| //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains definitons for the AST differencing interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Tooling/ASTDiff/ASTDiff.h" |
| |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/Lex/Lexer.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| |
| #include <limits> |
| #include <memory> |
| #include <unordered_set> |
| |
| using namespace llvm; |
| using namespace clang; |
| |
| namespace clang { |
| namespace diff { |
| |
| class ASTDiff::Impl { |
| public: |
| SyntaxTreeImpl &T1, &T2; |
| bool IsMappingDone = false; |
| Mapping TheMapping; |
| |
| Impl(SyntaxTreeImpl &T1, SyntaxTreeImpl &T2, const ComparisonOptions &Options) |
| : T1(T1), T2(T2), Options(Options) {} |
| |
| /// Matches nodes one-by-one based on their similarity. |
| void computeMapping(); |
| |
| std::vector<Match> getMatches(Mapping &M); |
| |
| /// Finds an edit script that converts T1 to T2. |
| std::vector<Change> computeChanges(Mapping &M); |
| |
| void printChangeImpl(raw_ostream &OS, const Change &Chg) const; |
| void printMatchImpl(raw_ostream &OS, const Match &M) const; |
| |
| // Returns a mapping of isomorphic subtrees. |
| Mapping matchTopDown() const; |
| |
| private: |
| // Returns true if the two subtrees are identical. |
| bool isomorphic(NodeId Id1, NodeId Id2) const; |
| |
| bool canBeAddedToMapping(const Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Returns false if the nodes must not be mached. |
| bool isMatchingPossible(NodeId Id1, NodeId Id2) const; |
| |
| // Adds all corresponding subtrees of the two nodes to the mapping. |
| // The two nodes must be isomorphic. |
| void addIsomorphicSubTrees(Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Uses an optimal albeit slow algorithm to compute a mapping between two |
| // subtrees, but only if both have fewer nodes than MaxSize. |
| void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Computes the ratio of common descendants between the two nodes. |
| // Descendants are only considered to be equal when they are mapped in M. |
| double getSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; |
| |
| // Returns the node that has the highest degree of similarity. |
| NodeId findCandidate(const Mapping &M, NodeId Id1) const; |
| |
| // Tries to match any yet unmapped nodes, in a bottom-up fashion. |
| void matchBottomUp(Mapping &M) const; |
| |
| const ComparisonOptions &Options; |
| |
| friend class ZhangShashaMatcher; |
| }; |
| |
| template <class T> |
| static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { |
| if (!N) |
| return true; |
| SourceLocation SLoc = N->getLocStart(); |
| return SLoc.isValid() && SrcMgr.isInSystemHeader(SLoc); |
| } |
| |
| namespace { |
| /// Counts the number of nodes that will be compared. |
| struct NodeCountVisitor : public RecursiveASTVisitor<NodeCountVisitor> { |
| int Count = 0; |
| const SyntaxTreeImpl &Root; |
| NodeCountVisitor(const SyntaxTreeImpl &Root) : Root(Root) {} |
| bool TraverseDecl(Decl *D) { |
| if (isNodeExcluded(Root.AST.getSourceManager(), D)) |
| return true; |
| ++Count; |
| RecursiveASTVisitor<NodeCountVisitor>::TraverseDecl(D); |
| return true; |
| } |
| bool TraverseStmt(Stmt *S) { |
| if (isNodeExcluded(Root.AST.getSourceManager(), S)) |
| return true; |
| ++Count; |
| RecursiveASTVisitor<NodeCountVisitor>::TraverseStmt(S); |
| return true; |
| } |
| bool TraverseType(QualType T) { return true; } |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| // Sets Height, Parent and Children for each node. |
| struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { |
| int Id = 0, Depth = 0; |
| NodeId Parent; |
| SyntaxTreeImpl &Root; |
| |
| PreorderVisitor(SyntaxTreeImpl &Root) : Root(Root) {} |
| |
| template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { |
| NodeId MyId = Id; |
| Node &N = Root.getMutableNode(MyId); |
| N.Parent = Parent; |
| N.Depth = Depth; |
| N.ASTNode = DynTypedNode::create(*ASTNode); |
| assert(!N.ASTNode.getNodeKind().isNone() && |
| "Expected nodes to have a valid kind."); |
| if (Parent.isValid()) { |
| Node &P = Root.getMutableNode(Parent); |
| P.Children.push_back(MyId); |
| } |
| Parent = MyId; |
| ++Id; |
| ++Depth; |
| return {MyId, Root.getNode(MyId).Parent}; |
| } |
| void PostTraverse(std::tuple<NodeId, NodeId> State) { |
| NodeId MyId, PreviousParent; |
| std::tie(MyId, PreviousParent) = State; |
| assert(MyId.isValid() && "Expecting to only traverse valid nodes."); |
| Parent = PreviousParent; |
| --Depth; |
| Node &N = Root.getMutableNode(MyId); |
| N.RightMostDescendant = Id; |
| if (N.isLeaf()) |
| Root.Leaves.push_back(MyId); |
| N.Height = 1; |
| for (NodeId Child : N.Children) |
| N.Height = std::max(N.Height, 1 + Root.getNode(Child).Height); |
| } |
| bool TraverseDecl(Decl *D) { |
| if (isNodeExcluded(Root.AST.getSourceManager(), D)) |
| return true; |
| auto SavedState = PreTraverse(D); |
| RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); |
| PostTraverse(SavedState); |
| return true; |
| } |
| bool TraverseStmt(Stmt *S) { |
| if (isNodeExcluded(Root.AST.getSourceManager(), S)) |
| return true; |
| auto SavedState = PreTraverse(S); |
| RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); |
| PostTraverse(SavedState); |
| return true; |
| } |
| bool TraverseType(QualType T) { return true; } |
| }; |
| } // end anonymous namespace |
| |
| SyntaxTreeImpl::SyntaxTreeImpl(SyntaxTree *Parent, const ASTContext &AST) |
| : SyntaxTreeImpl(Parent, AST.getTranslationUnitDecl(), AST) {} |
| |
| SyntaxTreeImpl::SyntaxTreeImpl(SyntaxTree *Parent, Decl *N, |
| const ASTContext &AST) |
| : Parent(Parent), AST(AST) { |
| NodeCountVisitor NodeCounter(*this); |
| NodeCounter.TraverseDecl(N); |
| Nodes.resize(NodeCounter.Count); |
| PreorderVisitor PreorderWalker(*this); |
| PreorderWalker.TraverseDecl(N); |
| initTree(); |
| } |
| |
| SyntaxTreeImpl::SyntaxTreeImpl(SyntaxTree *Parent, Stmt *N, |
| const ASTContext &AST) |
| : Parent(Parent), AST(AST) { |
| NodeCountVisitor NodeCounter(*this); |
| NodeCounter.TraverseStmt(N); |
| Nodes.resize(NodeCounter.Count); |
| PreorderVisitor PreorderWalker(*this); |
| PreorderWalker.TraverseStmt(N); |
| initTree(); |
| } |
| |
| void SyntaxTreeImpl::initTree() { |
| setLeftMostDescendants(); |
| int PostorderId = 0; |
| PostorderIds.resize(getSize()); |
| std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { |
| for (NodeId Child : getNode(Id).Children) |
| PostorderTraverse(Child); |
| PostorderIds[Id] = PostorderId; |
| ++PostorderId; |
| }; |
| PostorderTraverse(root()); |
| } |
| |
| void SyntaxTreeImpl::setLeftMostDescendants() { |
| for (NodeId Leaf : Leaves) { |
| getMutableNode(Leaf).LeftMostDescendant = Leaf; |
| NodeId Parent, Cur = Leaf; |
| while ((Parent = getNode(Cur).Parent).isValid() && |
| getNode(Parent).Children[0] == Cur) { |
| Cur = Parent; |
| getMutableNode(Cur).LeftMostDescendant = Leaf; |
| } |
| } |
| } |
| |
| static std::vector<NodeId> getSubtreePostorder(const SyntaxTreeImpl &Tree, |
| NodeId Root) { |
| std::vector<NodeId> Postorder; |
| std::function<void(NodeId)> Traverse = [&](NodeId Id) { |
| const Node &N = Tree.getNode(Id); |
| for (NodeId Child : N.Children) |
| Traverse(Child); |
| Postorder.push_back(Id); |
| }; |
| Traverse(Root); |
| return Postorder; |
| } |
| |
| static std::vector<NodeId> getSubtreeBfs(const SyntaxTreeImpl &Tree, |
| NodeId Root) { |
| std::vector<NodeId> Ids; |
| size_t Expanded = 0; |
| Ids.push_back(Root); |
| while (Expanded < Ids.size()) |
| for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) |
| Ids.push_back(Child); |
| return Ids; |
| } |
| |
| int SyntaxTreeImpl::getNumberOfDescendants(NodeId Id) const { |
| return getNode(Id).RightMostDescendant - Id + 1; |
| } |
| |
| bool SyntaxTreeImpl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { |
| NodeId Lower = SubtreeRoot; |
| NodeId Upper = getNode(SubtreeRoot).RightMostDescendant; |
| return Id >= Lower && Id <= Upper; |
| } |
| |
| std::string SyntaxTreeImpl::getNodeValueImpl(NodeId Id) const { |
| return getNodeValueImpl(getNode(Id).ASTNode); |
| } |
| |
| std::string SyntaxTreeImpl::getNodeValueImpl(const DynTypedNode &DTN) const { |
| if (auto *X = DTN.get<BinaryOperator>()) |
| return X->getOpcodeStr(); |
| if (auto *X = DTN.get<AccessSpecDecl>()) { |
| CharSourceRange Range(X->getSourceRange(), false); |
| return Lexer::getSourceText(Range, AST.getSourceManager(), |
| AST.getLangOpts()); |
| } |
| if (auto *X = DTN.get<IntegerLiteral>()) { |
| SmallString<256> Str; |
| X->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); |
| return Str.str(); |
| } |
| if (auto *X = DTN.get<StringLiteral>()) |
| return X->getString(); |
| if (auto *X = DTN.get<ValueDecl>()) |
| return X->getNameAsString() + "(" + X->getType().getAsString() + ")"; |
| if (auto *X = DTN.get<DeclStmt>()) |
| return ""; |
| if (auto *X = DTN.get<TranslationUnitDecl>()) |
| return ""; |
| std::string Value; |
| if (auto *X = DTN.get<DeclRefExpr>()) { |
| if (X->hasQualifier()) { |
| llvm::raw_string_ostream OS(Value); |
| PrintingPolicy PP(AST.getLangOpts()); |
| X->getQualifier()->print(OS, PP); |
| } |
| Value += X->getDecl()->getNameAsString(); |
| return Value; |
| } |
| if (auto *X = DTN.get<NamedDecl>()) |
| Value += X->getNameAsString() + ";"; |
| if (auto *X = DTN.get<TypedefNameDecl>()) |
| return Value + X->getUnderlyingType().getAsString() + ";"; |
| if (auto *X = DTN.get<NamespaceDecl>()) |
| return Value; |
| if (auto *X = DTN.get<TypeDecl>()) |
| if (X->getTypeForDecl()) |
| Value += |
| X->getTypeForDecl()->getCanonicalTypeInternal().getAsString() + ";"; |
| if (auto *X = DTN.get<Decl>()) |
| return Value; |
| if (auto *X = DTN.get<Stmt>()) |
| return ""; |
| llvm_unreachable("Fatal: unhandled AST node.\n"); |
| } |
| |
| void SyntaxTreeImpl::printTree() const { printTree(root()); } |
| void SyntaxTreeImpl::printTree(NodeId Root) const { |
| printTree(llvm::outs(), Root); |
| } |
| |
| void SyntaxTreeImpl::printTree(raw_ostream &OS, NodeId Root) const { |
| const Node &N = getNode(Root); |
| for (int I = 0; I < N.Depth; ++I) |
| OS << " "; |
| printNode(OS, Root); |
| OS << "\n"; |
| for (NodeId Child : N.Children) |
| printTree(OS, Child); |
| } |
| |
| void SyntaxTreeImpl::printNode(raw_ostream &OS, NodeId Id) const { |
| if (Id.isInvalid()) { |
| OS << "None"; |
| return; |
| } |
| OS << getNode(Id).getTypeLabel(); |
| if (getNodeValueImpl(Id) != "") |
| OS << ": " << getNodeValueImpl(Id); |
| OS << "(" << PostorderIds[Id] << ")"; |
| } |
| |
| void SyntaxTreeImpl::printNodeAsJson(raw_ostream &OS, NodeId Id) const { |
| auto N = getNode(Id); |
| OS << R"({"type":")" << N.getTypeLabel() << R"(")"; |
| if (getNodeValueImpl(Id) != "") |
| OS << R"(,"value":")" << getNodeValueImpl(Id) << R"(")"; |
| OS << R"(,"children":[)"; |
| if (N.Children.size() > 0) { |
| printNodeAsJson(OS, N.Children[0]); |
| for (size_t I = 1, E = N.Children.size(); I < E; ++I) { |
| OS << ","; |
| printNodeAsJson(OS, N.Children[I]); |
| } |
| } |
| OS << "]}"; |
| } |
| |
| void SyntaxTreeImpl::printAsJsonImpl(raw_ostream &OS) const { |
| OS << R"({"root":)"; |
| printNodeAsJson(OS, root()); |
| OS << "}\n"; |
| } |
| |
| /// Identifies a node in a subtree by its postorder offset, starting at 1. |
| struct SNodeId { |
| int Id = 0; |
| |
| explicit SNodeId(int Id) : Id(Id) {} |
| explicit SNodeId() = default; |
| |
| operator int() const { return Id; } |
| SNodeId &operator++() { return ++Id, *this; } |
| SNodeId &operator--() { return --Id, *this; } |
| SNodeId operator+(int Other) const { return SNodeId(Id + Other); } |
| }; |
| |
| class Subtree { |
| private: |
| /// The parent tree. |
| const SyntaxTreeImpl &Tree; |
| /// Maps SNodeIds to original ids. |
| std::vector<NodeId> RootIds; |
| /// Maps subtree nodes to their leftmost descendants wtihin the subtree. |
| std::vector<SNodeId> LeftMostDescendants; |
| |
| public: |
| std::vector<SNodeId> KeyRoots; |
| |
| Subtree(const SyntaxTreeImpl &Tree, NodeId SubtreeRoot) : Tree(Tree) { |
| RootIds = getSubtreePostorder(Tree, SubtreeRoot); |
| int NumLeaves = setLeftMostDescendants(); |
| computeKeyRoots(NumLeaves); |
| } |
| int getSize() const { return RootIds.size(); } |
| NodeId getIdInRoot(SNodeId Id) const { |
| assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); |
| return RootIds[Id - 1]; |
| } |
| const Node &getNode(SNodeId Id) const { |
| return Tree.getNode(getIdInRoot(Id)); |
| } |
| SNodeId getLeftMostDescendant(SNodeId Id) const { |
| assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); |
| return LeftMostDescendants[Id - 1]; |
| } |
| /// Returns the postorder index of the leftmost descendant in the subtree. |
| NodeId getPostorderOffset() const { |
| return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; |
| } |
| |
| private: |
| /// Returns the number of leafs in the subtree. |
| int setLeftMostDescendants() { |
| int NumLeaves = 0; |
| LeftMostDescendants.resize(getSize()); |
| for (int I = 0; I < getSize(); ++I) { |
| SNodeId SI(I + 1); |
| const Node &N = getNode(SI); |
| NumLeaves += N.isLeaf(); |
| assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && |
| "Postorder traversal in subtree should correspond to traversal in " |
| "the root tree by a constant offset."); |
| LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - |
| getPostorderOffset()); |
| } |
| return NumLeaves; |
| } |
| void computeKeyRoots(int Leaves) { |
| KeyRoots.resize(Leaves); |
| std::unordered_set<int> Visited; |
| int K = Leaves - 1; |
| for (SNodeId I(getSize()); I > 0; --I) { |
| SNodeId LeftDesc = getLeftMostDescendant(I); |
| if (Visited.count(LeftDesc)) |
| continue; |
| assert(K >= 0 && "K should be non-negative"); |
| KeyRoots[K] = I; |
| Visited.insert(LeftDesc); |
| --K; |
| } |
| } |
| }; |
| |
| /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. |
| /// Computes an optimal mapping between two trees using only insertion, |
| /// deletion and update as edit actions (similar to the Levenshtein distance). |
| class ZhangShashaMatcher { |
| const ASTDiff::Impl &DiffImpl; |
| Subtree S1; |
| Subtree S2; |
| std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; |
| |
| public: |
| ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTreeImpl &T1, |
| const SyntaxTreeImpl &T2, NodeId Id1, NodeId Id2) |
| : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { |
| TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>( |
| size_t(S1.getSize()) + 1); |
| ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>( |
| size_t(S1.getSize()) + 1); |
| for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { |
| TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); |
| ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1); |
| } |
| } |
| |
| std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { |
| std::vector<std::pair<NodeId, NodeId>> Matches; |
| std::vector<std::pair<SNodeId, SNodeId>> TreePairs; |
| |
| computeTreeDist(); |
| |
| bool RootNodePair = true; |
| |
| TreePairs.emplace_back(S1.getSize(), S2.getSize()); |
| |
| while (!TreePairs.empty()) { |
| SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; |
| std::tie(LastRow, LastCol) = TreePairs.back(); |
| TreePairs.pop_back(); |
| |
| if (!RootNodePair) { |
| computeForestDist(LastRow, LastCol); |
| } |
| |
| RootNodePair = false; |
| |
| FirstRow = S1.getLeftMostDescendant(LastRow); |
| FirstCol = S2.getLeftMostDescendant(LastCol); |
| |
| Row = LastRow; |
| Col = LastCol; |
| |
| while (Row > FirstRow || Col > FirstCol) { |
| if (Row > FirstRow && |
| ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { |
| --Row; |
| } else if (Col > FirstCol && |
| ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { |
| --Col; |
| } else { |
| SNodeId LMD1 = S1.getLeftMostDescendant(Row); |
| SNodeId LMD2 = S2.getLeftMostDescendant(Col); |
| if (LMD1 == S1.getLeftMostDescendant(LastRow) && |
| LMD2 == S2.getLeftMostDescendant(LastCol)) { |
| NodeId Id1 = S1.getIdInRoot(Row); |
| NodeId Id2 = S2.getIdInRoot(Col); |
| assert(DiffImpl.isMatchingPossible(Id1, Id2) && |
| "These nodes must not be matched."); |
| Matches.emplace_back(Id1, Id2); |
| --Row; |
| --Col; |
| } else { |
| TreePairs.emplace_back(Row, Col); |
| Row = LMD1; |
| Col = LMD2; |
| } |
| } |
| } |
| } |
| return Matches; |
| } |
| |
| private: |
| /// Simple cost model for edit actions. |
| /// The values range between 0 and 1, or infinity if this edit action should |
| /// always be avoided. |
| |
| /// These costs could be modified to better model the estimated cost of / |
| /// inserting / deleting the current node. |
| static constexpr double DeletionCost = 1; |
| static constexpr double InsertionCost = 1; |
| |
| double getUpdateCost(SNodeId Id1, SNodeId Id2) { |
| const DynTypedNode &DTN1 = S1.getNode(Id1).ASTNode, |
| &DTN2 = S2.getNode(Id2).ASTNode; |
| if (!DiffImpl.Options.isMatchingAllowed(DTN1, DTN2)) |
| return std::numeric_limits<double>::max(); |
| return DiffImpl.Options.getNodeDistance(*DiffImpl.T1.Parent, DTN1, |
| *DiffImpl.T2.Parent, DTN2); |
| } |
| |
| void computeTreeDist() { |
| for (SNodeId Id1 : S1.KeyRoots) |
| for (SNodeId Id2 : S2.KeyRoots) |
| computeForestDist(Id1, Id2); |
| } |
| |
| void computeForestDist(SNodeId Id1, SNodeId Id2) { |
| assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); |
| SNodeId LMD1 = S1.getLeftMostDescendant(Id1); |
| SNodeId LMD2 = S2.getLeftMostDescendant(Id2); |
| |
| ForestDist[LMD1][LMD2] = 0; |
| for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { |
| ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; |
| for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { |
| ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; |
| SNodeId DLMD1 = S1.getLeftMostDescendant(D1); |
| SNodeId DLMD2 = S2.getLeftMostDescendant(D2); |
| if (DLMD1 == LMD1 && DLMD2 == LMD2) { |
| double UpdateCost = getUpdateCost(D1, D2); |
| ForestDist[D1][D2] = |
| std::min({ForestDist[D1 - 1][D2] + DeletionCost, |
| ForestDist[D1][D2 - 1] + InsertionCost, |
| ForestDist[D1 - 1][D2 - 1] + UpdateCost}); |
| TreeDist[D1][D2] = ForestDist[D1][D2]; |
| } else { |
| ForestDist[D1][D2] = |
| std::min({ForestDist[D1 - 1][D2] + DeletionCost, |
| ForestDist[D1][D2 - 1] + InsertionCost, |
| ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); |
| } |
| } |
| } |
| } |
| }; |
| |
| namespace { |
| // Compares nodes by their depth. |
| struct HeightLess { |
| const SyntaxTreeImpl &Tree; |
| HeightLess(const SyntaxTreeImpl &Tree) : Tree(Tree) {} |
| bool operator()(NodeId Id1, NodeId Id2) const { |
| return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; |
| } |
| }; |
| } // end anonymous namespace |
| |
| // Priority queue for nodes, sorted descendingly by their height. |
| class PriorityList { |
| const SyntaxTreeImpl &Tree; |
| HeightLess Cmp; |
| std::vector<NodeId> Container; |
| PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; |
| |
| public: |
| PriorityList(const SyntaxTreeImpl &Tree) |
| : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} |
| |
| void push(NodeId id) { List.push(id); } |
| |
| std::vector<NodeId> pop() { |
| int Max = peekMax(); |
| std::vector<NodeId> Result; |
| if (Max == 0) |
| return Result; |
| while (peekMax() == Max) { |
| Result.push_back(List.top()); |
| List.pop(); |
| } |
| // TODO this is here to get a stable output, not a good heuristic |
| std::sort(Result.begin(), Result.end()); |
| return Result; |
| } |
| int peekMax() const { |
| if (List.empty()) |
| return 0; |
| return Tree.getNode(List.top()).Height; |
| } |
| void open(NodeId Id) { |
| for (NodeId Child : Tree.getNode(Id).Children) |
| push(Child); |
| } |
| }; |
| |
| bool ASTDiff::Impl::isomorphic(NodeId Id1, NodeId Id2) const { |
| const Node &N1 = T1.getNode(Id1); |
| const Node &N2 = T2.getNode(Id2); |
| if (N1.Children.size() != N2.Children.size() || |
| !isMatchingPossible(Id1, Id2) || |
| Options.getNodeDistance(*T1.Parent, N1.ASTNode, *T2.Parent, N2.ASTNode) != |
| 0) |
| return false; |
| for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) |
| if (!isomorphic(N1.Children[Id], N2.Children[Id])) |
| return false; |
| return true; |
| } |
| |
| bool ASTDiff::Impl::canBeAddedToMapping(const Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| assert(isMatchingPossible(Id1, Id2) && |
| "Matching must be possible in the first place."); |
| if (M.hasSrcDst(Id1, Id2)) |
| return false; |
| if (Options.EnableMatchingWithUnmatchableParents) |
| return true; |
| const Node &N1 = T1.getNode(Id1); |
| const Node &N2 = T2.getNode(Id2); |
| NodeId P1 = N1.Parent; |
| NodeId P2 = N2.Parent; |
| // Only allow matching if parents can be matched. |
| return (P1.isInvalid() && P2.isInvalid()) || |
| (P1.isValid() && P2.isValid() && isMatchingPossible(P1, P2)); |
| } |
| |
| bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { |
| return Options.isMatchingAllowed(T1.getNode(Id1).ASTNode, |
| T2.getNode(Id2).ASTNode); |
| } |
| |
| void ASTDiff::Impl::addIsomorphicSubTrees(Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| assert(isomorphic(Id1, Id2) && "Can only be called on isomorphic subtrees."); |
| M.link(Id1, Id2); |
| const Node &N1 = T1.getNode(Id1); |
| const Node &N2 = T2.getNode(Id2); |
| for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) |
| addIsomorphicSubTrees(M, N1.Children[Id], N2.Children[Id]); |
| } |
| |
| void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| if (std::max(T1.getNumberOfDescendants(Id1), |
| T2.getNumberOfDescendants(Id2)) >= Options.MaxSize) |
| return; |
| ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); |
| std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); |
| for (const auto Tuple : R) { |
| NodeId Src = Tuple.first; |
| NodeId Dst = Tuple.second; |
| if (canBeAddedToMapping(M, Src, Dst)) |
| M.link(Src, Dst); |
| } |
| } |
| |
| double ASTDiff::Impl::getSimilarity(const Mapping &M, NodeId Id1, |
| NodeId Id2) const { |
| if (Id1.isInvalid() || Id2.isInvalid()) |
| return 0.0; |
| int CommonDescendants = 0; |
| const Node &N1 = T1.getNode(Id1); |
| for (NodeId Id = Id1 + 1; Id <= N1.RightMostDescendant; ++Id) |
| CommonDescendants += int(T2.isInSubtree(M.getDst(Id), Id2)); |
| return 2.0 * CommonDescendants / |
| (T1.getNumberOfDescendants(Id1) + T2.getNumberOfDescendants(Id2)); |
| } |
| |
| NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { |
| NodeId Candidate; |
| double MaxSimilarity = 0.0; |
| for (NodeId Id2 = 0, E = T2.getSize(); Id2 < E; ++Id2) { |
| if (!isMatchingPossible(Id1, Id2)) |
| continue; |
| if (M.hasDst(Id2)) |
| continue; |
| double Similarity = getSimilarity(M, Id1, Id2); |
| if (Similarity > MaxSimilarity) { |
| MaxSimilarity = Similarity; |
| Candidate = Id2; |
| } |
| } |
| return Candidate; |
| } |
| |
| void ASTDiff::Impl::matchBottomUp(Mapping &M) const { |
| std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.root()); |
| for (NodeId Id1 : Postorder) { |
| if (Id1 == T1.root()) { |
| if (isMatchingPossible(T1.root(), T2.root())) { |
| M.link(T1.root(), T2.root()); |
| addOptimalMapping(M, T1.root(), T2.root()); |
| } |
| break; |
| } |
| const Node &N1 = T1.getNode(Id1); |
| bool Matched = M.hasSrc(Id1); |
| bool MatchedChildren = |
| std::any_of(N1.Children.begin(), N1.Children.end(), |
| [&](NodeId Child) { return M.hasSrc(Child); }); |
| if (Matched || !MatchedChildren) |
| continue; |
| NodeId Id2 = findCandidate(M, Id1); |
| if (Id2.isInvalid() || !canBeAddedToMapping(M, Id1, Id2) || |
| getSimilarity(M, Id1, Id2) < Options.MinSimilarity) |
| continue; |
| M.link(Id1, Id2); |
| addOptimalMapping(M, Id1, Id2); |
| } |
| } |
| |
| Mapping ASTDiff::Impl::matchTopDown() const { |
| PriorityList L1(T1); |
| PriorityList L2(T2); |
| |
| Mapping M(T1.getSize(), T2.getSize()); |
| |
| L1.push(T1.root()); |
| L2.push(T2.root()); |
| |
| int Max1, Max2; |
| while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > |
| Options.MinHeight) { |
| if (Max1 > Max2) { |
| for (NodeId Id : L1.pop()) |
| L1.open(Id); |
| continue; |
| } |
| if (Max2 > Max1) { |
| for (NodeId Id : L2.pop()) |
| L2.open(Id); |
| continue; |
| } |
| std::vector<NodeId> H1, H2; |
| H1 = L1.pop(); |
| H2 = L2.pop(); |
| for (NodeId Id1 : H1) { |
| for (NodeId Id2 : H2) |
| if (isomorphic(Id1, Id2) && canBeAddedToMapping(M, Id1, Id2)) |
| addIsomorphicSubTrees(M, Id1, Id2); |
| } |
| for (NodeId Id1 : H1) { |
| if (!M.hasSrc(Id1)) |
| L1.open(Id1); |
| } |
| for (NodeId Id2 : H2) { |
| if (!M.hasDst(Id2)) |
| L2.open(Id2); |
| } |
| } |
| return M; |
| } |
| |
| void ASTDiff::Impl::computeMapping() { |
| if (IsMappingDone) |
| return; |
| TheMapping = matchTopDown(); |
| matchBottomUp(TheMapping); |
| IsMappingDone = true; |
| } |
| |
| std::vector<Match> ASTDiff::Impl::getMatches(Mapping &M) { |
| std::vector<Match> Matches; |
| for (NodeId Id1 = 0, Id2, E = T1.getSize(); Id1 < E; ++Id1) |
| if ((Id2 = M.getDst(Id1)).isValid()) |
| Matches.push_back({Id1, Id2}); |
| return Matches; |
| } |
| |
| std::vector<Change> ASTDiff::Impl::computeChanges(Mapping &M) { |
| std::vector<Change> Changes; |
| for (NodeId Id2 : getSubtreeBfs(T2, T2.root())) { |
| const Node &N2 = T2.getNode(Id2); |
| NodeId Id1 = M.getSrc(Id2); |
| if (Id1.isValid()) { |
| assert(isMatchingPossible(Id1, Id2) && "Invalid matching."); |
| if (T1.getNodeValueImpl(Id1) != T2.getNodeValueImpl(Id2)) { |
| Changes.emplace_back(Update, Id1, Id2); |
| } |
| continue; |
| } |
| NodeId P2 = N2.Parent; |
| NodeId P1 = M.getSrc(P2); |
| assert(P1.isValid() && |
| "Parents must be matched for determining the change type."); |
| Node &Parent1 = T1.getMutableNode(P1); |
| const Node &Parent2 = T2.getNode(P2); |
| auto &Siblings1 = Parent1.Children; |
| const auto &Siblings2 = Parent2.Children; |
| size_t Position; |
| for (Position = 0; Position < Siblings2.size(); ++Position) |
| if (Siblings2[Position] == Id2 || Position >= Siblings1.size()) |
| break; |
| Changes.emplace_back(Insert, Id2, P2, Position); |
| Node PatchNode; |
| PatchNode.Parent = P1; |
| PatchNode.LeftMostDescendant = N2.LeftMostDescendant; |
| PatchNode.RightMostDescendant = N2.RightMostDescendant; |
| PatchNode.Depth = N2.Depth; |
| PatchNode.ASTNode = N2.ASTNode; |
| // TODO update Depth if needed |
| NodeId PatchNodeId = T1.getSize(); |
| // TODO maybe choose a different data structure for Children. |
| Siblings1.insert(Siblings1.begin() + Position, PatchNodeId); |
| T1.addNode(PatchNode); |
| M.link(PatchNodeId, Id2); |
| } |
| for (NodeId Id1 = 0; Id1 < T1.getSize(); ++Id1) { |
| NodeId Id2 = M.getDst(Id1); |
| if (Id2.isInvalid()) |
| Changes.emplace_back(Delete, Id1, Id2); |
| } |
| return Changes; |
| } |
| |
| void ASTDiff::Impl::printChangeImpl(raw_ostream &OS, const Change &Chg) const { |
| switch (Chg.Kind) { |
| case Delete: |
| OS << "Delete "; |
| T1.printNode(OS, Chg.Src); |
| OS << "\n"; |
| break; |
| case Update: |
| OS << "Update "; |
| T1.printNode(OS, Chg.Src); |
| OS << " to " << T2.getNodeValueImpl(Chg.Dst) << "\n"; |
| break; |
| case Insert: |
| OS << "Insert "; |
| T2.printNode(OS, Chg.Src); |
| OS << " into "; |
| T2.printNode(OS, Chg.Dst); |
| OS << " at " << Chg.Position << "\n"; |
| break; |
| case Move: |
| llvm_unreachable("TODO"); |
| break; |
| }; |
| } |
| |
| void ASTDiff::Impl::printMatchImpl(raw_ostream &OS, const Match &M) const { |
| OS << "Match "; |
| T1.printNode(OS, M.Src); |
| OS << " to "; |
| T2.printNode(OS, M.Dst); |
| OS << "\n"; |
| } |
| |
| ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, |
| const ComparisonOptions &Options) |
| : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} |
| |
| ASTDiff::~ASTDiff() {} |
| |
| SyntaxTree::SyntaxTree(const ASTContext &AST) |
| : TreeImpl(llvm::make_unique<SyntaxTreeImpl>( |
| this, AST.getTranslationUnitDecl(), AST)) {} |
| |
| std::vector<Match> ASTDiff::getMatches() { |
| DiffImpl->computeMapping(); |
| return DiffImpl->getMatches(DiffImpl->TheMapping); |
| } |
| |
| std::vector<Change> ASTDiff::getChanges() { |
| DiffImpl->computeMapping(); |
| return DiffImpl->computeChanges(DiffImpl->TheMapping); |
| } |
| |
| void ASTDiff::printChange(raw_ostream &OS, const Change &Chg) const { |
| DiffImpl->printChangeImpl(OS, Chg); |
| } |
| |
| void ASTDiff::printMatch(raw_ostream &OS, const Match &M) const { |
| DiffImpl->printMatchImpl(OS, M); |
| } |
| |
| void SyntaxTree::printAsJson(raw_ostream &OS) { TreeImpl->printAsJsonImpl(OS); } |
| |
| std::string SyntaxTree::getNodeValue(const DynTypedNode &DTN) const { |
| return TreeImpl->getNodeValueImpl(DTN); |
| } |
| |
| } // end namespace diff |
| } // end namespace clang |