough. | 
|  | if (isSCEVExprNeverPoison(I)) | 
|  | return true; | 
|  |  | 
|  | // For an add recurrence specifically, we assume that infinite loops without | 
|  | // side effects are undefined behavior, and then reason as follows: | 
|  | // | 
|  | // If the add recurrence is poison in any iteration, it is poison on all | 
|  | // future iterations (since incrementing poison yields poison). If the result | 
|  | // of the add recurrence is fed into the loop latch condition and the loop | 
|  | // does not contain any throws or exiting blocks other than the latch, we now | 
|  | // have the ability to "choose" whether the backedge is taken or not (by | 
|  | // choosing a sufficiently evil value for the poison feeding into the branch) | 
|  | // for every iteration including and after the one in which \p I first became | 
|  | // poison.  There are two possibilities (let's call the iteration in which \p | 
|  | // I first became poison as K): | 
|  | // | 
|  | //  1. In the set of iterations including and after K, the loop body executes | 
|  | //     no side effects.  In this case executing the backege an infinte number | 
|  | //     of times will yield undefined behavior. | 
|  | // | 
|  | //  2. In the set of iterations including and after K, the loop body executes | 
|  | //     at least one side effect.  In this case, that specific instance of side | 
|  | //     effect is control dependent on poison, which also yields undefined | 
|  | //     behavior. | 
|  |  | 
|  | auto *ExitingBB = L->getExitingBlock(); | 
|  | auto *LatchBB = L->getLoopLatch(); | 
|  | if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) | 
|  | return false; | 
|  |  | 
|  | SmallPtrSet<const Instruction *, 16> Pushed; | 
|  | SmallVector<const Instruction *, 8> PoisonStack; | 
|  |  | 
|  | // We start by assuming \c I, the post-inc add recurrence, is poison.  Only | 
|  | // things that are known to be fully poison under that assumption go on the | 
|  | // PoisonStack. | 
|  | Pushed.insert(I); | 
|  | PoisonStack.push_back(I); | 
|  |  | 
|  | bool LatchControlDependentOnPoison = false; | 
|  | while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { | 
|  | const Instruction *Poison = PoisonStack.pop_back_val(); | 
|  |  | 
|  | for (auto *PoisonUser : Poison->users()) { | 
|  | if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { | 
|  | if (Pushed.insert(cast<Instruction>(PoisonUser)).second) | 
|  | PoisonStack.push_back(cast<Instruction>(PoisonUser)); | 
|  | } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { | 
|  | assert(BI->isConditional() && "Only possibility!"); | 
|  | if (BI->getParent() == LatchBB) { | 
|  | LatchControlDependentOnPoison = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::LoopProperties | 
|  | ScalarEvolution::getLoopProperties(const Loop *L) { | 
|  | using LoopProperties = ScalarEvolution::LoopProperties; | 
|  |  | 
|  | auto Itr = LoopPropertiesCache.find(L); | 
|  | if (Itr == LoopPropertiesCache.end()) { | 
|  | auto HasSideEffects = [](Instruction *I) { | 
|  | if (auto *SI = dyn_cast<StoreInst>(I)) | 
|  | return !SI->isSimple(); | 
|  |  | 
|  | return I->mayHaveSideEffects(); | 
|  | }; | 
|  |  | 
|  | LoopProperties LP = {/* HasNoAbnormalExits */ true, | 
|  | /*HasNoSideEffects*/ true}; | 
|  |  | 
|  | for (auto *BB : L->getBlocks()) | 
|  | for (auto &I : *BB) { | 
|  | if (!isGuaranteedToTransferExecutionToSuccessor(&I)) | 
|  | LP.HasNoAbnormalExits = false; | 
|  | if (HasSideEffects(&I)) | 
|  | LP.HasNoSideEffects = false; | 
|  | if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) | 
|  | break; // We're already as pessimistic as we can get. | 
|  | } | 
|  |  | 
|  | auto InsertPair = LoopPropertiesCache.insert({L, LP}); | 
|  | assert(InsertPair.second && "We just checked!"); | 
|  | Itr = InsertPair.first; | 
|  | } | 
|  |  | 
|  | return Itr->second; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::createSCEV(Value *V) { | 
|  | if (!isSCEVable(V->getType())) | 
|  | return getUnknown(V); | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | // Don't attempt to analyze instructions in blocks that aren't | 
|  | // reachable. Such instructions don't matter, and they aren't required | 
|  | // to obey basic rules for definitions dominating uses which this | 
|  | // analysis depends on. | 
|  | if (!DT.isReachableFromEntry(I->getParent())) | 
|  | return getUnknown(V); | 
|  | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
|  | return getConstant(CI); | 
|  | else if (isa<ConstantPointerNull>(V)) | 
|  | return getZero(V->getType()); | 
|  | else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) | 
|  | return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); | 
|  | else if (!isa<ConstantExpr>(V)) | 
|  | return getUnknown(V); | 
|  |  | 
|  | Operator *U = cast<Operator>(V); | 
|  | if (auto BO = MatchBinaryOp(U, DT)) { | 
|  | switch (BO->Opcode) { | 
|  | case Instruction::Add: { | 
|  | // The simple thing to do would be to just call getSCEV on both operands | 
|  | // and call getAddExpr with the result. However if we're looking at a | 
|  | // bunch of things all added together, this can be quite inefficient, | 
|  | // because it leads to N-1 getAddExpr calls for N ultimate operands. | 
|  | // Instead, gather up all the operands and make a single getAddExpr call. | 
|  | // LLVM IR canonical form means we need only traverse the left operands. | 
|  | SmallVector<const SCEV *, 4> AddOps; | 
|  | do { | 
|  | if (BO->Op) { | 
|  | if (auto *OpSCEV = getExistingSCEV(BO->Op)) { | 
|  | AddOps.push_back(OpSCEV); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If a NUW or NSW flag can be applied to the SCEV for this | 
|  | // addition, then compute the SCEV for this addition by itself | 
|  | // with a separate call to getAddExpr. We need to do that | 
|  | // instead of pushing the operands of the addition onto AddOps, | 
|  | // since the flags are only known to apply to this particular | 
|  | // addition - they may not apply to other additions that can be | 
|  | // formed with operands from AddOps. | 
|  | const SCEV *RHS = getSCEV(BO->RHS); | 
|  | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); | 
|  | if (Flags != SCEV::FlagAnyWrap) { | 
|  | const SCEV *LHS = getSCEV(BO->LHS); | 
|  | if (BO->Opcode == Instruction::Sub) | 
|  | AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); | 
|  | else | 
|  | AddOps.push_back(getAddExpr(LHS, RHS, Flags)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BO->Opcode == Instruction::Sub) | 
|  | AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); | 
|  | else | 
|  | AddOps.push_back(getSCEV(BO->RHS)); | 
|  |  | 
|  | auto NewBO = MatchBinaryOp(BO->LHS, DT); | 
|  | if (!NewBO || (NewBO->Opcode != Instruction::Add && | 
|  | NewBO->Opcode != Instruction::Sub)) { | 
|  | AddOps.push_back(getSCEV(BO->LHS)); | 
|  | break; | 
|  | } | 
|  | BO = NewBO; | 
|  | } while (true); | 
|  |  | 
|  | return getAddExpr(AddOps); | 
|  | } | 
|  |  | 
|  | case Instruction::Mul: { | 
|  | SmallVector<const SCEV *, 4> MulOps; | 
|  | do { | 
|  | if (BO->Op) { | 
|  | if (auto *OpSCEV = getExistingSCEV(BO->Op)) { | 
|  | MulOps.push_back(OpSCEV); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); | 
|  | if (Flags != SCEV::FlagAnyWrap) { | 
|  | MulOps.push_back( | 
|  | getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MulOps.push_back(getSCEV(BO->RHS)); | 
|  | auto NewBO = MatchBinaryOp(BO->LHS, DT); | 
|  | if (!NewBO || NewBO->Opcode != Instruction::Mul) { | 
|  | MulOps.push_back(getSCEV(BO->LHS)); | 
|  | break; | 
|  | } | 
|  | BO = NewBO; | 
|  | } while (true); | 
|  |  | 
|  | return getMulExpr(MulOps); | 
|  | } | 
|  | case Instruction::UDiv: | 
|  | return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); | 
|  | case Instruction::URem: | 
|  | return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); | 
|  | case Instruction::Sub: { | 
|  | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | 
|  | if (BO->Op) | 
|  | Flags = getNoWrapFlagsFromUB(BO->Op); | 
|  | return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); | 
|  | } | 
|  | case Instruction::And: | 
|  | // For an expression like x&255 that merely masks off the high bits, | 
|  | // use zext(trunc(x)) as the SCEV expression. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { | 
|  | if (CI->isZero()) | 
|  | return getSCEV(BO->RHS); | 
|  | if (CI->isMinusOne()) | 
|  | return getSCEV(BO->LHS); | 
|  | const APInt &A = CI->getValue(); | 
|  |  | 
|  | // Instcombine's ShrinkDemandedConstant may strip bits out of | 
|  | // constants, obscuring what would otherwise be a low-bits mask. | 
|  | // Use computeKnownBits to compute what ShrinkDemandedConstant | 
|  | // knew about to reconstruct a low-bits mask value. | 
|  | unsigned LZ = A.countLeadingZeros(); | 
|  | unsigned TZ = A.countTrailingZeros(); | 
|  | unsigned BitWidth = A.getBitWidth(); | 
|  | KnownBits Known(BitWidth); | 
|  | computeKnownBits(BO->LHS, Known, getDataLayout(), | 
|  | 0, &AC, nullptr, &DT); | 
|  |  | 
|  | APInt EffectiveMask = | 
|  | APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); | 
|  | if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { | 
|  | const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); | 
|  | const SCEV *LHS = getSCEV(BO->LHS); | 
|  | const SCEV *ShiftedLHS = nullptr; | 
|  | if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { | 
|  | if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { | 
|  | // For an expression like (x * 8) & 8, simplify the multiply. | 
|  | unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); | 
|  | unsigned GCD = std::min(MulZeros, TZ); | 
|  | APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); | 
|  | SmallVector<const SCEV*, 4> MulOps; | 
|  | MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); | 
|  | MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); | 
|  | auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); | 
|  | ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); | 
|  | } | 
|  | } | 
|  | if (!ShiftedLHS) | 
|  | ShiftedLHS = getUDivExpr(LHS, MulCount); | 
|  | return getMulExpr( | 
|  | getZeroExtendExpr( | 
|  | getTruncateExpr(ShiftedLHS, | 
|  | IntegerType::get(getContext(), BitWidth - LZ - TZ)), | 
|  | BO->LHS->getType()), | 
|  | MulCount); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Or: | 
|  | // If the RHS of the Or is a constant, we may have something like: | 
|  | // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop | 
|  | // optimizations will transparently handle this case. | 
|  | // | 
|  | // In order for this transformation to be safe, the LHS must be of the | 
|  | // form X*(2^n) and the Or constant must be less than 2^n. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { | 
|  | const SCEV *LHS = getSCEV(BO->LHS); | 
|  | const APInt &CIVal = CI->getValue(); | 
|  | if (GetMinTrailingZeros(LHS) >= | 
|  | (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { | 
|  | // Build a plain add SCEV. | 
|  | const SCEV *S = getAddExpr(LHS, getSCEV(CI)); | 
|  | // If the LHS of the add was an addrec and it has no-wrap flags, | 
|  | // transfer the no-wrap flags, since an or won't introduce a wrap. | 
|  | if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); | 
|  | const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( | 
|  | OldAR->getNoWrapFlags()); | 
|  | } | 
|  | return S; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Xor: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { | 
|  | // If the RHS of xor is -1, then this is a not operation. | 
|  | if (CI->isMinusOne()) | 
|  | return getNotSCEV(getSCEV(BO->LHS)); | 
|  |  | 
|  | // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. | 
|  | // This is a variant of the check for xor with -1, and it handles | 
|  | // the case where instcombine has trimmed non-demanded bits out | 
|  | // of an xor with -1. | 
|  | if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) | 
|  | if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) | 
|  | if (LBO->getOpcode() == Instruction::And && | 
|  | LCI->getValue() == CI->getValue()) | 
|  | if (const SCEVZeroExtendExpr *Z = | 
|  | dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { | 
|  | Type *UTy = BO->LHS->getType(); | 
|  | const SCEV *Z0 = Z->getOperand(); | 
|  | Type *Z0Ty = Z0->getType(); | 
|  | unsigned Z0TySize = getTypeSizeInBits(Z0Ty); | 
|  |  | 
|  | // If C is a low-bits mask, the zero extend is serving to | 
|  | // mask off the high bits. Complement the operand and | 
|  | // re-apply the zext. | 
|  | if (CI->getValue().isMask(Z0TySize)) | 
|  | return getZeroExtendExpr(getNotSCEV(Z0), UTy); | 
|  |  | 
|  | // If C is a single bit, it may be in the sign-bit position | 
|  | // before the zero-extend. In this case, represent the xor | 
|  | // using an add, which is equivalent, and re-apply the zext. | 
|  | APInt Trunc = CI->getValue().trunc(Z0TySize); | 
|  | if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && | 
|  | Trunc.isSignMask()) | 
|  | return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), | 
|  | UTy); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: | 
|  | // Turn shift left of a constant amount into a multiply. | 
|  | if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); | 
|  |  | 
|  | // If the shift count is not less than the bitwidth, the result of | 
|  | // the shift is undefined. Don't try to analyze it, because the | 
|  | // resolution chosen here may differ from the resolution chosen in | 
|  | // other parts of the compiler. | 
|  | if (SA->getValue().uge(BitWidth)) | 
|  | break; | 
|  |  | 
|  | // It is currently not resolved how to interpret NSW for left | 
|  | // shift by BitWidth - 1, so we avoid applying flags in that | 
|  | // case. Remove this check (or this comment) once the situation | 
|  | // is resolved. See | 
|  | // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html | 
|  | // and http://reviews.llvm.org/D8890 . | 
|  | auto Flags = SCEV::FlagAnyWrap; | 
|  | if (BO->Op && SA->getValue().ult(BitWidth - 1)) | 
|  | Flags = getNoWrapFlagsFromUB(BO->Op); | 
|  |  | 
|  | Constant *X = ConstantInt::get(getContext(), | 
|  | APInt::getOneBitSet(BitWidth, SA->getZExtValue())); | 
|  | return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::AShr: { | 
|  | // AShr X, C, where C is a constant. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); | 
|  | if (!CI) | 
|  | break; | 
|  |  | 
|  | Type *OuterTy = BO->LHS->getType(); | 
|  | uint64_t BitWidth = getTypeSizeInBits(OuterTy); | 
|  | // If the shift count is not less than the bitwidth, the result of | 
|  | // the shift is undefined. Don't try to analyze it, because the | 
|  | // resolution chosen here may differ from the resolution chosen in | 
|  | // other parts of the compiler. | 
|  | if (CI->getValue().uge(BitWidth)) | 
|  | break; | 
|  |  | 
|  | if (CI->isZero()) | 
|  | return getSCEV(BO->LHS); // shift by zero --> noop | 
|  |  | 
|  | uint64_t AShrAmt = CI->getZExtValue(); | 
|  | Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); | 
|  |  | 
|  | Operator *L = dyn_cast<Operator>(BO->LHS); | 
|  | if (L && L->getOpcode() == Instruction::Shl) { | 
|  | // X = Shl A, n | 
|  | // Y = AShr X, m | 
|  | // Both n and m are constant. | 
|  |  | 
|  | const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); | 
|  | if (L->getOperand(1) == BO->RHS) | 
|  | // For a two-shift sext-inreg, i.e. n = m, | 
|  | // use sext(trunc(x)) as the SCEV expression. | 
|  | return getSignExtendExpr( | 
|  | getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); | 
|  |  | 
|  | ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); | 
|  | if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { | 
|  | uint64_t ShlAmt = ShlAmtCI->getZExtValue(); | 
|  | if (ShlAmt > AShrAmt) { | 
|  | // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV | 
|  | // expression. We already checked that ShlAmt < BitWidth, so | 
|  | // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as | 
|  | // ShlAmt - AShrAmt < Amt. | 
|  | APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, | 
|  | ShlAmt - AShrAmt); | 
|  | return getSignExtendExpr( | 
|  | getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), | 
|  | getConstant(Mul)), OuterTy); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (U->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); | 
|  |  | 
|  | case Instruction::ZExt: | 
|  | return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); | 
|  |  | 
|  | case Instruction::SExt: | 
|  | if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { | 
|  | // The NSW flag of a subtract does not always survive the conversion to | 
|  | // A + (-1)*B.  By pushing sign extension onto its operands we are much | 
|  | // more likely to preserve NSW and allow later AddRec optimisations. | 
|  | // | 
|  | // NOTE: This is effectively duplicating this logic from getSignExtend: | 
|  | //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> | 
|  | // but by that point the NSW information has potentially been lost. | 
|  | if (BO->Opcode == Instruction::Sub && BO->IsNSW) { | 
|  | Type *Ty = U->getType(); | 
|  | auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); | 
|  | auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); | 
|  | return getMinusSCEV(V1, V2, SCEV::FlagNSW); | 
|  | } | 
|  | } | 
|  | return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); | 
|  |  | 
|  | case Instruction::BitCast: | 
|  | // BitCasts are no-op casts so we just eliminate the cast. | 
|  | if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) | 
|  | return getSCEV(U->getOperand(0)); | 
|  | break; | 
|  |  | 
|  | // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can | 
|  | // lead to pointer expressions which cannot safely be expanded to GEPs, | 
|  | // because ScalarEvolution doesn't respect the GEP aliasing rules when | 
|  | // simplifying integer expressions. | 
|  |  | 
|  | case Instruction::GetElementPtr: | 
|  | return createNodeForGEP(cast<GEPOperator>(U)); | 
|  |  | 
|  | case Instruction::PHI: | 
|  | return createNodeForPHI(cast<PHINode>(U)); | 
|  |  | 
|  | case Instruction::Select: | 
|  | // U can also be a select constant expr, which let fall through.  Since | 
|  | // createNodeForSelect only works for a condition that is an `ICmpInst`, and | 
|  | // constant expressions cannot have instructions as operands, we'd have | 
|  | // returned getUnknown for a select constant expressions anyway. | 
|  | if (isa<Instruction>(U)) | 
|  | return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), | 
|  | U->getOperand(1), U->getOperand(2)); | 
|  | break; | 
|  |  | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | if (Value *RV = CallSite(U).getReturnedArgOperand()) | 
|  | return getSCEV(RV); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return getUnknown(V); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                   Iteration Count Computation Code | 
|  | // | 
|  |  | 
|  | static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { | 
|  | if (!ExitCount) | 
|  | return 0; | 
|  |  | 
|  | ConstantInt *ExitConst = ExitCount->getValue(); | 
|  |  | 
|  | // Guard against huge trip counts. | 
|  | if (ExitConst->getValue().getActiveBits() > 32) | 
|  | return 0; | 
|  |  | 
|  | // In case of integer overflow, this returns 0, which is correct. | 
|  | return ((unsigned)ExitConst->getZExtValue()) + 1; | 
|  | } | 
|  |  | 
|  | unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { | 
|  | if (BasicBlock *ExitingBB = L->getExitingBlock()) | 
|  | return getSmallConstantTripCount(L, ExitingBB); | 
|  |  | 
|  | // No trip count information for multiple exits. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, | 
|  | BasicBlock *ExitingBlock) { | 
|  | assert(ExitingBlock && "Must pass a non-null exiting block!"); | 
|  | assert(L->isLoopExiting(ExitingBlock) && | 
|  | "Exiting block must actually branch out of the loop!"); | 
|  | const SCEVConstant *ExitCount = | 
|  | dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); | 
|  | return getConstantTripCount(ExitCount); | 
|  | } | 
|  |  | 
|  | unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { | 
|  | const auto *MaxExitCount = | 
|  | dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); | 
|  | return getConstantTripCount(MaxExitCount); | 
|  | } | 
|  |  | 
|  | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { | 
|  | if (BasicBlock *ExitingBB = L->getExitingBlock()) | 
|  | return getSmallConstantTripMultiple(L, ExitingBB); | 
|  |  | 
|  | // No trip multiple information for multiple exits. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Returns the largest constant divisor of the trip count of this loop as a | 
|  | /// normal unsigned value, if possible. This means that the actual trip count is | 
|  | /// always a multiple of the returned value (don't forget the trip count could | 
|  | /// very well be zero as well!). | 
|  | /// | 
|  | /// Returns 1 if the trip count is unknown or not guaranteed to be the | 
|  | /// multiple of a constant (which is also the case if the trip count is simply | 
|  | /// constant, use getSmallConstantTripCount for that case), Will also return 1 | 
|  | /// if the trip count is very large (>= 2^32). | 
|  | /// | 
|  | /// As explained in the comments for getSmallConstantTripCount, this assumes | 
|  | /// that control exits the loop via ExitingBlock. | 
|  | unsigned | 
|  | ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, | 
|  | BasicBlock *ExitingBlock) { | 
|  | assert(ExitingBlock && "Must pass a non-null exiting block!"); | 
|  | assert(L->isLoopExiting(ExitingBlock) && | 
|  | "Exiting block must actually branch out of the loop!"); | 
|  | const SCEV *ExitCount = getExitCount(L, ExitingBlock); | 
|  | if (ExitCount == getCouldNotCompute()) | 
|  | return 1; | 
|  |  | 
|  | // Get the trip count from the BE count by adding 1. | 
|  | const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); | 
|  |  | 
|  | const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); | 
|  | if (!TC) | 
|  | // Attempt to factor more general cases. Returns the greatest power of | 
|  | // two divisor. If overflow happens, the trip count expression is still | 
|  | // divisible by the greatest power of 2 divisor returned. | 
|  | return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); | 
|  |  | 
|  | ConstantInt *Result = TC->getValue(); | 
|  |  | 
|  | // Guard against huge trip counts (this requires checking | 
|  | // for zero to handle the case where the trip count == -1 and the | 
|  | // addition wraps). | 
|  | if (!Result || Result->getValue().getActiveBits() > 32 || | 
|  | Result->getValue().getActiveBits() == 0) | 
|  | return 1; | 
|  |  | 
|  | return (unsigned)Result->getZExtValue(); | 
|  | } | 
|  |  | 
|  | /// Get the expression for the number of loop iterations for which this loop is | 
|  | /// guaranteed not to exit via ExitingBlock. Otherwise return | 
|  | /// SCEVCouldNotCompute. | 
|  | const SCEV *ScalarEvolution::getExitCount(const Loop *L, | 
|  | BasicBlock *ExitingBlock) { | 
|  | return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); | 
|  | } | 
|  |  | 
|  | const SCEV * | 
|  | ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, | 
|  | SCEVUnionPredicate &Preds) { | 
|  | return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { | 
|  | return getBackedgeTakenInfo(L).getExact(L, this); | 
|  | } | 
|  |  | 
|  | /// Similar to getBackedgeTakenCount, except return the least SCEV value that is | 
|  | /// known never to be less than the actual backedge taken count. | 
|  | const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { | 
|  | return getBackedgeTakenInfo(L).getMax(this); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { | 
|  | return getBackedgeTakenInfo(L).isMaxOrZero(this); | 
|  | } | 
|  |  | 
|  | /// Push PHI nodes in the header of the given loop onto the given Worklist. | 
|  | static void | 
|  | PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { | 
|  | BasicBlock *Header = L->getHeader(); | 
|  |  | 
|  | // Push all Loop-header PHIs onto the Worklist stack. | 
|  | for (PHINode &PN : Header->phis()) | 
|  | Worklist.push_back(&PN); | 
|  | } | 
|  |  | 
|  | const ScalarEvolution::BackedgeTakenInfo & | 
|  | ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { | 
|  | auto &BTI = getBackedgeTakenInfo(L); | 
|  | if (BTI.hasFullInfo()) | 
|  | return BTI; | 
|  |  | 
|  | auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); | 
|  |  | 
|  | if (!Pair.second) | 
|  | return Pair.first->second; | 
|  |  | 
|  | BackedgeTakenInfo Result = | 
|  | computeBackedgeTakenCount(L, /*AllowPredicates=*/true); | 
|  |  | 
|  | return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); | 
|  | } | 
|  |  | 
|  | const ScalarEvolution::BackedgeTakenInfo & | 
|  | ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { | 
|  | // Initially insert an invalid entry for this loop. If the insertion | 
|  | // succeeds, proceed to actually compute a backedge-taken count and | 
|  | // update the value. The temporary CouldNotCompute value tells SCEV | 
|  | // code elsewhere that it shouldn't attempt to request a new | 
|  | // backedge-taken count, which could result in infinite recursion. | 
|  | std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = | 
|  | BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); | 
|  | if (!Pair.second) | 
|  | return Pair.first->second; | 
|  |  | 
|  | // computeBackedgeTakenCount may allocate memory for its result. Inserting it | 
|  | // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result | 
|  | // must be cleared in this scope. | 
|  | BackedgeTakenInfo Result = computeBackedgeTakenCount(L); | 
|  |  | 
|  | // In product build, there are no usage of statistic. | 
|  | (void)NumTripCountsComputed; | 
|  | (void)NumTripCountsNotComputed; | 
|  | #if LLVM_ENABLE_STATS || !defined(NDEBUG) | 
|  | const SCEV *BEExact = Result.getExact(L, this); | 
|  | if (BEExact != getCouldNotCompute()) { | 
|  | assert(isLoopInvariant(BEExact, L) && | 
|  | isLoopInvariant(Result.getMax(this), L) && | 
|  | "Computed backedge-taken count isn't loop invariant for loop!"); | 
|  | ++NumTripCountsComputed; | 
|  | } | 
|  | else if (Result.getMax(this) == getCouldNotCompute() && | 
|  | isa<PHINode>(L->getHeader()->begin())) { | 
|  | // Only count loops that have phi nodes as not being computable. | 
|  | ++NumTripCountsNotComputed; | 
|  | } | 
|  | #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) | 
|  |  | 
|  | // Now that we know more about the trip count for this loop, forget any | 
|  | // existing SCEV values for PHI nodes in this loop since they are only | 
|  | // conservative estimates made without the benefit of trip count | 
|  | // information. This is similar to the code in forgetLoop, except that | 
|  | // it handles SCEVUnknown PHI nodes specially. | 
|  | if (Result.hasAnyInfo()) { | 
|  | SmallVector<Instruction *, 16> Worklist; | 
|  | PushLoopPHIs(L, Worklist); | 
|  |  | 
|  | SmallPtrSet<Instruction *, 8> Discovered; | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *I = Worklist.pop_back_val(); | 
|  |  | 
|  | ValueExprMapType::iterator It = | 
|  | ValueExprMap.find_as(static_cast<Value *>(I)); | 
|  | if (It != ValueExprMap.end()) { | 
|  | const SCEV *Old = It->second; | 
|  |  | 
|  | // SCEVUnknown for a PHI either means that it has an unrecognized | 
|  | // structure, or it's a PHI that's in the progress of being computed | 
|  | // by createNodeForPHI.  In the former case, additional loop trip | 
|  | // count information isn't going to change anything. In the later | 
|  | // case, createNodeForPHI will perform the necessary updates on its | 
|  | // own when it gets to that point. | 
|  | if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { | 
|  | eraseValueFromMap(It->first); | 
|  | forgetMemoizedResults(Old); | 
|  | } | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | ConstantEvolutionLoopExitValue.erase(PN); | 
|  | } | 
|  |  | 
|  | // Since we don't need to invalidate anything for correctness and we're | 
|  | // only invalidating to make SCEV's results more precise, we get to stop | 
|  | // early to avoid invalidating too much.  This is especially important in | 
|  | // cases like: | 
|  | // | 
|  | //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node | 
|  | // loop0: | 
|  | //   %pn0 = phi | 
|  | //   ... | 
|  | // loop1: | 
|  | //   %pn1 = phi | 
|  | //   ... | 
|  | // | 
|  | // where both loop0 and loop1's backedge taken count uses the SCEV | 
|  | // expression for %v.  If we don't have the early stop below then in cases | 
|  | // like the above, getBackedgeTakenInfo(loop1) will clear out the trip | 
|  | // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip | 
|  | // count for loop1, effectively nullifying SCEV's trip count cache. | 
|  | for (auto *U : I->users()) | 
|  | if (auto *I = dyn_cast<Instruction>(U)) { | 
|  | auto *LoopForUser = LI.getLoopFor(I->getParent()); | 
|  | if (LoopForUser && L->contains(LoopForUser) && | 
|  | Discovered.insert(I).second) | 
|  | Worklist.push_back(I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Re-lookup the insert position, since the call to | 
|  | // computeBackedgeTakenCount above could result in a | 
|  | // recusive call to getBackedgeTakenInfo (on a different | 
|  | // loop), which would invalidate the iterator computed | 
|  | // earlier. | 
|  | return BackedgeTakenCounts.find(L)->second = std::move(Result); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::forgetLoop(const Loop *L) { | 
|  | // Drop any stored trip count value. | 
|  | auto RemoveLoopFromBackedgeMap = | 
|  | [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { | 
|  | auto BTCPos = Map.find(L); | 
|  | if (BTCPos != Map.end()) { | 
|  | BTCPos->second.clear(); | 
|  | Map.erase(BTCPos); | 
|  | } | 
|  | }; | 
|  |  | 
|  | SmallVector<const Loop *, 16> LoopWorklist(1, L); | 
|  | SmallVector<Instruction *, 32> Worklist; | 
|  | SmallPtrSet<Instruction *, 16> Visited; | 
|  |  | 
|  | // Iterate over all the loops and sub-loops to drop SCEV information. | 
|  | while (!LoopWorklist.empty()) { | 
|  | auto *CurrL = LoopWorklist.pop_back_val(); | 
|  |  | 
|  | RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); | 
|  | RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); | 
|  |  | 
|  | // Drop information about predicated SCEV rewrites for this loop. | 
|  | for (auto I = PredicatedSCEVRewrites.begin(); | 
|  | I != PredicatedSCEVRewrites.end();) { | 
|  | std::pair<const SCEV *, const Loop *> Entry = I->first; | 
|  | if (Entry.second == CurrL) | 
|  | PredicatedSCEVRewrites.erase(I++); | 
|  | else | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | auto LoopUsersItr = LoopUsers.find(CurrL); | 
|  | if (LoopUsersItr != LoopUsers.end()) { | 
|  | for (auto *S : LoopUsersItr->second) | 
|  | forgetMemoizedResults(S); | 
|  | LoopUsers.erase(LoopUsersItr); | 
|  | } | 
|  |  | 
|  | // Drop information about expressions based on loop-header PHIs. | 
|  | PushLoopPHIs(CurrL, Worklist); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *I = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(I).second) | 
|  | continue; | 
|  |  | 
|  | ValueExprMapType::iterator It = | 
|  | ValueExprMap.find_as(static_cast<Value *>(I)); | 
|  | if (It != ValueExprMap.end()) { | 
|  | eraseValueFromMap(It->first); | 
|  | forgetMemoizedResults(It->second); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | ConstantEvolutionLoopExitValue.erase(PN); | 
|  | } | 
|  |  | 
|  | PushDefUseChildren(I, Worklist); | 
|  | } | 
|  |  | 
|  | LoopPropertiesCache.erase(CurrL); | 
|  | // Forget all contained loops too, to avoid dangling entries in the | 
|  | // ValuesAtScopes map. | 
|  | LoopWorklist.append(CurrL->begin(), CurrL->end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::forgetTopmostLoop(const Loop *L) { | 
|  | while (Loop *Parent = L->getParentLoop()) | 
|  | L = Parent; | 
|  | forgetLoop(L); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::forgetValue(Value *V) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return; | 
|  |  | 
|  | // Drop information about expressions based on loop-header PHIs. | 
|  | SmallVector<Instruction *, 16> Worklist; | 
|  | Worklist.push_back(I); | 
|  |  | 
|  | SmallPtrSet<Instruction *, 8> Visited; | 
|  | while (!Worklist.empty()) { | 
|  | I = Worklist.pop_back_val(); | 
|  | if (!Visited.insert(I).second) | 
|  | continue; | 
|  |  | 
|  | ValueExprMapType::iterator It = | 
|  | ValueExprMap.find_as(static_cast<Value *>(I)); | 
|  | if (It != ValueExprMap.end()) { | 
|  | eraseValueFromMap(It->first); | 
|  | forgetMemoizedResults(It->second); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | ConstantEvolutionLoopExitValue.erase(PN); | 
|  | } | 
|  |  | 
|  | PushDefUseChildren(I, Worklist); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the exact loop backedge taken count considering all loop exits. A | 
|  | /// computable result can only be returned for loops with all exiting blocks | 
|  | /// dominating the latch. howFarToZero assumes that the limit of each loop test | 
|  | /// is never skipped. This is a valid assumption as long as the loop exits via | 
|  | /// that test. For precise results, it is the caller's responsibility to specify | 
|  | /// the relevant loop exiting block using getExact(ExitingBlock, SE). | 
|  | const SCEV * | 
|  | ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, | 
|  | SCEVUnionPredicate *Preds) const { | 
|  | // If any exits were not computable, the loop is not computable. | 
|  | if (!isComplete() || ExitNotTaken.empty()) | 
|  | return SE->getCouldNotCompute(); | 
|  |  | 
|  | const BasicBlock *Latch = L->getLoopLatch(); | 
|  | // All exiting blocks we have collected must dominate the only backedge. | 
|  | if (!Latch) | 
|  | return SE->getCouldNotCompute(); | 
|  |  | 
|  | // All exiting blocks we have gathered dominate loop's latch, so exact trip | 
|  | // count is simply a minimum out of all these calculated exit counts. | 
|  | SmallVector<const SCEV *, 2> Ops; | 
|  | for (auto &ENT : ExitNotTaken) { | 
|  | const SCEV *BECount = ENT.ExactNotTaken; | 
|  | assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); | 
|  | assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && | 
|  | "We should only have known counts for exiting blocks that dominate " | 
|  | "latch!"); | 
|  |  | 
|  | Ops.push_back(BECount); | 
|  |  | 
|  | if (Preds && !ENT.hasAlwaysTruePredicate()) | 
|  | Preds->add(ENT.Predicate.get()); | 
|  |  | 
|  | assert((Preds || ENT.hasAlwaysTruePredicate()) && | 
|  | "Predicate should be always true!"); | 
|  | } | 
|  |  | 
|  | return SE->getUMinFromMismatchedTypes(Ops); | 
|  | } | 
|  |  | 
|  | /// Get the exact not taken count for this loop exit. | 
|  | const SCEV * | 
|  | ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, | 
|  | ScalarEvolution *SE) const { | 
|  | for (auto &ENT : ExitNotTaken) | 
|  | if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) | 
|  | return ENT.ExactNotTaken; | 
|  |  | 
|  | return SE->getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | /// getMax - Get the max backedge taken count for the loop. | 
|  | const SCEV * | 
|  | ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { | 
|  | auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { | 
|  | return !ENT.hasAlwaysTruePredicate(); | 
|  | }; | 
|  |  | 
|  | if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) | 
|  | return SE->getCouldNotCompute(); | 
|  |  | 
|  | assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && | 
|  | "No point in having a non-constant max backedge taken count!"); | 
|  | return getMax(); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { | 
|  | auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { | 
|  | return !ENT.hasAlwaysTruePredicate(); | 
|  | }; | 
|  | return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, | 
|  | ScalarEvolution *SE) const { | 
|  | if (getMax() && getMax() != SE->getCouldNotCompute() && | 
|  | SE->hasOperand(getMax(), S)) | 
|  | return true; | 
|  |  | 
|  | for (auto &ENT : ExitNotTaken) | 
|  | if (ENT.ExactNotTaken != SE->getCouldNotCompute() && | 
|  | SE->hasOperand(ENT.ExactNotTaken, S)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) | 
|  | : ExactNotTaken(E), MaxNotTaken(E) { | 
|  | assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || | 
|  | isa<SCEVConstant>(MaxNotTaken)) && | 
|  | "No point in having a non-constant max backedge taken count!"); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit::ExitLimit( | 
|  | const SCEV *E, const SCEV *M, bool MaxOrZero, | 
|  | ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) | 
|  | : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { | 
|  | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || | 
|  | !isa<SCEVCouldNotCompute>(MaxNotTaken)) && | 
|  | "Exact is not allowed to be less precise than Max"); | 
|  | assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || | 
|  | isa<SCEVConstant>(MaxNotTaken)) && | 
|  | "No point in having a non-constant max backedge taken count!"); | 
|  | for (auto *PredSet : PredSetList) | 
|  | for (auto *P : *PredSet) | 
|  | addPredicate(P); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit::ExitLimit( | 
|  | const SCEV *E, const SCEV *M, bool MaxOrZero, | 
|  | const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) | 
|  | : ExitLimit(E, M, MaxOrZero, {&PredSet}) { | 
|  | assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || | 
|  | isa<SCEVConstant>(MaxNotTaken)) && | 
|  | "No point in having a non-constant max backedge taken count!"); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, | 
|  | bool MaxOrZero) | 
|  | : ExitLimit(E, M, MaxOrZero, None) { | 
|  | assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || | 
|  | isa<SCEVConstant>(MaxNotTaken)) && | 
|  | "No point in having a non-constant max backedge taken count!"); | 
|  | } | 
|  |  | 
|  | /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each | 
|  | /// computable exit into a persistent ExitNotTakenInfo array. | 
|  | ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( | 
|  | SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> | 
|  | &&ExitCounts, | 
|  | bool Complete, const SCEV *MaxCount, bool MaxOrZero) | 
|  | : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { | 
|  | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; | 
|  |  | 
|  | ExitNotTaken.reserve(ExitCounts.size()); | 
|  | std::transform( | 
|  | ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), | 
|  | [&](const EdgeExitInfo &EEI) { | 
|  | BasicBlock *ExitBB = EEI.first; | 
|  | const ExitLimit &EL = EEI.second; | 
|  | if (EL.Predicates.empty()) | 
|  | return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); | 
|  |  | 
|  | std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); | 
|  | for (auto *Pred : EL.Predicates) | 
|  | Predicate->add(Pred); | 
|  |  | 
|  | return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); | 
|  | }); | 
|  | assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && | 
|  | "No point in having a non-constant max backedge taken count!"); | 
|  | } | 
|  |  | 
|  | /// Invalidate this result and free the ExitNotTakenInfo array. | 
|  | void ScalarEvolution::BackedgeTakenInfo::clear() { | 
|  | ExitNotTaken.clear(); | 
|  | } | 
|  |  | 
|  | /// Compute the number of times the backedge of the specified loop will execute. | 
|  | ScalarEvolution::BackedgeTakenInfo | 
|  | ScalarEvolution::computeBackedgeTakenCount(const Loop *L, | 
|  | bool AllowPredicates) { | 
|  | SmallVector<BasicBlock *, 8> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  |  | 
|  | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; | 
|  |  | 
|  | SmallVector<EdgeExitInfo, 4> ExitCounts; | 
|  | bool CouldComputeBECount = true; | 
|  | BasicBlock *Latch = L->getLoopLatch(); // may be NULL. | 
|  | const SCEV *MustExitMaxBECount = nullptr; | 
|  | const SCEV *MayExitMaxBECount = nullptr; | 
|  | bool MustExitMaxOrZero = false; | 
|  |  | 
|  | // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts | 
|  | // and compute maxBECount. | 
|  | // Do a union of all the predicates here. | 
|  | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBB = ExitingBlocks[i]; | 
|  | ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); | 
|  |  | 
|  | assert((AllowPredicates || EL.Predicates.empty()) && | 
|  | "Predicated exit limit when predicates are not allowed!"); | 
|  |  | 
|  | // 1. For each exit that can be computed, add an entry to ExitCounts. | 
|  | // CouldComputeBECount is true only if all exits can be computed. | 
|  | if (EL.ExactNotTaken == getCouldNotCompute()) | 
|  | // We couldn't compute an exact value for this exit, so | 
|  | // we won't be able to compute an exact value for the loop. | 
|  | CouldComputeBECount = false; | 
|  | else | 
|  | ExitCounts.emplace_back(ExitBB, EL); | 
|  |  | 
|  | // 2. Derive the loop's MaxBECount from each exit's max number of | 
|  | // non-exiting iterations. Partition the loop exits into two kinds: | 
|  | // LoopMustExits and LoopMayExits. | 
|  | // | 
|  | // If the exit dominates the loop latch, it is a LoopMustExit otherwise it | 
|  | // is a LoopMayExit.  If any computable LoopMustExit is found, then | 
|  | // MaxBECount is the minimum EL.MaxNotTaken of computable | 
|  | // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum | 
|  | // EL.MaxNotTaken, where CouldNotCompute is considered greater than any | 
|  | // computable EL.MaxNotTaken. | 
|  | if (EL.MaxNotTaken != getCouldNotCompute() && Latch && | 
|  | DT.dominates(ExitBB, Latch)) { | 
|  | if (!MustExitMaxBECount) { | 
|  | MustExitMaxBECount = EL.MaxNotTaken; | 
|  | MustExitMaxOrZero = EL.MaxOrZero; | 
|  | } else { | 
|  | MustExitMaxBECount = | 
|  | getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); | 
|  | } | 
|  | } else if (MayExitMaxBECount != getCouldNotCompute()) { | 
|  | if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) | 
|  | MayExitMaxBECount = EL.MaxNotTaken; | 
|  | else { | 
|  | MayExitMaxBECount = | 
|  | getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); | 
|  | } | 
|  | } | 
|  | } | 
|  | const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : | 
|  | (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); | 
|  | // The loop backedge will be taken the maximum or zero times if there's | 
|  | // a single exit that must be taken the maximum or zero times. | 
|  | bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); | 
|  | return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, | 
|  | MaxBECount, MaxOrZero); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, | 
|  | bool AllowPredicates) { | 
|  | assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); | 
|  | // If our exiting block does not dominate the latch, then its connection with | 
|  | // loop's exit limit may be far from trivial. | 
|  | const BasicBlock *Latch = L->getLoopLatch(); | 
|  | if (!Latch || !DT.dominates(ExitingBlock, Latch)) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | bool IsOnlyExit = (L->getExitingBlock() != nullptr); | 
|  | TerminatorInst *Term = ExitingBlock->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { | 
|  | assert(BI->isConditional() && "If unconditional, it can't be in loop!"); | 
|  | bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); | 
|  | assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && | 
|  | "It should have one successor in loop and one exit block!"); | 
|  | // Proceed to the next level to examine the exit condition expression. | 
|  | return computeExitLimitFromCond( | 
|  | L, BI->getCondition(), ExitIfTrue, | 
|  | /*ControlsExit=*/IsOnlyExit, AllowPredicates); | 
|  | } | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { | 
|  | // For switch, make sure that there is a single exit from the loop. | 
|  | BasicBlock *Exit = nullptr; | 
|  | for (auto *SBB : successors(ExitingBlock)) | 
|  | if (!L->contains(SBB)) { | 
|  | if (Exit) // Multiple exit successors. | 
|  | return getCouldNotCompute(); | 
|  | Exit = SBB; | 
|  | } | 
|  | assert(Exit && "Exiting block must have at least one exit"); | 
|  | return computeExitLimitFromSingleExitSwitch(L, SI, Exit, | 
|  | /*ControlsExit=*/IsOnlyExit); | 
|  | } | 
|  |  | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( | 
|  | const Loop *L, Value *ExitCond, bool ExitIfTrue, | 
|  | bool ControlsExit, bool AllowPredicates) { | 
|  | ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); | 
|  | return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, | 
|  | ControlsExit, AllowPredicates); | 
|  | } | 
|  |  | 
|  | Optional<ScalarEvolution::ExitLimit> | 
|  | ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, | 
|  | bool ExitIfTrue, bool ControlsExit, | 
|  | bool AllowPredicates) { | 
|  | (void)this->L; | 
|  | (void)this->ExitIfTrue; | 
|  | (void)this->AllowPredicates; | 
|  |  | 
|  | assert(this->L == L && this->ExitIfTrue == ExitIfTrue && | 
|  | this->AllowPredicates == AllowPredicates && | 
|  | "Variance in assumed invariant key components!"); | 
|  | auto Itr = TripCountMap.find({ExitCond, ControlsExit}); | 
|  | if (Itr == TripCountMap.end()) | 
|  | return None; | 
|  | return Itr->second; | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, | 
|  | bool ExitIfTrue, | 
|  | bool ControlsExit, | 
|  | bool AllowPredicates, | 
|  | const ExitLimit &EL) { | 
|  | assert(this->L == L && this->ExitIfTrue == ExitIfTrue && | 
|  | this->AllowPredicates == AllowPredicates && | 
|  | "Variance in assumed invariant key components!"); | 
|  |  | 
|  | auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); | 
|  | assert(InsertResult.second && "Expected successful insertion!"); | 
|  | (void)InsertResult; | 
|  | (void)ExitIfTrue; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( | 
|  | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, | 
|  | bool ControlsExit, bool AllowPredicates) { | 
|  |  | 
|  | if (auto MaybeEL = | 
|  | Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) | 
|  | return *MaybeEL; | 
|  |  | 
|  | ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, | 
|  | ControlsExit, AllowPredicates); | 
|  | Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); | 
|  | return EL; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( | 
|  | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, | 
|  | bool ControlsExit, bool AllowPredicates) { | 
|  | // Check if the controlling expression for this loop is an And or Or. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { | 
|  | if (BO->getOpcode() == Instruction::And) { | 
|  | // Recurse on the operands of the and. | 
|  | bool EitherMayExit = !ExitIfTrue; | 
|  | ExitLimit EL0 = computeExitLimitFromCondCached( | 
|  | Cache, L, BO->getOperand(0), ExitIfTrue, | 
|  | ControlsExit && !EitherMayExit, AllowPredicates); | 
|  | ExitLimit EL1 = computeExitLimitFromCondCached( | 
|  | Cache, L, BO->getOperand(1), ExitIfTrue, | 
|  | ControlsExit && !EitherMayExit, AllowPredicates); | 
|  | const SCEV *BECount = getCouldNotCompute(); | 
|  | const SCEV *MaxBECount = getCouldNotCompute(); | 
|  | if (EitherMayExit) { | 
|  | // Both conditions must be true for the loop to continue executing. | 
|  | // Choose the less conservative count. | 
|  | if (EL0.ExactNotTaken == getCouldNotCompute() || | 
|  | EL1.ExactNotTaken == getCouldNotCompute()) | 
|  | BECount = getCouldNotCompute(); | 
|  | else | 
|  | BECount = | 
|  | getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); | 
|  | if (EL0.MaxNotTaken == getCouldNotCompute()) | 
|  | MaxBECount = EL1.MaxNotTaken; | 
|  | else if (EL1.MaxNotTaken == getCouldNotCompute()) | 
|  | MaxBECount = EL0.MaxNotTaken; | 
|  | else | 
|  | MaxBECount = | 
|  | getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); | 
|  | } else { | 
|  | // Both conditions must be true at the same time for the loop to exit. | 
|  | // For now, be conservative. | 
|  | if (EL0.MaxNotTaken == EL1.MaxNotTaken) | 
|  | MaxBECount = EL0.MaxNotTaken; | 
|  | if (EL0.ExactNotTaken == EL1.ExactNotTaken) | 
|  | BECount = EL0.ExactNotTaken; | 
|  | } | 
|  |  | 
|  | // There are cases (e.g. PR26207) where computeExitLimitFromCond is able | 
|  | // to be more aggressive when computing BECount than when computing | 
|  | // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and | 
|  | // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken | 
|  | // to not. | 
|  | if (isa<SCEVCouldNotCompute>(MaxBECount) && | 
|  | !isa<SCEVCouldNotCompute>(BECount)) | 
|  | MaxBECount = getConstant(getUnsignedRangeMax(BECount)); | 
|  |  | 
|  | return ExitLimit(BECount, MaxBECount, false, | 
|  | {&EL0.Predicates, &EL1.Predicates}); | 
|  | } | 
|  | if (BO->getOpcode() == Instruction::Or) { | 
|  | // Recurse on the operands of the or. | 
|  | bool EitherMayExit = ExitIfTrue; | 
|  | ExitLimit EL0 = computeExitLimitFromCondCached( | 
|  | Cache, L, BO->getOperand(0), ExitIfTrue, | 
|  | ControlsExit && !EitherMayExit, AllowPredicates); | 
|  | ExitLimit EL1 = computeExitLimitFromCondCached( | 
|  | Cache, L, BO->getOperand(1), ExitIfTrue, | 
|  | ControlsExit && !EitherMayExit, AllowPredicates); | 
|  | const SCEV *BECount = getCouldNotCompute(); | 
|  | const SCEV *MaxBECount = getCouldNotCompute(); | 
|  | if (EitherMayExit) { | 
|  | // Both conditions must be false for the loop to continue executing. | 
|  | // Choose the less conservative count. | 
|  | if (EL0.ExactNotTaken == getCouldNotCompute() || | 
|  | EL1.ExactNotTaken == getCouldNotCompute()) | 
|  | BECount = getCouldNotCompute(); | 
|  | else | 
|  | BECount = | 
|  | getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); | 
|  | if (EL0.MaxNotTaken == getCouldNotCompute()) | 
|  | MaxBECount = EL1.MaxNotTaken; | 
|  | else if (EL1.MaxNotTaken == getCouldNotCompute()) | 
|  | MaxBECount = EL0.MaxNotTaken; | 
|  | else | 
|  | MaxBECount = | 
|  | getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); | 
|  | } else { | 
|  | // Both conditions must be false at the same time for the loop to exit. | 
|  | // For now, be conservative. | 
|  | if (EL0.MaxNotTaken == EL1.MaxNotTaken) | 
|  | MaxBECount = EL0.MaxNotTaken; | 
|  | if (EL0.ExactNotTaken == EL1.ExactNotTaken) | 
|  | BECount = EL0.ExactNotTaken; | 
|  | } | 
|  |  | 
|  | return ExitLimit(BECount, MaxBECount, false, | 
|  | {&EL0.Predicates, &EL1.Predicates}); | 
|  | } | 
|  | } | 
|  |  | 
|  | // With an icmp, it may be feasible to compute an exact backedge-taken count. | 
|  | // Proceed to the next level to examine the icmp. | 
|  | if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { | 
|  | ExitLimit EL = | 
|  | computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); | 
|  | if (EL.hasFullInfo() || !AllowPredicates) | 
|  | return EL; | 
|  |  | 
|  | // Try again, but use SCEV predicates this time. | 
|  | return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, | 
|  | /*AllowPredicates=*/true); | 
|  | } | 
|  |  | 
|  | // Check for a constant condition. These are normally stripped out by | 
|  | // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to | 
|  | // preserve the CFG and is temporarily leaving constant conditions | 
|  | // in place. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { | 
|  | if (ExitIfTrue == !CI->getZExtValue()) | 
|  | // The backedge is always taken. | 
|  | return getCouldNotCompute(); | 
|  | else | 
|  | // The backedge is never taken. | 
|  | return getZero(CI->getType()); | 
|  | } | 
|  |  | 
|  | // If it's not an integer or pointer comparison then compute it the hard way. | 
|  | return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::computeExitLimitFromICmp(const Loop *L, | 
|  | ICmpInst *ExitCond, | 
|  | bool ExitIfTrue, | 
|  | bool ControlsExit, | 
|  | bool AllowPredicates) { | 
|  | // If the condition was exit on true, convert the condition to exit on false | 
|  | ICmpInst::Predicate Pred; | 
|  | if (!ExitIfTrue) | 
|  | Pred = ExitCond->getPredicate(); | 
|  | else | 
|  | Pred = ExitCond->getInversePredicate(); | 
|  | const ICmpInst::Predicate OriginalPred = Pred; | 
|  |  | 
|  | // Handle common loops like: for (X = "string"; *X; ++X) | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) | 
|  | if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { | 
|  | ExitLimit ItCnt = | 
|  | computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); | 
|  | if (ItCnt.hasAnyInfo()) | 
|  | return ItCnt; | 
|  | } | 
|  |  | 
|  | const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); | 
|  | const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); | 
|  |  | 
|  | // Try to evaluate any dependencies out of the loop. | 
|  | LHS = getSCEVAtScope(LHS, L); | 
|  | RHS = getSCEVAtScope(RHS, L); | 
|  |  | 
|  | // At this point, we would like to compute how many iterations of the | 
|  | // loop the predicate will return true for these inputs. | 
|  | if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { | 
|  | // If there is a loop-invariant, force it into the RHS. | 
|  | std::swap(LHS, RHS); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | // Simplify the operands before analyzing them. | 
|  | (void)SimplifyICmpOperands(Pred, LHS, RHS); | 
|  |  | 
|  | // If we have a comparison of a chrec against a constant, try to use value | 
|  | // ranges to answer this query. | 
|  | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) | 
|  | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) | 
|  | if (AddRec->getLoop() == L) { | 
|  | // Form the constant range. | 
|  | ConstantRange CompRange = | 
|  | ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); | 
|  |  | 
|  | const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); | 
|  | if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; | 
|  | } | 
|  |  | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_NE: {                     // while (X != Y) | 
|  | // Convert to: while (X-Y != 0) | 
|  | ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, | 
|  | AllowPredicates); | 
|  | if (EL.hasAnyInfo()) return EL; | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_EQ: {                     // while (X == Y) | 
|  | // Convert to: while (X-Y == 0) | 
|  | ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); | 
|  | if (EL.hasAnyInfo()) return EL; | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_ULT: {                    // while (X < Y) | 
|  | bool IsSigned = Pred == ICmpInst::ICMP_SLT; | 
|  | ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, | 
|  | AllowPredicates); | 
|  | if (EL.hasAnyInfo()) return EL; | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_UGT: {                    // while (X > Y) | 
|  | bool IsSigned = Pred == ICmpInst::ICMP_SGT; | 
|  | ExitLimit EL = | 
|  | howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, | 
|  | AllowPredicates); | 
|  | if (EL.hasAnyInfo()) return EL; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *ExhaustiveCount = | 
|  | computeExitCountExhaustively(L, ExitCond, ExitIfTrue); | 
|  |  | 
|  | if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) | 
|  | return ExhaustiveCount; | 
|  |  | 
|  | return computeShiftCompareExitLimit(ExitCond->getOperand(0), | 
|  | ExitCond->getOperand(1), L, OriginalPred); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, | 
|  | SwitchInst *Switch, | 
|  | BasicBlock *ExitingBlock, | 
|  | bool ControlsExit) { | 
|  | assert(!L->contains(ExitingBlock) && "Not an exiting block!"); | 
|  |  | 
|  | // Give up if the exit is the default dest of a switch. | 
|  | if (Switch->getDefaultDest() == ExitingBlock) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | assert(L->contains(Switch->getDefaultDest()) && | 
|  | "Default case must not exit the loop!"); | 
|  | const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); | 
|  | const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); | 
|  |  | 
|  | // while (X != Y) --> while (X-Y != 0) | 
|  | ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); | 
|  | if (EL.hasAnyInfo()) | 
|  | return EL; | 
|  |  | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | static ConstantInt * | 
|  | EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, | 
|  | ScalarEvolution &SE) { | 
|  | const SCEV *InVal = SE.getConstant(C); | 
|  | const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); | 
|  | assert(isa<SCEVConstant>(Val) && | 
|  | "Evaluation of SCEV at constant didn't fold correctly?"); | 
|  | return cast<SCEVConstant>(Val)->getValue(); | 
|  | } | 
|  |  | 
|  | /// Given an exit condition of 'icmp op load X, cst', try to see if we can | 
|  | /// compute the backedge execution count. | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::computeLoadConstantCompareExitLimit( | 
|  | LoadInst *LI, | 
|  | Constant *RHS, | 
|  | const Loop *L, | 
|  | ICmpInst::Predicate predicate) { | 
|  | if (LI->isVolatile()) return getCouldNotCompute(); | 
|  |  | 
|  | // Check to see if the loaded pointer is a getelementptr of a global. | 
|  | // TODO: Use SCEV instead of manually grubbing with GEPs. | 
|  | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); | 
|  | if (!GEP) return getCouldNotCompute(); | 
|  |  | 
|  | // Make sure that it is really a constant global we are gepping, with an | 
|  | // initializer, and make sure the first IDX is really 0. | 
|  | GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); | 
|  | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || | 
|  | GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || | 
|  | !cast<Constant>(GEP->getOperand(1))->isNullValue()) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // Okay, we allow one non-constant index into the GEP instruction. | 
|  | Value *VarIdx = nullptr; | 
|  | std::vector<Constant*> Indexes; | 
|  | unsigned VarIdxNum = 0; | 
|  | for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { | 
|  | Indexes.push_back(CI); | 
|  | } else if (!isa<ConstantInt>(GEP->getOperand(i))) { | 
|  | if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's. | 
|  | VarIdx = GEP->getOperand(i); | 
|  | VarIdxNum = i-2; | 
|  | Indexes.push_back(nullptr); | 
|  | } | 
|  |  | 
|  | // Loop-invariant loads may be a byproduct of loop optimization. Skip them. | 
|  | if (!VarIdx) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. | 
|  | // Check to see if X is a loop variant variable value now. | 
|  | const SCEV *Idx = getSCEV(VarIdx); | 
|  | Idx = getSCEVAtScope(Idx, L); | 
|  |  | 
|  | // We can only recognize very limited forms of loop index expressions, in | 
|  | // particular, only affine AddRec's like {C1,+,C2}. | 
|  | const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); | 
|  | if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || | 
|  | !isa<SCEVConstant>(IdxExpr->getOperand(0)) || | 
|  | !isa<SCEVConstant>(IdxExpr->getOperand(1))) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | unsigned MaxSteps = MaxBruteForceIterations; | 
|  | for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { | 
|  | ConstantInt *ItCst = ConstantInt::get( | 
|  | cast<IntegerType>(IdxExpr->getType()), IterationNum); | 
|  | ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); | 
|  |  | 
|  | // Form the GEP offset. | 
|  | Indexes[VarIdxNum] = Val; | 
|  |  | 
|  | Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), | 
|  | Indexes); | 
|  | if (!Result) break;  // Cannot compute! | 
|  |  | 
|  | // Evaluate the condition for this iteration. | 
|  | Result = ConstantExpr::getICmp(predicate, Result, RHS); | 
|  | if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure | 
|  | if (cast<ConstantInt>(Result)->getValue().isMinValue()) { | 
|  | ++NumArrayLenItCounts; | 
|  | return getConstant(ItCst);   // Found terminating iteration! | 
|  | } | 
|  | } | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( | 
|  | Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { | 
|  | ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); | 
|  | if (!RHS) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | const BasicBlock *Latch = L->getLoopLatch(); | 
|  | if (!Latch) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | const BasicBlock *Predecessor = L->getLoopPredecessor(); | 
|  | if (!Predecessor) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // Return true if V is of the form "LHS `shift_op` <positive constant>". | 
|  | // Return LHS in OutLHS and shift_opt in OutOpCode. | 
|  | auto MatchPositiveShift = | 
|  | [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { | 
|  |  | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | ConstantInt *ShiftAmt; | 
|  | if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) | 
|  | OutOpCode = Instruction::LShr; | 
|  | else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) | 
|  | OutOpCode = Instruction::AShr; | 
|  | else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) | 
|  | OutOpCode = Instruction::Shl; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | return ShiftAmt->getValue().isStrictlyPositive(); | 
|  | }; | 
|  |  | 
|  | // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in | 
|  | // | 
|  | // loop: | 
|  | //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] | 
|  | //   %iv.shifted = lshr i32 %iv, <positive constant> | 
|  | // | 
|  | // Return true on a successful match.  Return the corresponding PHI node (%iv | 
|  | // above) in PNOut and the opcode of the shift operation in OpCodeOut. | 
|  | auto MatchShiftRecurrence = | 
|  | [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { | 
|  | Optional<Instruction::BinaryOps> PostShiftOpCode; | 
|  |  | 
|  | { | 
|  | Instruction::BinaryOps OpC; | 
|  | Value *V; | 
|  |  | 
|  | // If we encounter a shift instruction, "peel off" the shift operation, | 
|  | // and remember that we did so.  Later when we inspect %iv's backedge | 
|  | // value, we will make sure that the backedge value uses the same | 
|  | // operation. | 
|  | // | 
|  | // Note: the peeled shift operation does not have to be the same | 
|  | // instruction as the one feeding into the PHI's backedge value.  We only | 
|  | // really care about it being the same *kind* of shift instruction -- | 
|  | // that's all that is required for our later inferences to hold. | 
|  | if (MatchPositiveShift(LHS, V, OpC)) { | 
|  | PostShiftOpCode = OpC; | 
|  | LHS = V; | 
|  | } | 
|  | } | 
|  |  | 
|  | PNOut = dyn_cast<PHINode>(LHS); | 
|  | if (!PNOut || PNOut->getParent() != L->getHeader()) | 
|  | return false; | 
|  |  | 
|  | Value *BEValue = PNOut->getIncomingValueForBlock(Latch); | 
|  | Value *OpLHS; | 
|  |  | 
|  | return | 
|  | // The backedge value for the PHI node must be a shift by a positive | 
|  | // amount | 
|  | MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && | 
|  |  | 
|  | // of the PHI node itself | 
|  | OpLHS == PNOut && | 
|  |  | 
|  | // and the kind of shift should be match the kind of shift we peeled | 
|  | // off, if any. | 
|  | (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); | 
|  | }; | 
|  |  | 
|  | PHINode *PN; | 
|  | Instruction::BinaryOps OpCode; | 
|  | if (!MatchShiftRecurrence(LHS, PN, OpCode)) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | const DataLayout &DL = getDataLayout(); | 
|  |  | 
|  | // The key rationale for this optimization is that for some kinds of shift | 
|  | // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 | 
|  | // within a finite number of iterations.  If the condition guarding the | 
|  | // backedge (in the sense that the backedge is taken if the condition is true) | 
|  | // is false for the value the shift recurrence stabilizes to, then we know | 
|  | // that the backedge is taken only a finite number of times. | 
|  |  | 
|  | ConstantInt *StableValue = nullptr; | 
|  | switch (OpCode) { | 
|  | default: | 
|  | llvm_unreachable("Impossible case!"); | 
|  |  | 
|  | case Instruction::AShr: { | 
|  | // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most | 
|  | // bitwidth(K) iterations. | 
|  | Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); | 
|  | KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, | 
|  | Predecessor->getTerminator(), &DT); | 
|  | auto *Ty = cast<IntegerType>(RHS->getType()); | 
|  | if (Known.isNonNegative()) | 
|  | StableValue = ConstantInt::get(Ty, 0); | 
|  | else if (Known.isNegative()) | 
|  | StableValue = ConstantInt::get(Ty, -1, true); | 
|  | else | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} | 
|  | // stabilize to 0 in at most bitwidth(K) iterations. | 
|  | StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto *Result = | 
|  | ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); | 
|  | assert(Result->getType()->isIntegerTy(1) && | 
|  | "Otherwise cannot be an operand to a branch instruction"); | 
|  |  | 
|  | if (Result->isZeroValue()) { | 
|  | unsigned BitWidth = getTypeSizeInBits(RHS->getType()); | 
|  | const SCEV *UpperBound = | 
|  | getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); | 
|  | return ExitLimit(getCouldNotCompute(), UpperBound, false); | 
|  | } | 
|  |  | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | /// Return true if we can constant fold an instruction of the specified type, | 
|  | /// assuming that all operands were constants. | 
|  | static bool CanConstantFold(const Instruction *I) { | 
|  | if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || | 
|  | isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || | 
|  | isa<LoadInst>(I)) | 
|  | return true; | 
|  |  | 
|  | if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | if (const Function *F = CI->getCalledFunction()) | 
|  | return canConstantFoldCallTo(CI, F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether this instruction can constant evolve within this loop | 
|  | /// assuming its operands can all constant evolve. | 
|  | static bool canConstantEvolve(Instruction *I, const Loop *L) { | 
|  | // An instruction outside of the loop can't be derived from a loop PHI. | 
|  | if (!L->contains(I)) return false; | 
|  |  | 
|  | if (isa<PHINode>(I)) { | 
|  | // We don't currently keep track of the control flow needed to evaluate | 
|  | // PHIs, so we cannot handle PHIs inside of loops. | 
|  | return L->getHeader() == I->getParent(); | 
|  | } | 
|  |  | 
|  | // If we won't be able to constant fold this expression even if the operands | 
|  | // are constants, bail early. | 
|  | return CanConstantFold(I); | 
|  | } | 
|  |  | 
|  | /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by | 
|  | /// recursing through each instruction operand until reaching a loop header phi. | 
|  | static PHINode * | 
|  | getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, | 
|  | DenseMap<Instruction *, PHINode *> &PHIMap, | 
|  | unsigned Depth) { | 
|  | if (Depth > MaxConstantEvolvingDepth) | 
|  | return nullptr; | 
|  |  | 
|  | // Otherwise, we can evaluate this instruction if all of its operands are | 
|  | // constant or derived from a PHI node themselves. | 
|  | PHINode *PHI = nullptr; | 
|  | for (Value *Op : UseInst->operands()) { | 
|  | if (isa<Constant>(Op)) continue; | 
|  |  | 
|  | Instruction *OpInst = dyn_cast<Instruction>(Op); | 
|  | if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; | 
|  |  | 
|  | PHINode *P = dyn_cast<PHINode>(OpInst); | 
|  | if (!P) | 
|  | // If this operand is already visited, reuse the prior result. | 
|  | // We may have P != PHI if this is the deepest point at which the | 
|  | // inconsistent paths meet. | 
|  | P = PHIMap.lookup(OpInst); | 
|  | if (!P) { | 
|  | // Recurse and memoize the results, whether a phi is found or not. | 
|  | // This recursive call invalidates pointers into PHIMap. | 
|  | P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); | 
|  | PHIMap[OpInst] = P; | 
|  | } | 
|  | if (!P) | 
|  | return nullptr;  // Not evolving from PHI | 
|  | if (PHI && PHI != P) | 
|  | return nullptr;  // Evolving from multiple different PHIs. | 
|  | PHI = P; | 
|  | } | 
|  | // This is a expression evolving from a constant PHI! | 
|  | return PHI; | 
|  | } | 
|  |  | 
|  | /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node | 
|  | /// in the loop that V is derived from.  We allow arbitrary operations along the | 
|  | /// way, but the operands of an operation must either be constants or a value | 
|  | /// derived from a constant PHI.  If this expression does not fit with these | 
|  | /// constraints, return null. | 
|  | static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I || !canConstantEvolve(I, L)) return nullptr; | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | return PN; | 
|  |  | 
|  | // Record non-constant instructions contained by the loop. | 
|  | DenseMap<Instruction *, PHINode *> PHIMap; | 
|  | return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); | 
|  | } | 
|  |  | 
|  | /// EvaluateExpression - Given an expression that passes the | 
|  | /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node | 
|  | /// in the loop has the value PHIVal.  If we can't fold this expression for some | 
|  | /// reason, return null. | 
|  | static Constant *EvaluateExpression(Value *V, const Loop *L, | 
|  | DenseMap<Instruction *, Constant *> &Vals, | 
|  | const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | // Convenient constant check, but redundant for recursive calls. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) return C; | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return nullptr; | 
|  |  | 
|  | if (Constant *C = Vals.lookup(I)) return C; | 
|  |  | 
|  | // An instruction inside the loop depends on a value outside the loop that we | 
|  | // weren't given a mapping for, or a value such as a call inside the loop. | 
|  | if (!canConstantEvolve(I, L)) return nullptr; | 
|  |  | 
|  | // An unmapped PHI can be due to a branch or another loop inside this loop, | 
|  | // or due to this not being the initial iteration through a loop where we | 
|  | // couldn't compute the evolution of this particular PHI last time. | 
|  | if (isa<PHINode>(I)) return nullptr; | 
|  |  | 
|  | std::vector<Constant*> Operands(I->getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); | 
|  | if (!Operand) { | 
|  | Operands[i] = dyn_cast<Constant>(I->getOperand(i)); | 
|  | if (!Operands[i]) return nullptr; | 
|  | continue; | 
|  | } | 
|  | Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); | 
|  | Vals[Operand] = C; | 
|  | if (!C) return nullptr; | 
|  | Operands[i] = C; | 
|  | } | 
|  |  | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], | 
|  | Operands[1], DL, TLI); | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | if (!LI->isVolatile()) | 
|  | return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); | 
|  | } | 
|  | return ConstantFoldInstOperands(I, Operands, DL, TLI); | 
|  | } | 
|  |  | 
|  |  | 
|  | // If every incoming value to PN except the one for BB is a specific Constant, | 
|  | // return that, else return nullptr. | 
|  | static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { | 
|  | Constant *IncomingVal = nullptr; | 
|  |  | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | if (PN->getIncomingBlock(i) == BB) | 
|  | continue; | 
|  |  | 
|  | auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); | 
|  | if (!CurrentVal) | 
|  | return nullptr; | 
|  |  | 
|  | if (IncomingVal != CurrentVal) { | 
|  | if (IncomingVal) | 
|  | return nullptr; | 
|  | IncomingVal = CurrentVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | return IncomingVal; | 
|  | } | 
|  |  | 
|  | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is | 
|  | /// in the header of its containing loop, we know the loop executes a | 
|  | /// constant number of times, and the PHI node is just a recurrence | 
|  | /// involving constants, fold it. | 
|  | Constant * | 
|  | ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, | 
|  | const APInt &BEs, | 
|  | const Loop *L) { | 
|  | auto I = ConstantEvolutionLoopExitValue.find(PN); | 
|  | if (I != ConstantEvolutionLoopExitValue.end()) | 
|  | return I->second; | 
|  |  | 
|  | if (BEs.ugt(MaxBruteForceIterations)) | 
|  | return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it. | 
|  |  | 
|  | Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; | 
|  |  | 
|  | DenseMap<Instruction *, Constant *> CurrentIterVals; | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); | 
|  |  | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | if (!Latch) | 
|  | return nullptr; | 
|  |  | 
|  | for (PHINode &PHI : Header->phis()) { | 
|  | if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) | 
|  | CurrentIterVals[&PHI] = StartCST; | 
|  | } | 
|  | if (!CurrentIterVals.count(PN)) | 
|  | return RetVal = nullptr; | 
|  |  | 
|  | Value *BEValue = PN->getIncomingValueForBlock(Latch); | 
|  |  | 
|  | // Execute the loop symbolically to determine the exit value. | 
|  | assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && | 
|  | "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); | 
|  |  | 
|  | unsigned NumIterations = BEs.getZExtValue(); // must be in range | 
|  | unsigned IterationNum = 0; | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | for (; ; ++IterationNum) { | 
|  | if (IterationNum == NumIterations) | 
|  | return RetVal = CurrentIterVals[PN];  // Got exit value! | 
|  |  | 
|  | // Compute the value of the PHIs for the next iteration. | 
|  | // EvaluateExpression adds non-phi values to the CurrentIterVals map. | 
|  | DenseMap<Instruction *, Constant *> NextIterVals; | 
|  | Constant *NextPHI = | 
|  | EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); | 
|  | if (!NextPHI) | 
|  | return nullptr;        // Couldn't evaluate! | 
|  | NextIterVals[PN] = NextPHI; | 
|  |  | 
|  | bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; | 
|  |  | 
|  | // Also evaluate the other PHI nodes.  However, we don't get to stop if we | 
|  | // cease to be able to evaluate one of them or if they stop evolving, | 
|  | // because that doesn't necessarily prevent us from computing PN. | 
|  | SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; | 
|  | for (const auto &I : CurrentIterVals) { | 
|  | PHINode *PHI = dyn_cast<PHINode>(I.first); | 
|  | if (!PHI || PHI == PN || PHI->getParent() != Header) continue; | 
|  | PHIsToCompute.emplace_back(PHI, I.second); | 
|  | } | 
|  | // We use two distinct loops because EvaluateExpression may invalidate any | 
|  | // iterators into CurrentIterVals. | 
|  | for (const auto &I : PHIsToCompute) { | 
|  | PHINode *PHI = I.first; | 
|  | Constant *&NextPHI = NextIterVals[PHI]; | 
|  | if (!NextPHI) {   // Not already computed. | 
|  | Value *BEValue = PHI->getIncomingValueForBlock(Latch); | 
|  | NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); | 
|  | } | 
|  | if (NextPHI != I.second) | 
|  | StoppedEvolving = false; | 
|  | } | 
|  |  | 
|  | // If all entries in CurrentIterVals == NextIterVals then we can stop | 
|  | // iterating, the loop can't continue to change. | 
|  | if (StoppedEvolving) | 
|  | return RetVal = CurrentIterVals[PN]; | 
|  |  | 
|  | CurrentIterVals.swap(NextIterVals); | 
|  | } | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, | 
|  | Value *Cond, | 
|  | bool ExitWhen) { | 
|  | PHINode *PN = getConstantEvolvingPHI(Cond, L); | 
|  | if (!PN) return getCouldNotCompute(); | 
|  |  | 
|  | // If the loop is canonicalized, the PHI will have exactly two entries. | 
|  | // That's the only form we support here. | 
|  | if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); | 
|  |  | 
|  | DenseMap<Instruction *, Constant *> CurrentIterVals; | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); | 
|  |  | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | assert(Latch && "Should follow from NumIncomingValues == 2!"); | 
|  |  | 
|  | for (PHINode &PHI : Header->phis()) { | 
|  | if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) | 
|  | CurrentIterVals[&PHI] = StartCST; | 
|  | } | 
|  | if (!CurrentIterVals.count(PN)) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // Okay, we find a PHI node that defines the trip count of this loop.  Execute | 
|  | // the loop symbolically to determine when the condition gets a value of | 
|  | // "ExitWhen". | 
|  | unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis. | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ | 
|  | auto *CondVal = dyn_cast_or_null<ConstantInt>( | 
|  | EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); | 
|  |  | 
|  | // Couldn't symbolically evaluate. | 
|  | if (!CondVal) return getCouldNotCompute(); | 
|  |  | 
|  | if (CondVal->getValue() == uint64_t(ExitWhen)) { | 
|  | ++NumBruteForceTripCountsComputed; | 
|  | return getConstant(Type::getInt32Ty(getContext()), IterationNum); | 
|  | } | 
|  |  | 
|  | // Update all the PHI nodes for the next iteration. | 
|  | DenseMap<Instruction *, Constant *> NextIterVals; | 
|  |  | 
|  | // Create a list of which PHIs we need to compute. We want to do this before | 
|  | // calling EvaluateExpression on them because that may invalidate iterators | 
|  | // into CurrentIterVals. | 
|  | SmallVector<PHINode *, 8> PHIsToCompute; | 
|  | for (const auto &I : CurrentIterVals) { | 
|  | PHINode *PHI = dyn_cast<PHINode>(I.first); | 
|  | if (!PHI || PHI->getParent() != Header) continue; | 
|  | PHIsToCompute.push_back(PHI); | 
|  | } | 
|  | for (PHINode *PHI : PHIsToCompute) { | 
|  | Constant *&NextPHI = NextIterVals[PHI]; | 
|  | if (NextPHI) continue;    // Already computed! | 
|  |  | 
|  | Value *BEValue = PHI->getIncomingValueForBlock(Latch); | 
|  | NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); | 
|  | } | 
|  | CurrentIterVals.swap(NextIterVals); | 
|  | } | 
|  |  | 
|  | // Too many iterations were needed to evaluate. | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { | 
|  | SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = | 
|  | ValuesAtScopes[V]; | 
|  | // Check to see if we've folded this expression at this loop before. | 
|  | for (auto &LS : Values) | 
|  | if (LS.first == L) | 
|  | return LS.second ? LS.second : V; | 
|  |  | 
|  | Values.emplace_back(L, nullptr); | 
|  |  | 
|  | // Otherwise compute it. | 
|  | const SCEV *C = computeSCEVAtScope(V, L); | 
|  | for (auto &LS : reverse(ValuesAtScopes[V])) | 
|  | if (LS.first == L) { | 
|  | LS.second = C; | 
|  | break; | 
|  | } | 
|  | return C; | 
|  | } | 
|  |  | 
|  | /// This builds up a Constant using the ConstantExpr interface.  That way, we | 
|  | /// will return Constants for objects which aren't represented by a | 
|  | /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. | 
|  | /// Returns NULL if the SCEV isn't representable as a Constant. | 
|  | static Constant *BuildConstantFromSCEV(const SCEV *V) { | 
|  | switch (static_cast<SCEVTypes>(V->getSCEVType())) { | 
|  | case scCouldNotCompute: | 
|  | case scAddRecExpr: | 
|  | break; | 
|  | case scConstant: | 
|  | return cast<SCEVConstant>(V)->getValue(); | 
|  | case scUnknown: | 
|  | return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); | 
|  | case scSignExtend: { | 
|  | const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); | 
|  | if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) | 
|  | return ConstantExpr::getSExt(CastOp, SS->getType()); | 
|  | break; | 
|  | } | 
|  | case scZeroExtend: { | 
|  | const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); | 
|  | if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) | 
|  | return ConstantExpr::getZExt(CastOp, SZ->getType()); | 
|  | break; | 
|  | } | 
|  | case scTruncate: { | 
|  | const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); | 
|  | if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) | 
|  | return ConstantExpr::getTrunc(CastOp, ST->getType()); | 
|  | break; | 
|  | } | 
|  | case scAddExpr: { | 
|  | const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); | 
|  | if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { | 
|  | unsigned AS = PTy->getAddressSpace(); | 
|  | Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); | 
|  | C = ConstantExpr::getBitCast(C, DestPtrTy); | 
|  | } | 
|  | for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { | 
|  | Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); | 
|  | if (!C2) return nullptr; | 
|  |  | 
|  | // First pointer! | 
|  | if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { | 
|  | unsigned AS = C2->getType()->getPointerAddressSpace(); | 
|  | std::swap(C, C2); | 
|  | Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); | 
|  | // The offsets have been converted to bytes.  We can add bytes to an | 
|  | // i8* by GEP with the byte count in the first index. | 
|  | C = ConstantExpr::getBitCast(C, DestPtrTy); | 
|  | } | 
|  |  | 
|  | // Don't bother trying to sum two pointers. We probably can't | 
|  | // statically compute a load that results from it anyway. | 
|  | if (C2->getType()->isPointerTy()) | 
|  | return nullptr; | 
|  |  | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { | 
|  | if (PTy->getElementType()->isStructTy()) | 
|  | C2 = ConstantExpr::getIntegerCast( | 
|  | C2, Type::getInt32Ty(C->getContext()), true); | 
|  | C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); | 
|  | } else | 
|  | C = ConstantExpr::getAdd(C, C2); | 
|  | } | 
|  | return C; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case scMulExpr: { | 
|  | const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); | 
|  | if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { | 
|  | // Don't bother with pointers at all. | 
|  | if (C->getType()->isPointerTy()) return nullptr; | 
|  | for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { | 
|  | Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); | 
|  | if (!C2 || C2->getType()->isPointerTy()) return nullptr; | 
|  | C = ConstantExpr::getMul(C, C2); | 
|  | } | 
|  | return C; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case scUDivExpr: { | 
|  | const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); | 
|  | if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) | 
|  | if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) | 
|  | if (LHS->getType() == RHS->getType()) | 
|  | return ConstantExpr::getUDiv(LHS, RHS); | 
|  | break; | 
|  | } | 
|  | case scSMaxExpr: | 
|  | case scUMaxExpr: | 
|  | break; // TODO: smax, umax. | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { | 
|  | if (isa<SCEVConstant>(V)) return V; | 
|  |  | 
|  | // If this instruction is evolved from a constant-evolving PHI, compute the | 
|  | // exit value from the loop without using SCEVs. | 
|  | if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { | 
|  | const Loop *LI = this->LI[I->getParent()]; | 
|  | if (LI && LI->getParentLoop() == L)  // Looking for loop exit value. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | if (PN->getParent() == LI->getHeader()) { | 
|  | // Okay, there is no closed form solution for the PHI node.  Check | 
|  | // to see if the loop that contains it has a known backedge-taken | 
|  | // count.  If so, we may be able to force computation of the exit | 
|  | // value. | 
|  | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); | 
|  | if (const SCEVConstant *BTCC = | 
|  | dyn_cast<SCEVConstant>(BackedgeTakenCount)) { | 
|  |  | 
|  | // This trivial case can show up in some degenerate cases where | 
|  | // the incoming IR has not yet been fully simplified. | 
|  | if (BTCC->getValue()->isZero()) { | 
|  | Value *InitValue = nullptr; | 
|  | bool MultipleInitValues = false; | 
|  | for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { | 
|  | if (!LI->contains(PN->getIncomingBlock(i))) { | 
|  | if (!InitValue) | 
|  | InitValue = PN->getIncomingValue(i); | 
|  | else if (InitValue != PN->getIncomingValue(i)) { | 
|  | MultipleInitValues = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!MultipleInitValues && InitValue) | 
|  | return getSCEV(InitValue); | 
|  | } | 
|  | } | 
|  | // Okay, we know how many times the containing loop executes.  If | 
|  | // this is a constant evolving PHI node, get the final value at | 
|  | // the specified iteration number. | 
|  | Constant *RV = | 
|  | getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); | 
|  | if (RV) return getSCEV(RV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, this is an expression that we cannot symbolically evaluate | 
|  | // into a SCEV.  Check to see if it's possible to symbolically evaluate | 
|  | // the arguments into constants, and if so, try to constant propagate the | 
|  | // result.  This is particularly useful for computing loop exit values. | 
|  | if (CanConstantFold(I)) { | 
|  | SmallVector<Constant *, 4> Operands; | 
|  | bool MadeImprovement = false; | 
|  | for (Value *Op : I->operands()) { | 
|  | if (Constant *C = dyn_cast<Constant>(Op)) { | 
|  | Operands.push_back(C); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If any of the operands is non-constant and if they are | 
|  | // non-integer and non-pointer, don't even try to analyze them | 
|  | // with scev techniques. | 
|  | if (!isSCEVable(Op->getType())) | 
|  | return V; | 
|  |  | 
|  | const SCEV *OrigV = getSCEV(Op); | 
|  | const SCEV *OpV = getSCEVAtScope(OrigV, L); | 
|  | MadeImprovement |= OrigV != OpV; | 
|  |  | 
|  | Constant *C = BuildConstantFromSCEV(OpV); | 
|  | if (!C) return V; | 
|  | if (C->getType() != Op->getType()) | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | Op->getType(), | 
|  | false), | 
|  | C, Op->getType()); | 
|  | Operands.push_back(C); | 
|  | } | 
|  |  | 
|  | // Check to see if getSCEVAtScope actually made an improvement. | 
|  | if (MadeImprovement) { | 
|  | Constant *C = nullptr; | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | if (const CmpInst *CI = dyn_cast<CmpInst>(I)) | 
|  | C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], | 
|  | Operands[1], DL, &TLI); | 
|  | else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | if (!LI->isVolatile()) | 
|  | C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); | 
|  | } else | 
|  | C = ConstantFoldInstOperands(I, Operands, DL, &TLI); | 
|  | if (!C) return V; | 
|  | return getSCEV(C); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is some other type of SCEVUnknown, just return it. | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { | 
|  | // Avoid performing the look-up in the common case where the specified | 
|  | // expression has no loop-variant portions. | 
|  | for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { | 
|  | const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); | 
|  | if (OpAtScope != Comm->getOperand(i)) { | 
|  | // Okay, at least one of these operands is loop variant but might be | 
|  | // foldable.  Build a new instance of the folded commutative expression. | 
|  | SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), | 
|  | Comm->op_begin()+i); | 
|  | NewOps.push_back(OpAtScope); | 
|  |  | 
|  | for (++i; i != e; ++i) { | 
|  | OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); | 
|  | NewOps.push_back(OpAtScope); | 
|  | } | 
|  | if (isa<SCEVAddExpr>(Comm)) | 
|  | return getAddExpr(NewOps); | 
|  | if (isa<SCEVMulExpr>(Comm)) | 
|  | return getMulExpr(NewOps); | 
|  | if (isa<SCEVSMaxExpr>(Comm)) | 
|  | return getSMaxExpr(NewOps); | 
|  | if (isa<SCEVUMaxExpr>(Comm)) | 
|  | return getUMaxExpr(NewOps); | 
|  | llvm_unreachable("Unknown commutative SCEV type!"); | 
|  | } | 
|  | } | 
|  | // If we got here, all operands are loop invariant. | 
|  | return Comm; | 
|  | } | 
|  |  | 
|  | if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { | 
|  | const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); | 
|  | const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); | 
|  | if (LHS == Div->getLHS() && RHS == Div->getRHS()) | 
|  | return Div;   // must be loop invariant | 
|  | return getUDivExpr(LHS, RHS); | 
|  | } | 
|  |  | 
|  | // If this is a loop recurrence for a loop that does not contain L, then we | 
|  | // are dealing with the final value computed by the loop. | 
|  | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { | 
|  | // First, attempt to evaluate each operand. | 
|  | // Avoid performing the look-up in the common case where the specified | 
|  | // expression has no loop-variant portions. | 
|  | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { | 
|  | const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); | 
|  | if (OpAtScope == AddRec->getOperand(i)) | 
|  | continue; | 
|  |  | 
|  | // Okay, at least one of these operands is loop variant but might be | 
|  | // foldable.  Build a new instance of the folded commutative expression. | 
|  | SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), | 
|  | AddRec->op_begin()+i); | 
|  | NewOps.push_back(OpAtScope); | 
|  | for (++i; i != e; ++i) | 
|  | NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); | 
|  |  | 
|  | const SCEV *FoldedRec = | 
|  | getAddRecExpr(NewOps, AddRec->getLoop(), | 
|  | AddRec->getNoWrapFlags(SCEV::FlagNW)); | 
|  | AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); | 
|  | // The addrec may be folded to a nonrecurrence, for example, if the | 
|  | // induction variable is multiplied by zero after constant folding. Go | 
|  | // ahead and return the folded value. | 
|  | if (!AddRec) | 
|  | return FoldedRec; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the scope is outside the addrec's loop, evaluate it by using the | 
|  | // loop exit value of the addrec. | 
|  | if (!AddRec->getLoop()->contains(L)) { | 
|  | // To evaluate this recurrence, we need to know how many times the AddRec | 
|  | // loop iterates.  Compute this now. | 
|  | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); | 
|  | if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; | 
|  |  | 
|  | // Then, evaluate the AddRec. | 
|  | return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); | 
|  | } | 
|  |  | 
|  | return AddRec; | 
|  | } | 
|  |  | 
|  | if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { | 
|  | const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); | 
|  | if (Op == Cast->getOperand()) | 
|  | return Cast;  // must be loop invariant | 
|  | return getZeroExtendExpr(Op, Cast->getType()); | 
|  | } | 
|  |  | 
|  | if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { | 
|  | const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); | 
|  | if (Op == Cast->getOperand()) | 
|  | return Cast;  // must be loop invariant | 
|  | return getSignExtendExpr(Op, Cast->getType()); | 
|  | } | 
|  |  | 
|  | if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { | 
|  | const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); | 
|  | if (Op == Cast->getOperand()) | 
|  | return Cast;  // must be loop invariant | 
|  | return getTruncateExpr(Op, Cast->getType()); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown SCEV type!"); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { | 
|  | return getSCEVAtScope(getSCEV(V), L); | 
|  | } | 
|  |  | 
|  | /// Finds the minimum unsigned root of the following equation: | 
|  | /// | 
|  | ///     A * X = B (mod N) | 
|  | /// | 
|  | /// where N = 2^BW and BW is the common bit width of A and B. The signedness of | 
|  | /// A and B isn't important. | 
|  | /// | 
|  | /// If the equation does not have a solution, SCEVCouldNotCompute is returned. | 
|  | static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, | 
|  | ScalarEvolution &SE) { | 
|  | uint32_t BW = A.getBitWidth(); | 
|  | assert(BW == SE.getTypeSizeInBits(B->getType())); | 
|  | assert(A != 0 && "A must be non-zero."); | 
|  |  | 
|  | // 1. D = gcd(A, N) | 
|  | // | 
|  | // The gcd of A and N may have only one prime factor: 2. The number of | 
|  | // trailing zeros in A is its multiplicity | 
|  | uint32_t Mult2 = A.countTrailingZeros(); | 
|  | // D = 2^Mult2 | 
|  |  | 
|  | // 2. Check if B is divisible by D. | 
|  | // | 
|  | // B is divisible by D if and only if the multiplicity of prime factor 2 for B | 
|  | // is not less than multiplicity of this prime factor for D. | 
|  | if (SE.GetMinTrailingZeros(B) < Mult2) | 
|  | return SE.getCouldNotCompute(); | 
|  |  | 
|  | // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic | 
|  | // modulo (N / D). | 
|  | // | 
|  | // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent | 
|  | // (N / D) in general. The inverse itself always fits into BW bits, though, | 
|  | // so we immediately truncate it. | 
|  | APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D | 
|  | APInt Mod(BW + 1, 0); | 
|  | Mod.setBit(BW - Mult2);  // Mod = N / D | 
|  | APInt I = AD.multiplicativeInverse(Mod).trunc(BW); | 
|  |  | 
|  | // 4. Compute the minimum unsigned root of the equation: | 
|  | // I * (B / D) mod (N / D) | 
|  | // To simplify the computation, we factor out the divide by D: | 
|  | // (I * B mod N) / D | 
|  | const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); | 
|  | return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); | 
|  | } | 
|  |  | 
|  | /// Find the roots of the quadratic equation for the given quadratic chrec | 
|  | /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or | 
|  | /// two SCEVCouldNotCompute objects. | 
|  | static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> | 
|  | SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { | 
|  | assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); | 
|  | const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); | 
|  | const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); | 
|  | const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); | 
|  |  | 
|  | // We currently can only solve this if the coefficients are constants. | 
|  | if (!LC || !MC || !NC) | 
|  | return None; | 
|  |  | 
|  | uint32_t BitWidth = LC->getAPInt().getBitWidth(); | 
|  | const APInt &L = LC->getAPInt(); | 
|  | const APInt &M = MC->getAPInt(); | 
|  | const APInt &N = NC->getAPInt(); | 
|  | APInt Two(BitWidth, 2); | 
|  |  | 
|  | // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C | 
|  |  | 
|  | // The A coefficient is N/2 | 
|  | APInt A = N.sdiv(Two); | 
|  |  | 
|  | // The B coefficient is M-N/2 | 
|  | APInt B = M; | 
|  | B -= A; // A is the same as N/2. | 
|  |  | 
|  | // The C coefficient is L. | 
|  | const APInt& C = L; | 
|  |  | 
|  | // Compute the B^2-4ac term. | 
|  | APInt SqrtTerm = B; | 
|  | SqrtTerm *= B; | 
|  | SqrtTerm -= 4 * (A * C); | 
|  |  | 
|  | if (SqrtTerm.isNegative()) { | 
|  | // The loop is provably infinite. | 
|  | return None; | 
|  | } | 
|  |  | 
|  | // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest | 
|  | // integer value or else APInt::sqrt() will assert. | 
|  | APInt SqrtVal = SqrtTerm.sqrt(); | 
|  |  | 
|  | // Compute the two solutions for the quadratic formula. | 
|  | // The divisions must be performed as signed divisions. | 
|  | APInt NegB = -std::move(B); | 
|  | APInt TwoA = std::move(A); | 
|  | TwoA <<= 1; | 
|  | if (TwoA.isNullValue()) | 
|  | return None; | 
|  |  | 
|  | LLVMContext &Context = SE.getContext(); | 
|  |  | 
|  | ConstantInt *Solution1 = | 
|  | ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); | 
|  | ConstantInt *Solution2 = | 
|  | ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); | 
|  |  | 
|  | return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), | 
|  | cast<SCEVConstant>(SE.getConstant(Solution2))); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, | 
|  | bool AllowPredicates) { | 
|  |  | 
|  | // This is only used for loops with a "x != y" exit test. The exit condition | 
|  | // is now expressed as a single expression, V = x-y. So the exit test is | 
|  | // effectively V != 0.  We know and take advantage of the fact that this | 
|  | // expression only being used in a comparison by zero context. | 
|  |  | 
|  | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | 
|  | // If the value is a constant | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { | 
|  | // If the value is already zero, the branch will execute zero times. | 
|  | if (C->getValue()->isZero()) return C; | 
|  | return getCouldNotCompute();  // Otherwise it will loop infinitely. | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); | 
|  | if (!AddRec && AllowPredicates) | 
|  | // Try to make this an AddRec using runtime tests, in the first X | 
|  | // iterations of this loop, where X is the SCEV expression found by the | 
|  | // algorithm below. | 
|  | AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); | 
|  |  | 
|  | if (!AddRec || AddRec->getLoop() != L) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of | 
|  | // the quadratic equation to solve it. | 
|  | if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { | 
|  | if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { | 
|  | const SCEVConstant *R1 = Roots->first; | 
|  | const SCEVConstant *R2 = Roots->second; | 
|  | // Pick the smallest positive root value. | 
|  | if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( | 
|  | CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { | 
|  | if (!CB->getZExtValue()) | 
|  | std::swap(R1, R2); // R1 is the minimum root now. | 
|  |  | 
|  | // We can only use this value if the chrec ends up with an exact zero | 
|  | // value at this index.  When solving for "X*X != 5", for example, we | 
|  | // should not accept a root of 2. | 
|  | const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); | 
|  | if (Val->isZero()) | 
|  | // We found a quadratic root! | 
|  | return ExitLimit(R1, R1, false, Predicates); | 
|  | } | 
|  | } | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | // Otherwise we can only handle this if it is affine. | 
|  | if (!AddRec->isAffine()) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // If this is an affine expression, the execution count of this branch is | 
|  | // the minimum unsigned root of the following equation: | 
|  | // | 
|  | //     Start + Step*N = 0 (mod 2^BW) | 
|  | // | 
|  | // equivalent to: | 
|  | // | 
|  | //             Step*N = -Start (mod 2^BW) | 
|  | // | 
|  | // where BW is the common bit width of Start and Step. | 
|  |  | 
|  | // Get the initial value for the loop. | 
|  | const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); | 
|  | const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); | 
|  |  | 
|  | // For now we handle only constant steps. | 
|  | // | 
|  | // TODO: Handle a nonconstant Step given AddRec<NUW>. If the | 
|  | // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap | 
|  | // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. | 
|  | // We have not yet seen any such cases. | 
|  | const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); | 
|  | if (!StepC || StepC->getValue()->isZero()) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // For positive steps (counting up until unsigned overflow): | 
|  | //   N = -Start/Step (as unsigned) | 
|  | // For negative steps (counting down to zero): | 
|  | //   N = Start/-Step | 
|  | // First compute the unsigned distance from zero in the direction of Step. | 
|  | bool CountDown = StepC->getAPInt().isNegative(); | 
|  | const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); | 
|  |  | 
|  | // Handle unitary steps, which cannot wraparound. | 
|  | // 1*N = -Start; -1*N = Start (mod 2^BW), so: | 
|  | //   N = Distance (as unsigned) | 
|  | if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { | 
|  | APInt MaxBECount = getUnsignedRangeMax(Distance); | 
|  |  | 
|  | // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, | 
|  | // we end up with a loop whose backedge-taken count is n - 1.  Detect this | 
|  | // case, and see if we can improve the bound. | 
|  | // | 
|  | // Explicitly handling this here is necessary because getUnsignedRange | 
|  | // isn't context-sensitive; it doesn't know that we only care about the | 
|  | // range inside the loop. | 
|  | const SCEV *Zero = getZero(Distance->getType()); | 
|  | const SCEV *One = getOne(Distance->getType()); | 
|  | const SCEV *DistancePlusOne = getAddExpr(Distance, One); | 
|  | if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { | 
|  | // If Distance + 1 doesn't overflow, we can compute the maximum distance | 
|  | // as "unsigned_max(Distance + 1) - 1". | 
|  | ConstantRange CR = getUnsignedRange(DistancePlusOne); | 
|  | MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); | 
|  | } | 
|  | return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); | 
|  | } | 
|  |  | 
|  | // If the condition controls loop exit (the loop exits only if the expression | 
|  | // is true) and the addition is no-wrap we can use unsigned divide to | 
|  | // compute the backedge count.  In this case, the step may not divide the | 
|  | // distance, but we don't care because if the condition is "missed" the loop | 
|  | // will have undefined behavior due to wrapping. | 
|  | if (ControlsExit && AddRec->hasNoSelfWrap() && | 
|  | loopHasNoAbnormalExits(AddRec->getLoop())) { | 
|  | const SCEV *Exact = | 
|  | getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); | 
|  | const SCEV *Max = | 
|  | Exact == getCouldNotCompute() | 
|  | ? Exact | 
|  | : getConstant(getUnsignedRangeMax(Exact)); | 
|  | return ExitLimit(Exact, Max, false, Predicates); | 
|  | } | 
|  |  | 
|  | // Solve the general equation. | 
|  | const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), | 
|  | getNegativeSCEV(Start), *this); | 
|  | const SCEV *M = E == getCouldNotCompute() | 
|  | ? E | 
|  | : getConstant(getUnsignedRangeMax(E)); | 
|  | return ExitLimit(E, M, false, Predicates); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { | 
|  | // Loops that look like: while (X == 0) are very strange indeed.  We don't | 
|  | // handle them yet except for the trivial case.  This could be expanded in the | 
|  | // future as needed. | 
|  |  | 
|  | // If the value is a constant, check to see if it is known to be non-zero | 
|  | // already.  If so, the backedge will execute zero times. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { | 
|  | if (!C->getValue()->isZero()) | 
|  | return getZero(C->getType()); | 
|  | return getCouldNotCompute();  // Otherwise it will loop infinitely. | 
|  | } | 
|  |  | 
|  | // We could implement others, but I really doubt anyone writes loops like | 
|  | // this, and if they did, they would already be constant folded. | 
|  | return getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | std::pair<BasicBlock *, BasicBlock *> | 
|  | ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { | 
|  | // If the block has a unique predecessor, then there is no path from the | 
|  | // predecessor to the block that does not go through the direct edge | 
|  | // from the predecessor to the block. | 
|  | if (BasicBlock *Pred = BB->getSinglePredecessor()) | 
|  | return {Pred, BB}; | 
|  |  | 
|  | // A loop's header is defined to be a block that dominates the loop. | 
|  | // If the header has a unique predecessor outside the loop, it must be | 
|  | // a block that has exactly one successor that can reach the loop. | 
|  | if (Loop *L = LI.getLoopFor(BB)) | 
|  | return {L->getLoopPredecessor(), L->getHeader()}; | 
|  |  | 
|  | return {nullptr, nullptr}; | 
|  | } | 
|  |  | 
|  | /// SCEV structural equivalence is usually sufficient for testing whether two | 
|  | /// expressions are equal, however for the purposes of looking for a condition | 
|  | /// guarding a loop, it can be useful to be a little more general, since a | 
|  | /// front-end may have replicated the controlling expression. | 
|  | static bool HasSameValue(const SCEV *A, const SCEV *B) { | 
|  | // Quick check to see if they are the same SCEV. | 
|  | if (A == B) return true; | 
|  |  | 
|  | auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { | 
|  | // Not all instructions that are "identical" compute the same value.  For | 
|  | // instance, two distinct alloca instructions allocating the same type are | 
|  | // identical and do not read memory; but compute distinct values. | 
|  | return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); | 
|  | }; | 
|  |  | 
|  | // Otherwise, if they're both SCEVUnknown, it's possible that they hold | 
|  | // two different instructions with the same value. Check for this case. | 
|  | if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) | 
|  | if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) | 
|  | if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) | 
|  | if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) | 
|  | if (ComputesEqualValues(AI, BI)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise assume they may have a different value. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, | 
|  | const SCEV *&LHS, const SCEV *&RHS, | 
|  | unsigned Depth) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // If we hit the max recursion limit bail out. | 
|  | if (Depth >= 3) | 
|  | return false; | 
|  |  | 
|  | // Canonicalize a constant to the right side. | 
|  | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { | 
|  | // Check for both operands constant. | 
|  | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | 
|  | if (ConstantExpr::getICmp(Pred, | 
|  | LHSC->getValue(), | 
|  | RHSC->getValue())->isNullValue()) | 
|  | goto trivially_false; | 
|  | else | 
|  | goto trivially_true; | 
|  | } | 
|  | // Otherwise swap the operands to put the constant on the right. | 
|  | std::swap(LHS, RHS); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // If we're comparing an addrec with a value which is loop-invariant in the | 
|  | // addrec's loop, put the addrec on the left. Also make a dominance check, | 
|  | // as both operands could be addrecs loop-invariant in each other's loop. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { | 
|  | const Loop *L = AR->getLoop(); | 
|  | if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there's a constant operand, canonicalize comparisons with boundary | 
|  | // cases, and canonicalize *-or-equal comparisons to regular comparisons. | 
|  | if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { | 
|  | const APInt &RA = RC->getAPInt(); | 
|  |  | 
|  | bool SimplifiedByConstantRange = false; | 
|  |  | 
|  | if (!ICmpInst::isEquality(Pred)) { | 
|  | ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); | 
|  | if (ExactCR.isFullSet()) | 
|  | goto trivially_true; | 
|  | else if (ExactCR.isEmptySet()) | 
|  | goto trivially_false; | 
|  |  | 
|  | APInt NewRHS; | 
|  | CmpInst::Predicate NewPred; | 
|  | if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && | 
|  | ICmpInst::isEquality(NewPred)) { | 
|  | // We were able to convert an inequality to an equality. | 
|  | Pred = NewPred; | 
|  | RHS = getConstant(NewRHS); | 
|  | Changed = SimplifiedByConstantRange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SimplifiedByConstantRange) { | 
|  | switch (Pred) { | 
|  | default: | 
|  | break; | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_NE: | 
|  | // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. | 
|  | if (!RA) | 
|  | if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) | 
|  | if (const SCEVMulExpr *ME = | 
|  | dyn_cast<SCEVMulExpr>(AE->getOperand(0))) | 
|  | if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && | 
|  | ME->getOperand(0)->isAllOnesValue()) { | 
|  | RHS = AE->getOperand(1); | 
|  | LHS = ME->getOperand(1); | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | // The "Should have been caught earlier!" messages refer to the fact | 
|  | // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above | 
|  | // should have fired on the corresponding cases, and canonicalized the | 
|  | // check to trivially_true or trivially_false. | 
|  |  | 
|  | case ICmpInst::ICMP_UGE: | 
|  | assert(!RA.isMinValue() && "Should have been caught earlier!"); | 
|  | Pred = ICmpInst::ICMP_UGT; | 
|  | RHS = getConstant(RA - 1); | 
|  | Changed = true; | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | assert(!RA.isMaxValue() && "Should have been caught earlier!"); | 
|  | Pred = ICmpInst::ICMP_ULT; | 
|  | RHS = getConstant(RA + 1); | 
|  | Changed = true; | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); | 
|  | Pred = ICmpInst::ICMP_SGT; | 
|  | RHS = getConstant(RA - 1); | 
|  | Changed = true; | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | RHS = getConstant(RA + 1); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for obvious equality. | 
|  | if (HasSameValue(LHS, RHS)) { | 
|  | if (ICmpInst::isTrueWhenEqual(Pred)) | 
|  | goto trivially_true; | 
|  | if (ICmpInst::isFalseWhenEqual(Pred)) | 
|  | goto trivially_false; | 
|  | } | 
|  |  | 
|  | // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by | 
|  | // adding or subtracting 1 from one of the operands. | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (!getSignedRangeMax(RHS).isMaxSignedValue()) { | 
|  | RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, | 
|  | SCEV::FlagNSW); | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | Changed = true; | 
|  | } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { | 
|  | LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, | 
|  | SCEV::FlagNSW); | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (!getSignedRangeMin(RHS).isMinSignedValue()) { | 
|  | RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, | 
|  | SCEV::FlagNSW); | 
|  | Pred = ICmpInst::ICMP_SGT; | 
|  | Changed = true; | 
|  | } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { | 
|  | LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, | 
|  | SCEV::FlagNSW); | 
|  | Pred = ICmpInst::ICMP_SGT; | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (!getUnsignedRangeMax(RHS).isMaxValue()) { | 
|  | RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, | 
|  | SCEV::FlagNUW); | 
|  | Pred = ICmpInst::ICMP_ULT; | 
|  | Changed = true; | 
|  | } else if (!getUnsignedRangeMin(LHS).isMinValue()) { | 
|  | LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); | 
|  | Pred = ICmpInst::ICMP_ULT; | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (!getUnsignedRangeMin(RHS).isMinValue()) { | 
|  | RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); | 
|  | Pred = ICmpInst::ICMP_UGT; | 
|  | Changed = true; | 
|  | } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { | 
|  | LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, | 
|  | SCEV::FlagNUW); | 
|  | Pred = ICmpInst::ICMP_UGT; | 
|  | Changed = true; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: More simplifications are possible here. | 
|  |  | 
|  | // Recursively simplify until we either hit a recursion limit or nothing | 
|  | // changes. | 
|  | if (Changed) | 
|  | return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); | 
|  |  | 
|  | return Changed; | 
|  |  | 
|  | trivially_true: | 
|  | // Return 0 == 0. | 
|  | LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); | 
|  | Pred = ICmpInst::ICMP_EQ; | 
|  | return true; | 
|  |  | 
|  | trivially_false: | 
|  | // Return 0 != 0. | 
|  | LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); | 
|  | Pred = ICmpInst::ICMP_NE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownNegative(const SCEV *S) { | 
|  | return getSignedRangeMax(S).isNegative(); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownPositive(const SCEV *S) { | 
|  | return getSignedRangeMin(S).isStrictlyPositive(); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { | 
|  | return !getSignedRangeMin(S).isNegative(); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { | 
|  | return !getSignedRangeMax(S).isStrictlyPositive(); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownNonZero(const SCEV *S) { | 
|  | return isKnownNegative(S) || isKnownPositive(S); | 
|  | } | 
|  |  | 
|  | std::pair<const SCEV *, const SCEV *> | 
|  | ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { | 
|  | // Compute SCEV on entry of loop L. | 
|  | const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); | 
|  | if (Start == getCouldNotCompute()) | 
|  | return { Start, Start }; | 
|  | // Compute post increment SCEV for loop L. | 
|  | const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); | 
|  | assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); | 
|  | return { Start, PostInc }; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | // First collect all loops. | 
|  | SmallPtrSet<const Loop *, 8> LoopsUsed; | 
|  | getUsedLoops(LHS, LoopsUsed); | 
|  | getUsedLoops(RHS, LoopsUsed); | 
|  |  | 
|  | if (LoopsUsed.empty()) | 
|  | return false; | 
|  |  | 
|  | // Domination relationship must be a linear order on collected loops. | 
|  | #ifndef NDEBUG | 
|  | for (auto *L1 : LoopsUsed) | 
|  | for (auto *L2 : LoopsUsed) | 
|  | assert((DT.dominates(L1->getHeader(), L2->getHeader()) || | 
|  | DT.dominates(L2->getHeader(), L1->getHeader())) && | 
|  | "Domination relationship is not a linear order"); | 
|  | #endif | 
|  |  | 
|  | const Loop *MDL = | 
|  | *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), | 
|  | [&](const Loop *L1, const Loop *L2) { | 
|  | return DT.properlyDominates(L1->getHeader(), L2->getHeader()); | 
|  | }); | 
|  |  | 
|  | // Get init and post increment value for LHS. | 
|  | auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); | 
|  | // if LHS contains unknown non-invariant SCEV then bail out. | 
|  | if (SplitLHS.first == getCouldNotCompute()) | 
|  | return false; | 
|  | assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); | 
|  | // Get init and post increment value for RHS. | 
|  | auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); | 
|  | // if RHS contains unknown non-invariant SCEV then bail out. | 
|  | if (SplitRHS.first == getCouldNotCompute()) | 
|  | return false; | 
|  | assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); | 
|  | // It is possible that init SCEV contains an invariant load but it does | 
|  | // not dominate MDL and is not available at MDL loop entry, so we should | 
|  | // check it here. | 
|  | if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || | 
|  | !isAvailableAtLoopEntry(SplitRHS.first, MDL)) | 
|  | return false; | 
|  |  | 
|  | return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && | 
|  | isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, | 
|  | SplitRHS.second); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | // Canonicalize the inputs first. | 
|  | (void)SimplifyICmpOperands(Pred, LHS, RHS); | 
|  |  | 
|  | if (isKnownViaInduction(Pred, LHS, RHS)) | 
|  | return true; | 
|  |  | 
|  | if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise see what can be done with some simple reasoning. | 
|  | return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, | 
|  | const SCEVAddRecExpr *LHS, | 
|  | const SCEV *RHS) { | 
|  | const Loop *L = LHS->getLoop(); | 
|  | return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && | 
|  | isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, | 
|  | ICmpInst::Predicate Pred, | 
|  | bool &Increasing) { | 
|  | bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify an invariant: inverting the predicate should turn a monotonically | 
|  | // increasing change to a monotonically decreasing one, and vice versa. | 
|  | bool IncreasingSwapped; | 
|  | bool ResultSwapped = isMonotonicPredicateImpl( | 
|  | LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); | 
|  |  | 
|  | assert(Result == ResultSwapped && "should be able to analyze both!"); | 
|  | if (ResultSwapped) | 
|  | assert(Increasing == !IncreasingSwapped && | 
|  | "monotonicity should flip as we flip the predicate"); | 
|  | #endif | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, | 
|  | ICmpInst::Predicate Pred, | 
|  | bool &Increasing) { | 
|  |  | 
|  | // A zero step value for LHS means the induction variable is essentially a | 
|  | // loop invariant value. We don't really depend on the predicate actually | 
|  | // flipping from false to true (for increasing predicates, and the other way | 
|  | // around for decreasing predicates), all we care about is that *if* the | 
|  | // predicate changes then it only changes from false to true. | 
|  | // | 
|  | // A zero step value in itself is not very useful, but there may be places | 
|  | // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be | 
|  | // as general as possible. | 
|  |  | 
|  | switch (Pred) { | 
|  | default: | 
|  | return false; // Conservative answer | 
|  |  | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (!LHS->hasNoUnsignedWrap()) | 
|  | return false; | 
|  |  | 
|  | Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; | 
|  | return true; | 
|  |  | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: { | 
|  | if (!LHS->hasNoSignedWrap()) | 
|  | return false; | 
|  |  | 
|  | const SCEV *Step = LHS->getStepRecurrence(*this); | 
|  |  | 
|  | if (isKnownNonNegative(Step)) { | 
|  | Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isKnownNonPositive(Step)) { | 
|  | Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | llvm_unreachable("switch has default clause!"); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isLoopInvariantPredicate( | 
|  | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, | 
|  | ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, | 
|  | const SCEV *&InvariantRHS) { | 
|  |  | 
|  | // If there is a loop-invariant, force it into the RHS, otherwise bail out. | 
|  | if (!isLoopInvariant(RHS, L)) { | 
|  | if (!isLoopInvariant(LHS, L)) | 
|  | return false; | 
|  |  | 
|  | std::swap(LHS, RHS); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); | 
|  | if (!ArLHS || ArLHS->getLoop() != L) | 
|  | return false; | 
|  |  | 
|  | bool Increasing; | 
|  | if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) | 
|  | return false; | 
|  |  | 
|  | // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to | 
|  | // true as the loop iterates, and the backedge is control dependent on | 
|  | // "ArLHS `Pred` RHS" == true then we can reason as follows: | 
|  | // | 
|  | //   * if the predicate was false in the first iteration then the predicate | 
|  | //     is never evaluated again, since the loop exits without taking the | 
|  | //     backedge. | 
|  | //   * if the predicate was true in the first iteration then it will | 
|  | //     continue to be true for all future iterations since it is | 
|  | //     monotonically increasing. | 
|  | // | 
|  | // For both the above possibilities, we can replace the loop varying | 
|  | // predicate with its value on the first iteration of the loop (which is | 
|  | // loop invariant). | 
|  | // | 
|  | // A similar reasoning applies for a monotonically decreasing predicate, by | 
|  | // replacing true with false and false with true in the above two bullets. | 
|  |  | 
|  | auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); | 
|  |  | 
|  | if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) | 
|  | return false; | 
|  |  | 
|  | InvariantPred = Pred; | 
|  | InvariantLHS = ArLHS->getStart(); | 
|  | InvariantRHS = RHS; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownPredicateViaConstantRanges( | 
|  | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { | 
|  | if (HasSameValue(LHS, RHS)) | 
|  | return ICmpInst::isTrueWhenEqual(Pred); | 
|  |  | 
|  | // This code is split out from isKnownPredicate because it is called from | 
|  | // within isLoopEntryGuardedByCond. | 
|  |  | 
|  | auto CheckRanges = | 
|  | [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { | 
|  | return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) | 
|  | .contains(RangeLHS); | 
|  | }; | 
|  |  | 
|  | // The check at the top of the function catches the case where the values are | 
|  | // known to be equal. | 
|  | if (Pred == CmpInst::ICMP_EQ) | 
|  | return false; | 
|  |  | 
|  | if (Pred == CmpInst::ICMP_NE) | 
|  | return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || | 
|  | CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || | 
|  | isKnownNonZero(getMinusSCEV(LHS, RHS)); | 
|  |  | 
|  | if (CmpInst::isSigned(Pred)) | 
|  | return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); | 
|  |  | 
|  | return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. | 
|  | // Return Y via OutY. | 
|  | auto MatchBinaryAddToConst = | 
|  | [this](const SCEV *Result, const SCEV *X, APInt &OutY, | 
|  | SCEV::NoWrapFlags ExpectedFlags) { | 
|  | const SCEV *NonConstOp, *ConstOp; | 
|  | SCEV::NoWrapFlags FlagsPresent; | 
|  |  | 
|  | if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || | 
|  | !isa<SCEVConstant>(ConstOp) || NonConstOp != X) | 
|  | return false; | 
|  |  | 
|  | OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); | 
|  | return (FlagsPresent & ExpectedFlags) == ExpectedFlags; | 
|  | }; | 
|  |  | 
|  | APInt C; | 
|  |  | 
|  | switch (Pred) { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_SGE: | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | // X s<= (X + C)<nsw> if C >= 0 | 
|  | if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) | 
|  | return true; | 
|  |  | 
|  | // (X + C)<nsw> s<= X if C <= 0 | 
|  | if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && | 
|  | !C.isStrictlyPositive()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case ICmpInst::ICMP_SGT: | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | // X s< (X + C)<nsw> if C > 0 | 
|  | if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && | 
|  | C.isStrictlyPositive()) | 
|  | return true; | 
|  |  | 
|  | // (X + C)<nsw> s< X if C < 0 | 
|  | if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) | 
|  | return false; | 
|  |  | 
|  | // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on | 
|  | // the stack can result in exponential time complexity. | 
|  | SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); | 
|  |  | 
|  | // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L | 
|  | // | 
|  | // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use | 
|  | // isKnownPredicate.  isKnownPredicate is more powerful, but also more | 
|  | // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the | 
|  | // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to | 
|  | // use isKnownPredicate later if needed. | 
|  | return isKnownNonNegative(RHS) && | 
|  | isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && | 
|  | isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, | 
|  | ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | // No need to even try if we know the module has no guards. | 
|  | if (!HasGuards) | 
|  | return false; | 
|  |  | 
|  | return any_of(*BB, [&](Instruction &I) { | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | Value *Condition; | 
|  | return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( | 
|  | m_Value(Condition))) && | 
|  | isImpliedCond(Pred, LHS, RHS, Condition, false); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is | 
|  | /// protected by a conditional between LHS and RHS.  This is used to | 
|  | /// to eliminate casts. | 
|  | bool | 
|  | ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, | 
|  | ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | // Interpret a null as meaning no loop, where there is obviously no guard | 
|  | // (interprocedural conditions notwithstanding). | 
|  | if (!L) return true; | 
|  |  | 
|  | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) | 
|  | return true; | 
|  |  | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | if (!Latch) | 
|  | return false; | 
|  |  | 
|  | BranchInst *LoopContinuePredicate = | 
|  | dyn_cast<BranchInst>(Latch->getTerminator()); | 
|  | if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && | 
|  | isImpliedCond(Pred, LHS, RHS, | 
|  | LoopContinuePredicate->getCondition(), | 
|  | LoopContinuePredicate->getSuccessor(0) != L->getHeader())) | 
|  | return true; | 
|  |  | 
|  | // We don't want more than one activation of the following loops on the stack | 
|  | // -- that can lead to O(n!) time complexity. | 
|  | if (WalkingBEDominatingConds) | 
|  | return false; | 
|  |  | 
|  | SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); | 
|  |  | 
|  | // See if we can exploit a trip count to prove the predicate. | 
|  | const auto &BETakenInfo = getBackedgeTakenInfo(L); | 
|  | const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); | 
|  | if (LatchBECount != getCouldNotCompute()) { | 
|  | // We know that Latch branches back to the loop header exactly | 
|  | // LatchBECount times.  This means the backdege condition at Latch is | 
|  | // equivalent to  "{0,+,1} u< LatchBECount". | 
|  | Type *Ty = LatchBECount->getType(); | 
|  | auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); | 
|  | const SCEV *LoopCounter = | 
|  | getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); | 
|  | if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, | 
|  | LatchBECount)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check conditions due to any @llvm.assume intrinsics. | 
|  | for (auto &AssumeVH : AC.assumptions()) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  | auto *CI = cast<CallInst>(AssumeVH); | 
|  | if (!DT.dominates(CI, Latch->getTerminator())) | 
|  | continue; | 
|  |  | 
|  | if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the loop is not reachable from the entry block, we risk running into an | 
|  | // infinite loop as we walk up into the dom tree.  These loops do not matter | 
|  | // anyway, so we just return a conservative answer when we see them. | 
|  | if (!DT.isReachableFromEntry(L->getHeader())) | 
|  | return false; | 
|  |  | 
|  | if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) | 
|  | return true; | 
|  |  | 
|  | for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; | 
|  | DTN != HeaderDTN; DTN = DTN->getIDom()) { | 
|  | assert(DTN && "should reach the loop header before reaching the root!"); | 
|  |  | 
|  | BasicBlock *BB = DTN->getBlock(); | 
|  | if (isImpliedViaGuard(BB, Pred, LHS, RHS)) | 
|  | return true; | 
|  |  | 
|  | BasicBlock *PBB = BB->getSinglePredecessor(); | 
|  | if (!PBB) | 
|  | continue; | 
|  |  | 
|  | BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); | 
|  | if (!ContinuePredicate || !ContinuePredicate->isConditional()) | 
|  | continue; | 
|  |  | 
|  | Value *Condition = ContinuePredicate->getCondition(); | 
|  |  | 
|  | // If we have an edge `E` within the loop body that dominates the only | 
|  | // latch, the condition guarding `E` also guards the backedge.  This | 
|  | // reasoning works only for loops with a single latch. | 
|  |  | 
|  | BasicBlockEdge DominatingEdge(PBB, BB); | 
|  | if (DominatingEdge.isSingleEdge()) { | 
|  | // We're constructively (and conservatively) enumerating edges within the | 
|  | // loop body that dominate the latch.  The dominator tree better agree | 
|  | // with us on this: | 
|  | assert(DT.dominates(DominatingEdge, Latch) && "should be!"); | 
|  |  | 
|  | if (isImpliedCond(Pred, LHS, RHS, Condition, | 
|  | BB != ContinuePredicate->getSuccessor(0))) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, | 
|  | ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | // Interpret a null as meaning no loop, where there is obviously no guard | 
|  | // (interprocedural conditions notwithstanding). | 
|  | if (!L) return false; | 
|  |  | 
|  | // Both LHS and RHS must be available at loop entry. | 
|  | assert(isAvailableAtLoopEntry(LHS, L) && | 
|  | "LHS is not available at Loop Entry"); | 
|  | assert(isAvailableAtLoopEntry(RHS, L) && | 
|  | "RHS is not available at Loop Entry"); | 
|  |  | 
|  | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) | 
|  | return true; | 
|  |  | 
|  | // If we cannot prove strict comparison (e.g. a > b), maybe we can prove | 
|  | // the facts (a >= b && a != b) separately. A typical situation is when the | 
|  | // non-strict comparison is known from ranges and non-equality is known from | 
|  | // dominating predicates. If we are proving strict comparison, we always try | 
|  | // to prove non-equality and non-strict comparison separately. | 
|  | auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); | 
|  | const bool ProvingStrictComparison = (Pred != NonStrictPredicate); | 
|  | bool ProvedNonStrictComparison = false; | 
|  | bool ProvedNonEquality = false; | 
|  |  | 
|  | if (ProvingStrictComparison) { | 
|  | ProvedNonStrictComparison = | 
|  | isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); | 
|  | ProvedNonEquality = | 
|  | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); | 
|  | if (ProvedNonStrictComparison && ProvedNonEquality) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. | 
|  | auto ProveViaGuard = [&](BasicBlock *Block) { | 
|  | if (isImpliedViaGuard(Block, Pred, LHS, RHS)) | 
|  | return true; | 
|  | if (ProvingStrictComparison) { | 
|  | if (!ProvedNonStrictComparison) | 
|  | ProvedNonStrictComparison = | 
|  | isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); | 
|  | if (!ProvedNonEquality) | 
|  | ProvedNonEquality = | 
|  | isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); | 
|  | if (ProvedNonStrictComparison && ProvedNonEquality) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Try to prove (Pred, LHS, RHS) using isImpliedCond. | 
|  | auto ProveViaCond = [&](Value *Condition, bool Inverse) { | 
|  | if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) | 
|  | return true; | 
|  | if (ProvingStrictComparison) { | 
|  | if (!ProvedNonStrictComparison) | 
|  | ProvedNonStrictComparison = | 
|  | isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); | 
|  | if (!ProvedNonEquality) | 
|  | ProvedNonEquality = | 
|  | isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); | 
|  | if (ProvedNonStrictComparison && ProvedNonEquality) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Starting at the loop predecessor, climb up the predecessor chain, as long | 
|  | // as there are predecessors that can be found that have unique successors | 
|  | // leading to the original header. | 
|  | for (std::pair<BasicBlock *, BasicBlock *> | 
|  | Pair(L->getLoopPredecessor(), L->getHeader()); | 
|  | Pair.first; | 
|  | Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { | 
|  |  | 
|  | if (ProveViaGuard(Pair.first)) | 
|  | return true; | 
|  |  | 
|  | BranchInst *LoopEntryPredicate = | 
|  | dyn_cast<BranchInst>(Pair.first->getTerminator()); | 
|  | if (!LoopEntryPredicate || | 
|  | LoopEntryPredicate->isUnconditional()) | 
|  | continue; | 
|  |  | 
|  | if (ProveViaCond(LoopEntryPredicate->getCondition(), | 
|  | LoopEntryPredicate->getSuccessor(0) != Pair.second)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check conditions due to any @llvm.assume intrinsics. | 
|  | for (auto &AssumeVH : AC.assumptions()) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  | auto *CI = cast<CallInst>(AssumeVH); | 
|  | if (!DT.dominates(CI, L->getHeader())) | 
|  | continue; | 
|  |  | 
|  | if (ProveViaCond(CI->getArgOperand(0), false)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS, | 
|  | Value *FoundCondValue, | 
|  | bool Inverse) { | 
|  | if (!PendingLoopPredicates.insert(FoundCondValue).second) | 
|  | return false; | 
|  |  | 
|  | auto ClearOnExit = | 
|  | make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); | 
|  |  | 
|  | // Recursively handle And and Or conditions. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { | 
|  | if (BO->getOpcode() == Instruction::And) { | 
|  | if (!Inverse) | 
|  | return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || | 
|  | isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); | 
|  | } else if (BO->getOpcode() == Instruction::Or) { | 
|  | if (Inverse) | 
|  | return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || | 
|  | isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); | 
|  | } | 
|  | } | 
|  |  | 
|  | ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); | 
|  | if (!ICI) return false; | 
|  |  | 
|  | // Now that we found a conditional branch that dominates the loop or controls | 
|  | // the loop latch. Check to see if it is the comparison we are looking for. | 
|  | ICmpInst::Predicate FoundPred; | 
|  | if (Inverse) | 
|  | FoundPred = ICI->getInversePredicate(); | 
|  | else | 
|  | FoundPred = ICI->getPredicate(); | 
|  |  | 
|  | const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); | 
|  | const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); | 
|  |  | 
|  | return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, | 
|  | const SCEV *RHS, | 
|  | ICmpInst::Predicate FoundPred, | 
|  | const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS) { | 
|  | // Balance the types. | 
|  | if (getTypeSizeInBits(LHS->getType()) < | 
|  | getTypeSizeInBits(FoundLHS->getType())) { | 
|  | if (CmpInst::isSigned(Pred)) { | 
|  | LHS = getSignExtendExpr(LHS, FoundLHS->getType()); | 
|  | RHS = getSignExtendExpr(RHS, FoundLHS->getType()); | 
|  | } else { | 
|  | LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); | 
|  | RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); | 
|  | } | 
|  | } else if (getTypeSizeInBits(LHS->getType()) > | 
|  | getTypeSizeInBits(FoundLHS->getType())) { | 
|  | if (CmpInst::isSigned(FoundPred)) { | 
|  | FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); | 
|  | FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); | 
|  | } else { | 
|  | FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); | 
|  | FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize the query to match the way instcombine will have | 
|  | // canonicalized the comparison. | 
|  | if (SimplifyICmpOperands(Pred, LHS, RHS)) | 
|  | if (LHS == RHS) | 
|  | return CmpInst::isTrueWhenEqual(Pred); | 
|  | if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) | 
|  | if (FoundLHS == FoundRHS) | 
|  | return CmpInst::isFalseWhenEqual(FoundPred); | 
|  |  | 
|  | // Check to see if we can make the LHS or RHS match. | 
|  | if (LHS == FoundRHS || RHS == FoundLHS) { | 
|  | if (isa<SCEVConstant>(RHS)) { | 
|  | std::swap(FoundLHS, FoundRHS); | 
|  | FoundPred = ICmpInst::getSwappedPredicate(FoundPred); | 
|  | } else { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether the found predicate is the same as the desired predicate. | 
|  | if (FoundPred == Pred) | 
|  | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); | 
|  |  | 
|  | // Check whether swapping the found predicate makes it the same as the | 
|  | // desired predicate. | 
|  | if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { | 
|  | if (isa<SCEVConstant>(RHS)) | 
|  | return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); | 
|  | else | 
|  | return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), | 
|  | RHS, LHS, FoundLHS, FoundRHS); | 
|  | } | 
|  |  | 
|  | // Unsigned comparison is the same as signed comparison when both the operands | 
|  | // are non-negative. | 
|  | if (CmpInst::isUnsigned(FoundPred) && | 
|  | CmpInst::getSignedPredicate(FoundPred) == Pred && | 
|  | isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) | 
|  | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); | 
|  |  | 
|  | // Check if we can make progress by sharpening ranges. | 
|  | if (FoundPred == ICmpInst::ICMP_NE && | 
|  | (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { | 
|  |  | 
|  | const SCEVConstant *C = nullptr; | 
|  | const SCEV *V = nullptr; | 
|  |  | 
|  | if (isa<SCEVConstant>(FoundLHS)) { | 
|  | C = cast<SCEVConstant>(FoundLHS); | 
|  | V = FoundRHS; | 
|  | } else { | 
|  | C = cast<SCEVConstant>(FoundRHS); | 
|  | V = FoundLHS; | 
|  | } | 
|  |  | 
|  | // The guarding predicate tells us that C != V. If the known range | 
|  | // of V is [C, t), we can sharpen the range to [C + 1, t).  The | 
|  | // range we consider has to correspond to same signedness as the | 
|  | // predicate we're interested in folding. | 
|  |  | 
|  | APInt Min = ICmpInst::isSigned(Pred) ? | 
|  | getSignedRangeMin(V) : getUnsignedRangeMin(V); | 
|  |  | 
|  | if (Min == C->getAPInt()) { | 
|  | // Given (V >= Min && V != Min) we conclude V >= (Min + 1). | 
|  | // This is true even if (Min + 1) wraps around -- in case of | 
|  | // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). | 
|  |  | 
|  | APInt SharperMin = Min + 1; | 
|  |  | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_SGE: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // We know V `Pred` SharperMin.  If this implies LHS `Pred` | 
|  | // RHS, we're done. | 
|  | if (isImpliedCondOperands(Pred, LHS, RHS, V, | 
|  | getConstant(SharperMin))) | 
|  | return true; | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | // We know from the range information that (V `Pred` Min || | 
|  | // V == Min).  We know from the guarding condition that !(V | 
|  | // == Min).  This gives us | 
|  | // | 
|  | //       V `Pred` Min || V == Min && !(V == Min) | 
|  | //   =>  V `Pred` Min | 
|  | // | 
|  | // If V `Pred` Min implies LHS `Pred` RHS, we're done. | 
|  |  | 
|  | if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) | 
|  | return true; | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | default: | 
|  | // No change | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether the actual condition is beyond sufficient. | 
|  | if (FoundPred == ICmpInst::ICMP_EQ) | 
|  | if (ICmpInst::isTrueWhenEqual(Pred)) | 
|  | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) | 
|  | return true; | 
|  | if (Pred == ICmpInst::ICMP_NE) | 
|  | if (!ICmpInst::isTrueWhenEqual(FoundPred)) | 
|  | if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise assume the worst. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, | 
|  | const SCEV *&L, const SCEV *&R, | 
|  | SCEV::NoWrapFlags &Flags) { | 
|  | const auto *AE = dyn_cast<SCEVAddExpr>(Expr); | 
|  | if (!AE || AE->getNumOperands() != 2) | 
|  | return false; | 
|  |  | 
|  | L = AE->getOperand(0); | 
|  | R = AE->getOperand(1); | 
|  | Flags = AE->getNoWrapFlags(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, | 
|  | const SCEV *Less) { | 
|  | // We avoid subtracting expressions here because this function is usually | 
|  | // fairly deep in the call stack (i.e. is called many times). | 
|  |  | 
|  | if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { | 
|  | const auto *LAR = cast<SCEVAddRecExpr>(Less); | 
|  | const auto *MAR = cast<SCEVAddRecExpr>(More); | 
|  |  | 
|  | if (LAR->getLoop() != MAR->getLoop()) | 
|  | return None; | 
|  |  | 
|  | // We look at affine expressions only; not for correctness but to keep | 
|  | // getStepRecurrence cheap. | 
|  | if (!LAR->isAffine() || !MAR->isAffine()) | 
|  | return None; | 
|  |  | 
|  | if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) | 
|  | return None; | 
|  |  | 
|  | Less = LAR->getStart(); | 
|  | More = MAR->getStart(); | 
|  |  | 
|  | // fall through | 
|  | } | 
|  |  | 
|  | if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { | 
|  | const auto &M = cast<SCEVConstant>(More)->getAPInt(); | 
|  | const auto &L = cast<SCEVConstant>(Less)->getAPInt(); | 
|  | return M - L; | 
|  | } | 
|  |  | 
|  | SCEV::NoWrapFlags Flags; | 
|  | const SCEV *LLess = nullptr, *RLess = nullptr; | 
|  | const SCEV *LMore = nullptr, *RMore = nullptr; | 
|  | const SCEVConstant *C1 = nullptr, *C2 = nullptr; | 
|  | // Compare (X + C1) vs X. | 
|  | if (splitBinaryAdd(Less, LLess, RLess, Flags)) | 
|  | if ((C1 = dyn_cast<SCEVConstant>(LLess))) | 
|  | if (RLess == More) | 
|  | return -(C1->getAPInt()); | 
|  |  | 
|  | // Compare X vs (X + C2). | 
|  | if (splitBinaryAdd(More, LMore, RMore, Flags)) | 
|  | if ((C2 = dyn_cast<SCEVConstant>(LMore))) | 
|  | if (RMore == Less) | 
|  | return C2->getAPInt(); | 
|  |  | 
|  | // Compare (X + C1) vs (X + C2). | 
|  | if (C1 && C2 && RLess == RMore) | 
|  | return C2->getAPInt() - C1->getAPInt(); | 
|  |  | 
|  | return None; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( | 
|  | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | 
|  | const SCEV *FoundLHS, const SCEV *FoundRHS) { | 
|  | if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) | 
|  | return false; | 
|  |  | 
|  | const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); | 
|  | if (!AddRecLHS) | 
|  | return false; | 
|  |  | 
|  | const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); | 
|  | if (!AddRecFoundLHS) | 
|  | return false; | 
|  |  | 
|  | // We'd like to let SCEV reason about control dependencies, so we constrain | 
|  | // both the inequalities to be about add recurrences on the same loop.  This | 
|  | // way we can use isLoopEntryGuardedByCond later. | 
|  |  | 
|  | const Loop *L = AddRecFoundLHS->getLoop(); | 
|  | if (L != AddRecLHS->getLoop()) | 
|  | return false; | 
|  |  | 
|  | //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1) | 
|  | // | 
|  | //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) | 
|  | //                                                                  ... (2) | 
|  | // | 
|  | // Informal proof for (2), assuming (1) [*]: | 
|  | // | 
|  | // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] | 
|  | // | 
|  | // Then | 
|  | // | 
|  | //       FoundLHS s< FoundRHS s< INT_MIN - C | 
|  | // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ] | 
|  | // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] | 
|  | // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s< | 
|  | //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] | 
|  | // <=>  FoundLHS + C s< FoundRHS + C | 
|  | // | 
|  | // [*]: (1) can be proved by ruling out overflow. | 
|  | // | 
|  | // [**]: This can be proved by analyzing all the four possibilities: | 
|  | //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and | 
|  | //    (A s>= 0, B s>= 0). | 
|  | // | 
|  | // Note: | 
|  | // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" | 
|  | // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS | 
|  | // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS | 
|  | // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is | 
|  | // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + | 
|  | // C)". | 
|  |  | 
|  | Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); | 
|  | Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); | 
|  | if (!LDiff || !RDiff || *LDiff != *RDiff) | 
|  | return false; | 
|  |  | 
|  | if (LDiff->isMinValue()) | 
|  | return true; | 
|  |  | 
|  | APInt FoundRHSLimit; | 
|  |  | 
|  | if (Pred == CmpInst::ICMP_ULT) { | 
|  | FoundRHSLimit = -(*RDiff); | 
|  | } else { | 
|  | assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); | 
|  | FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; | 
|  | } | 
|  |  | 
|  | // Try to prove (1) or (2), as needed. | 
|  | return isAvailableAtLoopEntry(FoundRHS, L) && | 
|  | isLoopEntryGuardedByCond(L, Pred, FoundRHS, | 
|  | getConstant(FoundRHSLimit)); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS, | 
|  | const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS, unsigned Depth) { | 
|  | const PHINode *LPhi = nullptr, *RPhi = nullptr; | 
|  |  | 
|  | auto ClearOnExit = make_scope_exit([&]() { | 
|  | if (LPhi) { | 
|  | bool Erased = PendingMerges.erase(LPhi); | 
|  | assert(Erased && "Failed to erase LPhi!"); | 
|  | (void)Erased; | 
|  | } | 
|  | if (RPhi) { | 
|  | bool Erased = PendingMerges.erase(RPhi); | 
|  | assert(Erased && "Failed to erase RPhi!"); | 
|  | (void)Erased; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Find respective Phis and check that they are not being pending. | 
|  | if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) | 
|  | if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { | 
|  | if (!PendingMerges.insert(Phi).second) | 
|  | return false; | 
|  | LPhi = Phi; | 
|  | } | 
|  | if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) | 
|  | if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { | 
|  | // If we detect a loop of Phi nodes being processed by this method, for | 
|  | // example: | 
|  | // | 
|  | //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] | 
|  | //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] | 
|  | // | 
|  | // we don't want to deal with a case that complex, so return conservative | 
|  | // answer false. | 
|  | if (!PendingMerges.insert(Phi).second) | 
|  | return false; | 
|  | RPhi = Phi; | 
|  | } | 
|  |  | 
|  | // If none of LHS, RHS is a Phi, nothing to do here. | 
|  | if (!LPhi && !RPhi) | 
|  | return false; | 
|  |  | 
|  | // If there is a SCEVUnknown Phi we are interested in, make it left. | 
|  | if (!LPhi) { | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(FoundLHS, FoundRHS); | 
|  | std::swap(LPhi, RPhi); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); | 
|  | const BasicBlock *LBB = LPhi->getParent(); | 
|  | const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); | 
|  |  | 
|  | auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { | 
|  | return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || | 
|  | isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || | 
|  | isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); | 
|  | }; | 
|  |  | 
|  | if (RPhi && RPhi->getParent() == LBB) { | 
|  | // Case one: RHS is also a SCEVUnknown Phi from the same basic block. | 
|  | // If we compare two Phis from the same block, and for each entry block | 
|  | // the predicate is true for incoming values from this block, then the | 
|  | // predicate is also true for the Phis. | 
|  | for (const BasicBlock *IncBB : predecessors(LBB)) { | 
|  | const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); | 
|  | const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); | 
|  | if (!ProvedEasily(L, R)) | 
|  | return false; | 
|  | } | 
|  | } else if (RAR && RAR->getLoop()->getHeader() == LBB) { | 
|  | // Case two: RHS is also a Phi from the same basic block, and it is an | 
|  | // AddRec. It means that there is a loop which has both AddRec and Unknown | 
|  | // PHIs, for it we can compare incoming values of AddRec from above the loop | 
|  | // and latch with their respective incoming values of LPhi. | 
|  | assert(LPhi->getNumIncomingValues() == 2 && | 
|  | "Phi node standing in loop header does not have exactly 2 inputs?"); | 
|  | auto *RLoop = RAR->getLoop(); | 
|  | auto *Predecessor = RLoop->getLoopPredecessor(); | 
|  | assert(Predecessor && "Loop with AddRec with no predecessor?"); | 
|  | const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); | 
|  | if (!ProvedEasily(L1, RAR->getStart())) | 
|  | return false; | 
|  | auto *Latch = RLoop->getLoopLatch(); | 
|  | assert(Latch && "Loop with AddRec with no latch?"); | 
|  | const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); | 
|  | if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) | 
|  | return false; | 
|  | } else { | 
|  | // In all other cases go over inputs of LHS and compare each of them to RHS, | 
|  | // the predicate is true for (LHS, RHS) if it is true for all such pairs. | 
|  | // At this point RHS is either a non-Phi, or it is a Phi from some block | 
|  | // different from LBB. | 
|  | for (const BasicBlock *IncBB : predecessors(LBB)) { | 
|  | // Check that RHS is available in this block. | 
|  | if (!dominates(RHS, IncBB)) | 
|  | return false; | 
|  | const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); | 
|  | if (!ProvedEasily(L, RHS)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS, | 
|  | const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS) { | 
|  | if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) | 
|  | return true; | 
|  |  | 
|  | if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) | 
|  | return true; | 
|  |  | 
|  | return isImpliedCondOperandsHelper(Pred, LHS, RHS, | 
|  | FoundLHS, FoundRHS) || | 
|  | // ~x < ~y --> x > y | 
|  | isImpliedCondOperandsHelper(Pred, LHS, RHS, | 
|  | getNotSCEV(FoundRHS), | 
|  | getNotSCEV(FoundLHS)); | 
|  | } | 
|  |  | 
|  | /// If Expr computes ~A, return A else return nullptr | 
|  | static const SCEV *MatchNotExpr(const SCEV *Expr) { | 
|  | const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); | 
|  | if (!Add || Add->getNumOperands() != 2 || | 
|  | !Add->getOperand(0)->isAllOnesValue()) | 
|  | return nullptr; | 
|  |  | 
|  | const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); | 
|  | if (!AddRHS || AddRHS->getNumOperands() != 2 || | 
|  | !AddRHS->getOperand(0)->isAllOnesValue()) | 
|  | return nullptr; | 
|  |  | 
|  | return AddRHS->getOperand(1); | 
|  | } | 
|  |  | 
|  | /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? | 
|  | template<typename MaxExprType> | 
|  | static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, | 
|  | const SCEV *Candidate) { | 
|  | const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); | 
|  | if (!MaxExpr) return false; | 
|  |  | 
|  | return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); | 
|  | } | 
|  |  | 
|  | /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? | 
|  | template<typename MaxExprType> | 
|  | static bool IsMinConsistingOf(ScalarEvolution &SE, | 
|  | const SCEV *MaybeMinExpr, | 
|  | const SCEV *Candidate) { | 
|  | const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); | 
|  | if (!MaybeMaxExpr) | 
|  | return false; | 
|  |  | 
|  | return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); | 
|  | } | 
|  |  | 
|  | static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, | 
|  | ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | // If both sides are affine addrecs for the same loop, with equal | 
|  | // steps, and we know the recurrences don't wrap, then we only | 
|  | // need to check the predicate on the starting values. | 
|  |  | 
|  | if (!ICmpInst::isRelational(Pred)) | 
|  | return false; | 
|  |  | 
|  | const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); | 
|  | if (!LAR) | 
|  | return false; | 
|  | const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); | 
|  | if (!RAR) | 
|  | return false; | 
|  | if (LAR->getLoop() != RAR->getLoop()) | 
|  | return false; | 
|  | if (!LAR->isAffine() || !RAR->isAffine()) | 
|  | return false; | 
|  |  | 
|  | if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) | 
|  | return false; | 
|  |  | 
|  | SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? | 
|  | SCEV::FlagNSW : SCEV::FlagNUW; | 
|  | if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) | 
|  | return false; | 
|  |  | 
|  | return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); | 
|  | } | 
|  |  | 
|  | /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max | 
|  | /// expression? | 
|  | static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, | 
|  | ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | switch (Pred) { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case ICmpInst::ICMP_SGE: | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | return | 
|  | // min(A, ...) <= A | 
|  | IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || | 
|  | // A <= max(A, ...) | 
|  | IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); | 
|  |  | 
|  | case ICmpInst::ICMP_UGE: | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | return | 
|  | // min(A, ...) <= A | 
|  | IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || | 
|  | // A <= max(A, ...) | 
|  | IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("covered switch fell through?!"); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS, | 
|  | const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS, | 
|  | unsigned Depth) { | 
|  | assert(getTypeSizeInBits(LHS->getType()) == | 
|  | getTypeSizeInBits(RHS->getType()) && | 
|  | "LHS and RHS have different sizes?"); | 
|  | assert(getTypeSizeInBits(FoundLHS->getType()) == | 
|  | getTypeSizeInBits(FoundRHS->getType()) && | 
|  | "FoundLHS and FoundRHS have different sizes?"); | 
|  | // We want to avoid hurting the compile time with analysis of too big trees. | 
|  | if (Depth > MaxSCEVOperationsImplicationDepth) | 
|  | return false; | 
|  | // We only want to work with ICMP_SGT comparison so far. | 
|  | // TODO: Extend to ICMP_UGT? | 
|  | if (Pred == ICmpInst::ICMP_SLT) { | 
|  | Pred = ICmpInst::ICMP_SGT; | 
|  | std::swap(LHS, RHS); | 
|  | std::swap(FoundLHS, FoundRHS); | 
|  | } | 
|  | if (Pred != ICmpInst::ICMP_SGT) | 
|  | return false; | 
|  |  | 
|  | auto GetOpFromSExt = [&](const SCEV *S) { | 
|  | if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) | 
|  | return Ext->getOperand(); | 
|  | // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off | 
|  | // the constant in some cases. | 
|  | return S; | 
|  | }; | 
|  |  | 
|  | // Acquire values from extensions. | 
|  | auto *OrigLHS = LHS; | 
|  | auto *OrigFoundLHS = FoundLHS; | 
|  | LHS = GetOpFromSExt(LHS); | 
|  | FoundLHS = GetOpFromSExt(FoundLHS); | 
|  |  | 
|  | // Is the SGT predicate can be proved trivially or using the found context. | 
|  | auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { | 
|  | return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || | 
|  | isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, | 
|  | FoundRHS, Depth + 1); | 
|  | }; | 
|  |  | 
|  | if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { | 
|  | // We want to avoid creation of any new non-constant SCEV. Since we are | 
|  | // going to compare the operands to RHS, we should be certain that we don't | 
|  | // need any size extensions for this. So let's decline all cases when the | 
|  | // sizes of types of LHS and RHS do not match. | 
|  | // TODO: Maybe try to get RHS from sext to catch more cases? | 
|  | if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) | 
|  | return false; | 
|  |  | 
|  | // Should not overflow. | 
|  | if (!LHSAddExpr->hasNoSignedWrap()) | 
|  | return false; | 
|  |  | 
|  | auto *LL = LHSAddExpr->getOperand(0); | 
|  | auto *LR = LHSAddExpr->getOperand(1); | 
|  | auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); | 
|  |  | 
|  | // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. | 
|  | auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { | 
|  | return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); | 
|  | }; | 
|  | // Try to prove the following rule: | 
|  | // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). | 
|  | // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). | 
|  | if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) | 
|  | return true; | 
|  | } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { | 
|  | Value *LL, *LR; | 
|  | // FIXME: Once we have SDiv implemented, we can get rid of this matching. | 
|  |  | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { | 
|  | // Rules for division. | 
|  | // We are going to perform some comparisons with Denominator and its | 
|  | // derivative expressions. In general case, creating a SCEV for it may | 
|  | // lead to a complex analysis of the entire graph, and in particular it | 
|  | // can request trip count recalculation for the same loop. This would | 
|  | // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid | 
|  | // this, we only want to create SCEVs that are constants in this section. | 
|  | // So we bail if Denominator is not a constant. | 
|  | if (!isa<ConstantInt>(LR)) | 
|  | return false; | 
|  |  | 
|  | auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); | 
|  |  | 
|  | // We want to make sure that LHS = FoundLHS / Denominator. If it is so, | 
|  | // then a SCEV for the numerator already exists and matches with FoundLHS. | 
|  | auto *Numerator = getExistingSCEV(LL); | 
|  | if (!Numerator || Numerator->getType() != FoundLHS->getType()) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the numerator matches with FoundLHS and the denominator | 
|  | // is positive. | 
|  | if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) | 
|  | return false; | 
|  |  | 
|  | auto *DTy = Denominator->getType(); | 
|  | auto *FRHSTy = FoundRHS->getType(); | 
|  | if (DTy->isPointerTy() != FRHSTy->isPointerTy()) | 
|  | // One of types is a pointer and another one is not. We cannot extend | 
|  | // them properly to a wider type, so let us just reject this case. | 
|  | // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help | 
|  | // to avoid this check. | 
|  | return false; | 
|  |  | 
|  | // Given that: | 
|  | // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. | 
|  | auto *WTy = getWiderType(DTy, FRHSTy); | 
|  | auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); | 
|  | auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); | 
|  |  | 
|  | // Try to prove the following rule: | 
|  | // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). | 
|  | // For example, given that FoundLHS > 2. It means that FoundLHS is at | 
|  | // least 3. If we divide it by Denominator < 4, we will have at least 1. | 
|  | auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); | 
|  | if (isKnownNonPositive(RHS) && | 
|  | IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) | 
|  | return true; | 
|  |  | 
|  | // Try to prove the following rule: | 
|  | // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). | 
|  | // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. | 
|  | // If we divide it by Denominator > 2, then: | 
|  | // 1. If FoundLHS is negative, then the result is 0. | 
|  | // 2. If FoundLHS is non-negative, then the result is non-negative. | 
|  | // Anyways, the result is non-negative. | 
|  | auto *MinusOne = getNegativeSCEV(getOne(WTy)); | 
|  | auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); | 
|  | if (isKnownNegative(RHS) && | 
|  | IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If our expression contained SCEVUnknown Phis, and we split it down and now | 
|  | // need to prove something for them, try to prove the predicate for every | 
|  | // possible incoming values of those Phis. | 
|  | if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS) { | 
|  | return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || | 
|  | IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || | 
|  | IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || | 
|  | isKnownPredicateViaNoOverflow(Pred, LHS, RHS); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, const SCEV *RHS, | 
|  | const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS) { | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) | 
|  | return true; | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && | 
|  | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) | 
|  | return true; | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && | 
|  | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) | 
|  | return true; | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && | 
|  | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) | 
|  | return true; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && | 
|  | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Maybe it can be proved via operations? | 
|  | if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, | 
|  | const SCEV *LHS, | 
|  | const SCEV *RHS, | 
|  | const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS) { | 
|  | if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) | 
|  | // The restriction on `FoundRHS` be lifted easily -- it exists only to | 
|  | // reduce the compile time impact of this optimization. | 
|  | return false; | 
|  |  | 
|  | Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); | 
|  | if (!Addend) | 
|  | return false; | 
|  |  | 
|  | const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); | 
|  |  | 
|  | // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the | 
|  | // antecedent "`FoundLHS` `Pred` `FoundRHS`". | 
|  | ConstantRange FoundLHSRange = | 
|  | ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); | 
|  |  | 
|  | // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: | 
|  | ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); | 
|  |  | 
|  | // We can also compute the range of values for `LHS` that satisfy the | 
|  | // consequent, "`LHS` `Pred` `RHS`": | 
|  | const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); | 
|  | ConstantRange SatisfyingLHSRange = | 
|  | ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); | 
|  |  | 
|  | // The antecedent implies the consequent if every value of `LHS` that | 
|  | // satisfies the antecedent also satisfies the consequent. | 
|  | return SatisfyingLHSRange.contains(LHSRange); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, | 
|  | bool IsSigned, bool NoWrap) { | 
|  | assert(isKnownPositive(Stride) && "Positive stride expected!"); | 
|  |  | 
|  | if (NoWrap) return false; | 
|  |  | 
|  | unsigned BitWidth = getTypeSizeInBits(RHS->getType()); | 
|  | const SCEV *One = getOne(Stride->getType()); | 
|  |  | 
|  | if (IsSigned) { | 
|  | APInt MaxRHS = getSignedRangeMax(RHS); | 
|  | APInt MaxValue = APInt::getSignedMaxValue(BitWidth); | 
|  | APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); | 
|  |  | 
|  | // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! | 
|  | return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); | 
|  | } | 
|  |  | 
|  | APInt MaxRHS = getUnsignedRangeMax(RHS); | 
|  | APInt MaxValue = APInt::getMaxValue(BitWidth); | 
|  | APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); | 
|  |  | 
|  | // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! | 
|  | return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, | 
|  | bool IsSigned, bool NoWrap) { | 
|  | if (NoWrap) return false; | 
|  |  | 
|  | unsigned BitWidth = getTypeSizeInBits(RHS->getType()); | 
|  | const SCEV *One = getOne(Stride->getType()); | 
|  |  | 
|  | if (IsSigned) { | 
|  | APInt MinRHS = getSignedRangeMin(RHS); | 
|  | APInt MinValue = APInt::getSignedMinValue(BitWidth); | 
|  | APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); | 
|  |  | 
|  | // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! | 
|  | return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); | 
|  | } | 
|  |  | 
|  | APInt MinRHS = getUnsignedRangeMin(RHS); | 
|  | APInt MinValue = APInt::getMinValue(BitWidth); | 
|  | APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); | 
|  |  | 
|  | // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! | 
|  | return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, | 
|  | bool Equality) { | 
|  | const SCEV *One = getOne(Step->getType()); | 
|  | Delta = Equality ? getAddExpr(Delta, Step) | 
|  | : getAddExpr(Delta, getMinusSCEV(Step, One)); | 
|  | return getUDivExpr(Delta, Step); | 
|  | } | 
|  |  | 
|  | const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, | 
|  | const SCEV *Stride, | 
|  | const SCEV *End, | 
|  | unsigned BitWidth, | 
|  | bool IsSigned) { | 
|  |  | 
|  | assert(!isKnownNonPositive(Stride) && | 
|  | "Stride is expected strictly positive!"); | 
|  | // Calculate the maximum backedge count based on the range of values | 
|  | // permitted by Start, End, and Stride. | 
|  | const SCEV *MaxBECount; | 
|  | APInt MinStart = | 
|  | IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); | 
|  |  | 
|  | APInt StrideForMaxBECount = | 
|  | IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); | 
|  |  | 
|  | // We already know that the stride is positive, so we paper over conservatism | 
|  | // in our range computation by forcing StrideForMaxBECount to be at least one. | 
|  | // In theory this is unnecessary, but we expect MaxBECount to be a | 
|  | // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there | 
|  | // is nothing to constant fold it to). | 
|  | APInt One(BitWidth, 1, IsSigned); | 
|  | StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); | 
|  |  | 
|  | APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) | 
|  | : APInt::getMaxValue(BitWidth); | 
|  | APInt Limit = MaxValue - (StrideForMaxBECount - 1); | 
|  |  | 
|  | // Although End can be a MAX expression we estimate MaxEnd considering only | 
|  | // the case End = RHS of the loop termination condition. This is safe because | 
|  | // in the other case (End - Start) is zero, leading to a zero maximum backedge | 
|  | // taken count. | 
|  | APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) | 
|  | : APIntOps::umin(getUnsignedRangeMax(End), Limit); | 
|  |  | 
|  | MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, | 
|  | getConstant(StrideForMaxBECount) /* Step */, | 
|  | false /* Equality */); | 
|  |  | 
|  | return MaxBECount; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, | 
|  | const Loop *L, bool IsSigned, | 
|  | bool ControlsExit, bool AllowPredicates) { | 
|  | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | 
|  |  | 
|  | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); | 
|  | bool PredicatedIV = false; | 
|  |  | 
|  | if (!IV && AllowPredicates) { | 
|  | // Try to make this an AddRec using runtime tests, in the first X | 
|  | // iterations of this loop, where X is the SCEV expression found by the | 
|  | // algorithm below. | 
|  | IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); | 
|  | PredicatedIV = true; | 
|  | } | 
|  |  | 
|  | // Avoid weird loops | 
|  | if (!IV || IV->getLoop() != L || !IV->isAffine()) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | bool NoWrap = ControlsExit && | 
|  | IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); | 
|  |  | 
|  | const SCEV *Stride = IV->getStepRecurrence(*this); | 
|  |  | 
|  | bool PositiveStride = isKnownPositive(Stride); | 
|  |  | 
|  | // Avoid negative or zero stride values. | 
|  | if (!PositiveStride) { | 
|  | // We can compute the correct backedge taken count for loops with unknown | 
|  | // strides if we can prove that the loop is not an infinite loop with side | 
|  | // effects. Here's the loop structure we are trying to handle - | 
|  | // | 
|  | // i = start | 
|  | // do { | 
|  | //   A[i] = i; | 
|  | //   i += s; | 
|  | // } while (i < end); | 
|  | // | 
|  | // The backedge taken count for such loops is evaluated as - | 
|  | // (max(end, start + stride) - start - 1) /u stride | 
|  | // | 
|  | // The additional preconditions that we need to check to prove correctness | 
|  | // of the above formula is as follows - | 
|  | // | 
|  | // a) IV is either nuw or nsw depending upon signedness (indicated by the | 
|  | //    NoWrap flag). | 
|  | // b) loop is single exit with no side effects. | 
|  | // | 
|  | // | 
|  | // Precondition a) implies that if the stride is negative, this is a single | 
|  | // trip loop. The backedge taken count formula reduces to zero in this case. | 
|  | // | 
|  | // Precondition b) implies that the unknown stride cannot be zero otherwise | 
|  | // we have UB. | 
|  | // | 
|  | // The positive stride case is the same as isKnownPositive(Stride) returning | 
|  | // true (original behavior of the function). | 
|  | // | 
|  | // We want to make sure that the stride is truly unknown as there are edge | 
|  | // cases where ScalarEvolution propagates no wrap flags to the | 
|  | // post-increment/decrement IV even though the increment/decrement operation | 
|  | // itself is wrapping. The computed backedge taken count may be wrong in | 
|  | // such cases. This is prevented by checking that the stride is not known to | 
|  | // be either positive or non-positive. For example, no wrap flags are | 
|  | // propagated to the post-increment IV of this loop with a trip count of 2 - | 
|  | // | 
|  | // unsigned char i; | 
|  | // for(i=127; i<128; i+=129) | 
|  | //   A[i] = i; | 
|  | // | 
|  | if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || | 
|  | !loopHasNoSideEffects(L)) | 
|  | return getCouldNotCompute(); | 
|  | } else if (!Stride->isOne() && | 
|  | doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) | 
|  | // Avoid proven overflow cases: this will ensure that the backedge taken | 
|  | // count will not generate any unsigned overflow. Relaxed no-overflow | 
|  | // conditions exploit NoWrapFlags, allowing to optimize in presence of | 
|  | // undefined behaviors like the case of C language. | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT | 
|  | : ICmpInst::ICMP_ULT; | 
|  | const SCEV *Start = IV->getStart(); | 
|  | const SCEV *End = RHS; | 
|  | // When the RHS is not invariant, we do not know the end bound of the loop and | 
|  | // cannot calculate the ExactBECount needed by ExitLimit. However, we can | 
|  | // calculate the MaxBECount, given the start, stride and max value for the end | 
|  | // bound of the loop (RHS), and the fact that IV does not overflow (which is | 
|  | // checked above). | 
|  | if (!isLoopInvariant(RHS, L)) { | 
|  | const SCEV *MaxBECount = computeMaxBECountForLT( | 
|  | Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); | 
|  | return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, | 
|  | false /*MaxOrZero*/, Predicates); | 
|  | } | 
|  | // If the backedge is taken at least once, then it will be taken | 
|  | // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start | 
|  | // is the LHS value of the less-than comparison the first time it is evaluated | 
|  | // and End is the RHS. | 
|  | const SCEV *BECountIfBackedgeTaken = | 
|  | computeBECount(getMinusSCEV(End, Start), Stride, false); | 
|  | // If the loop entry is guarded by the result of the backedge test of the | 
|  | // first loop iteration, then we know the backedge will be taken at least | 
|  | // once and so the backedge taken count is as above. If not then we use the | 
|  | // expression (max(End,Start)-Start)/Stride to describe the backedge count, | 
|  | // as if the backedge is taken at least once max(End,Start) is End and so the | 
|  | // result is as above, and if not max(End,Start) is Start so we get a backedge | 
|  | // count of zero. | 
|  | const SCEV *BECount; | 
|  | if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) | 
|  | BECount = BECountIfBackedgeTaken; | 
|  | else { | 
|  | End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); | 
|  | BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); | 
|  | } | 
|  |  | 
|  | const SCEV *MaxBECount; | 
|  | bool MaxOrZero = false; | 
|  | if (isa<SCEVConstant>(BECount)) | 
|  | MaxBECount = BECount; | 
|  | else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { | 
|  | // If we know exactly how many times the backedge will be taken if it's | 
|  | // taken at least once, then the backedge count will either be that or | 
|  | // zero. | 
|  | MaxBECount = BECountIfBackedgeTaken; | 
|  | MaxOrZero = true; | 
|  | } else { | 
|  | MaxBECount = computeMaxBECountForLT( | 
|  | Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); | 
|  | } | 
|  |  | 
|  | if (isa<SCEVCouldNotCompute>(MaxBECount) && | 
|  | !isa<SCEVCouldNotCompute>(BECount)) | 
|  | MaxBECount = getConstant(getUnsignedRangeMax(BECount)); | 
|  |  | 
|  | return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ExitLimit | 
|  | ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, | 
|  | const Loop *L, bool IsSigned, | 
|  | bool ControlsExit, bool AllowPredicates) { | 
|  | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | 
|  | // We handle only IV > Invariant | 
|  | if (!isLoopInvariant(RHS, L)) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); | 
|  | if (!IV && AllowPredicates) | 
|  | // Try to make this an AddRec using runtime tests, in the first X | 
|  | // iterations of this loop, where X is the SCEV expression found by the | 
|  | // algorithm below. | 
|  | IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); | 
|  |  | 
|  | // Avoid weird loops | 
|  | if (!IV || IV->getLoop() != L || !IV->isAffine()) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | bool NoWrap = ControlsExit && | 
|  | IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); | 
|  |  | 
|  | const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); | 
|  |  | 
|  | // Avoid negative or zero stride values | 
|  | if (!isKnownPositive(Stride)) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | // Avoid proven overflow cases: this will ensure that the backedge taken count | 
|  | // will not generate any unsigned overflow. Relaxed no-overflow conditions | 
|  | // exploit NoWrapFlags, allowing to optimize in presence of undefined | 
|  | // behaviors like the case of C language. | 
|  | if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) | 
|  | return getCouldNotCompute(); | 
|  |  | 
|  | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT | 
|  | : ICmpInst::ICMP_UGT; | 
|  |  | 
|  | const SCEV *Start = IV->getStart(); | 
|  | const SCEV *End = RHS; | 
|  | if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) | 
|  | End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); | 
|  |  | 
|  | const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); | 
|  |  | 
|  | APInt MaxStart = IsSigned ? getSignedRangeMax(Start) | 
|  | : getUnsignedRangeMax(Start); | 
|  |  | 
|  | APInt MinStride = IsSigned ? getSignedRangeMin(Stride) | 
|  | : getUnsignedRangeMin(Stride); | 
|  |  | 
|  | unsigned BitWidth = getTypeSizeInBits(LHS->getType()); | 
|  | APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) | 
|  | : APInt::getMinValue(BitWidth) + (MinStride - 1); | 
|  |  | 
|  | // Although End can be a MIN expression we estimate MinEnd considering only | 
|  | // the case End = RHS. This is safe because in the other case (Start - End) | 
|  | // is zero, leading to a zero maximum backedge taken count. | 
|  | APInt MinEnd = | 
|  | IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) | 
|  | : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); | 
|  |  | 
|  |  | 
|  | const SCEV *MaxBECount = getCouldNotCompute(); | 
|  | if (isa<SCEVConstant>(BECount)) | 
|  | MaxBECount = BECount; | 
|  | else | 
|  | MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), | 
|  | getConstant(MinStride), false); | 
|  |  | 
|  | if (isa<SCEVCouldNotCompute>(MaxBECount)) | 
|  | MaxBECount = BECount; | 
|  |  | 
|  | return ExitLimit(BECount, MaxBECount, false, Predicates); | 
|  | } | 
|  |  | 
|  | const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, | 
|  | ScalarEvolution &SE) const { | 
|  | if (Range.isFullSet())  // Infinite loop. | 
|  | return SE.getCouldNotCompute(); | 
|  |  | 
|  | // If the start is a non-zero constant, shift the range to simplify things. | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) | 
|  | if (!SC->getValue()->isZero()) { | 
|  | SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); | 
|  | Operands[0] = SE.getZero(SC->getType()); | 
|  | const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), | 
|  | getNoWrapFlags(FlagNW)); | 
|  | if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) | 
|  | return ShiftedAddRec->getNumIterationsInRange( | 
|  | Range.subtract(SC->getAPInt()), SE); | 
|  | // This is strange and shouldn't happen. | 
|  | return SE.getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | // The only time we can solve this is when we have all constant indices. | 
|  | // Otherwise, we cannot determine the overflow conditions. | 
|  | if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) | 
|  | return SE.getCouldNotCompute(); | 
|  |  | 
|  | // Okay at this point we know that all elements of the chrec are constants and | 
|  | // that the start element is zero. | 
|  |  | 
|  | // First check to see if the range contains zero.  If not, the first | 
|  | // iteration exits. | 
|  | unsigned BitWidth = SE.getTypeSizeInBits(getType()); | 
|  | if (!Range.contains(APInt(BitWidth, 0))) | 
|  | return SE.getZero(getType()); | 
|  |  | 
|  | if (isAffine()) { | 
|  | // If this is an affine expression then we have this situation: | 
|  | //   Solve {0,+,A} in Range  ===  Ax in Range | 
|  |  | 
|  | // We know that zero is in the range.  If A is positive then we know that | 
|  | // the upper value of the range must be the first possible exit value. | 
|  | // If A is negative then the lower of the range is the last possible loop | 
|  | // value.  Also note that we already checked for a full range. | 
|  | APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); | 
|  | APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); | 
|  |  | 
|  | // The exit value should be (End+A)/A. | 
|  | APInt ExitVal = (End + A).udiv(A); | 
|  | ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); | 
|  |  | 
|  | // Evaluate at the exit value.  If we really did fall out of the valid | 
|  | // range, then we computed our trip count, otherwise wrap around or other | 
|  | // things must have happened. | 
|  | ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); | 
|  | if (Range.contains(Val->getValue())) | 
|  | return SE.getCouldNotCompute();  // Something strange happened | 
|  |  | 
|  | // Ensure that the previous value is in the range.  This is a sanity check. | 
|  | assert(Range.contains( | 
|  | EvaluateConstantChrecAtConstant(this, | 
|  | ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && | 
|  | "Linear scev computation is off in a bad way!"); | 
|  | return SE.getConstant(ExitValue); | 
|  | } else if (isQuadratic()) { | 
|  | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the | 
|  | // quadratic equation to solve it.  To do this, we must frame our problem in | 
|  | // terms of figuring out when zero is crossed, instead of when | 
|  | // Range.getUpper() is crossed. | 
|  | SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); | 
|  | NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); | 
|  | const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); | 
|  |  | 
|  | // Next, solve the constructed addrec | 
|  | if (auto Roots = | 
|  | SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { | 
|  | const SCEVConstant *R1 = Roots->first; | 
|  | const SCEVConstant *R2 = Roots->second; | 
|  | // Pick the smallest positive root value. | 
|  | if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( | 
|  | ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { | 
|  | if (!CB->getZExtValue()) | 
|  | std::swap(R1, R2); // R1 is the minimum root now. | 
|  |  | 
|  | // Make sure the root is not off by one.  The returned iteration should | 
|  | // not be in the range, but the previous one should be.  When solving | 
|  | // for "X*X < 5", for example, we should not return a root of 2. | 
|  | ConstantInt *R1Val = | 
|  | EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); | 
|  | if (Range.contains(R1Val->getValue())) { | 
|  | // The next iteration must be out of the range... | 
|  | ConstantInt *NextVal = | 
|  | ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); | 
|  |  | 
|  | R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); | 
|  | if (!Range.contains(R1Val->getValue())) | 
|  | return SE.getConstant(NextVal); | 
|  | return SE.getCouldNotCompute(); // Something strange happened | 
|  | } | 
|  |  | 
|  | // If R1 was not in the range, then it is a good return value.  Make | 
|  | // sure that R1-1 WAS in the range though, just in case. | 
|  | ConstantInt *NextVal = | 
|  | ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); | 
|  | R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); | 
|  | if (Range.contains(R1Val->getValue())) | 
|  | return R1; | 
|  | return SE.getCouldNotCompute(); // Something strange happened | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SE.getCouldNotCompute(); | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr * | 
|  | SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { | 
|  | assert(getNumOperands() > 1 && "AddRec with zero step?"); | 
|  | // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), | 
|  | // but in this case we cannot guarantee that the value returned will be an | 
|  | // AddRec because SCEV does not have a fixed point where it stops | 
|  | // simplification: it is legal to return ({rec1} + {rec2}). For example, it | 
|  | // may happen if we reach arithmetic depth limit while simplifying. So we | 
|  | // construct the returned value explicitly. | 
|  | SmallVector<const SCEV *, 3> Ops; | 
|  | // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and | 
|  | // (this + Step) is {A+B,+,B+C,+...,+,N}. | 
|  | for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) | 
|  | Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); | 
|  | // We know that the last operand is not a constant zero (otherwise it would | 
|  | // have been popped out earlier). This guarantees us that if the result has | 
|  | // the same last operand, then it will also not be popped out, meaning that | 
|  | // the returned value will be an AddRec. | 
|  | const SCEV *Last = getOperand(getNumOperands() - 1); | 
|  | assert(!Last->isZero() && "Recurrency with zero step?"); | 
|  | Ops.push_back(Last); | 
|  | return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), | 
|  | SCEV::FlagAnyWrap)); | 
|  | } | 
|  |  | 
|  | // Return true when S contains at least an undef value. | 
|  | static inline bool containsUndefs(const SCEV *S) { | 
|  | return SCEVExprContains(S, [](const SCEV *S) { | 
|  | if (const auto *SU = dyn_cast<SCEVUnknown>(S)) | 
|  | return isa<UndefValue>(SU->getValue()); | 
|  | else if (const auto *SC = dyn_cast<SCEVConstant>(S)) | 
|  | return isa<UndefValue>(SC->getValue()); | 
|  | return false; | 
|  | }); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Collect all steps of SCEV expressions. | 
|  | struct SCEVCollectStrides { | 
|  | ScalarEvolution &SE; | 
|  | SmallVectorImpl<const SCEV *> &Strides; | 
|  |  | 
|  | SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) | 
|  | : SE(SE), Strides(S) {} | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) | 
|  | Strides.push_back(AR->getStepRecurrence(SE)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isDone() const { return false; } | 
|  | }; | 
|  |  | 
|  | // Collect all SCEVUnknown and SCEVMulExpr expressions. | 
|  | struct SCEVCollectTerms { | 
|  | SmallVectorImpl<const SCEV *> &Terms; | 
|  |  | 
|  | SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || | 
|  | isa<SCEVSignExtendExpr>(S)) { | 
|  | if (!containsUndefs(S)) | 
|  | Terms.push_back(S); | 
|  |  | 
|  | // Stop recursion: once we collected a term, do not walk its operands. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Keep looking. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isDone() const { return false; } | 
|  | }; | 
|  |  | 
|  | // Check if a SCEV contains an AddRecExpr. | 
|  | struct SCEVHasAddRec { | 
|  | bool &ContainsAddRec; | 
|  |  | 
|  | SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { | 
|  | ContainsAddRec = false; | 
|  | } | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | if (isa<SCEVAddRecExpr>(S)) { | 
|  | ContainsAddRec = true; | 
|  |  | 
|  | // Stop recursion: once we collected a term, do not walk its operands. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Keep looking. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isDone() const { return false; } | 
|  | }; | 
|  |  | 
|  | // Find factors that are multiplied with an expression that (possibly as a | 
|  | // subexpression) contains an AddRecExpr. In the expression: | 
|  | // | 
|  | //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop)) | 
|  | // | 
|  | // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" | 
|  | // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size | 
|  | // parameters as they form a product with an induction variable. | 
|  | // | 
|  | // This collector expects all array size parameters to be in the same MulExpr. | 
|  | // It might be necessary to later add support for collecting parameters that are | 
|  | // spread over different nested MulExpr. | 
|  | struct SCEVCollectAddRecMultiplies { | 
|  | SmallVectorImpl<const SCEV *> &Terms; | 
|  | ScalarEvolution &SE; | 
|  |  | 
|  | SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) | 
|  | : Terms(T), SE(SE) {} | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { | 
|  | bool HasAddRec = false; | 
|  | SmallVector<const SCEV *, 0> Operands; | 
|  | for (auto Op : Mul->operands()) { | 
|  | const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); | 
|  | if (Unknown && !isa<CallInst>(Unknown->getValue())) { | 
|  | Operands.push_back(Op); | 
|  | } else if (Unknown) { | 
|  | HasAddRec = true; | 
|  | } else { | 
|  | bool ContainsAddRec; | 
|  | SCEVHasAddRec ContiansAddRec(ContainsAddRec); | 
|  | visitAll(Op, ContiansAddRec); | 
|  | HasAddRec |= ContainsAddRec; | 
|  | } | 
|  | } | 
|  | if (Operands.size() == 0) | 
|  | return true; | 
|  |  | 
|  | if (!HasAddRec) | 
|  | return false; | 
|  |  | 
|  | Terms.push_back(SE.getMulExpr(Operands)); | 
|  | // Stop recursion: once we collected a term, do not walk its operands. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Keep looking. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isDone() const { return false; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in | 
|  | /// two places: | 
|  | ///   1) The strides of AddRec expressions. | 
|  | ///   2) Unknowns that are multiplied with AddRec expressions. | 
|  | void ScalarEvolution::collectParametricTerms(const SCEV *Expr, | 
|  | SmallVectorImpl<const SCEV *> &Terms) { | 
|  | SmallVector<const SCEV *, 4> Strides; | 
|  | SCEVCollectStrides StrideCollector(*this, Strides); | 
|  | visitAll(Expr, StrideCollector); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Strides:\n"; | 
|  | for (const SCEV *S : Strides) | 
|  | dbgs() << *S << "\n"; | 
|  | }); | 
|  |  | 
|  | for (const SCEV *S : Strides) { | 
|  | SCEVCollectTerms TermCollector(Terms); | 
|  | visitAll(S, TermCollector); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Terms:\n"; | 
|  | for (const SCEV *T : Terms) | 
|  | dbgs() << *T << "\n"; | 
|  | }); | 
|  |  | 
|  | SCEVCollectAddRecMultiplies MulCollector(Terms, *this); | 
|  | visitAll(Expr, MulCollector); | 
|  | } | 
|  |  | 
|  | static bool findArrayDimensionsRec(ScalarEvolution &SE, | 
|  | SmallVectorImpl<const SCEV *> &Terms, | 
|  | SmallVectorImpl<const SCEV *> &Sizes) { | 
|  | int Last = Terms.size() - 1; | 
|  | const SCEV *Step = Terms[Last]; | 
|  |  | 
|  | // End of recursion. | 
|  | if (Last == 0) { | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { | 
|  | SmallVector<const SCEV *, 2> Qs; | 
|  | for (const SCEV *Op : M->operands()) | 
|  | if (!isa<SCEVConstant>(Op)) | 
|  | Qs.push_back(Op); | 
|  |  | 
|  | Step = SE.getMulExpr(Qs); | 
|  | } | 
|  |  | 
|  | Sizes.push_back(Step); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (const SCEV *&Term : Terms) { | 
|  | // Normalize the terms before the next call to findArrayDimensionsRec. | 
|  | const SCEV *Q, *R; | 
|  | SCEVDivision::divide(SE, Term, Step, &Q, &R); | 
|  |  | 
|  | // Bail out when GCD does not evenly divide one of the terms. | 
|  | if (!R->isZero()) | 
|  | return false; | 
|  |  | 
|  | Term = Q; | 
|  | } | 
|  |  | 
|  | // Remove all SCEVConstants. | 
|  | Terms.erase( | 
|  | remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), | 
|  | Terms.end()); | 
|  |  | 
|  | if (Terms.size() > 0) | 
|  | if (!findArrayDimensionsRec(SE, Terms, Sizes)) | 
|  | return false; | 
|  |  | 
|  | Sizes.push_back(Step); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. | 
|  | static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { | 
|  | for (const SCEV *T : Terms) | 
|  | if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return the number of product terms in S. | 
|  | static inline int numberOfTerms(const SCEV *S) { | 
|  | if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) | 
|  | return Expr->getNumOperands(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { | 
|  | if (isa<SCEVConstant>(T)) | 
|  | return nullptr; | 
|  |  | 
|  | if (isa<SCEVUnknown>(T)) | 
|  | return T; | 
|  |  | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { | 
|  | SmallVector<const SCEV *, 2> Factors; | 
|  | for (const SCEV *Op : M->operands()) | 
|  | if (!isa<SCEVConstant>(Op)) | 
|  | Factors.push_back(Op); | 
|  |  | 
|  | return SE.getMulExpr(Factors); | 
|  | } | 
|  |  | 
|  | return T; | 
|  | } | 
|  |  | 
|  | /// Return the size of an element read or written by Inst. | 
|  | const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { | 
|  | Type *Ty; | 
|  | if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) | 
|  | Ty = Store->getValueOperand()->getType(); | 
|  | else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) | 
|  | Ty = Load->getType(); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); | 
|  | return getSizeOfExpr(ETy, Ty); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, | 
|  | SmallVectorImpl<const SCEV *> &Sizes, | 
|  | const SCEV *ElementSize) { | 
|  | if (Terms.size() < 1 || !ElementSize) | 
|  | return; | 
|  |  | 
|  | // Early return when Terms do not contain parameters: we do not delinearize | 
|  | // non parametric SCEVs. | 
|  | if (!containsParameters(Terms)) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Terms:\n"; | 
|  | for (const SCEV *T : Terms) | 
|  | dbgs() << *T << "\n"; | 
|  | }); | 
|  |  | 
|  | // Remove duplicates. | 
|  | array_pod_sort(Terms.begin(), Terms.end()); | 
|  | Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); | 
|  |  | 
|  | // Put larger terms first. | 
|  | llvm::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { | 
|  | return numberOfTerms(LHS) > numberOfTerms(RHS); | 
|  | }); | 
|  |  | 
|  | // Try to divide all terms by the element size. If term is not divisible by | 
|  | // element size, proceed with the original term. | 
|  | for (const SCEV *&Term : Terms) { | 
|  | const SCEV *Q, *R; | 
|  | SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); | 
|  | if (!Q->isZero()) | 
|  | Term = Q; | 
|  | } | 
|  |  | 
|  | SmallVector<const SCEV *, 4> NewTerms; | 
|  |  | 
|  | // Remove constant factors. | 
|  | for (const SCEV *T : Terms) | 
|  | if (const SCEV *NewT = removeConstantFactors(*this, T)) | 
|  | NewTerms.push_back(NewT); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Terms after sorting:\n"; | 
|  | for (const SCEV *T : NewTerms) | 
|  | dbgs() << *T << "\n"; | 
|  | }); | 
|  |  | 
|  | if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { | 
|  | Sizes.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The last element to be pushed into Sizes is the size of an element. | 
|  | Sizes.push_back(ElementSize); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Sizes:\n"; | 
|  | for (const SCEV *S : Sizes) | 
|  | dbgs() << *S << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::computeAccessFunctions( | 
|  | const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, | 
|  | SmallVectorImpl<const SCEV *> &Sizes) { | 
|  | // Early exit in case this SCEV is not an affine multivariate function. | 
|  | if (Sizes.empty()) | 
|  | return; | 
|  |  | 
|  | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) | 
|  | if (!AR->isAffine()) | 
|  | return; | 
|  |  | 
|  | const SCEV *Res = Expr; | 
|  | int Last = Sizes.size() - 1; | 
|  | for (int i = Last; i >= 0; i--) { | 
|  | const SCEV *Q, *R; | 
|  | SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Res: " << *Res << "\n"; | 
|  | dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; | 
|  | dbgs() << "Res divided by Sizes[i]:\n"; | 
|  | dbgs() << "Quotient: " << *Q << "\n"; | 
|  | dbgs() << "Remainder: " << *R << "\n"; | 
|  | }); | 
|  |  | 
|  | Res = Q; | 
|  |  | 
|  | // Do not record the last subscript corresponding to the size of elements in | 
|  | // the array. | 
|  | if (i == Last) { | 
|  |  | 
|  | // Bail out if the remainder is too complex. | 
|  | if (isa<SCEVAddRecExpr>(R)) { | 
|  | Subscripts.clear(); | 
|  | Sizes.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Record the access function for the current subscript. | 
|  | Subscripts.push_back(R); | 
|  | } | 
|  |  | 
|  | // Also push in last position the remainder of the last division: it will be | 
|  | // the access function of the innermost dimension. | 
|  | Subscripts.push_back(Res); | 
|  |  | 
|  | std::reverse(Subscripts.begin(), Subscripts.end()); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Subscripts:\n"; | 
|  | for (const SCEV *S : Subscripts) | 
|  | dbgs() << *S << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Splits the SCEV into two vectors of SCEVs representing the subscripts and | 
|  | /// sizes of an array access. Returns the remainder of the delinearization that | 
|  | /// is the offset start of the array.  The SCEV->delinearize algorithm computes | 
|  | /// the multiples of SCEV coefficients: that is a pattern matching of sub | 
|  | /// expressions in the stride and base of a SCEV corresponding to the | 
|  | /// computation of a GCD (greatest common divisor) of base and stride.  When | 
|  | /// SCEV->delinearize fails, it returns the SCEV unchanged. | 
|  | /// | 
|  | /// For example: when analyzing the memory access A[i][j][k] in this loop nest | 
|  | /// | 
|  | ///  void foo(long n, long m, long o, double A[n][m][o]) { | 
|  | /// | 
|  | ///    for (long i = 0; i < n; i++) | 
|  | ///      for (long j = 0; j < m; j++) | 
|  | ///        for (long k = 0; k < o; k++) | 
|  | ///          A[i][j][k] = 1.0; | 
|  | ///  } | 
|  | /// | 
|  | /// the delinearization input is the following AddRec SCEV: | 
|  | /// | 
|  | ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> | 
|  | /// | 
|  | /// From this SCEV, we are able to say that the base offset of the access is %A | 
|  | /// because it appears as an offset that does not divide any of the strides in | 
|  | /// the loops: | 
|  | /// | 
|  | ///  CHECK: Base offset: %A | 
|  | /// | 
|  | /// and then SCEV->delinearize determines the size of some of the dimensions of | 
|  | /// the array as these are the multiples by which the strides are happening: | 
|  | /// | 
|  | ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. | 
|  | /// | 
|  | /// Note that the outermost dimension remains of UnknownSize because there are | 
|  | /// no strides that would help identifying the size of the last dimension: when | 
|  | /// the array has been statically allocated, one could compute the size of that | 
|  | /// dimension by dividing the overall size of the array by the size of the known | 
|  | /// dimensions: %m * %o * 8. | 
|  | /// | 
|  | /// Finally delinearize provides the access functions for the array reference | 
|  | /// that does correspond to A[i][j][k] of the above C testcase: | 
|  | /// | 
|  | ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] | 
|  | /// | 
|  | /// The testcases are checking the output of a function pass: | 
|  | /// DelinearizationPass that walks through all loads and stores of a function | 
|  | /// asking for the SCEV of the memory access with respect to all enclosing | 
|  | /// loops, calling SCEV->delinearize on that and printing the results. | 
|  | void ScalarEvolution::delinearize(const SCEV *Expr, | 
|  | SmallVectorImpl<const SCEV *> &Subscripts, | 
|  | SmallVectorImpl<const SCEV *> &Sizes, | 
|  | const SCEV *ElementSize) { | 
|  | // First step: collect parametric terms. | 
|  | SmallVector<const SCEV *, 4> Terms; | 
|  | collectParametricTerms(Expr, Terms); | 
|  |  | 
|  | if (Terms.empty()) | 
|  | return; | 
|  |  | 
|  | // Second step: find subscript sizes. | 
|  | findArrayDimensions(Terms, Sizes, ElementSize); | 
|  |  | 
|  | if (Sizes.empty()) | 
|  | return; | 
|  |  | 
|  | // Third step: compute the access functions for each subscript. | 
|  | computeAccessFunctions(Expr, Subscripts, Sizes); | 
|  |  | 
|  | if (Subscripts.empty()) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "succeeded to delinearize " << *Expr << "\n"; | 
|  | dbgs() << "ArrayDecl[UnknownSize]"; | 
|  | for (const SCEV *S : Sizes) | 
|  | dbgs() << "[" << *S << "]"; | 
|  |  | 
|  | dbgs() << "\nArrayRef"; | 
|  | for (const SCEV *S : Subscripts) | 
|  | dbgs() << "[" << *S << "]"; | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                   SCEVCallbackVH Class Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ScalarEvolution::SCEVCallbackVH::deleted() { | 
|  | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) | 
|  | SE->ConstantEvolutionLoopExitValue.erase(PN); | 
|  | SE->eraseValueFromMap(getValPtr()); | 
|  | // this now dangles! | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { | 
|  | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); | 
|  |  | 
|  | // Forget all the expressions associated with users of the old value, | 
|  | // so that future queries will recompute the expressions using the new | 
|  | // value. | 
|  | Value *Old = getValPtr(); | 
|  | SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); | 
|  | SmallPtrSet<User *, 8> Visited; | 
|  | while (!Worklist.empty()) { | 
|  | User *U = Worklist.pop_back_val(); | 
|  | // Deleting the Old value will cause this to dangle. Postpone | 
|  | // that until everything else is done. | 
|  | if (U == Old) | 
|  | continue; | 
|  | if (!Visited.insert(U).second) | 
|  | continue; | 
|  | if (PHINode *PN = dyn_cast<PHINode>(U)) | 
|  | SE->ConstantEvolutionLoopExitValue.erase(PN); | 
|  | SE->eraseValueFromMap(U); | 
|  | Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); | 
|  | } | 
|  | // Delete the Old value. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(Old)) | 
|  | SE->ConstantEvolutionLoopExitValue.erase(PN); | 
|  | SE->eraseValueFromMap(Old); | 
|  | // this now dangles! | 
|  | } | 
|  |  | 
|  | ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) | 
|  | : CallbackVH(V), SE(se) {} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                   ScalarEvolution Class Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, | 
|  | AssumptionCache &AC, DominatorTree &DT, | 
|  | LoopInfo &LI) | 
|  | : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), | 
|  | CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), | 
|  | LoopDispositions(64), BlockDispositions(64) { | 
|  | // To use guards for proving predicates, we need to scan every instruction in | 
|  | // relevant basic blocks, and not just terminators.  Doing this is a waste of | 
|  | // time if the IR does not actually contain any calls to | 
|  | // @llvm.experimental.guard, so do a quick check and remember this beforehand. | 
|  | // | 
|  | // This pessimizes the case where a pass that preserves ScalarEvolution wants | 
|  | // to _add_ guards to the module when there weren't any before, and wants | 
|  | // ScalarEvolution to optimize based on those guards.  For now we prefer to be | 
|  | // efficient in lieu of being smart in that rather obscure case. | 
|  |  | 
|  | auto *GuardDecl = F.getParent()->getFunction( | 
|  | Intrinsic::getName(Intrinsic::experimental_guard)); | 
|  | HasGuards = GuardDecl && !GuardDecl->use_empty(); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) | 
|  | : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), | 
|  | LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), | 
|  | ValueExprMap(std::move(Arg.ValueExprMap)), | 
|  | PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), | 
|  | PendingPhiRanges(std::move(Arg.PendingPhiRanges)), | 
|  | PendingMerges(std::move(Arg.PendingMerges)), | 
|  | MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), | 
|  | BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), | 
|  | PredicatedBackedgeTakenCounts( | 
|  | std::move(Arg.PredicatedBackedgeTakenCounts)), | 
|  | ConstantEvolutionLoopExitValue( | 
|  | std::move(Arg.ConstantEvolutionLoopExitValue)), | 
|  | ValuesAtScopes(std::move(Arg.ValuesAtScopes)), | 
|  | LoopDispositions(std::move(Arg.LoopDispositions)), | 
|  | LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), | 
|  | BlockDispositions(std::move(Arg.BlockDispositions)), | 
|  | UnsignedRanges(std::move(Arg.UnsignedRanges)), | 
|  | SignedRanges(std::move(Arg.SignedRanges)), | 
|  | UniqueSCEVs(std::move(Arg.UniqueSCEVs)), | 
|  | UniquePreds(std::move(Arg.UniquePreds)), | 
|  | SCEVAllocator(std::move(Arg.SCEVAllocator)), | 
|  | LoopUsers(std::move(Arg.LoopUsers)), | 
|  | PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), | 
|  | FirstUnknown(Arg.FirstUnknown) { | 
|  | Arg.FirstUnknown = nullptr; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::~ScalarEvolution() { | 
|  | // Iterate through all the SCEVUnknown instances and call their | 
|  | // destructors, so that they release their references to their values. | 
|  | for (SCEVUnknown *U = FirstUnknown; U;) { | 
|  | SCEVUnknown *Tmp = U; | 
|  | U = U->Next; | 
|  | Tmp->~SCEVUnknown(); | 
|  | } | 
|  | FirstUnknown = nullptr; | 
|  |  | 
|  | ExprValueMap.clear(); | 
|  | ValueExprMap.clear(); | 
|  | HasRecMap.clear(); | 
|  |  | 
|  | // Free any extra memory created for ExitNotTakenInfo in the unlikely event | 
|  | // that a loop had multiple computable exits. | 
|  | for (auto &BTCI : BackedgeTakenCounts) | 
|  | BTCI.second.clear(); | 
|  | for (auto &BTCI : PredicatedBackedgeTakenCounts) | 
|  | BTCI.second.clear(); | 
|  |  | 
|  | assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); | 
|  | assert(PendingPhiRanges.empty() && "getRangeRef garbage"); | 
|  | assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); | 
|  | assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); | 
|  | assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { | 
|  | return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); | 
|  | } | 
|  |  | 
|  | static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, | 
|  | const Loop *L) { | 
|  | // Print all inner loops first | 
|  | for (Loop *I : *L) | 
|  | PrintLoopInfo(OS, SE, I); | 
|  |  | 
|  | OS << "Loop "; | 
|  | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ": "; | 
|  |  | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getExitBlocks(ExitBlocks); | 
|  | if (ExitBlocks.size() != 1) | 
|  | OS << "<multiple exits> "; | 
|  |  | 
|  | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { | 
|  | OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); | 
|  | } else { | 
|  | OS << "Unpredictable backedge-taken count. "; | 
|  | } | 
|  |  | 
|  | OS << "\n" | 
|  | "Loop "; | 
|  | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ": "; | 
|  |  | 
|  | if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { | 
|  | OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); | 
|  | if (SE->isBackedgeTakenCountMaxOrZero(L)) | 
|  | OS << ", actual taken count either this or zero."; | 
|  | } else { | 
|  | OS << "Unpredictable max backedge-taken count. "; | 
|  | } | 
|  |  | 
|  | OS << "\n" | 
|  | "Loop "; | 
|  | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ": "; | 
|  |  | 
|  | SCEVUnionPredicate Pred; | 
|  | auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); | 
|  | if (!isa<SCEVCouldNotCompute>(PBT)) { | 
|  | OS << "Predicated backedge-taken count is " << *PBT << "\n"; | 
|  | OS << " Predicates:\n"; | 
|  | Pred.print(OS, 4); | 
|  | } else { | 
|  | OS << "Unpredictable predicated backedge-taken count. "; | 
|  | } | 
|  | OS << "\n"; | 
|  |  | 
|  | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { | 
|  | OS << "Loop "; | 
|  | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ": "; | 
|  | OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { | 
|  | switch (LD) { | 
|  | case ScalarEvolution::LoopVariant: | 
|  | return "Variant"; | 
|  | case ScalarEvolution::LoopInvariant: | 
|  | return "Invariant"; | 
|  | case ScalarEvolution::LoopComputable: | 
|  | return "Computable"; | 
|  | } | 
|  | llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::print(raw_ostream &OS) const { | 
|  | // ScalarEvolution's implementation of the print method is to print | 
|  | // out SCEV values of all instructions that are interesting. Doing | 
|  | // this potentially causes it to create new SCEV objects though, | 
|  | // which technically conflicts with the const qualifier. This isn't | 
|  | // observable from outside the class though, so casting away the | 
|  | // const isn't dangerous. | 
|  | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); | 
|  |  | 
|  | OS << "Classifying expressions for: "; | 
|  | F.printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << "\n"; | 
|  | for (Instruction &I : instructions(F)) | 
|  | if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { | 
|  | OS << I << '\n'; | 
|  | OS << "  -->  "; | 
|  | const SCEV *SV = SE.getSCEV(&I); | 
|  | SV->print(OS); | 
|  | if (!isa<SCEVCouldNotCompute>(SV)) { | 
|  | OS << " U: "; | 
|  | SE.getUnsignedRange(SV).print(OS); | 
|  | OS << " S: "; | 
|  | SE.getSignedRange(SV).print(OS); | 
|  | } | 
|  |  | 
|  | const Loop *L = LI.getLoopFor(I.getParent()); | 
|  |  | 
|  | const SCEV *AtUse = SE.getSCEVAtScope(SV, L); | 
|  | if (AtUse != SV) { | 
|  | OS << "  -->  "; | 
|  | AtUse->print(OS); | 
|  | if (!isa<SCEVCouldNotCompute>(AtUse)) { | 
|  | OS << " U: "; | 
|  | SE.getUnsignedRange(AtUse).print(OS); | 
|  | OS << " S: "; | 
|  | SE.getSignedRange(AtUse).print(OS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (L) { | 
|  | OS << "\t\t" "Exits: "; | 
|  | const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); | 
|  | if (!SE.isLoopInvariant(ExitValue, L)) { | 
|  | OS << "<<Unknown>>"; | 
|  | } else { | 
|  | OS << *ExitValue; | 
|  | } | 
|  |  | 
|  | bool First = true; | 
|  | for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { | 
|  | if (First) { | 
|  | OS << "\t\t" "LoopDispositions: { "; | 
|  | First = false; | 
|  | } else { | 
|  | OS << ", "; | 
|  | } | 
|  |  | 
|  | Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); | 
|  | } | 
|  |  | 
|  | for (auto *InnerL : depth_first(L)) { | 
|  | if (InnerL == L) | 
|  | continue; | 
|  | if (First) { | 
|  | OS << "\t\t" "LoopDispositions: { "; | 
|  | First = false; | 
|  | } else { | 
|  | OS << ", "; | 
|  | } | 
|  |  | 
|  | InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); | 
|  | } | 
|  |  | 
|  | OS << " }"; | 
|  | } | 
|  |  | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | OS << "Determining loop execution counts for: "; | 
|  | F.printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << "\n"; | 
|  | for (Loop *I : LI) | 
|  | PrintLoopInfo(OS, &SE, I); | 
|  | } | 
|  |  | 
|  | ScalarEvolution::LoopDisposition | 
|  | ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { | 
|  | auto &Values = LoopDispositions[S]; | 
|  | for (auto &V : Values) { | 
|  | if (V.getPointer() == L) | 
|  | return V.getInt(); | 
|  | } | 
|  | Values.emplace_back(L, LoopVariant); | 
|  | LoopDisposition D = computeLoopDisposition(S, L); | 
|  | auto &Values2 = LoopDispositions[S]; | 
|  | for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { | 
|  | if (V.getPointer() == L) { | 
|  | V.setInt(D); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return D; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::LoopDisposition | 
|  | ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { | 
|  | switch (static_cast<SCEVTypes>(S->getSCEVType())) { | 
|  | case scConstant: | 
|  | return LoopInvariant; | 
|  | case scTruncate: | 
|  | case scZeroExtend: | 
|  | case scSignExtend: | 
|  | return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); | 
|  | case scAddRecExpr: { | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); | 
|  |  | 
|  | // If L is the addrec's loop, it's computable. | 
|  | if (AR->getLoop() == L) | 
|  | return LoopComputable; | 
|  |  | 
|  | // Add recurrences are never invariant in the function-body (null loop). | 
|  | if (!L) | 
|  | return LoopVariant; | 
|  |  | 
|  | // Everything that is not defined at loop entry is variant. | 
|  | if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) | 
|  | return LoopVariant; | 
|  | assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" | 
|  | " dominate the contained loop's header?"); | 
|  |  | 
|  | // This recurrence is invariant w.r.t. L if AR's loop contains L. | 
|  | if (AR->getLoop()->contains(L)) | 
|  | return LoopInvariant; | 
|  |  | 
|  | // This recurrence is variant w.r.t. L if any of its operands | 
|  | // are variant. | 
|  | for (auto *Op : AR->operands()) | 
|  | if (!isLoopInvariant(Op, L)) | 
|  | return LoopVariant; | 
|  |  | 
|  | // Otherwise it's loop-invariant. | 
|  | return LoopInvariant; | 
|  | } | 
|  | case scAddExpr: | 
|  | case scMulExpr: | 
|  | case scUMaxExpr: | 
|  | case scSMaxExpr: { | 
|  | bool HasVarying = false; | 
|  | for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { | 
|  | LoopDisposition D = getLoopDisposition(Op, L); | 
|  | if (D == LoopVariant) | 
|  | return LoopVariant; | 
|  | if (D == LoopComputable) | 
|  | HasVarying = true; | 
|  | } | 
|  | return HasVarying ? LoopComputable : LoopInvariant; | 
|  | } | 
|  | case scUDivExpr: { | 
|  | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); | 
|  | LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); | 
|  | if (LD == LoopVariant) | 
|  | return LoopVariant; | 
|  | LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); | 
|  | if (RD == LoopVariant) | 
|  | return LoopVariant; | 
|  | return (LD == LoopInvariant && RD == LoopInvariant) ? | 
|  | LoopInvariant : LoopComputable; | 
|  | } | 
|  | case scUnknown: | 
|  | // All non-instruction values are loop invariant.  All instructions are loop | 
|  | // invariant if they are not contained in the specified loop. | 
|  | // Instructions are never considered invariant in the function body | 
|  | // (null loop) because they are defined within the "loop". | 
|  | if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) | 
|  | return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; | 
|  | return LoopInvariant; | 
|  | case scCouldNotCompute: | 
|  | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); | 
|  | } | 
|  | llvm_unreachable("Unknown SCEV kind!"); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { | 
|  | return getLoopDisposition(S, L) == LoopInvariant; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { | 
|  | return getLoopDisposition(S, L) == LoopComputable; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::BlockDisposition | 
|  | ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { | 
|  | auto &Values = BlockDispositions[S]; | 
|  | for (auto &V : Values) { | 
|  | if (V.getPointer() == BB) | 
|  | return V.getInt(); | 
|  | } | 
|  | Values.emplace_back(BB, DoesNotDominateBlock); | 
|  | BlockDisposition D = computeBlockDisposition(S, BB); | 
|  | auto &Values2 = BlockDispositions[S]; | 
|  | for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { | 
|  | if (V.getPointer() == BB) { | 
|  | V.setInt(D); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return D; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::BlockDisposition | 
|  | ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { | 
|  | switch (static_cast<SCEVTypes>(S->getSCEVType())) { | 
|  | case scConstant: | 
|  | return ProperlyDominatesBlock; | 
|  | case scTruncate: | 
|  | case scZeroExtend: | 
|  | case scSignExtend: | 
|  | return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); | 
|  | case scAddRecExpr: { | 
|  | // This uses a "dominates" query instead of "properly dominates" query | 
|  | // to test for proper dominance too, because the instruction which | 
|  | // produces the addrec's value is a PHI, and a PHI effectively properly | 
|  | // dominates its entire containing block. | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); | 
|  | if (!DT.dominates(AR->getLoop()->getHeader(), BB)) | 
|  | return DoesNotDominateBlock; | 
|  |  | 
|  | // Fall through into SCEVNAryExpr handling. | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case scAddExpr: | 
|  | case scMulExpr: | 
|  | case scUMaxExpr: | 
|  | case scSMaxExpr: { | 
|  | const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); | 
|  | bool Proper = true; | 
|  | for (const SCEV *NAryOp : NAry->operands()) { | 
|  | BlockDisposition D = getBlockDisposition(NAryOp, BB); | 
|  | if (D == DoesNotDominateBlock) | 
|  | return DoesNotDominateBlock; | 
|  | if (D == DominatesBlock) | 
|  | Proper = false; | 
|  | } | 
|  | return Proper ? ProperlyDominatesBlock : DominatesBlock; | 
|  | } | 
|  | case scUDivExpr: { | 
|  | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); | 
|  | const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); | 
|  | BlockDisposition LD = getBlockDisposition(LHS, BB); | 
|  | if (LD == DoesNotDominateBlock) | 
|  | return DoesNotDominateBlock; | 
|  | BlockDisposition RD = getBlockDisposition(RHS, BB); | 
|  | if (RD == DoesNotDominateBlock) | 
|  | return DoesNotDominateBlock; | 
|  | return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? | 
|  | ProperlyDominatesBlock : DominatesBlock; | 
|  | } | 
|  | case scUnknown: | 
|  | if (Instruction *I = | 
|  | dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { | 
|  | if (I->getParent() == BB) | 
|  | return DominatesBlock; | 
|  | if (DT.properlyDominates(I->getParent(), BB)) | 
|  | return ProperlyDominatesBlock; | 
|  | return DoesNotDominateBlock; | 
|  | } | 
|  | return ProperlyDominatesBlock; | 
|  | case scCouldNotCompute: | 
|  | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); | 
|  | } | 
|  | llvm_unreachable("Unknown SCEV kind!"); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { | 
|  | return getBlockDisposition(S, BB) >= DominatesBlock; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { | 
|  | return getBlockDisposition(S, BB) == ProperlyDominatesBlock; | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { | 
|  | return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { | 
|  | auto IsS = [&](const SCEV *X) { return S == X; }; | 
|  | auto ContainsS = [&](const SCEV *X) { | 
|  | return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); | 
|  | }; | 
|  | return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); | 
|  | } | 
|  |  | 
|  | void | 
|  | ScalarEvolution::forgetMemoizedResults(const SCEV *S) { | 
|  | ValuesAtScopes.erase(S); | 
|  | LoopDispositions.erase(S); | 
|  | BlockDispositions.erase(S); | 
|  | UnsignedRanges.erase(S); | 
|  | SignedRanges.erase(S); | 
|  | ExprValueMap.erase(S); | 
|  | HasRecMap.erase(S); | 
|  | MinTrailingZerosCache.erase(S); | 
|  |  | 
|  | for (auto I = PredicatedSCEVRewrites.begin(); | 
|  | I != PredicatedSCEVRewrites.end();) { | 
|  | std::pair<const SCEV *, const Loop *> Entry = I->first; | 
|  | if (Entry.first == S) | 
|  | PredicatedSCEVRewrites.erase(I++); | 
|  | else | 
|  | ++I; | 
|  | } | 
|  |  | 
|  | auto RemoveSCEVFromBackedgeMap = | 
|  | [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { | 
|  | for (auto I = Map.begin(), E = Map.end(); I != E;) { | 
|  | BackedgeTakenInfo &BEInfo = I->second; | 
|  | if (BEInfo.hasOperand(S, this)) { | 
|  | BEInfo.clear(); | 
|  | Map.erase(I++); | 
|  | } else | 
|  | ++I; | 
|  | } | 
|  | }; | 
|  |  | 
|  | RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); | 
|  | RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); | 
|  | } | 
|  |  | 
|  | void | 
|  | ScalarEvolution::getUsedLoops(const SCEV *S, | 
|  | SmallPtrSetImpl<const Loop *> &LoopsUsed) { | 
|  | struct FindUsedLoops { | 
|  | FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) | 
|  | : LoopsUsed(LoopsUsed) {} | 
|  | SmallPtrSetImpl<const Loop *> &LoopsUsed; | 
|  | bool follow(const SCEV *S) { | 
|  | if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) | 
|  | LoopsUsed.insert(AR->getLoop()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isDone() const { return false; } | 
|  | }; | 
|  |  | 
|  | FindUsedLoops F(LoopsUsed); | 
|  | SCEVTraversal<FindUsedLoops>(F).visitAll(S); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::addToLoopUseLists(const SCEV *S) { | 
|  | SmallPtrSet<const Loop *, 8> LoopsUsed; | 
|  | getUsedLoops(S, LoopsUsed); | 
|  | for (auto *L : LoopsUsed) | 
|  | LoopUsers[L].push_back(S); | 
|  | } | 
|  |  | 
|  | void ScalarEvolution::verify() const { | 
|  | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); | 
|  | ScalarEvolution SE2(F, TLI, AC, DT, LI); | 
|  |  | 
|  | SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); | 
|  |  | 
|  | // Map's SCEV expressions from one ScalarEvolution "universe" to another. | 
|  | struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { | 
|  | SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} | 
|  |  | 
|  | const SCEV *visitConstant(const SCEVConstant *Constant) { | 
|  | return SE.getConstant(Constant->getAPInt()); | 
|  | } | 
|  |  | 
|  | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | 
|  | return SE.getUnknown(Expr->getValue()); | 
|  | } | 
|  |  | 
|  | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { | 
|  | return SE.getCouldNotCompute(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | SCEVMapper SCM(SE2); | 
|  |  | 
|  | while (!LoopStack.empty()) { | 
|  | auto *L = LoopStack.pop_back_val(); | 
|  | LoopStack.insert(LoopStack.end(), L->begin(), L->end()); | 
|  |  | 
|  | auto *CurBECount = SCM.visit( | 
|  | const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); | 
|  | auto *NewBECount = SE2.getBackedgeTakenCount(L); | 
|  |  | 
|  | if (CurBECount == SE2.getCouldNotCompute() || | 
|  | NewBECount == SE2.getCouldNotCompute()) { | 
|  | // NB! This situation is legal, but is very suspicious -- whatever pass | 
|  | // change the loop to make a trip count go from could not compute to | 
|  | // computable or vice-versa *should have* invalidated SCEV.  However, we | 
|  | // choose not to assert here (for now) since we don't want false | 
|  | // positives. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { | 
|  | // SCEV treats "undef" as an unknown but consistent value (i.e. it does | 
|  | // not propagate undef aggressively).  This means we can (and do) fail | 
|  | // verification in cases where a transform makes the trip count of a loop | 
|  | // go from "undef" to "undef+1" (say).  The transform is fine, since in | 
|  | // both cases the loop iterates "undef" times, but SCEV thinks we | 
|  | // increased the trip count of the loop by 1 incorrectly. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SE.getTypeSizeInBits(CurBECount->getType()) > | 
|  | SE.getTypeSizeInBits(NewBECount->getType())) | 
|  | NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); | 
|  | else if (SE.getTypeSizeInBits(CurBECount->getType()) < | 
|  | SE.getTypeSizeInBits(NewBECount->getType())) | 
|  | CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); | 
|  |  | 
|  | auto *ConstantDelta = | 
|  | dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); | 
|  |  | 
|  | if (ConstantDelta && ConstantDelta->getAPInt() != 0) { | 
|  | dbgs() << "Trip Count Changed!\n"; | 
|  | dbgs() << "Old: " << *CurBECount << "\n"; | 
|  | dbgs() << "New: " << *NewBECount << "\n"; | 
|  | dbgs() << "Delta: " << *ConstantDelta << "\n"; | 
|  | std::abort(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ScalarEvolution::invalidate( | 
|  | Function &F, const PreservedAnalyses &PA, | 
|  | FunctionAnalysisManager::Invalidator &Inv) { | 
|  | // Invalidate the ScalarEvolution object whenever it isn't preserved or one | 
|  | // of its dependencies is invalidated. | 
|  | auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); | 
|  | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || | 
|  | Inv.invalidate<AssumptionAnalysis>(F, PA) || | 
|  | Inv.invalidate<DominatorTreeAnalysis>(F, PA) || | 
|  | Inv.invalidate<LoopAnalysis>(F, PA); | 
|  | } | 
|  |  | 
|  | AnalysisKey ScalarEvolutionAnalysis::Key; | 
|  |  | 
|  | ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), | 
|  | AM.getResult<AssumptionAnalysis>(F), | 
|  | AM.getResult<DominatorTreeAnalysis>(F), | 
|  | AM.getResult<LoopAnalysis>(F)); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses | 
|  | ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", | 
|  | "Scalar Evolution Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", | 
|  | "Scalar Evolution Analysis", false, true) | 
|  |  | 
|  | char ScalarEvolutionWrapperPass::ID = 0; | 
|  |  | 
|  | ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { | 
|  | initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { | 
|  | SE.reset(new ScalarEvolution( | 
|  | F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), | 
|  | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), | 
|  | getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } | 
|  |  | 
|  | void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { | 
|  | SE->print(OS); | 
|  | } | 
|  |  | 
|  | void ScalarEvolutionWrapperPass::verifyAnalysis() const { | 
|  | if (!VerifySCEV) | 
|  | return; | 
|  |  | 
|  | SE->verify(); | 
|  | } | 
|  |  | 
|  | void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequiredTransitive<AssumptionCacheTracker>(); | 
|  | AU.addRequiredTransitive<LoopInfoWrapperPass>(); | 
|  | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); | 
|  | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | FoldingSetNodeID ID; | 
|  | assert(LHS->getType() == RHS->getType() && | 
|  | "Type mismatch between LHS and RHS"); | 
|  | // Unique this node based on the arguments | 
|  | ID.AddInteger(SCEVPredicate::P_Equal); | 
|  | ID.AddPointer(LHS); | 
|  | ID.AddPointer(RHS); | 
|  | void *IP = nullptr; | 
|  | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) | 
|  | return S; | 
|  | SCEVEqualPredicate *Eq = new (SCEVAllocator) | 
|  | SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); | 
|  | UniquePreds.InsertNode(Eq, IP); | 
|  | return Eq; | 
|  | } | 
|  |  | 
|  | const SCEVPredicate *ScalarEvolution::getWrapPredicate( | 
|  | const SCEVAddRecExpr *AR, | 
|  | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { | 
|  | FoldingSetNodeID ID; | 
|  | // Unique this node based on the arguments | 
|  | ID.AddInteger(SCEVPredicate::P_Wrap); | 
|  | ID.AddPointer(AR); | 
|  | ID.AddInteger(AddedFlags); | 
|  | void *IP = nullptr; | 
|  | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) | 
|  | return S; | 
|  | auto *OF = new (SCEVAllocator) | 
|  | SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); | 
|  | UniquePreds.InsertNode(OF, IP); | 
|  | return OF; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { | 
|  | public: | 
|  |  | 
|  | /// Rewrites \p S in the context of a loop L and the SCEV predication | 
|  | /// infrastructure. | 
|  | /// | 
|  | /// If \p Pred is non-null, the SCEV expression is rewritten to respect the | 
|  | /// equivalences present in \p Pred. | 
|  | /// | 
|  | /// If \p NewPreds is non-null, rewrite is free to add further predicates to | 
|  | /// \p NewPreds such that the result will be an AddRecExpr. | 
|  | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, | 
|  | SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, | 
|  | SCEVUnionPredicate *Pred) { | 
|  | SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); | 
|  | return Rewriter.visit(S); | 
|  | } | 
|  |  | 
|  | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | 
|  | if (Pred) { | 
|  | auto ExprPreds = Pred->getPredicatesForExpr(Expr); | 
|  | for (auto *Pred : ExprPreds) | 
|  | if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) | 
|  | if (IPred->getLHS() == Expr) | 
|  | return IPred->getRHS(); | 
|  | } | 
|  | return convertToAddRecWithPreds(Expr); | 
|  | } | 
|  |  | 
|  | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { | 
|  | const SCEV *Operand = visit(Expr->getOperand()); | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); | 
|  | if (AR && AR->getLoop() == L && AR->isAffine()) { | 
|  | // This couldn't be folded because the operand didn't have the nuw | 
|  | // flag. Add the nusw flag as an assumption that we could make. | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | Type *Ty = Expr->getType(); | 
|  | if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) | 
|  | return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), | 
|  | SE.getSignExtendExpr(Step, Ty), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | return SE.getZeroExtendExpr(Operand, Expr->getType()); | 
|  | } | 
|  |  | 
|  | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { | 
|  | const SCEV *Operand = visit(Expr->getOperand()); | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); | 
|  | if (AR && AR->getLoop() == L && AR->isAffine()) { | 
|  | // This couldn't be folded because the operand didn't have the nsw | 
|  | // flag. Add the nssw flag as an assumption that we could make. | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | Type *Ty = Expr->getType(); | 
|  | if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) | 
|  | return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), | 
|  | SE.getSignExtendExpr(Step, Ty), L, | 
|  | AR->getNoWrapFlags()); | 
|  | } | 
|  | return SE.getSignExtendExpr(Operand, Expr->getType()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, | 
|  | SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, | 
|  | SCEVUnionPredicate *Pred) | 
|  | : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} | 
|  |  | 
|  | bool addOverflowAssumption(const SCEVPredicate *P) { | 
|  | if (!NewPreds) { | 
|  | // Check if we've already made this assumption. | 
|  | return Pred && Pred->implies(P); | 
|  | } | 
|  | NewPreds->insert(P); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool addOverflowAssumption(const SCEVAddRecExpr *AR, | 
|  | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { | 
|  | auto *A = SE.getWrapPredicate(AR, AddedFlags); | 
|  | return addOverflowAssumption(A); | 
|  | } | 
|  |  | 
|  | // If \p Expr represents a PHINode, we try to see if it can be represented | 
|  | // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible | 
|  | // to add this predicate as a runtime overflow check, we return the AddRec. | 
|  | // If \p Expr does not meet these conditions (is not a PHI node, or we | 
|  | // couldn't create an AddRec for it, or couldn't add the predicate), we just | 
|  | // return \p Expr. | 
|  | const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { | 
|  | if (!isa<PHINode>(Expr->getValue())) | 
|  | return Expr; | 
|  | Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | 
|  | PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); | 
|  | if (!PredicatedRewrite) | 
|  | return Expr; | 
|  | for (auto *P : PredicatedRewrite->second){ | 
|  | // Wrap predicates from outer loops are not supported. | 
|  | if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { | 
|  | auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); | 
|  | if (L != AR->getLoop()) | 
|  | return Expr; | 
|  | } | 
|  | if (!addOverflowAssumption(P)) | 
|  | return Expr; | 
|  | } | 
|  | return PredicatedRewrite->first; | 
|  | } | 
|  |  | 
|  | SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; | 
|  | SCEVUnionPredicate *Pred; | 
|  | const Loop *L; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, | 
|  | SCEVUnionPredicate &Preds) { | 
|  | return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( | 
|  | const SCEV *S, const Loop *L, | 
|  | SmallPtrSetImpl<const SCEVPredicate *> &Preds) { | 
|  | SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; | 
|  | S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); | 
|  | auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); | 
|  |  | 
|  | if (!AddRec) | 
|  | return nullptr; | 
|  |  | 
|  | // Since the transformation was successful, we can now transfer the SCEV | 
|  | // predicates. | 
|  | for (auto *P : TransformPreds) | 
|  | Preds.insert(P); | 
|  |  | 
|  | return AddRec; | 
|  | } | 
|  |  | 
|  | /// SCEV predicates | 
|  | SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, | 
|  | SCEVPredicateKind Kind) | 
|  | : FastID(ID), Kind(Kind) {} | 
|  |  | 
|  | SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, | 
|  | const SCEV *LHS, const SCEV *RHS) | 
|  | : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { | 
|  | assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); | 
|  | assert(LHS != RHS && "LHS and RHS are the same SCEV"); | 
|  | } | 
|  |  | 
|  | bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { | 
|  | const auto *Op = dyn_cast<SCEVEqualPredicate>(N); | 
|  |  | 
|  | if (!Op) | 
|  | return false; | 
|  |  | 
|  | return Op->LHS == LHS && Op->RHS == RHS; | 
|  | } | 
|  |  | 
|  | bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } | 
|  |  | 
|  | const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } | 
|  |  | 
|  | void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { | 
|  | OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; | 
|  | } | 
|  |  | 
|  | SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, | 
|  | const SCEVAddRecExpr *AR, | 
|  | IncrementWrapFlags Flags) | 
|  | : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} | 
|  |  | 
|  | const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } | 
|  |  | 
|  | bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { | 
|  | const auto *Op = dyn_cast<SCEVWrapPredicate>(N); | 
|  |  | 
|  | return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; | 
|  | } | 
|  |  | 
|  | bool SCEVWrapPredicate::isAlwaysTrue() const { | 
|  | SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); | 
|  | IncrementWrapFlags IFlags = Flags; | 
|  |  | 
|  | if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) | 
|  | IFlags = clearFlags(IFlags, IncrementNSSW); | 
|  |  | 
|  | return IFlags == IncrementAnyWrap; | 
|  | } | 
|  |  | 
|  | void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { | 
|  | OS.indent(Depth) << *getExpr() << " Added Flags: "; | 
|  | if (SCEVWrapPredicate::IncrementNUSW & getFlags()) | 
|  | OS << "<nusw>"; | 
|  | if (SCEVWrapPredicate::IncrementNSSW & getFlags()) | 
|  | OS << "<nssw>"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | SCEVWrapPredicate::IncrementWrapFlags | 
|  | SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, | 
|  | ScalarEvolution &SE) { | 
|  | IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; | 
|  | SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); | 
|  |  | 
|  | // We can safely transfer the NSW flag as NSSW. | 
|  | if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) | 
|  | ImpliedFlags = IncrementNSSW; | 
|  |  | 
|  | if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { | 
|  | // If the increment is positive, the SCEV NUW flag will also imply the | 
|  | // WrapPredicate NUSW flag. | 
|  | if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) | 
|  | if (Step->getValue()->getValue().isNonNegative()) | 
|  | ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); | 
|  | } | 
|  |  | 
|  | return ImpliedFlags; | 
|  | } | 
|  |  | 
|  | /// Union predicates don't get cached so create a dummy set ID for it. | 
|  | SCEVUnionPredicate::SCEVUnionPredicate() | 
|  | : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} | 
|  |  | 
|  | bool SCEVUnionPredicate::isAlwaysTrue() const { | 
|  | return all_of(Preds, | 
|  | [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); | 
|  | } | 
|  |  | 
|  | ArrayRef<const SCEVPredicate *> | 
|  | SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { | 
|  | auto I = SCEVToPreds.find(Expr); | 
|  | if (I == SCEVToPreds.end()) | 
|  | return ArrayRef<const SCEVPredicate *>(); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { | 
|  | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) | 
|  | return all_of(Set->Preds, | 
|  | [this](const SCEVPredicate *I) { return this->implies(I); }); | 
|  |  | 
|  | auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); | 
|  | if (ScevPredsIt == SCEVToPreds.end()) | 
|  | return false; | 
|  | auto &SCEVPreds = ScevPredsIt->second; | 
|  |  | 
|  | return any_of(SCEVPreds, | 
|  | [N](const SCEVPredicate *I) { return I->implies(N); }); | 
|  | } | 
|  |  | 
|  | const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } | 
|  |  | 
|  | void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { | 
|  | for (auto Pred : Preds) | 
|  | Pred->print(OS, Depth); | 
|  | } | 
|  |  | 
|  | void SCEVUnionPredicate::add(const SCEVPredicate *N) { | 
|  | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { | 
|  | for (auto Pred : Set->Preds) | 
|  | add(Pred); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (implies(N)) | 
|  | return; | 
|  |  | 
|  | const SCEV *Key = N->getExpr(); | 
|  | assert(Key && "Only SCEVUnionPredicate doesn't have an " | 
|  | " associated expression!"); | 
|  |  | 
|  | SCEVToPreds[Key].push_back(N); | 
|  | Preds.push_back(N); | 
|  | } | 
|  |  | 
|  | PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, | 
|  | Loop &L) | 
|  | : SE(SE), L(L) {} | 
|  |  | 
|  | const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { | 
|  | const SCEV *Expr = SE.getSCEV(V); | 
|  | RewriteEntry &Entry = RewriteMap[Expr]; | 
|  |  | 
|  | // If we already have an entry and the version matches, return it. | 
|  | if (Entry.second && Generation == Entry.first) | 
|  | return Entry.second; | 
|  |  | 
|  | // We found an entry but it's stale. Rewrite the stale entry | 
|  | // according to the current predicate. | 
|  | if (Entry.second) | 
|  | Expr = Entry.second; | 
|  |  | 
|  | const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); | 
|  | Entry = {Generation, NewSCEV}; | 
|  |  | 
|  | return NewSCEV; | 
|  | } | 
|  |  | 
|  | const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { | 
|  | if (!BackedgeCount) { | 
|  | SCEVUnionPredicate BackedgePred; | 
|  | BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); | 
|  | addPredicate(BackedgePred); | 
|  | } | 
|  | return BackedgeCount; | 
|  | } | 
|  |  | 
|  | void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { | 
|  | if (Preds.implies(&Pred)) | 
|  | return; | 
|  | Preds.add(&Pred); | 
|  | updateGeneration(); | 
|  | } | 
|  |  | 
|  | const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { | 
|  | return Preds; | 
|  | } | 
|  |  | 
|  | void PredicatedScalarEvolution::updateGeneration() { | 
|  | // If the generation number wrapped recompute everything. | 
|  | if (++Generation == 0) { | 
|  | for (auto &II : RewriteMap) { | 
|  | const SCEV *Rewritten = II.second.second; | 
|  | II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void PredicatedScalarEvolution::setNoOverflow( | 
|  | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { | 
|  | const SCEV *Expr = getSCEV(V); | 
|  | const auto *AR = cast<SCEVAddRecExpr>(Expr); | 
|  |  | 
|  | auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); | 
|  |  | 
|  | // Clear the statically implied flags. | 
|  | Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); | 
|  | addPredicate(*SE.getWrapPredicate(AR, Flags)); | 
|  |  | 
|  | auto II = FlagsMap.insert({V, Flags}); | 
|  | if (!II.second) | 
|  | II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); | 
|  | } | 
|  |  | 
|  | bool PredicatedScalarEvolution::hasNoOverflow( | 
|  | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { | 
|  | const SCEV *Expr = getSCEV(V); | 
|  | const auto *AR = cast<SCEVAddRecExpr>(Expr); | 
|  |  | 
|  | Flags = SCEVWrapPredicate::clearFlags( | 
|  | Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); | 
|  |  | 
|  | auto II = FlagsMap.find(V); | 
|  |  | 
|  | if (II != FlagsMap.end()) | 
|  | Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); | 
|  |  | 
|  | return Flags == SCEVWrapPredicate::IncrementAnyWrap; | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { | 
|  | const SCEV *Expr = this->getSCEV(V); | 
|  | SmallPtrSet<const SCEVPredicate *, 4> NewPreds; | 
|  | auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); | 
|  |  | 
|  | if (!New) | 
|  | return nullptr; | 
|  |  | 
|  | for (auto *P : NewPreds) | 
|  | Preds.add(P); | 
|  |  | 
|  | updateGeneration(); | 
|  | RewriteMap[SE.getSCEV(V)] = {Generation, New}; | 
|  | return New; | 
|  | } | 
|  |  | 
|  | PredicatedScalarEvolution::PredicatedScalarEvolution( | 
|  | const PredicatedScalarEvolution &Init) | 
|  | : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), | 
|  | Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { | 
|  | for (const auto &I : Init.FlagsMap) | 
|  | FlagsMap.insert(I); | 
|  | } | 
|  |  | 
|  | void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { | 
|  | // For each block. | 
|  | for (auto *BB : L.getBlocks()) | 
|  | for (auto &I : *BB) { | 
|  | if (!SE.isSCEVable(I.getType())) | 
|  | continue; | 
|  |  | 
|  | auto *Expr = SE.getSCEV(&I); | 
|  | auto II = RewriteMap.find(Expr); | 
|  |  | 
|  | if (II == RewriteMap.end()) | 
|  | continue; | 
|  |  | 
|  | // Don't print things that are not interesting. | 
|  | if (II->second.second == Expr) | 
|  | continue; | 
|  |  | 
|  | OS.indent(Depth) << "[PSE]" << I << ":\n"; | 
|  | OS.indent(Depth + 2) << *Expr << "\n"; | 
|  | OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; | 
|  | } | 
|  | } |