|  | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interface for lazy computation of value constraint | 
|  | // information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LazyValueInfo.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <map> | 
|  | #include <stack> | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "lazy-value-info" | 
|  |  | 
|  | char LazyValueInfoWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", | 
|  | "Lazy Value Information Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", | 
|  | "Lazy Value Information Analysis", false, true) | 
|  |  | 
|  | namespace llvm { | 
|  | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } | 
|  | } | 
|  |  | 
|  | char LazyValueAnalysis::PassID; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                               LVILatticeVal | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// This is the information tracked by LazyValueInfo for each value. | 
|  | /// | 
|  | /// FIXME: This is basically just for bringup, this can be made a lot more rich | 
|  | /// in the future. | 
|  | /// | 
|  | namespace { | 
|  | class LVILatticeVal { | 
|  | enum LatticeValueTy { | 
|  | /// This Value has no known value yet.  As a result, this implies the | 
|  | /// producing instruction is dead.  Caution: We use this as the starting | 
|  | /// state in our local meet rules.  In this usage, it's taken to mean | 
|  | /// "nothing known yet". | 
|  | undefined, | 
|  |  | 
|  | /// This Value has a specific constant value.  (For integers, constantrange | 
|  | /// is used instead.) | 
|  | constant, | 
|  |  | 
|  | /// This Value is known to not have the specified value.  (For integers, | 
|  | /// constantrange is used instead.) | 
|  | notconstant, | 
|  |  | 
|  | /// The Value falls within this range. (Used only for integer typed values.) | 
|  | constantrange, | 
|  |  | 
|  | /// We can not precisely model the dynamic values this value might take. | 
|  | overdefined | 
|  | }; | 
|  |  | 
|  | /// Val: This stores the current lattice value along with the Constant* for | 
|  | /// the constant if this is a 'constant' or 'notconstant' value. | 
|  | LatticeValueTy Tag; | 
|  | Constant *Val; | 
|  | ConstantRange Range; | 
|  |  | 
|  | public: | 
|  | LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {} | 
|  |  | 
|  | static LVILatticeVal get(Constant *C) { | 
|  | LVILatticeVal Res; | 
|  | if (!isa<UndefValue>(C)) | 
|  | Res.markConstant(C); | 
|  | return Res; | 
|  | } | 
|  | static LVILatticeVal getNot(Constant *C) { | 
|  | LVILatticeVal Res; | 
|  | if (!isa<UndefValue>(C)) | 
|  | Res.markNotConstant(C); | 
|  | return Res; | 
|  | } | 
|  | static LVILatticeVal getRange(ConstantRange CR) { | 
|  | LVILatticeVal Res; | 
|  | Res.markConstantRange(std::move(CR)); | 
|  | return Res; | 
|  | } | 
|  | static LVILatticeVal getOverdefined() { | 
|  | LVILatticeVal Res; | 
|  | Res.markOverdefined(); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | bool isUndefined() const     { return Tag == undefined; } | 
|  | bool isConstant() const      { return Tag == constant; } | 
|  | bool isNotConstant() const   { return Tag == notconstant; } | 
|  | bool isConstantRange() const { return Tag == constantrange; } | 
|  | bool isOverdefined() const   { return Tag == overdefined; } | 
|  |  | 
|  | Constant *getConstant() const { | 
|  | assert(isConstant() && "Cannot get the constant of a non-constant!"); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Constant *getNotConstant() const { | 
|  | assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | ConstantRange getConstantRange() const { | 
|  | assert(isConstantRange() && | 
|  | "Cannot get the constant-range of a non-constant-range!"); | 
|  | return Range; | 
|  | } | 
|  |  | 
|  | /// Return true if this is a change in status. | 
|  | bool markOverdefined() { | 
|  | if (isOverdefined()) | 
|  | return false; | 
|  | Tag = overdefined; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if this is a change in status. | 
|  | bool markConstant(Constant *V) { | 
|  | assert(V && "Marking constant with NULL"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
|  | return markConstantRange(ConstantRange(CI->getValue())); | 
|  | if (isa<UndefValue>(V)) | 
|  | return false; | 
|  |  | 
|  | assert((!isConstant() || getConstant() == V) && | 
|  | "Marking constant with different value"); | 
|  | assert(isUndefined()); | 
|  | Tag = constant; | 
|  | Val = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if this is a change in status. | 
|  | bool markNotConstant(Constant *V) { | 
|  | assert(V && "Marking constant with NULL"); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
|  | return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); | 
|  | if (isa<UndefValue>(V)) | 
|  | return false; | 
|  |  | 
|  | assert((!isConstant() || getConstant() != V) && | 
|  | "Marking constant !constant with same value"); | 
|  | assert((!isNotConstant() || getNotConstant() == V) && | 
|  | "Marking !constant with different value"); | 
|  | assert(isUndefined() || isConstant()); | 
|  | Tag = notconstant; | 
|  | Val = V; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if this is a change in status. | 
|  | bool markConstantRange(ConstantRange NewR) { | 
|  | if (isConstantRange()) { | 
|  | if (NewR.isEmptySet()) | 
|  | return markOverdefined(); | 
|  |  | 
|  | bool changed = Range != NewR; | 
|  | Range = std::move(NewR); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | assert(isUndefined()); | 
|  | if (NewR.isEmptySet()) | 
|  | return markOverdefined(); | 
|  |  | 
|  | Tag = constantrange; | 
|  | Range = std::move(NewR); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Merge the specified lattice value into this one, updating this | 
|  | /// one and returning true if anything changed. | 
|  | bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) { | 
|  | if (RHS.isUndefined() || isOverdefined()) return false; | 
|  | if (RHS.isOverdefined()) return markOverdefined(); | 
|  |  | 
|  | if (isUndefined()) { | 
|  | Tag = RHS.Tag; | 
|  | Val = RHS.Val; | 
|  | Range = RHS.Range; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isConstant()) { | 
|  | if (RHS.isConstant()) { | 
|  | if (Val == RHS.Val) | 
|  | return false; | 
|  | return markOverdefined(); | 
|  | } | 
|  |  | 
|  | if (RHS.isNotConstant()) { | 
|  | if (Val == RHS.Val) | 
|  | return markOverdefined(); | 
|  |  | 
|  | // Unless we can prove that the two Constants are different, we must | 
|  | // move to overdefined. | 
|  | if (ConstantInt *Res = | 
|  | dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands( | 
|  | CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL))) | 
|  | if (Res->isOne()) | 
|  | return markNotConstant(RHS.getNotConstant()); | 
|  |  | 
|  | return markOverdefined(); | 
|  | } | 
|  |  | 
|  | return markOverdefined(); | 
|  | } | 
|  |  | 
|  | if (isNotConstant()) { | 
|  | if (RHS.isConstant()) { | 
|  | if (Val == RHS.Val) | 
|  | return markOverdefined(); | 
|  |  | 
|  | // Unless we can prove that the two Constants are different, we must | 
|  | // move to overdefined. | 
|  | if (ConstantInt *Res = | 
|  | dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands( | 
|  | CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL))) | 
|  | if (Res->isOne()) | 
|  | return false; | 
|  |  | 
|  | return markOverdefined(); | 
|  | } | 
|  |  | 
|  | if (RHS.isNotConstant()) { | 
|  | if (Val == RHS.Val) | 
|  | return false; | 
|  | return markOverdefined(); | 
|  | } | 
|  |  | 
|  | return markOverdefined(); | 
|  | } | 
|  |  | 
|  | assert(isConstantRange() && "New LVILattice type?"); | 
|  | if (!RHS.isConstantRange()) | 
|  | return markOverdefined(); | 
|  |  | 
|  | ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); | 
|  | if (NewR.isFullSet()) | 
|  | return markOverdefined(); | 
|  | return markConstantRange(NewR); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace. | 
|  |  | 
|  | namespace llvm { | 
|  | raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) | 
|  | LLVM_ATTRIBUTE_USED; | 
|  | raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { | 
|  | if (Val.isUndefined()) | 
|  | return OS << "undefined"; | 
|  | if (Val.isOverdefined()) | 
|  | return OS << "overdefined"; | 
|  |  | 
|  | if (Val.isNotConstant()) | 
|  | return OS << "notconstant<" << *Val.getNotConstant() << '>'; | 
|  | if (Val.isConstantRange()) | 
|  | return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " | 
|  | << Val.getConstantRange().getUpper() << '>'; | 
|  | return OS << "constant<" << *Val.getConstant() << '>'; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if this lattice value represents at most one possible value. | 
|  | /// This is as precise as any lattice value can get while still representing | 
|  | /// reachable code. | 
|  | static bool hasSingleValue(const LVILatticeVal &Val) { | 
|  | if (Val.isConstantRange() && | 
|  | Val.getConstantRange().isSingleElement()) | 
|  | // Integer constants are single element ranges | 
|  | return true; | 
|  | if (Val.isConstant()) | 
|  | // Non integer constants | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Combine two sets of facts about the same value into a single set of | 
|  | /// facts.  Note that this method is not suitable for merging facts along | 
|  | /// different paths in a CFG; that's what the mergeIn function is for.  This | 
|  | /// is for merging facts gathered about the same value at the same location | 
|  | /// through two independent means. | 
|  | /// Notes: | 
|  | /// * This method does not promise to return the most precise possible lattice | 
|  | ///   value implied by A and B.  It is allowed to return any lattice element | 
|  | ///   which is at least as strong as *either* A or B (unless our facts | 
|  | ///   conflict, see below). | 
|  | /// * Due to unreachable code, the intersection of two lattice values could be | 
|  | ///   contradictory.  If this happens, we return some valid lattice value so as | 
|  | ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but | 
|  | ///   we do not make this guarantee.  TODO: This would be a useful enhancement. | 
|  | static LVILatticeVal intersect(LVILatticeVal A, LVILatticeVal B) { | 
|  | // Undefined is the strongest state.  It means the value is known to be along | 
|  | // an unreachable path. | 
|  | if (A.isUndefined()) | 
|  | return A; | 
|  | if (B.isUndefined()) | 
|  | return B; | 
|  |  | 
|  | // If we gave up for one, but got a useable fact from the other, use it. | 
|  | if (A.isOverdefined()) | 
|  | return B; | 
|  | if (B.isOverdefined()) | 
|  | return A; | 
|  |  | 
|  | // Can't get any more precise than constants. | 
|  | if (hasSingleValue(A)) | 
|  | return A; | 
|  | if (hasSingleValue(B)) | 
|  | return B; | 
|  |  | 
|  | // Could be either constant range or not constant here. | 
|  | if (!A.isConstantRange() || !B.isConstantRange()) { | 
|  | // TODO: Arbitrary choice, could be improved | 
|  | return A; | 
|  | } | 
|  |  | 
|  | // Intersect two constant ranges | 
|  | ConstantRange Range = | 
|  | A.getConstantRange().intersectWith(B.getConstantRange()); | 
|  | // Note: An empty range is implicitly converted to overdefined internally. | 
|  | // TODO: We could instead use Undefined here since we've proven a conflict | 
|  | // and thus know this path must be unreachable. | 
|  | return LVILatticeVal::getRange(std::move(Range)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          LazyValueInfoCache Decl | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// A callback value handle updates the cache when values are erased. | 
|  | class LazyValueInfoCache; | 
|  | struct LVIValueHandle final : public CallbackVH { | 
|  | LazyValueInfoCache *Parent; | 
|  |  | 
|  | LVIValueHandle(Value *V, LazyValueInfoCache *P) | 
|  | : CallbackVH(V), Parent(P) { } | 
|  |  | 
|  | void deleted() override; | 
|  | void allUsesReplacedWith(Value *V) override { | 
|  | deleted(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// This is the cache kept by LazyValueInfo which | 
|  | /// maintains information about queries across the clients' queries. | 
|  | class LazyValueInfoCache { | 
|  | /// This is all of the cached block information for exactly one Value*. | 
|  | /// The entries are sorted by the BasicBlock* of the | 
|  | /// entries, allowing us to do a lookup with a binary search. | 
|  | /// Over-defined lattice values are recorded in OverDefinedCache to reduce | 
|  | /// memory overhead. | 
|  | typedef SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4> | 
|  | ValueCacheEntryTy; | 
|  |  | 
|  | /// This is all of the cached information for all values, | 
|  | /// mapped from Value* to key information. | 
|  | std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache; | 
|  |  | 
|  | /// This tracks, on a per-block basis, the set of values that are | 
|  | /// over-defined at the end of that block. | 
|  | typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>> | 
|  | OverDefinedCacheTy; | 
|  | OverDefinedCacheTy OverDefinedCache; | 
|  |  | 
|  | /// Keep track of all blocks that we have ever seen, so we | 
|  | /// don't spend time removing unused blocks from our caches. | 
|  | DenseSet<AssertingVH<BasicBlock> > SeenBlocks; | 
|  |  | 
|  | /// This stack holds the state of the value solver during a query. | 
|  | /// It basically emulates the callstack of the naive | 
|  | /// recursive value lookup process. | 
|  | std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack; | 
|  |  | 
|  | /// Keeps track of which block-value pairs are in BlockValueStack. | 
|  | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; | 
|  |  | 
|  | /// Push BV onto BlockValueStack unless it's already in there. | 
|  | /// Returns true on success. | 
|  | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { | 
|  | if (!BlockValueSet.insert(BV).second) | 
|  | return false;  // It's already in the stack. | 
|  |  | 
|  | DEBUG(dbgs() << "PUSH: " << *BV.second << " in " << BV.first->getName() | 
|  | << "\n"); | 
|  | BlockValueStack.push(BV); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls. | 
|  | const DataLayout &DL; ///< A mandatory DataLayout | 
|  | DominatorTree *DT;    ///< An optional DT pointer. | 
|  |  | 
|  | friend struct LVIValueHandle; | 
|  |  | 
|  | void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) { | 
|  | SeenBlocks.insert(BB); | 
|  |  | 
|  | // Insert over-defined values into their own cache to reduce memory | 
|  | // overhead. | 
|  | if (Result.isOverdefined()) | 
|  | OverDefinedCache[BB].insert(Val); | 
|  | else | 
|  | lookup(Val)[BB] = Result; | 
|  | } | 
|  |  | 
|  | LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); | 
|  | bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, | 
|  | LVILatticeVal &Result, Instruction *CxtI = nullptr); | 
|  | bool hasBlockValue(Value *Val, BasicBlock *BB); | 
|  |  | 
|  | // These methods process one work item and may add more. A false value | 
|  | // returned means that the work item was not completely processed and must | 
|  | // be revisited after going through the new items. | 
|  | bool solveBlockValue(Value *Val, BasicBlock *BB); | 
|  | bool solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB); | 
|  | bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB); | 
|  | bool solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *S, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, Instruction *BBI, | 
|  | BasicBlock *BB); | 
|  | bool solveBlockValueCast(LVILatticeVal &BBLV, Instruction *BBI, | 
|  | BasicBlock *BB); | 
|  | void intersectAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV, | 
|  | Instruction *BBI); | 
|  |  | 
|  | void solve(); | 
|  |  | 
|  | ValueCacheEntryTy &lookup(Value *V) { | 
|  | return ValueCache[LVIValueHandle(V, this)]; | 
|  | } | 
|  |  | 
|  | bool isOverdefined(Value *V, BasicBlock *BB) const { | 
|  | auto ODI = OverDefinedCache.find(BB); | 
|  |  | 
|  | if (ODI == OverDefinedCache.end()) | 
|  | return false; | 
|  |  | 
|  | return ODI->second.count(V); | 
|  | } | 
|  |  | 
|  | bool hasCachedValueInfo(Value *V, BasicBlock *BB) { | 
|  | if (isOverdefined(V, BB)) | 
|  | return true; | 
|  |  | 
|  | LVIValueHandle ValHandle(V, this); | 
|  | auto I = ValueCache.find(ValHandle); | 
|  | if (I == ValueCache.end()) | 
|  | return false; | 
|  |  | 
|  | return I->second.count(BB); | 
|  | } | 
|  |  | 
|  | LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) { | 
|  | if (isOverdefined(V, BB)) | 
|  | return LVILatticeVal::getOverdefined(); | 
|  |  | 
|  | return lookup(V)[BB]; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* at the end of the specified block. | 
|  | LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* at the specified instruction (generally | 
|  | /// from an assume intrinsic). | 
|  | LVILatticeVal getValueAt(Value *V, Instruction *CxtI); | 
|  |  | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* that is true on the specified edge. | 
|  | LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | /// This is the update interface to inform the cache that an edge from | 
|  | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. | 
|  | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); | 
|  |  | 
|  | /// This is part of the update interface to inform the cache | 
|  | /// that a block has been deleted. | 
|  | void eraseBlock(BasicBlock *BB); | 
|  |  | 
|  | /// clear - Empty the cache. | 
|  | void clear() { | 
|  | SeenBlocks.clear(); | 
|  | ValueCache.clear(); | 
|  | OverDefinedCache.clear(); | 
|  | } | 
|  |  | 
|  | LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL, | 
|  | DominatorTree *DT = nullptr) | 
|  | : AC(AC), DL(DL), DT(DT) {} | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void LVIValueHandle::deleted() { | 
|  | SmallVector<AssertingVH<BasicBlock>, 4> ToErase; | 
|  | for (auto &I : Parent->OverDefinedCache) { | 
|  | SmallPtrSetImpl<Value *> &ValueSet = I.second; | 
|  | if (ValueSet.count(getValPtr())) | 
|  | ValueSet.erase(getValPtr()); | 
|  | if (ValueSet.empty()) | 
|  | ToErase.push_back(I.first); | 
|  | } | 
|  | for (auto &BB : ToErase) | 
|  | Parent->OverDefinedCache.erase(BB); | 
|  |  | 
|  | // This erasure deallocates *this, so it MUST happen after we're done | 
|  | // using any and all members of *this. | 
|  | Parent->ValueCache.erase(*this); | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { | 
|  | // Shortcut if we have never seen this block. | 
|  | DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); | 
|  | if (I == SeenBlocks.end()) | 
|  | return; | 
|  | SeenBlocks.erase(I); | 
|  |  | 
|  | auto ODI = OverDefinedCache.find(BB); | 
|  | if (ODI != OverDefinedCache.end()) | 
|  | OverDefinedCache.erase(ODI); | 
|  |  | 
|  | for (auto &I : ValueCache) | 
|  | I.second.erase(BB); | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::solve() { | 
|  | while (!BlockValueStack.empty()) { | 
|  | std::pair<BasicBlock*, Value*> &e = BlockValueStack.top(); | 
|  | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); | 
|  |  | 
|  | if (solveBlockValue(e.second, e.first)) { | 
|  | // The work item was completely processed. | 
|  | assert(BlockValueStack.top() == e && "Nothing should have been pushed!"); | 
|  | assert(hasCachedValueInfo(e.second, e.first) && | 
|  | "Result should be in cache!"); | 
|  |  | 
|  | DEBUG(dbgs() << "POP " << *e.second << " in " << e.first->getName() | 
|  | << " = " << getCachedValueInfo(e.second, e.first) << "\n"); | 
|  |  | 
|  | BlockValueStack.pop(); | 
|  | BlockValueSet.erase(e); | 
|  | } else { | 
|  | // More work needs to be done before revisiting. | 
|  | assert(BlockValueStack.top() != e && "Stack should have been pushed!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (isa<Constant>(Val)) | 
|  | return true; | 
|  |  | 
|  | return hasCachedValueInfo(Val, BB); | 
|  | } | 
|  |  | 
|  | LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (Constant *VC = dyn_cast<Constant>(Val)) | 
|  | return LVILatticeVal::get(VC); | 
|  |  | 
|  | SeenBlocks.insert(BB); | 
|  | return getCachedValueInfo(Val, BB); | 
|  | } | 
|  |  | 
|  | static LVILatticeVal getFromRangeMetadata(Instruction *BBI) { | 
|  | switch (BBI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Load: | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) | 
|  | if (isa<IntegerType>(BBI->getType())) { | 
|  | return LVILatticeVal::getRange(getConstantRangeFromMetadata(*Ranges)); | 
|  | } | 
|  | break; | 
|  | }; | 
|  | // Nothing known - will be intersected with other facts | 
|  | return LVILatticeVal::getOverdefined(); | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { | 
|  | if (isa<Constant>(Val)) | 
|  | return true; | 
|  |  | 
|  | if (hasCachedValueInfo(Val, BB)) { | 
|  | // If we have a cached value, use that. | 
|  | DEBUG(dbgs() << "  reuse BB '" << BB->getName() | 
|  | << "' val=" << getCachedValueInfo(Val, BB) << '\n'); | 
|  |  | 
|  | // Since we're reusing a cached value, we don't need to update the | 
|  | // OverDefinedCache. The cache will have been properly updated whenever the | 
|  | // cached value was inserted. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Hold off inserting this value into the Cache in case we have to return | 
|  | // false and come back later. | 
|  | LVILatticeVal Res; | 
|  |  | 
|  | Instruction *BBI = dyn_cast<Instruction>(Val); | 
|  | if (!BBI || BBI->getParent() != BB) { | 
|  | if (!solveBlockValueNonLocal(Res, Val, BB)) | 
|  | return false; | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BBI)) { | 
|  | if (!solveBlockValuePHINode(Res, PN, BB)) | 
|  | return false; | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (auto *SI = dyn_cast<SelectInst>(BBI)) { | 
|  | if (!solveBlockValueSelect(Res, SI, BB)) | 
|  | return false; | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this value is a nonnull pointer, record it's range and bailout.  Note | 
|  | // that for all other pointer typed values, we terminate the search at the | 
|  | // definition.  We could easily extend this to look through geps, bitcasts, | 
|  | // and the like to prove non-nullness, but it's not clear that's worth it | 
|  | // compile time wise.  The context-insensative value walk done inside | 
|  | // isKnownNonNull gets most of the profitable cases at much less expense. | 
|  | // This does mean that we have a sensativity to where the defining | 
|  | // instruction is placed, even if it could legally be hoisted much higher. | 
|  | // That is unfortunate. | 
|  | PointerType *PT = dyn_cast<PointerType>(BBI->getType()); | 
|  | if (PT && isKnownNonNull(BBI)) { | 
|  | Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT)); | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  | if (BBI->getType()->isIntegerTy()) { | 
|  | if (isa<CastInst>(BBI)) { | 
|  | if (!solveBlockValueCast(Res, BBI, BB)) | 
|  | return false; | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); | 
|  | if (BO && isa<ConstantInt>(BO->getOperand(1))) { | 
|  | if (!solveBlockValueBinaryOp(Res, BBI, BB)) | 
|  | return false; | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - unknown inst def found.\n"); | 
|  | Res = getFromRangeMetadata(BBI); | 
|  | insertResult(Val, BB, Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | 
|  | return L->getPointerAddressSpace() == 0 && | 
|  | GetUnderlyingObject(L->getPointerOperand(), | 
|  | L->getModule()->getDataLayout()) == Ptr; | 
|  | } | 
|  | if (StoreInst *S = dyn_cast<StoreInst>(I)) { | 
|  | return S->getPointerAddressSpace() == 0 && | 
|  | GetUnderlyingObject(S->getPointerOperand(), | 
|  | S->getModule()->getDataLayout()) == Ptr; | 
|  | } | 
|  | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | 
|  | if (MI->isVolatile()) return false; | 
|  |  | 
|  | // FIXME: check whether it has a valuerange that excludes zero? | 
|  | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | if (!Len || Len->isZero()) return false; | 
|  |  | 
|  | if (MI->getDestAddressSpace() == 0) | 
|  | if (GetUnderlyingObject(MI->getRawDest(), | 
|  | MI->getModule()->getDataLayout()) == Ptr) | 
|  | return true; | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | 
|  | if (MTI->getSourceAddressSpace() == 0) | 
|  | if (GetUnderlyingObject(MTI->getRawSource(), | 
|  | MTI->getModule()->getDataLayout()) == Ptr) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the allocation associated with Val is ever dereferenced | 
|  | /// within the given basic block.  This establishes the fact Val is not null, | 
|  | /// but does not imply that the memory at Val is dereferenceable.  (Val may | 
|  | /// point off the end of the dereferenceable part of the object.) | 
|  | static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { | 
|  | assert(Val->getType()->isPointerTy()); | 
|  |  | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | Value *UnderlyingVal = GetUnderlyingObject(Val, DL); | 
|  | // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge | 
|  | // inside InstructionDereferencesPointer either. | 
|  | if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) | 
|  | for (Instruction &I : *BB) | 
|  | if (InstructionDereferencesPointer(&I, UnderlyingVal)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, | 
|  | Value *Val, BasicBlock *BB) { | 
|  | LVILatticeVal Result;  // Start Undefined. | 
|  |  | 
|  | // If this is the entry block, we must be asking about an argument.  The | 
|  | // value is overdefined. | 
|  | if (BB == &BB->getParent()->getEntryBlock()) { | 
|  | assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); | 
|  | // Bofore giving up, see if we can prove the pointer non-null local to | 
|  | // this particular block. | 
|  | if (Val->getType()->isPointerTy() && | 
|  | (isKnownNonNull(Val) || isObjectDereferencedInBlock(Val, BB))) { | 
|  | PointerType *PTy = cast<PointerType>(Val->getType()); | 
|  | Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); | 
|  | } else { | 
|  | Result.markOverdefined(); | 
|  | } | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Loop over all of our predecessors, merging what we know from them into | 
|  | // result. | 
|  | bool EdgesMissing = false; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | LVILatticeVal EdgeResult; | 
|  | EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); | 
|  | if (EdgesMissing) | 
|  | continue; | 
|  |  | 
|  | Result.mergeIn(EdgeResult, DL); | 
|  |  | 
|  | // If we hit overdefined, exit early.  The BlockVals entry is already set | 
|  | // to overdefined. | 
|  | if (Result.isOverdefined()) { | 
|  | DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined because of pred (non local).\n"); | 
|  | // Bofore giving up, see if we can prove the pointer non-null local to | 
|  | // this particular block. | 
|  | if (Val->getType()->isPointerTy() && | 
|  | isObjectDereferencedInBlock(Val, BB)) { | 
|  | PointerType *PTy = cast<PointerType>(Val->getType()); | 
|  | Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); | 
|  | } | 
|  |  | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (EdgesMissing) | 
|  | return false; | 
|  |  | 
|  | // Return the merged value, which is more precise than 'overdefined'. | 
|  | assert(!Result.isOverdefined()); | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, | 
|  | PHINode *PN, BasicBlock *BB) { | 
|  | LVILatticeVal Result;  // Start Undefined. | 
|  |  | 
|  | // Loop over all of our predecessors, merging what we know from them into | 
|  | // result. | 
|  | bool EdgesMissing = false; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *PhiBB = PN->getIncomingBlock(i); | 
|  | Value *PhiVal = PN->getIncomingValue(i); | 
|  | LVILatticeVal EdgeResult; | 
|  | // Note that we can provide PN as the context value to getEdgeValue, even | 
|  | // though the results will be cached, because PN is the value being used as | 
|  | // the cache key in the caller. | 
|  | EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN); | 
|  | if (EdgesMissing) | 
|  | continue; | 
|  |  | 
|  | Result.mergeIn(EdgeResult, DL); | 
|  |  | 
|  | // If we hit overdefined, exit early.  The BlockVals entry is already set | 
|  | // to overdefined. | 
|  | if (Result.isOverdefined()) { | 
|  | DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined because of pred (local).\n"); | 
|  |  | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (EdgesMissing) | 
|  | return false; | 
|  |  | 
|  | // Return the merged value, which is more precise than 'overdefined'. | 
|  | assert(!Result.isOverdefined() && "Possible PHI in entry block?"); | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI, | 
|  | LVILatticeVal &Result, | 
|  | bool isTrueDest = true); | 
|  |  | 
|  | // If we can determine a constraint on the value given conditions assumed by | 
|  | // the program, intersect those constraints with BBLV | 
|  | void LazyValueInfoCache::intersectAssumeBlockValueConstantRange(Value *Val, | 
|  | LVILatticeVal &BBLV, | 
|  | Instruction *BBI) { | 
|  | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); | 
|  | if (!BBI) | 
|  | return; | 
|  |  | 
|  | for (auto &AssumeVH : AC->assumptions()) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  | auto *I = cast<CallInst>(AssumeVH); | 
|  | if (!isValidAssumeForContext(I, BBI, DT)) | 
|  | continue; | 
|  |  | 
|  | Value *C = I->getArgOperand(0); | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) { | 
|  | LVILatticeVal Result; | 
|  | if (getValueFromFromCondition(Val, ICI, Result)) | 
|  | BBLV = intersect(BBLV, Result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::solveBlockValueSelect(LVILatticeVal &BBLV, | 
|  | SelectInst *SI, BasicBlock *BB) { | 
|  |  | 
|  | // Recurse on our inputs if needed | 
|  | if (!hasBlockValue(SI->getTrueValue(), BB)) { | 
|  | if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) | 
|  | return false; | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | } | 
|  | LVILatticeVal TrueVal = getBlockValue(SI->getTrueValue(), BB); | 
|  | // If we hit overdefined, don't ask more queries.  We want to avoid poisoning | 
|  | // extra slots in the table if we can. | 
|  | if (TrueVal.isOverdefined()) { | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!hasBlockValue(SI->getFalseValue(), BB)) { | 
|  | if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) | 
|  | return false; | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | } | 
|  | LVILatticeVal FalseVal = getBlockValue(SI->getFalseValue(), BB); | 
|  | // If we hit overdefined, don't ask more queries.  We want to avoid poisoning | 
|  | // extra slots in the table if we can. | 
|  | if (FalseVal.isOverdefined()) { | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { | 
|  | ConstantRange TrueCR = TrueVal.getConstantRange(); | 
|  | ConstantRange FalseCR = FalseVal.getConstantRange(); | 
|  | Value *LHS = nullptr; | 
|  | Value *RHS = nullptr; | 
|  | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); | 
|  | // Is this a min specifically of our two inputs?  (Avoid the risk of | 
|  | // ValueTracking getting smarter looking back past our immediate inputs.) | 
|  | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && | 
|  | LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { | 
|  | switch (SPR.Flavor) { | 
|  | default: | 
|  | llvm_unreachable("unexpected minmax type!"); | 
|  | case SPF_SMIN:                   /// Signed minimum | 
|  | BBLV.markConstantRange(TrueCR.smin(FalseCR)); | 
|  | return true; | 
|  | case SPF_UMIN:                   /// Unsigned minimum | 
|  | BBLV.markConstantRange(TrueCR.umin(FalseCR)); | 
|  | return true; | 
|  | case SPF_SMAX:                   /// Signed maximum | 
|  | BBLV.markConstantRange(TrueCR.smax(FalseCR)); | 
|  | return true; | 
|  | case SPF_UMAX:                   /// Unsigned maximum | 
|  | BBLV.markConstantRange(TrueCR.umax(FalseCR)); | 
|  | return true; | 
|  | }; | 
|  | } | 
|  |  | 
|  | // TODO: ABS, NABS from the SelectPatternResult | 
|  | } | 
|  |  | 
|  | // Can we constrain the facts about the true and false values by using the | 
|  | // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5). | 
|  | // TODO: We could potentially refine an overdefined true value above. | 
|  | if (auto *ICI = dyn_cast<ICmpInst>(SI->getCondition())) { | 
|  | LVILatticeVal TrueValTaken, FalseValTaken; | 
|  | if (!getValueFromFromCondition(SI->getTrueValue(), ICI, | 
|  | TrueValTaken, true)) | 
|  | TrueValTaken.markOverdefined(); | 
|  | if (!getValueFromFromCondition(SI->getFalseValue(), ICI, | 
|  | FalseValTaken, false)) | 
|  | FalseValTaken.markOverdefined(); | 
|  |  | 
|  | TrueVal = intersect(TrueVal, TrueValTaken); | 
|  | FalseVal = intersect(FalseVal, FalseValTaken); | 
|  |  | 
|  |  | 
|  | // Handle clamp idioms such as: | 
|  | //   %24 = constantrange<0, 17> | 
|  | //   %39 = icmp eq i32 %24, 0 | 
|  | //   %40 = add i32 %24, -1 | 
|  | //   %siv.next = select i1 %39, i32 16, i32 %40 | 
|  | //   %siv.next = constantrange<0, 17> not <-1, 17> | 
|  | // In general, this can handle any clamp idiom which tests the edge | 
|  | // condition via an equality or inequality. | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *A = ICI->getOperand(0); | 
|  | if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { | 
|  | auto addConstants = [](ConstantInt *A, ConstantInt *B) { | 
|  | assert(A->getType() == B->getType()); | 
|  | return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); | 
|  | }; | 
|  | // See if either input is A + C2, subject to the constraint from the | 
|  | // condition that A != C when that input is used.  We can assume that | 
|  | // that input doesn't include C + C2. | 
|  | ConstantInt *CIAdded; | 
|  | switch (Pred) { | 
|  | default: break; | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (match(SI->getFalseValue(), m_Add(m_Specific(A), | 
|  | m_ConstantInt(CIAdded)))) { | 
|  | auto ResNot = addConstants(CIBase, CIAdded); | 
|  | FalseVal = intersect(FalseVal, | 
|  | LVILatticeVal::getNot(ResNot)); | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (match(SI->getTrueValue(), m_Add(m_Specific(A), | 
|  | m_ConstantInt(CIAdded)))) { | 
|  | auto ResNot = addConstants(CIBase, CIAdded); | 
|  | TrueVal = intersect(TrueVal, | 
|  | LVILatticeVal::getNot(ResNot)); | 
|  | } | 
|  | break; | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | LVILatticeVal Result;  // Start Undefined. | 
|  | Result.mergeIn(TrueVal, DL); | 
|  | Result.mergeIn(FalseVal, DL); | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::solveBlockValueCast(LVILatticeVal &BBLV, | 
|  | Instruction *BBI, | 
|  | BasicBlock *BB) { | 
|  | if (!BBI->getOperand(0)->getType()->isSized()) { | 
|  | // Without knowing how wide the input is, we can't analyze it in any useful | 
|  | // way. | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Filter out casts we don't know how to reason about before attempting to | 
|  | // recurse on our operand.  This can cut a long search short if we know we're | 
|  | // not going to be able to get any useful information anways. | 
|  | switch (BBI->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::SExt: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::BitCast: | 
|  | break; | 
|  | default: | 
|  | // Unhandled instructions are overdefined. | 
|  | DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined (unknown cast).\n"); | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Figure out the range of the LHS.  If that fails, we still apply the | 
|  | // transfer rule on the full set since we may be able to locally infer | 
|  | // interesting facts. | 
|  | if (!hasBlockValue(BBI->getOperand(0), BB)) | 
|  | if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0)))) | 
|  | // More work to do before applying this transfer rule. | 
|  | return false; | 
|  |  | 
|  | const unsigned OperandBitWidth = | 
|  | DL.getTypeSizeInBits(BBI->getOperand(0)->getType()); | 
|  | ConstantRange LHSRange = ConstantRange(OperandBitWidth); | 
|  | if (hasBlockValue(BBI->getOperand(0), BB)) { | 
|  | LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); | 
|  | intersectAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI); | 
|  | if (LHSVal.isConstantRange()) | 
|  | LHSRange = LHSVal.getConstantRange(); | 
|  | } | 
|  |  | 
|  | const unsigned ResultBitWidth = | 
|  | cast<IntegerType>(BBI->getType())->getBitWidth(); | 
|  |  | 
|  | // NOTE: We're currently limited by the set of operations that ConstantRange | 
|  | // can evaluate symbolically.  Enhancing that set will allows us to analyze | 
|  | // more definitions. | 
|  | LVILatticeVal Result; | 
|  | switch (BBI->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | Result.markConstantRange(LHSRange.truncate(ResultBitWidth)); | 
|  | break; | 
|  | case Instruction::SExt: | 
|  | Result.markConstantRange(LHSRange.signExtend(ResultBitWidth)); | 
|  | break; | 
|  | case Instruction::ZExt: | 
|  | Result.markConstantRange(LHSRange.zeroExtend(ResultBitWidth)); | 
|  | break; | 
|  | case Instruction::BitCast: | 
|  | Result.markConstantRange(LHSRange); | 
|  | break; | 
|  | default: | 
|  | // Should be dead if the code above is correct | 
|  | llvm_unreachable("inconsistent with above"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoCache::solveBlockValueBinaryOp(LVILatticeVal &BBLV, | 
|  | Instruction *BBI, | 
|  | BasicBlock *BB) { | 
|  |  | 
|  | assert(BBI->getOperand(0)->getType()->isSized() && | 
|  | "all operands to binary operators are sized"); | 
|  |  | 
|  | // Filter out operators we don't know how to reason about before attempting to | 
|  | // recurse on our operand(s).  This can cut a long search short if we know | 
|  | // we're not going to be able to get any useful information anways. | 
|  | switch (BBI->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | // continue into the code below | 
|  | break; | 
|  | default: | 
|  | // Unhandled instructions are overdefined. | 
|  | DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined (unknown binary operator).\n"); | 
|  | BBLV.markOverdefined(); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Figure out the range of the LHS.  If that fails, use a conservative range, | 
|  | // but apply the transfer rule anyways.  This lets us pick up facts from | 
|  | // expressions like "and i32 (call i32 @foo()), 32" | 
|  | if (!hasBlockValue(BBI->getOperand(0), BB)) | 
|  | if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0)))) | 
|  | // More work to do before applying this transfer rule. | 
|  | return false; | 
|  |  | 
|  | const unsigned OperandBitWidth = | 
|  | DL.getTypeSizeInBits(BBI->getOperand(0)->getType()); | 
|  | ConstantRange LHSRange = ConstantRange(OperandBitWidth); | 
|  | if (hasBlockValue(BBI->getOperand(0), BB)) { | 
|  | LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); | 
|  | intersectAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI); | 
|  | if (LHSVal.isConstantRange()) | 
|  | LHSRange = LHSVal.getConstantRange(); | 
|  | } | 
|  |  | 
|  | ConstantInt *RHS = cast<ConstantInt>(BBI->getOperand(1)); | 
|  | ConstantRange RHSRange = ConstantRange(RHS->getValue()); | 
|  |  | 
|  | // NOTE: We're currently limited by the set of operations that ConstantRange | 
|  | // can evaluate symbolically.  Enhancing that set will allows us to analyze | 
|  | // more definitions. | 
|  | LVILatticeVal Result; | 
|  | switch (BBI->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | Result.markConstantRange(LHSRange.add(RHSRange)); | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | Result.markConstantRange(LHSRange.sub(RHSRange)); | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | Result.markConstantRange(LHSRange.multiply(RHSRange)); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | Result.markConstantRange(LHSRange.udiv(RHSRange)); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | Result.markConstantRange(LHSRange.shl(RHSRange)); | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | Result.markConstantRange(LHSRange.lshr(RHSRange)); | 
|  | break; | 
|  | case Instruction::And: | 
|  | Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); | 
|  | break; | 
|  | case Instruction::Or: | 
|  | Result.markConstantRange(LHSRange.binaryOr(RHSRange)); | 
|  | break; | 
|  | default: | 
|  | // Should be dead if the code above is correct | 
|  | llvm_unreachable("inconsistent with above"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | BBLV = Result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool getValueFromFromCondition(Value *Val, ICmpInst *ICI, | 
|  | LVILatticeVal &Result, bool isTrueDest) { | 
|  | assert(ICI && "precondition"); | 
|  | if (isa<Constant>(ICI->getOperand(1))) { | 
|  | if (ICI->isEquality() && ICI->getOperand(0) == Val) { | 
|  | // We know that V has the RHS constant if this is a true SETEQ or | 
|  | // false SETNE. | 
|  | if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) | 
|  | Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); | 
|  | else | 
|  | Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Recognize the range checking idiom that InstCombine produces. | 
|  | // (X-C1) u< C2 --> [C1, C1+C2) | 
|  | ConstantInt *NegOffset = nullptr; | 
|  | if (ICI->getPredicate() == ICmpInst::ICMP_ULT) | 
|  | match(ICI->getOperand(0), m_Add(m_Specific(Val), | 
|  | m_ConstantInt(NegOffset))); | 
|  |  | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1)); | 
|  | if (CI && (ICI->getOperand(0) == Val || NegOffset)) { | 
|  | // Calculate the range of values that are allowed by the comparison | 
|  | ConstantRange CmpRange(CI->getValue()); | 
|  | ConstantRange TrueValues = | 
|  | ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange); | 
|  |  | 
|  | if (NegOffset) // Apply the offset from above. | 
|  | TrueValues = TrueValues.subtract(NegOffset->getValue()); | 
|  |  | 
|  | // If we're interested in the false dest, invert the condition. | 
|  | if (!isTrueDest) TrueValues = TrueValues.inverse(); | 
|  |  | 
|  | Result = LVILatticeVal::getRange(std::move(TrueValues)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if | 
|  | /// Val is not constrained on the edge.  Result is unspecified if return value | 
|  | /// is false. | 
|  | static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, LVILatticeVal &Result) { | 
|  | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we | 
|  | // know that v != 0. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { | 
|  | // If this is a conditional branch and only one successor goes to BBTo, then | 
|  | // we may be able to infer something from the condition. | 
|  | if (BI->isConditional() && | 
|  | BI->getSuccessor(0) != BI->getSuccessor(1)) { | 
|  | bool isTrueDest = BI->getSuccessor(0) == BBTo; | 
|  | assert(BI->getSuccessor(!isTrueDest) == BBTo && | 
|  | "BBTo isn't a successor of BBFrom"); | 
|  |  | 
|  | // If V is the condition of the branch itself, then we know exactly what | 
|  | // it is. | 
|  | if (BI->getCondition() == Val) { | 
|  | Result = LVILatticeVal::get(ConstantInt::get( | 
|  | Type::getInt1Ty(Val->getContext()), isTrueDest)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the condition of the branch is an equality comparison, we may be | 
|  | // able to infer the value. | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) | 
|  | if (getValueFromFromCondition(Val, ICI, Result, isTrueDest)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the edge was formed by a switch on the value, then we may know exactly | 
|  | // what it is. | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { | 
|  | if (SI->getCondition() != Val) | 
|  | return false; | 
|  |  | 
|  | bool DefaultCase = SI->getDefaultDest() == BBTo; | 
|  | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); | 
|  | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); | 
|  |  | 
|  | for (SwitchInst::CaseIt i : SI->cases()) { | 
|  | ConstantRange EdgeVal(i.getCaseValue()->getValue()); | 
|  | if (DefaultCase) { | 
|  | // It is possible that the default destination is the destination of | 
|  | // some cases. There is no need to perform difference for those cases. | 
|  | if (i.getCaseSuccessor() != BBTo) | 
|  | EdgesVals = EdgesVals.difference(EdgeVal); | 
|  | } else if (i.getCaseSuccessor() == BBTo) | 
|  | EdgesVals = EdgesVals.unionWith(EdgeVal); | 
|  | } | 
|  | Result = LVILatticeVal::getRange(std::move(EdgesVals)); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at | 
|  | /// the basic block if the edge does not constrain Val. | 
|  | bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, LVILatticeVal &Result, | 
|  | Instruction *CxtI) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (Constant *VC = dyn_cast<Constant>(Val)) { | 
|  | Result = LVILatticeVal::get(VC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LVILatticeVal LocalResult; | 
|  | if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) | 
|  | // If we couldn't constrain the value on the edge, LocalResult doesn't | 
|  | // provide any information. | 
|  | LocalResult.markOverdefined(); | 
|  |  | 
|  | if (hasSingleValue(LocalResult)) { | 
|  | // Can't get any more precise here | 
|  | Result = LocalResult; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!hasBlockValue(Val, BBFrom)) { | 
|  | if (pushBlockValue(std::make_pair(BBFrom, Val))) | 
|  | return false; | 
|  | // No new information. | 
|  | Result = LocalResult; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to intersect ranges of the BB and the constraint on the edge. | 
|  | LVILatticeVal InBlock = getBlockValue(Val, BBFrom); | 
|  | intersectAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator()); | 
|  | // We can use the context instruction (generically the ultimate instruction | 
|  | // the calling pass is trying to simplify) here, even though the result of | 
|  | // this function is generally cached when called from the solve* functions | 
|  | // (and that cached result might be used with queries using a different | 
|  | // context instruction), because when this function is called from the solve* | 
|  | // functions, the context instruction is not provided. When called from | 
|  | // LazyValueInfoCache::getValueOnEdge, the context instruction is provided, | 
|  | // but then the result is not cached. | 
|  | intersectAssumeBlockValueConstantRange(Val, InBlock, CxtI); | 
|  |  | 
|  | Result = intersect(LocalResult, InBlock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" | 
|  | << BB->getName() << "'\n"); | 
|  |  | 
|  | assert(BlockValueStack.empty() && BlockValueSet.empty()); | 
|  | if (!hasBlockValue(V, BB)) { | 
|  | pushBlockValue(std::make_pair(BB, V)); | 
|  | solve(); | 
|  | } | 
|  | LVILatticeVal Result = getBlockValue(V, BB); | 
|  | intersectAssumeBlockValueConstantRange(V, Result, CxtI); | 
|  |  | 
|  | DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) { | 
|  | DEBUG(dbgs() << "LVI Getting value " << *V << " at '" | 
|  | << CxtI->getName() << "'\n"); | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(V)) | 
|  | return LVILatticeVal::get(C); | 
|  |  | 
|  | LVILatticeVal Result = LVILatticeVal::getOverdefined(); | 
|  | if (auto *I = dyn_cast<Instruction>(V)) | 
|  | Result = getFromRangeMetadata(I); | 
|  | intersectAssumeBlockValueConstantRange(V, Result, CxtI); | 
|  |  | 
|  | DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | LVILatticeVal LazyValueInfoCache:: | 
|  | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" | 
|  | << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); | 
|  |  | 
|  | LVILatticeVal Result; | 
|  | if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { | 
|  | solve(); | 
|  | bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); | 
|  | (void)WasFastQuery; | 
|  | assert(WasFastQuery && "More work to do after problem solved?"); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | // When an edge in the graph has been threaded, values that we could not | 
|  | // determine a value for before (i.e. were marked overdefined) may be | 
|  | // possible to solve now. We do NOT try to proactively update these values. | 
|  | // Instead, we clear their entries from the cache, and allow lazy updating to | 
|  | // recompute them when needed. | 
|  |  | 
|  | // The updating process is fairly simple: we need to drop cached info | 
|  | // for all values that were marked overdefined in OldSucc, and for those same | 
|  | // values in any successor of OldSucc (except NewSucc) in which they were | 
|  | // also marked overdefined. | 
|  | std::vector<BasicBlock*> worklist; | 
|  | worklist.push_back(OldSucc); | 
|  |  | 
|  | auto I = OverDefinedCache.find(OldSucc); | 
|  | if (I == OverDefinedCache.end()) | 
|  | return; // Nothing to process here. | 
|  | SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); | 
|  |  | 
|  | // Use a worklist to perform a depth-first search of OldSucc's successors. | 
|  | // NOTE: We do not need a visited list since any blocks we have already | 
|  | // visited will have had their overdefined markers cleared already, and we | 
|  | // thus won't loop to their successors. | 
|  | while (!worklist.empty()) { | 
|  | BasicBlock *ToUpdate = worklist.back(); | 
|  | worklist.pop_back(); | 
|  |  | 
|  | // Skip blocks only accessible through NewSucc. | 
|  | if (ToUpdate == NewSucc) continue; | 
|  |  | 
|  | bool changed = false; | 
|  | for (Value *V : ValsToClear) { | 
|  | // If a value was marked overdefined in OldSucc, and is here too... | 
|  | auto OI = OverDefinedCache.find(ToUpdate); | 
|  | if (OI == OverDefinedCache.end()) | 
|  | continue; | 
|  | SmallPtrSetImpl<Value *> &ValueSet = OI->second; | 
|  | if (!ValueSet.count(V)) | 
|  | continue; | 
|  |  | 
|  | ValueSet.erase(V); | 
|  | if (ValueSet.empty()) | 
|  | OverDefinedCache.erase(OI); | 
|  |  | 
|  | // If we removed anything, then we potentially need to update | 
|  | // blocks successors too. | 
|  | changed = true; | 
|  | } | 
|  |  | 
|  | if (!changed) continue; | 
|  |  | 
|  | worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            LazyValueInfo Impl | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// This lazily constructs the LazyValueInfoCache. | 
|  | static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC, | 
|  | const DataLayout *DL, | 
|  | DominatorTree *DT = nullptr) { | 
|  | if (!PImpl) { | 
|  | assert(DL && "getCache() called with a null DataLayout"); | 
|  | PImpl = new LazyValueInfoCache(AC, *DL, DT); | 
|  | } | 
|  | return *static_cast<LazyValueInfoCache*>(PImpl); | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { | 
|  | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | const DataLayout &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | DominatorTreeWrapperPass *DTWP = | 
|  | getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  |  | 
|  | if (Info.PImpl) | 
|  | getCache(Info.PImpl, Info.AC, &DL, Info.DT).clear(); | 
|  |  | 
|  | // Fully lazy. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } | 
|  |  | 
|  | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } | 
|  |  | 
|  | void LazyValueInfo::releaseMemory() { | 
|  | // If the cache was allocated, free it. | 
|  | if (PImpl) { | 
|  | delete &getCache(PImpl, AC, nullptr); | 
|  | PImpl = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } | 
|  |  | 
|  | LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { | 
|  | auto &AC = FAM.getResult<AssumptionAnalysis>(F); | 
|  | auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); | 
|  | auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); | 
|  |  | 
|  | return LazyValueInfo(&AC, &TLI, DT); | 
|  | } | 
|  |  | 
|  | Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | LVILatticeVal Result = | 
|  | getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); | 
|  |  | 
|  | if (Result.isConstant()) | 
|  | return Result.getConstant(); | 
|  | if (Result.isConstantRange()) { | 
|  | ConstantRange CR = Result.getConstantRange(); | 
|  | if (const APInt *SingleVal = CR.getSingleElement()) | 
|  | return ConstantInt::get(V->getContext(), *SingleVal); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | assert(V->getType()->isIntegerTy()); | 
|  | unsigned Width = V->getType()->getIntegerBitWidth(); | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | LVILatticeVal Result = | 
|  | getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); | 
|  | assert(!Result.isConstant()); | 
|  | if (Result.isUndefined()) | 
|  | return ConstantRange(Width, /*isFullSet=*/false); | 
|  | if (Result.isConstantRange()) | 
|  | return Result.getConstantRange(); | 
|  | return ConstantRange(Width, /*isFullSet=*/true); | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified value is known to be a | 
|  | /// constant on the specified edge. Return null if not. | 
|  | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | 
|  | LVILatticeVal Result = | 
|  | getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | if (Result.isConstant()) | 
|  | return Result.getConstant(); | 
|  | if (Result.isConstantRange()) { | 
|  | ConstantRange CR = Result.getConstantRange(); | 
|  | if (const APInt *SingleVal = CR.getSingleElement()) | 
|  | return ConstantInt::get(V->getContext(), *SingleVal); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C, | 
|  | LVILatticeVal &Result, | 
|  | const DataLayout &DL, | 
|  | TargetLibraryInfo *TLI) { | 
|  |  | 
|  | // If we know the value is a constant, evaluate the conditional. | 
|  | Constant *Res = nullptr; | 
|  | if (Result.isConstant()) { | 
|  | Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL, | 
|  | TLI); | 
|  | if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) | 
|  | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | if (Result.isConstantRange()) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(C); | 
|  | if (!CI) return LazyValueInfo::Unknown; | 
|  |  | 
|  | ConstantRange CR = Result.getConstantRange(); | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | if (!CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::False; | 
|  |  | 
|  | if (CR.isSingleElement() && CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::True; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | if (!CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::True; | 
|  |  | 
|  | if (CR.isSingleElement() && CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::False; | 
|  | } | 
|  |  | 
|  | // Handle more complex predicates. | 
|  | ConstantRange TrueValues = | 
|  | ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); | 
|  | if (TrueValues.contains(CR)) | 
|  | return LazyValueInfo::True; | 
|  | if (TrueValues.inverse().contains(CR)) | 
|  | return LazyValueInfo::False; | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | if (Result.isNotConstant()) { | 
|  | // If this is an equality comparison, we can try to fold it knowing that | 
|  | // "V != C1". | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | // !C1 == C -> false iff C1 == C. | 
|  | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | 
|  | Result.getNotConstant(), C, DL, | 
|  | TLI); | 
|  | if (Res->isNullValue()) | 
|  | return LazyValueInfo::False; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | // !C1 != C -> true iff C1 == C. | 
|  | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | 
|  | Result.getNotConstant(), C, DL, | 
|  | TLI); | 
|  | if (Res->isNullValue()) | 
|  | return LazyValueInfo::True; | 
|  | } | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified value comparison with a constant is known to | 
|  | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. | 
|  | LazyValueInfo::Tristate | 
|  | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, | 
|  | BasicBlock *FromBB, BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | 
|  | LVILatticeVal Result = | 
|  | getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | return getPredicateResult(Pred, C, Result, DL, TLI); | 
|  | } | 
|  |  | 
|  | LazyValueInfo::Tristate | 
|  | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, | 
|  | Instruction *CxtI) { | 
|  | const DataLayout &DL = CxtI->getModule()->getDataLayout(); | 
|  | LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI); | 
|  | Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); | 
|  | if (Ret != Unknown) | 
|  | return Ret; | 
|  |  | 
|  | // Note: The following bit of code is somewhat distinct from the rest of LVI; | 
|  | // LVI as a whole tries to compute a lattice value which is conservatively | 
|  | // correct at a given location.  In this case, we have a predicate which we | 
|  | // weren't able to prove about the merged result, and we're pushing that | 
|  | // predicate back along each incoming edge to see if we can prove it | 
|  | // separately for each input.  As a motivating example, consider: | 
|  | // bb1: | 
|  | //   %v1 = ... ; constantrange<1, 5> | 
|  | //   br label %merge | 
|  | // bb2: | 
|  | //   %v2 = ... ; constantrange<10, 20> | 
|  | //   br label %merge | 
|  | // merge: | 
|  | //   %phi = phi [%v1, %v2] ; constantrange<1,20> | 
|  | //   %pred = icmp eq i32 %phi, 8 | 
|  | // We can't tell from the lattice value for '%phi' that '%pred' is false | 
|  | // along each path, but by checking the predicate over each input separately, | 
|  | // we can. | 
|  | // We limit the search to one step backwards from the current BB and value. | 
|  | // We could consider extending this to search further backwards through the | 
|  | // CFG and/or value graph, but there are non-obvious compile time vs quality | 
|  | // tradeoffs. | 
|  | if (CxtI) { | 
|  | BasicBlock *BB = CxtI->getParent(); | 
|  |  | 
|  | // Function entry or an unreachable block.  Bail to avoid confusing | 
|  | // analysis below. | 
|  | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
|  | if (PI == PE) | 
|  | return Unknown; | 
|  |  | 
|  | // If V is a PHI node in the same block as the context, we need to ask | 
|  | // questions about the predicate as applied to the incoming value along | 
|  | // each edge. This is useful for eliminating cases where the predicate is | 
|  | // known along all incoming edges. | 
|  | if (auto *PHI = dyn_cast<PHINode>(V)) | 
|  | if (PHI->getParent() == BB) { | 
|  | Tristate Baseline = Unknown; | 
|  | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { | 
|  | Value *Incoming = PHI->getIncomingValue(i); | 
|  | BasicBlock *PredBB = PHI->getIncomingBlock(i); | 
|  | // Note that PredBB may be BB itself. | 
|  | Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, | 
|  | CxtI); | 
|  |  | 
|  | // Keep going as long as we've seen a consistent known result for | 
|  | // all inputs. | 
|  | Baseline = (i == 0) ? Result /* First iteration */ | 
|  | : (Baseline == Result ? Baseline : Unknown); /* All others */ | 
|  | if (Baseline == Unknown) | 
|  | break; | 
|  | } | 
|  | if (Baseline != Unknown) | 
|  | return Baseline; | 
|  | } | 
|  |  | 
|  | // For a comparison where the V is outside this block, it's possible | 
|  | // that we've branched on it before. Look to see if the value is known | 
|  | // on all incoming edges. | 
|  | if (!isa<Instruction>(V) || | 
|  | cast<Instruction>(V)->getParent() != BB) { | 
|  | // For predecessor edge, determine if the comparison is true or false | 
|  | // on that edge. If they're all true or all false, we can conclude | 
|  | // the value of the comparison in this block. | 
|  | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | 
|  | if (Baseline != Unknown) { | 
|  | // Check that all remaining incoming values match the first one. | 
|  | while (++PI != PE) { | 
|  | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | 
|  | if (Ret != Baseline) break; | 
|  | } | 
|  | // If we terminated early, then one of the values didn't match. | 
|  | if (PI == PE) { | 
|  | return Baseline; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return Unknown; | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | if (PImpl) { | 
|  | const DataLayout &DL = PredBB->getModule()->getDataLayout(); | 
|  | getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::eraseBlock(BasicBlock *BB) { | 
|  | if (PImpl) { | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | getCache(PImpl, AC, &DL, DT).eraseBlock(BB); | 
|  | } | 
|  | } |