|  | //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/CGSCCPassManager.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/LazyCallGraph.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  |  | 
|  | #define DEBUG_TYPE "cgscc" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // Explicit template instantiations and specialization definitions for core | 
|  | // template typedefs. | 
|  | namespace llvm { | 
|  |  | 
|  | // Explicit instantiations for the core proxy templates. | 
|  | template class AllAnalysesOn<LazyCallGraph::SCC>; | 
|  | template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; | 
|  | template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, | 
|  | LazyCallGraph &, CGSCCUpdateResult &>; | 
|  | template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; | 
|  | template class OuterAnalysisManagerProxy<ModuleAnalysisManager, | 
|  | LazyCallGraph::SCC, LazyCallGraph &>; | 
|  | template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; | 
|  |  | 
|  | /// Explicitly specialize the pass manager run method to handle call graph | 
|  | /// updates. | 
|  | template <> | 
|  | PreservedAnalyses | 
|  | PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, | 
|  | CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, | 
|  | CGSCCAnalysisManager &AM, | 
|  | LazyCallGraph &G, CGSCCUpdateResult &UR) { | 
|  | // Request PassInstrumentation from analysis manager, will use it to run | 
|  | // instrumenting callbacks for the passes later. | 
|  | PassInstrumentation PI = | 
|  | AM.getResult<PassInstrumentationAnalysis>(InitialC, G); | 
|  |  | 
|  | PreservedAnalyses PA = PreservedAnalyses::all(); | 
|  |  | 
|  | if (DebugLogging) | 
|  | dbgs() << "Starting CGSCC pass manager run.\n"; | 
|  |  | 
|  | // The SCC may be refined while we are running passes over it, so set up | 
|  | // a pointer that we can update. | 
|  | LazyCallGraph::SCC *C = &InitialC; | 
|  |  | 
|  | for (auto &Pass : Passes) { | 
|  | if (DebugLogging) | 
|  | dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; | 
|  |  | 
|  | // Check the PassInstrumentation's BeforePass callbacks before running the | 
|  | // pass, skip its execution completely if asked to (callback returns false). | 
|  | if (!PI.runBeforePass(*Pass, *C)) | 
|  | continue; | 
|  |  | 
|  | PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); | 
|  |  | 
|  | PI.runAfterPass(*Pass, *C); | 
|  |  | 
|  | // Update the SCC if necessary. | 
|  | C = UR.UpdatedC ? UR.UpdatedC : C; | 
|  |  | 
|  | // If the CGSCC pass wasn't able to provide a valid updated SCC, the | 
|  | // current SCC may simply need to be skipped if invalid. | 
|  | if (UR.InvalidatedSCCs.count(C)) { | 
|  | LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); | 
|  | break; | 
|  | } | 
|  | // Check that we didn't miss any update scenario. | 
|  | assert(C->begin() != C->end() && "Cannot have an empty SCC!"); | 
|  |  | 
|  | // Update the analysis manager as each pass runs and potentially | 
|  | // invalidates analyses. | 
|  | AM.invalidate(*C, PassPA); | 
|  |  | 
|  | // Finally, we intersect the final preserved analyses to compute the | 
|  | // aggregate preserved set for this pass manager. | 
|  | PA.intersect(std::move(PassPA)); | 
|  |  | 
|  | // FIXME: Historically, the pass managers all called the LLVM context's | 
|  | // yield function here. We don't have a generic way to acquire the | 
|  | // context and it isn't yet clear what the right pattern is for yielding | 
|  | // in the new pass manager so it is currently omitted. | 
|  | // ...getContext().yield(); | 
|  | } | 
|  |  | 
|  | // Invalidation was handled after each pass in the above loop for the current | 
|  | // SCC. Therefore, the remaining analysis results in the AnalysisManager are | 
|  | // preserved. We mark this with a set so that we don't need to inspect each | 
|  | // one individually. | 
|  | PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); | 
|  |  | 
|  | if (DebugLogging) | 
|  | dbgs() << "Finished CGSCC pass manager run.\n"; | 
|  |  | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( | 
|  | Module &M, const PreservedAnalyses &PA, | 
|  | ModuleAnalysisManager::Invalidator &Inv) { | 
|  | // If literally everything is preserved, we're done. | 
|  | if (PA.areAllPreserved()) | 
|  | return false; // This is still a valid proxy. | 
|  |  | 
|  | // If this proxy or the call graph is going to be invalidated, we also need | 
|  | // to clear all the keys coming from that analysis. | 
|  | // | 
|  | // We also directly invalidate the FAM's module proxy if necessary, and if | 
|  | // that proxy isn't preserved we can't preserve this proxy either. We rely on | 
|  | // it to handle module -> function analysis invalidation in the face of | 
|  | // structural changes and so if it's unavailable we conservatively clear the | 
|  | // entire SCC layer as well rather than trying to do invalidation ourselves. | 
|  | auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); | 
|  | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || | 
|  | Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || | 
|  | Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { | 
|  | InnerAM->clear(); | 
|  |  | 
|  | // And the proxy itself should be marked as invalid so that we can observe | 
|  | // the new call graph. This isn't strictly necessary because we cheat | 
|  | // above, but is still useful. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Directly check if the relevant set is preserved so we can short circuit | 
|  | // invalidating SCCs below. | 
|  | bool AreSCCAnalysesPreserved = | 
|  | PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); | 
|  |  | 
|  | // Ok, we have a graph, so we can propagate the invalidation down into it. | 
|  | G->buildRefSCCs(); | 
|  | for (auto &RC : G->postorder_ref_sccs()) | 
|  | for (auto &C : RC) { | 
|  | Optional<PreservedAnalyses> InnerPA; | 
|  |  | 
|  | // Check to see whether the preserved set needs to be adjusted based on | 
|  | // module-level analysis invalidation triggering deferred invalidation | 
|  | // for this SCC. | 
|  | if (auto *OuterProxy = | 
|  | InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) | 
|  | for (const auto &OuterInvalidationPair : | 
|  | OuterProxy->getOuterInvalidations()) { | 
|  | AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; | 
|  | const auto &InnerAnalysisIDs = OuterInvalidationPair.second; | 
|  | if (Inv.invalidate(OuterAnalysisID, M, PA)) { | 
|  | if (!InnerPA) | 
|  | InnerPA = PA; | 
|  | for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) | 
|  | InnerPA->abandon(InnerAnalysisID); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we needed a custom PA set. If so we'll need to run the inner | 
|  | // invalidation. | 
|  | if (InnerPA) { | 
|  | InnerAM->invalidate(C, *InnerPA); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we only need to do invalidation if the original PA set didn't | 
|  | // preserve all SCC analyses. | 
|  | if (!AreSCCAnalysesPreserved) | 
|  | InnerAM->invalidate(C, PA); | 
|  | } | 
|  |  | 
|  | // Return false to indicate that this result is still a valid proxy. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <> | 
|  | CGSCCAnalysisManagerModuleProxy::Result | 
|  | CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { | 
|  | // Force the Function analysis manager to also be available so that it can | 
|  | // be accessed in an SCC analysis and proxied onward to function passes. | 
|  | // FIXME: It is pretty awkward to just drop the result here and assert that | 
|  | // we can find it again later. | 
|  | (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); | 
|  |  | 
|  | return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); | 
|  | } | 
|  |  | 
|  | AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; | 
|  |  | 
|  | FunctionAnalysisManagerCGSCCProxy::Result | 
|  | FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, | 
|  | CGSCCAnalysisManager &AM, | 
|  | LazyCallGraph &CG) { | 
|  | // Collect the FunctionAnalysisManager from the Module layer and use that to | 
|  | // build the proxy result. | 
|  | // | 
|  | // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to | 
|  | // invalidate the function analyses. | 
|  | auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); | 
|  | Module &M = *C.begin()->getFunction().getParent(); | 
|  | auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); | 
|  | assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " | 
|  | "proxy is run on the module prior to entering the CGSCC " | 
|  | "walk."); | 
|  |  | 
|  | // Note that we special-case invalidation handling of this proxy in the CGSCC | 
|  | // analysis manager's Module proxy. This avoids the need to do anything | 
|  | // special here to recompute all of this if ever the FAM's module proxy goes | 
|  | // away. | 
|  | return Result(FAMProxy->getManager()); | 
|  | } | 
|  |  | 
|  | bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( | 
|  | LazyCallGraph::SCC &C, const PreservedAnalyses &PA, | 
|  | CGSCCAnalysisManager::Invalidator &Inv) { | 
|  | // If literally everything is preserved, we're done. | 
|  | if (PA.areAllPreserved()) | 
|  | return false; // This is still a valid proxy. | 
|  |  | 
|  | // If this proxy isn't marked as preserved, then even if the result remains | 
|  | // valid, the key itself may no longer be valid, so we clear everything. | 
|  | // | 
|  | // Note that in order to preserve this proxy, a module pass must ensure that | 
|  | // the FAM has been completely updated to handle the deletion of functions. | 
|  | // Specifically, any FAM-cached results for those functions need to have been | 
|  | // forcibly cleared. When preserved, this proxy will only invalidate results | 
|  | // cached on functions *still in the module* at the end of the module pass. | 
|  | auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); | 
|  | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { | 
|  | for (LazyCallGraph::Node &N : C) | 
|  | FAM->clear(N.getFunction(), N.getFunction().getName()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Directly check if the relevant set is preserved. | 
|  | bool AreFunctionAnalysesPreserved = | 
|  | PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); | 
|  |  | 
|  | // Now walk all the functions to see if any inner analysis invalidation is | 
|  | // necessary. | 
|  | for (LazyCallGraph::Node &N : C) { | 
|  | Function &F = N.getFunction(); | 
|  | Optional<PreservedAnalyses> FunctionPA; | 
|  |  | 
|  | // Check to see whether the preserved set needs to be pruned based on | 
|  | // SCC-level analysis invalidation that triggers deferred invalidation | 
|  | // registered with the outer analysis manager proxy for this function. | 
|  | if (auto *OuterProxy = | 
|  | FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) | 
|  | for (const auto &OuterInvalidationPair : | 
|  | OuterProxy->getOuterInvalidations()) { | 
|  | AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; | 
|  | const auto &InnerAnalysisIDs = OuterInvalidationPair.second; | 
|  | if (Inv.invalidate(OuterAnalysisID, C, PA)) { | 
|  | if (!FunctionPA) | 
|  | FunctionPA = PA; | 
|  | for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) | 
|  | FunctionPA->abandon(InnerAnalysisID); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if we needed a custom PA set, and if so we'll need to run the | 
|  | // inner invalidation. | 
|  | if (FunctionPA) { | 
|  | FAM->invalidate(F, *FunctionPA); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise we only need to do invalidation if the original PA set didn't | 
|  | // preserve all function analyses. | 
|  | if (!AreFunctionAnalysesPreserved) | 
|  | FAM->invalidate(F, PA); | 
|  | } | 
|  |  | 
|  | // Return false to indicate that this result is still a valid proxy. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | /// When a new SCC is created for the graph and there might be function | 
|  | /// analysis results cached for the functions now in that SCC two forms of | 
|  | /// updates are required. | 
|  | /// | 
|  | /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be | 
|  | /// created so that any subsequent invalidation events to the SCC are | 
|  | /// propagated to the function analysis results cached for functions within it. | 
|  | /// | 
|  | /// Second, if any of the functions within the SCC have analysis results with | 
|  | /// outer analysis dependencies, then those dependencies would point to the | 
|  | /// *wrong* SCC's analysis result. We forcibly invalidate the necessary | 
|  | /// function analyses so that they don't retain stale handles. | 
|  | static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, | 
|  | LazyCallGraph &G, | 
|  | CGSCCAnalysisManager &AM) { | 
|  | // Get the relevant function analysis manager. | 
|  | auto &FAM = | 
|  | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); | 
|  |  | 
|  | // Now walk the functions in this SCC and invalidate any function analysis | 
|  | // results that might have outer dependencies on an SCC analysis. | 
|  | for (LazyCallGraph::Node &N : C) { | 
|  | Function &F = N.getFunction(); | 
|  |  | 
|  | auto *OuterProxy = | 
|  | FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); | 
|  | if (!OuterProxy) | 
|  | // No outer analyses were queried, nothing to do. | 
|  | continue; | 
|  |  | 
|  | // Forcibly abandon all the inner analyses with dependencies, but | 
|  | // invalidate nothing else. | 
|  | auto PA = PreservedAnalyses::all(); | 
|  | for (const auto &OuterInvalidationPair : | 
|  | OuterProxy->getOuterInvalidations()) { | 
|  | const auto &InnerAnalysisIDs = OuterInvalidationPair.second; | 
|  | for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) | 
|  | PA.abandon(InnerAnalysisID); | 
|  | } | 
|  |  | 
|  | // Now invalidate anything we found. | 
|  | FAM.invalidate(F, PA); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c | 
|  | /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly | 
|  | /// added SCCs. | 
|  | /// | 
|  | /// The range of new SCCs must be in postorder already. The SCC they were split | 
|  | /// out of must be provided as \p C. The current node being mutated and | 
|  | /// triggering updates must be passed as \p N. | 
|  | /// | 
|  | /// This function returns the SCC containing \p N. This will be either \p C if | 
|  | /// no new SCCs have been split out, or it will be the new SCC containing \p N. | 
|  | template <typename SCCRangeT> | 
|  | static LazyCallGraph::SCC * | 
|  | incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, | 
|  | LazyCallGraph::Node &N, LazyCallGraph::SCC *C, | 
|  | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { | 
|  | using SCC = LazyCallGraph::SCC; | 
|  |  | 
|  | if (NewSCCRange.begin() == NewSCCRange.end()) | 
|  | return C; | 
|  |  | 
|  | // Add the current SCC to the worklist as its shape has changed. | 
|  | UR.CWorklist.insert(C); | 
|  | LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C | 
|  | << "\n"); | 
|  |  | 
|  | SCC *OldC = C; | 
|  |  | 
|  | // Update the current SCC. Note that if we have new SCCs, this must actually | 
|  | // change the SCC. | 
|  | assert(C != &*NewSCCRange.begin() && | 
|  | "Cannot insert new SCCs without changing current SCC!"); | 
|  | C = &*NewSCCRange.begin(); | 
|  | assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); | 
|  |  | 
|  | // If we had a cached FAM proxy originally, we will want to create more of | 
|  | // them for each SCC that was split off. | 
|  | bool NeedFAMProxy = | 
|  | AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; | 
|  |  | 
|  | // We need to propagate an invalidation call to all but the newly current SCC | 
|  | // because the outer pass manager won't do that for us after splitting them. | 
|  | // FIXME: We should accept a PreservedAnalysis from the CG updater so that if | 
|  | // there are preserved analysis we can avoid invalidating them here for | 
|  | // split-off SCCs. | 
|  | // We know however that this will preserve any FAM proxy so go ahead and mark | 
|  | // that. | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | 
|  | AM.invalidate(*OldC, PA); | 
|  |  | 
|  | // Ensure the now-current SCC's function analyses are updated. | 
|  | if (NeedFAMProxy) | 
|  | updateNewSCCFunctionAnalyses(*C, G, AM); | 
|  |  | 
|  | for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), | 
|  | NewSCCRange.end()))) { | 
|  | assert(C != &NewC && "No need to re-visit the current SCC!"); | 
|  | assert(OldC != &NewC && "Already handled the original SCC!"); | 
|  | UR.CWorklist.insert(&NewC); | 
|  | LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); | 
|  |  | 
|  | // Ensure new SCCs' function analyses are updated. | 
|  | if (NeedFAMProxy) | 
|  | updateNewSCCFunctionAnalyses(NewC, G, AM); | 
|  |  | 
|  | // Also propagate a normal invalidation to the new SCC as only the current | 
|  | // will get one from the pass manager infrastructure. | 
|  | AM.invalidate(NewC, PA); | 
|  | } | 
|  | return C; | 
|  | } | 
|  |  | 
|  | LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( | 
|  | LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, | 
|  | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { | 
|  | using Node = LazyCallGraph::Node; | 
|  | using Edge = LazyCallGraph::Edge; | 
|  | using SCC = LazyCallGraph::SCC; | 
|  | using RefSCC = LazyCallGraph::RefSCC; | 
|  |  | 
|  | RefSCC &InitialRC = InitialC.getOuterRefSCC(); | 
|  | SCC *C = &InitialC; | 
|  | RefSCC *RC = &InitialRC; | 
|  | Function &F = N.getFunction(); | 
|  |  | 
|  | // Walk the function body and build up the set of retained, promoted, and | 
|  | // demoted edges. | 
|  | SmallVector<Constant *, 16> Worklist; | 
|  | SmallPtrSet<Constant *, 16> Visited; | 
|  | SmallPtrSet<Node *, 16> RetainedEdges; | 
|  | SmallSetVector<Node *, 4> PromotedRefTargets; | 
|  | SmallSetVector<Node *, 4> DemotedCallTargets; | 
|  |  | 
|  | // First walk the function and handle all called functions. We do this first | 
|  | // because if there is a single call edge, whether there are ref edges is | 
|  | // irrelevant. | 
|  | for (Instruction &I : instructions(F)) | 
|  | if (auto CS = CallSite(&I)) | 
|  | if (Function *Callee = CS.getCalledFunction()) | 
|  | if (Visited.insert(Callee).second && !Callee->isDeclaration()) { | 
|  | Node &CalleeN = *G.lookup(*Callee); | 
|  | Edge *E = N->lookup(CalleeN); | 
|  | // FIXME: We should really handle adding new calls. While it will | 
|  | // make downstream usage more complex, there is no fundamental | 
|  | // limitation and it will allow passes within the CGSCC to be a bit | 
|  | // more flexible in what transforms they can do. Until then, we | 
|  | // verify that new calls haven't been introduced. | 
|  | assert(E && "No function transformations should introduce *new* " | 
|  | "call edges! Any new calls should be modeled as " | 
|  | "promoted existing ref edges!"); | 
|  | bool Inserted = RetainedEdges.insert(&CalleeN).second; | 
|  | (void)Inserted; | 
|  | assert(Inserted && "We should never visit a function twice."); | 
|  | if (!E->isCall()) | 
|  | PromotedRefTargets.insert(&CalleeN); | 
|  | } | 
|  |  | 
|  | // Now walk all references. | 
|  | for (Instruction &I : instructions(F)) | 
|  | for (Value *Op : I.operand_values()) | 
|  | if (auto *C = dyn_cast<Constant>(Op)) | 
|  | if (Visited.insert(C).second) | 
|  | Worklist.push_back(C); | 
|  |  | 
|  | auto VisitRef = [&](Function &Referee) { | 
|  | Node &RefereeN = *G.lookup(Referee); | 
|  | Edge *E = N->lookup(RefereeN); | 
|  | // FIXME: Similarly to new calls, we also currently preclude | 
|  | // introducing new references. See above for details. | 
|  | assert(E && "No function transformations should introduce *new* ref " | 
|  | "edges! Any new ref edges would require IPO which " | 
|  | "function passes aren't allowed to do!"); | 
|  | bool Inserted = RetainedEdges.insert(&RefereeN).second; | 
|  | (void)Inserted; | 
|  | assert(Inserted && "We should never visit a function twice."); | 
|  | if (E->isCall()) | 
|  | DemotedCallTargets.insert(&RefereeN); | 
|  | }; | 
|  | LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); | 
|  |  | 
|  | // Include synthetic reference edges to known, defined lib functions. | 
|  | for (auto *F : G.getLibFunctions()) | 
|  | // While the list of lib functions doesn't have repeats, don't re-visit | 
|  | // anything handled above. | 
|  | if (!Visited.count(F)) | 
|  | VisitRef(*F); | 
|  |  | 
|  | // First remove all of the edges that are no longer present in this function. | 
|  | // The first step makes these edges uniformly ref edges and accumulates them | 
|  | // into a separate data structure so removal doesn't invalidate anything. | 
|  | SmallVector<Node *, 4> DeadTargets; | 
|  | for (Edge &E : *N) { | 
|  | if (RetainedEdges.count(&E.getNode())) | 
|  | continue; | 
|  |  | 
|  | SCC &TargetC = *G.lookupSCC(E.getNode()); | 
|  | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | 
|  | if (&TargetRC == RC && E.isCall()) { | 
|  | if (C != &TargetC) { | 
|  | // For separate SCCs this is trivial. | 
|  | RC->switchTrivialInternalEdgeToRef(N, E.getNode()); | 
|  | } else { | 
|  | // Now update the call graph. | 
|  | C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), | 
|  | G, N, C, AM, UR); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that this is ready for actual removal, put it into our list. | 
|  | DeadTargets.push_back(&E.getNode()); | 
|  | } | 
|  | // Remove the easy cases quickly and actually pull them out of our list. | 
|  | DeadTargets.erase( | 
|  | llvm::remove_if(DeadTargets, | 
|  | [&](Node *TargetN) { | 
|  | SCC &TargetC = *G.lookupSCC(*TargetN); | 
|  | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | 
|  |  | 
|  | // We can't trivially remove internal targets, so skip | 
|  | // those. | 
|  | if (&TargetRC == RC) | 
|  | return false; | 
|  |  | 
|  | RC->removeOutgoingEdge(N, *TargetN); | 
|  | LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" | 
|  | << N << "' to '" << TargetN << "'\n"); | 
|  | return true; | 
|  | }), | 
|  | DeadTargets.end()); | 
|  |  | 
|  | // Now do a batch removal of the internal ref edges left. | 
|  | auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); | 
|  | if (!NewRefSCCs.empty()) { | 
|  | // The old RefSCC is dead, mark it as such. | 
|  | UR.InvalidatedRefSCCs.insert(RC); | 
|  |  | 
|  | // Note that we don't bother to invalidate analyses as ref-edge | 
|  | // connectivity is not really observable in any way and is intended | 
|  | // exclusively to be used for ordering of transforms rather than for | 
|  | // analysis conclusions. | 
|  |  | 
|  | // Update RC to the "bottom". | 
|  | assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); | 
|  | RC = &C->getOuterRefSCC(); | 
|  | assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); | 
|  |  | 
|  | // The RC worklist is in reverse postorder, so we enqueue the new ones in | 
|  | // RPO except for the one which contains the source node as that is the | 
|  | // "bottom" we will continue processing in the bottom-up walk. | 
|  | assert(NewRefSCCs.front() == RC && | 
|  | "New current RefSCC not first in the returned list!"); | 
|  | for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), | 
|  | NewRefSCCs.end()))) { | 
|  | assert(NewRC != RC && "Should not encounter the current RefSCC further " | 
|  | "in the postorder list of new RefSCCs."); | 
|  | UR.RCWorklist.insert(NewRC); | 
|  | LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " | 
|  | << *NewRC << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Next demote all the call edges that are now ref edges. This helps make | 
|  | // the SCCs small which should minimize the work below as we don't want to | 
|  | // form cycles that this would break. | 
|  | for (Node *RefTarget : DemotedCallTargets) { | 
|  | SCC &TargetC = *G.lookupSCC(*RefTarget); | 
|  | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | 
|  |  | 
|  | // The easy case is when the target RefSCC is not this RefSCC. This is | 
|  | // only supported when the target RefSCC is a child of this RefSCC. | 
|  | if (&TargetRC != RC) { | 
|  | assert(RC->isAncestorOf(TargetRC) && | 
|  | "Cannot potentially form RefSCC cycles here!"); | 
|  | RC->switchOutgoingEdgeToRef(N, *RefTarget); | 
|  | LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N | 
|  | << "' to '" << *RefTarget << "'\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We are switching an internal call edge to a ref edge. This may split up | 
|  | // some SCCs. | 
|  | if (C != &TargetC) { | 
|  | // For separate SCCs this is trivial. | 
|  | RC->switchTrivialInternalEdgeToRef(N, *RefTarget); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Now update the call graph. | 
|  | C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, | 
|  | C, AM, UR); | 
|  | } | 
|  |  | 
|  | // Now promote ref edges into call edges. | 
|  | for (Node *CallTarget : PromotedRefTargets) { | 
|  | SCC &TargetC = *G.lookupSCC(*CallTarget); | 
|  | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | 
|  |  | 
|  | // The easy case is when the target RefSCC is not this RefSCC. This is | 
|  | // only supported when the target RefSCC is a child of this RefSCC. | 
|  | if (&TargetRC != RC) { | 
|  | assert(RC->isAncestorOf(TargetRC) && | 
|  | "Cannot potentially form RefSCC cycles here!"); | 
|  | RC->switchOutgoingEdgeToCall(N, *CallTarget); | 
|  | LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N | 
|  | << "' to '" << *CallTarget << "'\n"); | 
|  | continue; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" | 
|  | << N << "' to '" << *CallTarget << "'\n"); | 
|  |  | 
|  | // Otherwise we are switching an internal ref edge to a call edge. This | 
|  | // may merge away some SCCs, and we add those to the UpdateResult. We also | 
|  | // need to make sure to update the worklist in the event SCCs have moved | 
|  | // before the current one in the post-order sequence | 
|  | bool HasFunctionAnalysisProxy = false; | 
|  | auto InitialSCCIndex = RC->find(*C) - RC->begin(); | 
|  | bool FormedCycle = RC->switchInternalEdgeToCall( | 
|  | N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { | 
|  | for (SCC *MergedC : MergedSCCs) { | 
|  | assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); | 
|  |  | 
|  | HasFunctionAnalysisProxy |= | 
|  | AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( | 
|  | *MergedC) != nullptr; | 
|  |  | 
|  | // Mark that this SCC will no longer be valid. | 
|  | UR.InvalidatedSCCs.insert(MergedC); | 
|  |  | 
|  | // FIXME: We should really do a 'clear' here to forcibly release | 
|  | // memory, but we don't have a good way of doing that and | 
|  | // preserving the function analyses. | 
|  | auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); | 
|  | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | 
|  | AM.invalidate(*MergedC, PA); | 
|  | } | 
|  | }); | 
|  |  | 
|  | // If we formed a cycle by creating this call, we need to update more data | 
|  | // structures. | 
|  | if (FormedCycle) { | 
|  | C = &TargetC; | 
|  | assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); | 
|  |  | 
|  | // If one of the invalidated SCCs had a cached proxy to a function | 
|  | // analysis manager, we need to create a proxy in the new current SCC as | 
|  | // the invalidated SCCs had their functions moved. | 
|  | if (HasFunctionAnalysisProxy) | 
|  | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); | 
|  |  | 
|  | // Any analyses cached for this SCC are no longer precise as the shape | 
|  | // has changed by introducing this cycle. However, we have taken care to | 
|  | // update the proxies so it remains valide. | 
|  | auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); | 
|  | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | 
|  | AM.invalidate(*C, PA); | 
|  | } | 
|  | auto NewSCCIndex = RC->find(*C) - RC->begin(); | 
|  | // If we have actually moved an SCC to be topologically "below" the current | 
|  | // one due to merging, we will need to revisit the current SCC after | 
|  | // visiting those moved SCCs. | 
|  | // | 
|  | // It is critical that we *do not* revisit the current SCC unless we | 
|  | // actually move SCCs in the process of merging because otherwise we may | 
|  | // form a cycle where an SCC is split apart, merged, split, merged and so | 
|  | // on infinitely. | 
|  | if (InitialSCCIndex < NewSCCIndex) { | 
|  | // Put our current SCC back onto the worklist as we'll visit other SCCs | 
|  | // that are now definitively ordered prior to the current one in the | 
|  | // post-order sequence, and may end up observing more precise context to | 
|  | // optimize the current SCC. | 
|  | UR.CWorklist.insert(C); | 
|  | LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C | 
|  | << "\n"); | 
|  | // Enqueue in reverse order as we pop off the back of the worklist. | 
|  | for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, | 
|  | RC->begin() + NewSCCIndex))) { | 
|  | UR.CWorklist.insert(&MovedC); | 
|  | LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " | 
|  | << MovedC << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); | 
|  | assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); | 
|  | assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); | 
|  |  | 
|  | // Record the current RefSCC and SCC for higher layers of the CGSCC pass | 
|  | // manager now that all the updates have been applied. | 
|  | if (RC != &InitialRC) | 
|  | UR.UpdatedRC = RC; | 
|  | if (C != &InitialC) | 
|  | UR.UpdatedC = C; | 
|  |  | 
|  | return *C; | 
|  | } |