|  | //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// Insert wait instructions for memory reads and writes. | 
|  | /// | 
|  | /// Memory reads and writes are issued asynchronously, so we need to insert | 
|  | /// S_WAITCNT instructions when we want to access any of their results or | 
|  | /// overwrite any register that's used asynchronously. | 
|  | /// | 
|  | /// TODO: This pass currently keeps one timeline per hardware counter. A more | 
|  | /// finely-grained approach that keeps one timeline per event type could | 
|  | /// sometimes get away with generating weaker s_waitcnt instructions. For | 
|  | /// example, when both SMEM and LDS are in flight and we need to wait for | 
|  | /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, | 
|  | /// but the pass will currently generate a conservative lgkmcnt(0) because | 
|  | /// multiple event types are in flight. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "SIDefines.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "Utils/AMDGPUBaseInfo.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/DebugCounter.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "si-insert-waitcnts" | 
|  |  | 
|  | DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", | 
|  | "Force emit s_waitcnt expcnt(0) instrs"); | 
|  | DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", | 
|  | "Force emit s_waitcnt lgkmcnt(0) instrs"); | 
|  | DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", | 
|  | "Force emit s_waitcnt vmcnt(0) instrs"); | 
|  |  | 
|  | static cl::opt<bool> ForceEmitZeroFlag( | 
|  | "amdgpu-waitcnt-forcezero", | 
|  | cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | template <typename EnumT> | 
|  | class enum_iterator | 
|  | : public iterator_facade_base<enum_iterator<EnumT>, | 
|  | std::forward_iterator_tag, const EnumT> { | 
|  | EnumT Value; | 
|  | public: | 
|  | enum_iterator() = default; | 
|  | enum_iterator(EnumT Value) : Value(Value) {} | 
|  |  | 
|  | enum_iterator &operator++() { | 
|  | Value = static_cast<EnumT>(Value + 1); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } | 
|  |  | 
|  | EnumT operator*() const { return Value; } | 
|  | }; | 
|  |  | 
|  | // Class of object that encapsulates latest instruction counter score | 
|  | // associated with the operand.  Used for determining whether | 
|  | // s_waitcnt instruction needs to be emited. | 
|  |  | 
|  | #define CNT_MASK(t) (1u << (t)) | 
|  |  | 
|  | enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; | 
|  |  | 
|  | iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { | 
|  | return make_range(enum_iterator<InstCounterType>(VM_CNT), | 
|  | enum_iterator<InstCounterType>(NUM_INST_CNTS)); | 
|  | } | 
|  |  | 
|  | using RegInterval = std::pair<signed, signed>; | 
|  |  | 
|  | struct { | 
|  | uint32_t VmcntMax; | 
|  | uint32_t ExpcntMax; | 
|  | uint32_t LgkmcntMax; | 
|  | uint32_t VscntMax; | 
|  | int32_t NumVGPRsMax; | 
|  | int32_t NumSGPRsMax; | 
|  | } HardwareLimits; | 
|  |  | 
|  | struct { | 
|  | unsigned VGPR0; | 
|  | unsigned VGPRL; | 
|  | unsigned SGPR0; | 
|  | unsigned SGPRL; | 
|  | } RegisterEncoding; | 
|  |  | 
|  | enum WaitEventType { | 
|  | VMEM_ACCESS,      // vector-memory read & write | 
|  | VMEM_READ_ACCESS, // vector-memory read | 
|  | VMEM_WRITE_ACCESS,// vector-memory write | 
|  | LDS_ACCESS,       // lds read & write | 
|  | GDS_ACCESS,       // gds read & write | 
|  | SQ_MESSAGE,       // send message | 
|  | SMEM_ACCESS,      // scalar-memory read & write | 
|  | EXP_GPR_LOCK,     // export holding on its data src | 
|  | GDS_GPR_LOCK,     // GDS holding on its data and addr src | 
|  | EXP_POS_ACCESS,   // write to export position | 
|  | EXP_PARAM_ACCESS, // write to export parameter | 
|  | VMW_GPR_LOCK,     // vector-memory write holding on its data src | 
|  | NUM_WAIT_EVENTS, | 
|  | }; | 
|  |  | 
|  | static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { | 
|  | (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), | 
|  | (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | | 
|  | (1 << SQ_MESSAGE), | 
|  | (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | | 
|  | (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), | 
|  | (1 << VMEM_WRITE_ACCESS) | 
|  | }; | 
|  |  | 
|  | // The mapping is: | 
|  | //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs | 
|  | //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots | 
|  | //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs | 
|  | // We reserve a fixed number of VGPR slots in the scoring tables for | 
|  | // special tokens like SCMEM_LDS (needed for buffer load to LDS). | 
|  | enum RegisterMapping { | 
|  | SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. | 
|  | SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. | 
|  | NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS. | 
|  | EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses. | 
|  | NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. | 
|  | }; | 
|  |  | 
|  | void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { | 
|  | switch (T) { | 
|  | case VM_CNT: | 
|  | Wait.VmCnt = std::min(Wait.VmCnt, Count); | 
|  | break; | 
|  | case EXP_CNT: | 
|  | Wait.ExpCnt = std::min(Wait.ExpCnt, Count); | 
|  | break; | 
|  | case LGKM_CNT: | 
|  | Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); | 
|  | break; | 
|  | case VS_CNT: | 
|  | Wait.VsCnt = std::min(Wait.VsCnt, Count); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("bad InstCounterType"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This objects maintains the current score brackets of each wait counter, and | 
|  | // a per-register scoreboard for each wait counter. | 
|  | // | 
|  | // We also maintain the latest score for every event type that can change the | 
|  | // waitcnt in order to know if there are multiple types of events within | 
|  | // the brackets. When multiple types of event happen in the bracket, | 
|  | // wait count may get decreased out of order, therefore we need to put in | 
|  | // "s_waitcnt 0" before use. | 
|  | class WaitcntBrackets { | 
|  | public: | 
|  | WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { | 
|  | for (auto T : inst_counter_types()) | 
|  | memset(VgprScores[T], 0, sizeof(VgprScores[T])); | 
|  | } | 
|  |  | 
|  | static uint32_t getWaitCountMax(InstCounterType T) { | 
|  | switch (T) { | 
|  | case VM_CNT: | 
|  | return HardwareLimits.VmcntMax; | 
|  | case LGKM_CNT: | 
|  | return HardwareLimits.LgkmcntMax; | 
|  | case EXP_CNT: | 
|  | return HardwareLimits.ExpcntMax; | 
|  | case VS_CNT: | 
|  | return HardwareLimits.VscntMax; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint32_t getScoreLB(InstCounterType T) const { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return 0; | 
|  | return ScoreLBs[T]; | 
|  | } | 
|  |  | 
|  | uint32_t getScoreUB(InstCounterType T) const { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return 0; | 
|  | return ScoreUBs[T]; | 
|  | } | 
|  |  | 
|  | // Mapping from event to counter. | 
|  | InstCounterType eventCounter(WaitEventType E) { | 
|  | if (WaitEventMaskForInst[VM_CNT] & (1 << E)) | 
|  | return VM_CNT; | 
|  | if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) | 
|  | return LGKM_CNT; | 
|  | if (WaitEventMaskForInst[VS_CNT] & (1 << E)) | 
|  | return VS_CNT; | 
|  | assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); | 
|  | return EXP_CNT; | 
|  | } | 
|  |  | 
|  | uint32_t getRegScore(int GprNo, InstCounterType T) { | 
|  | if (GprNo < NUM_ALL_VGPRS) { | 
|  | return VgprScores[T][GprNo]; | 
|  | } | 
|  | assert(T == LGKM_CNT); | 
|  | return SgprScores[GprNo - NUM_ALL_VGPRS]; | 
|  | } | 
|  |  | 
|  | void clear() { | 
|  | memset(ScoreLBs, 0, sizeof(ScoreLBs)); | 
|  | memset(ScoreUBs, 0, sizeof(ScoreUBs)); | 
|  | PendingEvents = 0; | 
|  | memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); | 
|  | for (auto T : inst_counter_types()) | 
|  | memset(VgprScores[T], 0, sizeof(VgprScores[T])); | 
|  | memset(SgprScores, 0, sizeof(SgprScores)); | 
|  | } | 
|  |  | 
|  | bool merge(const WaitcntBrackets &Other); | 
|  |  | 
|  | RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const SIRegisterInfo *TRI, unsigned OpNo, | 
|  | bool Def) const; | 
|  |  | 
|  | int32_t getMaxVGPR() const { return VgprUB; } | 
|  | int32_t getMaxSGPR() const { return SgprUB; } | 
|  |  | 
|  | bool counterOutOfOrder(InstCounterType T) const; | 
|  | bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; | 
|  | bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; | 
|  | void determineWait(InstCounterType T, uint32_t ScoreToWait, | 
|  | AMDGPU::Waitcnt &Wait) const; | 
|  | void applyWaitcnt(const AMDGPU::Waitcnt &Wait); | 
|  | void applyWaitcnt(InstCounterType T, unsigned Count); | 
|  | void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, | 
|  | const MachineRegisterInfo *MRI, WaitEventType E, | 
|  | MachineInstr &MI); | 
|  |  | 
|  | bool hasPending() const { return PendingEvents != 0; } | 
|  | bool hasPendingEvent(WaitEventType E) const { | 
|  | return PendingEvents & (1 << E); | 
|  | } | 
|  |  | 
|  | bool hasPendingFlat() const { | 
|  | return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && | 
|  | LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || | 
|  | (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && | 
|  | LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); | 
|  | } | 
|  |  | 
|  | void setPendingFlat() { | 
|  | LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; | 
|  | LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; | 
|  | } | 
|  |  | 
|  | void print(raw_ostream &); | 
|  | void dump() { print(dbgs()); } | 
|  |  | 
|  | private: | 
|  | struct MergeInfo { | 
|  | uint32_t OldLB; | 
|  | uint32_t OtherLB; | 
|  | uint32_t MyShift; | 
|  | uint32_t OtherShift; | 
|  | }; | 
|  | static bool mergeScore(const MergeInfo &M, uint32_t &Score, | 
|  | uint32_t OtherScore); | 
|  |  | 
|  | void setScoreLB(InstCounterType T, uint32_t Val) { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return; | 
|  | ScoreLBs[T] = Val; | 
|  | } | 
|  |  | 
|  | void setScoreUB(InstCounterType T, uint32_t Val) { | 
|  | assert(T < NUM_INST_CNTS); | 
|  | if (T >= NUM_INST_CNTS) | 
|  | return; | 
|  | ScoreUBs[T] = Val; | 
|  | if (T == EXP_CNT) { | 
|  | uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); | 
|  | if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) | 
|  | ScoreLBs[T] = UB; | 
|  | } | 
|  | } | 
|  |  | 
|  | void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { | 
|  | if (GprNo < NUM_ALL_VGPRS) { | 
|  | if (GprNo > VgprUB) { | 
|  | VgprUB = GprNo; | 
|  | } | 
|  | VgprScores[T][GprNo] = Val; | 
|  | } else { | 
|  | assert(T == LGKM_CNT); | 
|  | if (GprNo - NUM_ALL_VGPRS > SgprUB) { | 
|  | SgprUB = GprNo - NUM_ALL_VGPRS; | 
|  | } | 
|  | SgprScores[GprNo - NUM_ALL_VGPRS] = Val; | 
|  | } | 
|  | } | 
|  |  | 
|  | void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, | 
|  | const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, | 
|  | unsigned OpNo, uint32_t Val); | 
|  |  | 
|  | const GCNSubtarget *ST = nullptr; | 
|  | uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; | 
|  | uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; | 
|  | uint32_t PendingEvents = 0; | 
|  | bool MixedPendingEvents[NUM_INST_CNTS] = {false}; | 
|  | // Remember the last flat memory operation. | 
|  | uint32_t LastFlat[NUM_INST_CNTS] = {0}; | 
|  | // wait_cnt scores for every vgpr. | 
|  | // Keep track of the VgprUB and SgprUB to make merge at join efficient. | 
|  | int32_t VgprUB = 0; | 
|  | int32_t SgprUB = 0; | 
|  | uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; | 
|  | // Wait cnt scores for every sgpr, only lgkmcnt is relevant. | 
|  | uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; | 
|  | }; | 
|  |  | 
|  | class SIInsertWaitcnts : public MachineFunctionPass { | 
|  | private: | 
|  | const GCNSubtarget *ST = nullptr; | 
|  | const SIInstrInfo *TII = nullptr; | 
|  | const SIRegisterInfo *TRI = nullptr; | 
|  | const MachineRegisterInfo *MRI = nullptr; | 
|  | AMDGPU::IsaVersion IV; | 
|  |  | 
|  | DenseSet<MachineInstr *> TrackedWaitcntSet; | 
|  | DenseSet<MachineInstr *> VCCZBugHandledSet; | 
|  |  | 
|  | struct BlockInfo { | 
|  | MachineBasicBlock *MBB; | 
|  | std::unique_ptr<WaitcntBrackets> Incoming; | 
|  | bool Dirty = true; | 
|  |  | 
|  | explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} | 
|  | }; | 
|  |  | 
|  | std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index | 
|  | DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; | 
|  |  | 
|  | // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 | 
|  | // because of amdgpu-waitcnt-forcezero flag | 
|  | bool ForceEmitZeroWaitcnts; | 
|  | bool ForceEmitWaitcnt[NUM_INST_CNTS]; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | SIInsertWaitcnts() : MachineFunctionPass(ID) { | 
|  | (void)ForceExpCounter; | 
|  | (void)ForceLgkmCounter; | 
|  | (void)ForceVMCounter; | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "SI insert wait instructions"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool isForceEmitWaitcnt() const { | 
|  | for (auto T : inst_counter_types()) | 
|  | if (ForceEmitWaitcnt[T]) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void setForceEmitWaitcnt() { | 
|  | // For non-debug builds, ForceEmitWaitcnt has been initialized to false; | 
|  | // For debug builds, get the debug counter info and adjust if need be | 
|  | #ifndef NDEBUG | 
|  | if (DebugCounter::isCounterSet(ForceExpCounter) && | 
|  | DebugCounter::shouldExecute(ForceExpCounter)) { | 
|  | ForceEmitWaitcnt[EXP_CNT] = true; | 
|  | } else { | 
|  | ForceEmitWaitcnt[EXP_CNT] = false; | 
|  | } | 
|  |  | 
|  | if (DebugCounter::isCounterSet(ForceLgkmCounter) && | 
|  | DebugCounter::shouldExecute(ForceLgkmCounter)) { | 
|  | ForceEmitWaitcnt[LGKM_CNT] = true; | 
|  | } else { | 
|  | ForceEmitWaitcnt[LGKM_CNT] = false; | 
|  | } | 
|  |  | 
|  | if (DebugCounter::isCounterSet(ForceVMCounter) && | 
|  | DebugCounter::shouldExecute(ForceVMCounter)) { | 
|  | ForceEmitWaitcnt[VM_CNT] = true; | 
|  | } else { | 
|  | ForceEmitWaitcnt[VM_CNT] = false; | 
|  | } | 
|  | #endif // NDEBUG | 
|  | } | 
|  |  | 
|  | bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; | 
|  | bool generateWaitcntInstBefore(MachineInstr &MI, | 
|  | WaitcntBrackets &ScoreBrackets, | 
|  | MachineInstr *OldWaitcntInstr); | 
|  | void updateEventWaitcntAfter(MachineInstr &Inst, | 
|  | WaitcntBrackets *ScoreBrackets); | 
|  | bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, | 
|  | WaitcntBrackets &ScoreBrackets); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, | 
|  | const SIInstrInfo *TII, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const SIRegisterInfo *TRI, | 
|  | unsigned OpNo, bool Def) const { | 
|  | const MachineOperand &Op = MI->getOperand(OpNo); | 
|  | if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || | 
|  | (Def && !Op.isDef())) | 
|  | return {-1, -1}; | 
|  |  | 
|  | // A use via a PW operand does not need a waitcnt. | 
|  | // A partial write is not a WAW. | 
|  | assert(!Op.getSubReg() || !Op.isUndef()); | 
|  |  | 
|  | RegInterval Result; | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  |  | 
|  | unsigned Reg = TRI->getEncodingValue(Op.getReg()); | 
|  |  | 
|  | if (TRI->isVGPR(MRIA, Op.getReg())) { | 
|  | assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); | 
|  | Result.first = Reg - RegisterEncoding.VGPR0; | 
|  | assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); | 
|  | } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { | 
|  | assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); | 
|  | Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; | 
|  | assert(Result.first >= NUM_ALL_VGPRS && | 
|  | Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); | 
|  | } | 
|  | // TODO: Handle TTMP | 
|  | // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... | 
|  | else | 
|  | return {-1, -1}; | 
|  |  | 
|  | const MachineInstr &MIA = *MI; | 
|  | const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); | 
|  | unsigned Size = TRI->getRegSizeInBits(*RC); | 
|  | Result.second = Result.first + (Size / 32); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void WaitcntBrackets::setExpScore(const MachineInstr *MI, | 
|  | const SIInstrInfo *TII, | 
|  | const SIRegisterInfo *TRI, | 
|  | const MachineRegisterInfo *MRI, unsigned OpNo, | 
|  | uint32_t Val) { | 
|  | RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); | 
|  | LLVM_DEBUG({ | 
|  | const MachineOperand &Opnd = MI->getOperand(OpNo); | 
|  | assert(TRI->isVGPR(*MRI, Opnd.getReg())); | 
|  | }); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | setRegScore(RegNo, EXP_CNT, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, | 
|  | const SIRegisterInfo *TRI, | 
|  | const MachineRegisterInfo *MRI, | 
|  | WaitEventType E, MachineInstr &Inst) { | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  | InstCounterType T = eventCounter(E); | 
|  | uint32_t CurrScore = getScoreUB(T) + 1; | 
|  | if (CurrScore == 0) | 
|  | report_fatal_error("InsertWaitcnt score wraparound"); | 
|  | // PendingEvents and ScoreUB need to be update regardless if this event | 
|  | // changes the score of a register or not. | 
|  | // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. | 
|  | if (!hasPendingEvent(E)) { | 
|  | if (PendingEvents & WaitEventMaskForInst[T]) | 
|  | MixedPendingEvents[T] = true; | 
|  | PendingEvents |= 1 << E; | 
|  | } | 
|  | setScoreUB(T, CurrScore); | 
|  |  | 
|  | if (T == EXP_CNT) { | 
|  | // Put score on the source vgprs. If this is a store, just use those | 
|  | // specific register(s). | 
|  | if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { | 
|  | int AddrOpIdx = | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); | 
|  | // All GDS operations must protect their address register (same as | 
|  | // export.) | 
|  | if (AddrOpIdx != -1) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); | 
|  | } | 
|  |  | 
|  | if (Inst.mayStore()) { | 
|  | if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), | 
|  | AMDGPU::OpName::data0) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), | 
|  | CurrScore); | 
|  | } | 
|  | if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), | 
|  | AMDGPU::OpName::data1) != -1) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), | 
|  | AMDGPU::OpName::data1), | 
|  | CurrScore); | 
|  | } | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_INIT && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && | 
|  | Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && | 
|  | Inst.getOpcode() != AMDGPU::DS_APPEND && | 
|  | Inst.getOpcode() != AMDGPU::DS_CONSUME && | 
|  | Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &Op = Inst.getOperand(I); | 
|  | if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (TII->isFLAT(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } | 
|  | } else if (TII->isMIMG(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } | 
|  | } else if (TII->isMTBUF(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); | 
|  | } | 
|  | } else if (TII->isMUBUF(Inst)) { | 
|  | if (Inst.mayStore()) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); | 
|  | } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { | 
|  | setExpScore( | 
|  | &Inst, TII, TRI, MRI, | 
|  | AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), | 
|  | CurrScore); | 
|  | } | 
|  | } else { | 
|  | if (TII->isEXP(Inst)) { | 
|  | // For export the destination registers are really temps that | 
|  | // can be used as the actual source after export patching, so | 
|  | // we need to treat them like sources and set the EXP_CNT | 
|  | // score. | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | MachineOperand &DefMO = Inst.getOperand(I); | 
|  | if (DefMO.isReg() && DefMO.isDef() && | 
|  | TRI->isVGPR(MRIA, DefMO.getReg())) { | 
|  | setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, | 
|  | CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | MachineOperand &MO = Inst.getOperand(I); | 
|  | if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { | 
|  | setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  | #if 0 // TODO: check if this is handled by MUBUF code above. | 
|  | } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || | 
|  | Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || | 
|  | Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { | 
|  | MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); | 
|  | unsigned OpNo;//TODO: find the OpNo for this operand; | 
|  | RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; | 
|  | ++RegNo) { | 
|  | setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | // Match the score to the destination registers. | 
|  | for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { | 
|  | RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); | 
|  | if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) | 
|  | continue; | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | setRegScore(RegNo, T, CurrScore); | 
|  | } | 
|  | } | 
|  | if (TII->isDS(Inst) && Inst.mayStore()) { | 
|  | setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void WaitcntBrackets::print(raw_ostream &OS) { | 
|  | OS << '\n'; | 
|  | for (auto T : inst_counter_types()) { | 
|  | uint32_t LB = getScoreLB(T); | 
|  | uint32_t UB = getScoreUB(T); | 
|  |  | 
|  | switch (T) { | 
|  | case VM_CNT: | 
|  | OS << "    VM_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | case LGKM_CNT: | 
|  | OS << "    LGKM_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | case EXP_CNT: | 
|  | OS << "    EXP_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | case VS_CNT: | 
|  | OS << "    VS_CNT(" << UB - LB << "): "; | 
|  | break; | 
|  | default: | 
|  | OS << "    UNKNOWN(" << UB - LB << "): "; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (LB < UB) { | 
|  | // Print vgpr scores. | 
|  | for (int J = 0; J <= getMaxVGPR(); J++) { | 
|  | uint32_t RegScore = getRegScore(J, T); | 
|  | if (RegScore <= LB) | 
|  | continue; | 
|  | uint32_t RelScore = RegScore - LB - 1; | 
|  | if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { | 
|  | OS << RelScore << ":v" << J << " "; | 
|  | } else { | 
|  | OS << RelScore << ":ds "; | 
|  | } | 
|  | } | 
|  | // Also need to print sgpr scores for lgkm_cnt. | 
|  | if (T == LGKM_CNT) { | 
|  | for (int J = 0; J <= getMaxSGPR(); J++) { | 
|  | uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); | 
|  | if (RegScore <= LB) | 
|  | continue; | 
|  | uint32_t RelScore = RegScore - LB - 1; | 
|  | OS << RelScore << ":s" << J << " "; | 
|  | } | 
|  | } | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | /// Simplify the waitcnt, in the sense of removing redundant counts, and return | 
|  | /// whether a waitcnt instruction is needed at all. | 
|  | bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { | 
|  | return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | | 
|  | simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | | 
|  | simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | | 
|  | simplifyWaitcnt(VS_CNT, Wait.VsCnt); | 
|  | } | 
|  |  | 
|  | bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, | 
|  | unsigned &Count) const { | 
|  | const uint32_t LB = getScoreLB(T); | 
|  | const uint32_t UB = getScoreUB(T); | 
|  | if (Count < UB && UB - Count > LB) | 
|  | return true; | 
|  |  | 
|  | Count = ~0u; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, | 
|  | AMDGPU::Waitcnt &Wait) const { | 
|  | // If the score of src_operand falls within the bracket, we need an | 
|  | // s_waitcnt instruction. | 
|  | const uint32_t LB = getScoreLB(T); | 
|  | const uint32_t UB = getScoreUB(T); | 
|  | if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { | 
|  | if ((T == VM_CNT || T == LGKM_CNT) && | 
|  | hasPendingFlat() && | 
|  | !ST->hasFlatLgkmVMemCountInOrder()) { | 
|  | // If there is a pending FLAT operation, and this is a VMem or LGKM | 
|  | // waitcnt and the target can report early completion, then we need | 
|  | // to force a waitcnt 0. | 
|  | addWait(Wait, T, 0); | 
|  | } else if (counterOutOfOrder(T)) { | 
|  | // Counter can get decremented out-of-order when there | 
|  | // are multiple types event in the bracket. Also emit an s_wait counter | 
|  | // with a conservative value of 0 for the counter. | 
|  | addWait(Wait, T, 0); | 
|  | } else { | 
|  | addWait(Wait, T, UB - ScoreToWait); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { | 
|  | applyWaitcnt(VM_CNT, Wait.VmCnt); | 
|  | applyWaitcnt(EXP_CNT, Wait.ExpCnt); | 
|  | applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); | 
|  | applyWaitcnt(VS_CNT, Wait.VsCnt); | 
|  | } | 
|  |  | 
|  | void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { | 
|  | const uint32_t UB = getScoreUB(T); | 
|  | if (Count >= UB) | 
|  | return; | 
|  | if (Count != 0) { | 
|  | if (counterOutOfOrder(T)) | 
|  | return; | 
|  | setScoreLB(T, std::max(getScoreLB(T), UB - Count)); | 
|  | } else { | 
|  | setScoreLB(T, UB); | 
|  | MixedPendingEvents[T] = false; | 
|  | PendingEvents &= ~WaitEventMaskForInst[T]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Where there are multiple types of event in the bracket of a counter, | 
|  | // the decrement may go out of order. | 
|  | bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { | 
|  | // Scalar memory read always can go out of order. | 
|  | if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) | 
|  | return true; | 
|  | return MixedPendingEvents[T]; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, | 
|  | false) | 
|  | INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, | 
|  | false) | 
|  |  | 
|  | char SIInsertWaitcnts::ID = 0; | 
|  |  | 
|  | char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; | 
|  |  | 
|  | FunctionPass *llvm::createSIInsertWaitcntsPass() { | 
|  | return new SIInsertWaitcnts(); | 
|  | } | 
|  |  | 
|  | static bool readsVCCZ(const MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && | 
|  | !MI.getOperand(1).isUndef(); | 
|  | } | 
|  |  | 
|  | /// \returns true if the callee inserts an s_waitcnt 0 on function entry. | 
|  | static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { | 
|  | // Currently all conventions wait, but this may not always be the case. | 
|  | // | 
|  | // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make | 
|  | // senses to omit the wait and do it in the caller. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \returns true if the callee is expected to wait for any outstanding waits | 
|  | /// before returning. | 
|  | static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ///  Generate s_waitcnt instruction to be placed before cur_Inst. | 
|  | ///  Instructions of a given type are returned in order, | 
|  | ///  but instructions of different types can complete out of order. | 
|  | ///  We rely on this in-order completion | 
|  | ///  and simply assign a score to the memory access instructions. | 
|  | ///  We keep track of the active "score bracket" to determine | 
|  | ///  if an access of a memory read requires an s_waitcnt | 
|  | ///  and if so what the value of each counter is. | 
|  | ///  The "score bracket" is bound by the lower bound and upper bound | 
|  | ///  scores (*_score_LB and *_score_ub respectively). | 
|  | bool SIInsertWaitcnts::generateWaitcntInstBefore( | 
|  | MachineInstr &MI, WaitcntBrackets &ScoreBrackets, | 
|  | MachineInstr *OldWaitcntInstr) { | 
|  | setForceEmitWaitcnt(); | 
|  | bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); | 
|  |  | 
|  | if (MI.isDebugInstr()) | 
|  | return false; | 
|  |  | 
|  | AMDGPU::Waitcnt Wait; | 
|  |  | 
|  | // See if this instruction has a forced S_WAITCNT VM. | 
|  | // TODO: Handle other cases of NeedsWaitcntVmBefore() | 
|  | if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || | 
|  | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || | 
|  | MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || | 
|  | MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || | 
|  | MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { | 
|  | Wait.VmCnt = 0; | 
|  | } | 
|  |  | 
|  | // All waits must be resolved at call return. | 
|  | // NOTE: this could be improved with knowledge of all call sites or | 
|  | //   with knowledge of the called routines. | 
|  | if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || | 
|  | MI.getOpcode() == AMDGPU::S_SETPC_B64_return || | 
|  | (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { | 
|  | Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); | 
|  | } | 
|  | // Resolve vm waits before gs-done. | 
|  | else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || | 
|  | MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && | 
|  | ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == | 
|  | AMDGPU::SendMsg::ID_GS_DONE)) { | 
|  | Wait.VmCnt = 0; | 
|  | } | 
|  | #if 0 // TODO: the following blocks of logic when we have fence. | 
|  | else if (MI.getOpcode() == SC_FENCE) { | 
|  | const unsigned int group_size = | 
|  | context->shader_info->GetMaxThreadGroupSize(); | 
|  | // group_size == 0 means thread group size is unknown at compile time | 
|  | const bool group_is_multi_wave = | 
|  | (group_size == 0 || group_size > target_info->GetWaveFrontSize()); | 
|  | const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); | 
|  |  | 
|  | for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { | 
|  | SCRegType src_type = Inst->GetSrcType(i); | 
|  | switch (src_type) { | 
|  | case SCMEM_LDS: | 
|  | if (group_is_multi_wave || | 
|  | context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { | 
|  | EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT)); | 
|  | // LDS may have to wait for VM_CNT after buffer load to LDS | 
|  | if (target_info->HasBufferLoadToLDS()) { | 
|  | EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, | 
|  | ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCMEM_GDS: | 
|  | if (group_is_multi_wave || fence_is_global) { | 
|  | EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, | 
|  | ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, | 
|  | ScoreBrackets->getScoreUB(LGKM_CNT)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCMEM_UAV: | 
|  | case SCMEM_TFBUF: | 
|  | case SCMEM_RING: | 
|  | case SCMEM_SCATTER: | 
|  | if (group_is_multi_wave || fence_is_global) { | 
|  | EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, | 
|  | ScoreBrackets->getScoreUB(EXP_CNT)); | 
|  | EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, | 
|  | ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCMEM_SCRATCH: | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Export & GDS instructions do not read the EXEC mask until after the export | 
|  | // is granted (which can occur well after the instruction is issued). | 
|  | // The shader program must flush all EXP operations on the export-count | 
|  | // before overwriting the EXEC mask. | 
|  | else { | 
|  | if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { | 
|  | // Export and GDS are tracked individually, either may trigger a waitcnt | 
|  | // for EXEC. | 
|  | if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || | 
|  | ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || | 
|  | ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || | 
|  | ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { | 
|  | Wait.ExpCnt = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { | 
|  | // Don't bother waiting on anything except the call address. The function | 
|  | // is going to insert a wait on everything in its prolog. This still needs | 
|  | // to be careful if the call target is a load (e.g. a GOT load). | 
|  | Wait = AMDGPU::Waitcnt(); | 
|  |  | 
|  | int CallAddrOpIdx = | 
|  | AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); | 
|  | RegInterval Interval = ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, | 
|  | CallAddrOpIdx, false); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | ScoreBrackets.determineWait( | 
|  | LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); | 
|  | } | 
|  | } else { | 
|  | // FIXME: Should not be relying on memoperands. | 
|  | // Look at the source operands of every instruction to see if | 
|  | // any of them results from a previous memory operation that affects | 
|  | // its current usage. If so, an s_waitcnt instruction needs to be | 
|  | // emitted. | 
|  | // If the source operand was defined by a load, add the s_waitcnt | 
|  | // instruction. | 
|  | for (const MachineMemOperand *Memop : MI.memoperands()) { | 
|  | unsigned AS = Memop->getAddrSpace(); | 
|  | if (AS != AMDGPUAS::LOCAL_ADDRESS) | 
|  | continue; | 
|  | unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; | 
|  | // VM_CNT is only relevant to vgpr or LDS. | 
|  | ScoreBrackets.determineWait( | 
|  | VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &Op = MI.getOperand(I); | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  | RegInterval Interval = | 
|  | ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | if (TRI->isVGPR(MRIA, Op.getReg())) { | 
|  | // VM_CNT is only relevant to vgpr or LDS. | 
|  | ScoreBrackets.determineWait( | 
|  | VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); | 
|  | } | 
|  | ScoreBrackets.determineWait( | 
|  | LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); | 
|  | } | 
|  | } | 
|  | // End of for loop that looks at all source operands to decide vm_wait_cnt | 
|  | // and lgk_wait_cnt. | 
|  |  | 
|  | // Two cases are handled for destination operands: | 
|  | // 1) If the destination operand was defined by a load, add the s_waitcnt | 
|  | // instruction to guarantee the right WAW order. | 
|  | // 2) If a destination operand that was used by a recent export/store ins, | 
|  | // add s_waitcnt on exp_cnt to guarantee the WAR order. | 
|  | if (MI.mayStore()) { | 
|  | // FIXME: Should not be relying on memoperands. | 
|  | for (const MachineMemOperand *Memop : MI.memoperands()) { | 
|  | unsigned AS = Memop->getAddrSpace(); | 
|  | if (AS != AMDGPUAS::LOCAL_ADDRESS) | 
|  | continue; | 
|  | unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; | 
|  | ScoreBrackets.determineWait( | 
|  | VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); | 
|  | ScoreBrackets.determineWait( | 
|  | EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); | 
|  | } | 
|  | } | 
|  | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { | 
|  | MachineOperand &Def = MI.getOperand(I); | 
|  | const MachineRegisterInfo &MRIA = *MRI; | 
|  | RegInterval Interval = | 
|  | ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); | 
|  | for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { | 
|  | if (TRI->isVGPR(MRIA, Def.getReg())) { | 
|  | ScoreBrackets.determineWait( | 
|  | VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); | 
|  | ScoreBrackets.determineWait( | 
|  | EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); | 
|  | } | 
|  | ScoreBrackets.determineWait( | 
|  | LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); | 
|  | } | 
|  | } // End of for loop that looks at all dest operands. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 | 
|  | // occurs before the instruction. Doing it here prevents any additional | 
|  | // S_WAITCNTs from being emitted if the instruction was marked as | 
|  | // requiring a WAITCNT beforehand. | 
|  | if (MI.getOpcode() == AMDGPU::S_BARRIER && | 
|  | !ST->hasAutoWaitcntBeforeBarrier()) { | 
|  | Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); | 
|  | } | 
|  |  | 
|  | // TODO: Remove this work-around, enable the assert for Bug 457939 | 
|  | //       after fixing the scheduler. Also, the Shader Compiler code is | 
|  | //       independent of target. | 
|  | if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { | 
|  | if (ScoreBrackets.getScoreLB(LGKM_CNT) < | 
|  | ScoreBrackets.getScoreUB(LGKM_CNT) && | 
|  | ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { | 
|  | Wait.LgkmCnt = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Early-out if no wait is indicated. | 
|  | if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { | 
|  | bool Modified = false; | 
|  | if (OldWaitcntInstr) { | 
|  | for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); | 
|  | &*II != &MI; II = NextI, ++NextI) { | 
|  | if (II->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | if (TrackedWaitcntSet.count(&*II)) { | 
|  | TrackedWaitcntSet.erase(&*II); | 
|  | II->eraseFromParent(); | 
|  | Modified = true; | 
|  | } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { | 
|  | int64_t Imm = II->getOperand(0).getImm(); | 
|  | ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); | 
|  | } else { | 
|  | assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); | 
|  | assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); | 
|  | ScoreBrackets.applyWaitcnt( | 
|  | AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm())); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Modified; | 
|  | } | 
|  |  | 
|  | if (ForceEmitZeroWaitcnts) | 
|  | Wait = AMDGPU::Waitcnt::allZero(IV); | 
|  |  | 
|  | if (ForceEmitWaitcnt[VM_CNT]) | 
|  | Wait.VmCnt = 0; | 
|  | if (ForceEmitWaitcnt[EXP_CNT]) | 
|  | Wait.ExpCnt = 0; | 
|  | if (ForceEmitWaitcnt[LGKM_CNT]) | 
|  | Wait.LgkmCnt = 0; | 
|  | if (ForceEmitWaitcnt[VS_CNT]) | 
|  | Wait.VsCnt = 0; | 
|  |  | 
|  | ScoreBrackets.applyWaitcnt(Wait); | 
|  |  | 
|  | AMDGPU::Waitcnt OldWait; | 
|  | bool Modified = false; | 
|  |  | 
|  | if (OldWaitcntInstr) { | 
|  | for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); | 
|  | &*II != &MI; II = NextI, NextI++) { | 
|  | if (II->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | if (II->getOpcode() == AMDGPU::S_WAITCNT) { | 
|  | unsigned IEnc = II->getOperand(0).getImm(); | 
|  | AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); | 
|  | OldWait = OldWait.combined(IWait); | 
|  | if (!TrackedWaitcntSet.count(&*II)) | 
|  | Wait = Wait.combined(IWait); | 
|  | unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); | 
|  | if (IEnc != NewEnc) { | 
|  | II->getOperand(0).setImm(NewEnc); | 
|  | Modified = true; | 
|  | } | 
|  | Wait.VmCnt = ~0u; | 
|  | Wait.LgkmCnt = ~0u; | 
|  | Wait.ExpCnt = ~0u; | 
|  | } else { | 
|  | assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); | 
|  | assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); | 
|  |  | 
|  | unsigned ICnt = II->getOperand(1).getImm(); | 
|  | OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); | 
|  | if (!TrackedWaitcntSet.count(&*II)) | 
|  | Wait.VsCnt = std::min(Wait.VsCnt, ICnt); | 
|  | if (Wait.VsCnt != ICnt) { | 
|  | II->getOperand(1).setImm(Wait.VsCnt); | 
|  | Modified = true; | 
|  | } | 
|  | Wait.VsCnt = ~0u; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" | 
|  | << "Old Instr: " << MI << '\n' | 
|  | << "New Instr: " << *II << '\n'); | 
|  |  | 
|  | if (!Wait.hasWait()) | 
|  | return Modified; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { | 
|  | unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); | 
|  | auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), | 
|  | MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) | 
|  | .addImm(Enc); | 
|  | TrackedWaitcntSet.insert(SWaitInst); | 
|  | Modified = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" | 
|  | << "Old Instr: " << MI << '\n' | 
|  | << "New Instr: " << *SWaitInst << '\n'); | 
|  | } | 
|  |  | 
|  | if (Wait.VsCnt != ~0u) { | 
|  | assert(ST->hasVscnt()); | 
|  |  | 
|  | auto SWaitInst = | 
|  | BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), | 
|  | TII->get(AMDGPU::S_WAITCNT_VSCNT)) | 
|  | .addReg(AMDGPU::SGPR_NULL, RegState::Undef) | 
|  | .addImm(Wait.VsCnt); | 
|  | TrackedWaitcntSet.insert(SWaitInst); | 
|  | Modified = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" | 
|  | << "Old Instr: " << MI << '\n' | 
|  | << "New Instr: " << *SWaitInst << '\n'); | 
|  | } | 
|  |  | 
|  | return Modified; | 
|  | } | 
|  |  | 
|  | // This is a flat memory operation. Check to see if it has memory | 
|  | // tokens for both LDS and Memory, and if so mark it as a flat. | 
|  | bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { | 
|  | if (MI.memoperands_empty()) | 
|  | return true; | 
|  |  | 
|  | for (const MachineMemOperand *Memop : MI.memoperands()) { | 
|  | unsigned AS = Memop->getAddrSpace(); | 
|  | if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, | 
|  | WaitcntBrackets *ScoreBrackets) { | 
|  | // Now look at the instruction opcode. If it is a memory access | 
|  | // instruction, update the upper-bound of the appropriate counter's | 
|  | // bracket and the destination operand scores. | 
|  | // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. | 
|  | if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { | 
|  | if (TII->isAlwaysGDS(Inst.getOpcode()) || | 
|  | TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); | 
|  | } else { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); | 
|  | } | 
|  | } else if (TII->isFLAT(Inst)) { | 
|  | assert(Inst.mayLoad() || Inst.mayStore()); | 
|  |  | 
|  | if (TII->usesVM_CNT(Inst)) { | 
|  | if (!ST->hasVscnt()) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); | 
|  | else if (Inst.mayLoad() && | 
|  | AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); | 
|  | else | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); | 
|  | } | 
|  |  | 
|  | if (TII->usesLGKM_CNT(Inst)) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); | 
|  |  | 
|  | // This is a flat memory operation, so note it - it will require | 
|  | // that both the VM and LGKM be flushed to zero if it is pending when | 
|  | // a VM or LGKM dependency occurs. | 
|  | if (mayAccessLDSThroughFlat(Inst)) | 
|  | ScoreBrackets->setPendingFlat(); | 
|  | } | 
|  | } else if (SIInstrInfo::isVMEM(Inst) && | 
|  | // TODO: get a better carve out. | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && | 
|  | Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { | 
|  | if (!ST->hasVscnt()) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); | 
|  | else if ((Inst.mayLoad() && | 
|  | AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || | 
|  | /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ | 
|  | (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); | 
|  | else if (Inst.mayStore()) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); | 
|  |  | 
|  | if (ST->vmemWriteNeedsExpWaitcnt() && | 
|  | (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); | 
|  | } | 
|  | } else if (TII->isSMRD(Inst)) { | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); | 
|  | } else if (Inst.isCall()) { | 
|  | if (callWaitsOnFunctionReturn(Inst)) { | 
|  | // Act as a wait on everything | 
|  | ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV)); | 
|  | } else { | 
|  | // May need to way wait for anything. | 
|  | ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); | 
|  | } | 
|  | } else { | 
|  | switch (Inst.getOpcode()) { | 
|  | case AMDGPU::S_SENDMSG: | 
|  | case AMDGPU::S_SENDMSGHALT: | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); | 
|  | break; | 
|  | case AMDGPU::EXP: | 
|  | case AMDGPU::EXP_DONE: { | 
|  | int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); | 
|  | if (Imm >= 32 && Imm <= 63) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); | 
|  | else if (Imm >= 12 && Imm <= 15) | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); | 
|  | else | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); | 
|  | break; | 
|  | } | 
|  | case AMDGPU::S_MEMTIME: | 
|  | case AMDGPU::S_MEMREALTIME: | 
|  | ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, | 
|  | uint32_t OtherScore) { | 
|  | uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; | 
|  | uint32_t OtherShifted = | 
|  | OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; | 
|  | Score = std::max(MyShifted, OtherShifted); | 
|  | return OtherShifted > MyShifted; | 
|  | } | 
|  |  | 
|  | /// Merge the pending events and associater score brackets of \p Other into | 
|  | /// this brackets status. | 
|  | /// | 
|  | /// Returns whether the merge resulted in a change that requires tighter waits | 
|  | /// (i.e. the merged brackets strictly dominate the original brackets). | 
|  | bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { | 
|  | bool StrictDom = false; | 
|  |  | 
|  | for (auto T : inst_counter_types()) { | 
|  | // Merge event flags for this counter | 
|  | const bool OldOutOfOrder = counterOutOfOrder(T); | 
|  | const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; | 
|  | const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; | 
|  | if (OtherEvents & ~OldEvents) | 
|  | StrictDom = true; | 
|  | if (Other.MixedPendingEvents[T] || | 
|  | (OldEvents && OtherEvents && OldEvents != OtherEvents)) | 
|  | MixedPendingEvents[T] = true; | 
|  | PendingEvents |= OtherEvents; | 
|  |  | 
|  | // Merge scores for this counter | 
|  | const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; | 
|  | const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; | 
|  | MergeInfo M; | 
|  | M.OldLB = ScoreLBs[T]; | 
|  | M.OtherLB = Other.ScoreLBs[T]; | 
|  | M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; | 
|  | M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; | 
|  |  | 
|  | const uint32_t NewUB = ScoreUBs[T] + M.MyShift; | 
|  | if (NewUB < ScoreUBs[T]) | 
|  | report_fatal_error("waitcnt score overflow"); | 
|  | ScoreUBs[T] = NewUB; | 
|  | ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); | 
|  |  | 
|  | StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); | 
|  |  | 
|  | bool RegStrictDom = false; | 
|  | for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; | 
|  | J++) { | 
|  | RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); | 
|  | } | 
|  |  | 
|  | if (T == LGKM_CNT) { | 
|  | for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; | 
|  | J != E; J++) { | 
|  | RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RegStrictDom && !OldOutOfOrder) | 
|  | StrictDom = true; | 
|  | } | 
|  |  | 
|  | VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); | 
|  | SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); | 
|  |  | 
|  | return StrictDom; | 
|  | } | 
|  |  | 
|  | // Generate s_waitcnt instructions where needed. | 
|  | bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, | 
|  | MachineBasicBlock &Block, | 
|  | WaitcntBrackets &ScoreBrackets) { | 
|  | bool Modified = false; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "*** Block" << Block.getNumber() << " ***"; | 
|  | ScoreBrackets.dump(); | 
|  | }); | 
|  |  | 
|  | // Walk over the instructions. | 
|  | MachineInstr *OldWaitcntInstr = nullptr; | 
|  |  | 
|  | for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), | 
|  | E = Block.instr_end(); | 
|  | Iter != E;) { | 
|  | MachineInstr &Inst = *Iter; | 
|  |  | 
|  | // Track pre-existing waitcnts from earlier iterations. | 
|  | if (Inst.getOpcode() == AMDGPU::S_WAITCNT || | 
|  | (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && | 
|  | Inst.getOperand(0).isReg() && | 
|  | Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { | 
|  | if (!OldWaitcntInstr) | 
|  | OldWaitcntInstr = &Inst; | 
|  | ++Iter; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool VCCZBugWorkAround = false; | 
|  | if (readsVCCZ(Inst) && | 
|  | (!VCCZBugHandledSet.count(&Inst))) { | 
|  | if (ScoreBrackets.getScoreLB(LGKM_CNT) < | 
|  | ScoreBrackets.getScoreUB(LGKM_CNT) && | 
|  | ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { | 
|  | if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) | 
|  | VCCZBugWorkAround = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate an s_waitcnt instruction to be placed before | 
|  | // cur_Inst, if needed. | 
|  | Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); | 
|  | OldWaitcntInstr = nullptr; | 
|  |  | 
|  | updateEventWaitcntAfter(Inst, &ScoreBrackets); | 
|  |  | 
|  | #if 0 // TODO: implement resource type check controlled by options with ub = LB. | 
|  | // If this instruction generates a S_SETVSKIP because it is an | 
|  | // indexed resource, and we are on Tahiti, then it will also force | 
|  | // an S_WAITCNT vmcnt(0) | 
|  | if (RequireCheckResourceType(Inst, context)) { | 
|  | // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. | 
|  | ScoreBrackets->setScoreLB(VM_CNT, | 
|  | ScoreBrackets->getScoreUB(VM_CNT)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | Inst.print(dbgs()); | 
|  | ScoreBrackets.dump(); | 
|  | }); | 
|  |  | 
|  | // TODO: Remove this work-around after fixing the scheduler and enable the | 
|  | // assert above. | 
|  | if (VCCZBugWorkAround) { | 
|  | // Restore the vccz bit.  Any time a value is written to vcc, the vcc | 
|  | // bit is updated, so we can restore the bit by reading the value of | 
|  | // vcc and then writing it back to the register. | 
|  | BuildMI(Block, Inst, Inst.getDebugLoc(), | 
|  | TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), | 
|  | TRI->getVCC()) | 
|  | .addReg(TRI->getVCC()); | 
|  | VCCZBugHandledSet.insert(&Inst); | 
|  | Modified = true; | 
|  | } | 
|  |  | 
|  | ++Iter; | 
|  | } | 
|  |  | 
|  | return Modified; | 
|  | } | 
|  |  | 
|  | bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { | 
|  | ST = &MF.getSubtarget<GCNSubtarget>(); | 
|  | TII = ST->getInstrInfo(); | 
|  | TRI = &TII->getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | IV = AMDGPU::getIsaVersion(ST->getCPU()); | 
|  | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | ForceEmitZeroWaitcnts = ForceEmitZeroFlag; | 
|  | for (auto T : inst_counter_types()) | 
|  | ForceEmitWaitcnt[T] = false; | 
|  |  | 
|  | HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); | 
|  | HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); | 
|  | HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); | 
|  | HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; | 
|  |  | 
|  | HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); | 
|  | HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); | 
|  | assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); | 
|  | assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); | 
|  |  | 
|  | RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); | 
|  | RegisterEncoding.VGPRL = | 
|  | RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; | 
|  | RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); | 
|  | RegisterEncoding.SGPRL = | 
|  | RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; | 
|  |  | 
|  | TrackedWaitcntSet.clear(); | 
|  | VCCZBugHandledSet.clear(); | 
|  | RpotIdxMap.clear(); | 
|  | BlockInfos.clear(); | 
|  |  | 
|  | // Keep iterating over the blocks in reverse post order, inserting and | 
|  | // updating s_waitcnt where needed, until a fix point is reached. | 
|  | for (MachineBasicBlock *MBB : | 
|  | ReversePostOrderTraversal<MachineFunction *>(&MF)) { | 
|  | RpotIdxMap[MBB] = BlockInfos.size(); | 
|  | BlockInfos.emplace_back(MBB); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<WaitcntBrackets> Brackets; | 
|  | bool Modified = false; | 
|  | bool Repeat; | 
|  | do { | 
|  | Repeat = false; | 
|  |  | 
|  | for (BlockInfo &BI : BlockInfos) { | 
|  | if (!BI.Dirty) | 
|  | continue; | 
|  |  | 
|  | unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); | 
|  |  | 
|  | if (BI.Incoming) { | 
|  | if (!Brackets) | 
|  | Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming); | 
|  | else | 
|  | *Brackets = *BI.Incoming; | 
|  | } else { | 
|  | if (!Brackets) | 
|  | Brackets = llvm::make_unique<WaitcntBrackets>(ST); | 
|  | else | 
|  | Brackets->clear(); | 
|  | } | 
|  |  | 
|  | Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); | 
|  | BI.Dirty = false; | 
|  |  | 
|  | if (Brackets->hasPending()) { | 
|  | BlockInfo *MoveBracketsToSucc = nullptr; | 
|  | for (MachineBasicBlock *Succ : BI.MBB->successors()) { | 
|  | unsigned SuccIdx = RpotIdxMap[Succ]; | 
|  | BlockInfo &SuccBI = BlockInfos[SuccIdx]; | 
|  | if (!SuccBI.Incoming) { | 
|  | SuccBI.Dirty = true; | 
|  | if (SuccIdx <= Idx) | 
|  | Repeat = true; | 
|  | if (!MoveBracketsToSucc) { | 
|  | MoveBracketsToSucc = &SuccBI; | 
|  | } else { | 
|  | SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets); | 
|  | } | 
|  | } else if (SuccBI.Incoming->merge(*Brackets)) { | 
|  | SuccBI.Dirty = true; | 
|  | if (SuccIdx <= Idx) | 
|  | Repeat = true; | 
|  | } | 
|  | } | 
|  | if (MoveBracketsToSucc) | 
|  | MoveBracketsToSucc->Incoming = std::move(Brackets); | 
|  | } | 
|  | } | 
|  | } while (Repeat); | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; | 
|  |  | 
|  | bool HaveScalarStores = false; | 
|  |  | 
|  | for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; | 
|  | ++BI) { | 
|  | MachineBasicBlock &MBB = *BI; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; | 
|  | ++I) { | 
|  | if (!HaveScalarStores && TII->isScalarStore(*I)) | 
|  | HaveScalarStores = true; | 
|  |  | 
|  | if (I->getOpcode() == AMDGPU::S_ENDPGM || | 
|  | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) | 
|  | EndPgmBlocks.push_back(&MBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HaveScalarStores) { | 
|  | // If scalar writes are used, the cache must be flushed or else the next | 
|  | // wave to reuse the same scratch memory can be clobbered. | 
|  | // | 
|  | // Insert s_dcache_wb at wave termination points if there were any scalar | 
|  | // stores, and only if the cache hasn't already been flushed. This could be | 
|  | // improved by looking across blocks for flushes in postdominating blocks | 
|  | // from the stores but an explicitly requested flush is probably very rare. | 
|  | for (MachineBasicBlock *MBB : EndPgmBlocks) { | 
|  | bool SeenDCacheWB = false; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; | 
|  | ++I) { | 
|  | if (I->getOpcode() == AMDGPU::S_DCACHE_WB) | 
|  | SeenDCacheWB = true; | 
|  | else if (TII->isScalarStore(*I)) | 
|  | SeenDCacheWB = false; | 
|  |  | 
|  | // FIXME: It would be better to insert this before a waitcnt if any. | 
|  | if ((I->getOpcode() == AMDGPU::S_ENDPGM || | 
|  | I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && | 
|  | !SeenDCacheWB) { | 
|  | Modified = true; | 
|  | BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MFI->isEntryFunction()) { | 
|  | // Wait for any outstanding memory operations that the input registers may | 
|  | // depend on. We can't track them and it's better to the wait after the | 
|  | // costly call sequence. | 
|  |  | 
|  | // TODO: Could insert earlier and schedule more liberally with operations | 
|  | // that only use caller preserved registers. | 
|  | MachineBasicBlock &EntryBB = MF.front(); | 
|  | if (ST->hasVscnt()) | 
|  | BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), | 
|  | TII->get(AMDGPU::S_WAITCNT_VSCNT)) | 
|  | .addReg(AMDGPU::SGPR_NULL, RegState::Undef) | 
|  | .addImm(0); | 
|  | BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) | 
|  | .addImm(0); | 
|  |  | 
|  | Modified = true; | 
|  | } | 
|  |  | 
|  | return Modified; | 
|  | } |