|  | //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// Armv6 introduced instructions to perform 32-bit SIMD operations. The | 
|  | /// purpose of this pass is do some IR pattern matching to create ACLE | 
|  | /// DSP intrinsics, which map on these 32-bit SIMD operations. | 
|  | /// This pass runs only when unaligned accesses is supported/enabled. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/LoopAccessAnalysis.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/NoFolder.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/PassRegistry.h" | 
|  | #include "llvm/PassSupport.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "ARM.h" | 
|  | #include "ARMSubtarget.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "arm-parallel-dsp" | 
|  |  | 
|  | STATISTIC(NumSMLAD , "Number of smlad instructions generated"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable the ARM Parallel DSP pass")); | 
|  |  | 
|  | namespace { | 
|  | struct OpChain; | 
|  | struct BinOpChain; | 
|  | struct Reduction; | 
|  |  | 
|  | using OpChainList     = SmallVector<std::unique_ptr<OpChain>, 8>; | 
|  | using ReductionList   = SmallVector<Reduction, 8>; | 
|  | using ValueList       = SmallVector<Value*, 8>; | 
|  | using MemInstList     = SmallVector<Instruction*, 8>; | 
|  | using PMACPair        = std::pair<BinOpChain*,BinOpChain*>; | 
|  | using PMACPairList    = SmallVector<PMACPair, 8>; | 
|  | using Instructions    = SmallVector<Instruction*,16>; | 
|  | using MemLocList      = SmallVector<MemoryLocation, 4>; | 
|  |  | 
|  | struct OpChain { | 
|  | Instruction   *Root; | 
|  | ValueList     AllValues; | 
|  | MemInstList   VecLd;    // List of all load instructions. | 
|  | MemLocList    MemLocs;  // All memory locations read by this tree. | 
|  | bool          ReadOnly = true; | 
|  |  | 
|  | OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } | 
|  | virtual ~OpChain() = default; | 
|  |  | 
|  | void SetMemoryLocations() { | 
|  | const auto Size = MemoryLocation::UnknownSize; | 
|  | for (auto *V : AllValues) { | 
|  | if (auto *I = dyn_cast<Instruction>(V)) { | 
|  | if (I->mayWriteToMemory()) | 
|  | ReadOnly = false; | 
|  | if (auto *Ld = dyn_cast<LoadInst>(V)) | 
|  | MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned size() const { return AllValues.size(); } | 
|  | }; | 
|  |  | 
|  | // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. | 
|  | // 'Reduction' contains the phi-node and accumulator statement from where we | 
|  | // start pattern matching, and 'BinOpChain' the multiplication | 
|  | // instructions that are candidates for parallel execution. | 
|  | struct BinOpChain : public OpChain { | 
|  | ValueList     LHS;      // List of all (narrow) left hand operands. | 
|  | ValueList     RHS;      // List of all (narrow) right hand operands. | 
|  | bool Exchange = false; | 
|  |  | 
|  | BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : | 
|  | OpChain(I, lhs), LHS(lhs), RHS(rhs) { | 
|  | for (auto *V : RHS) | 
|  | AllValues.push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct Reduction { | 
|  | PHINode         *Phi;             // The Phi-node from where we start | 
|  | // pattern matching. | 
|  | Instruction     *AccIntAdd;       // The accumulating integer add statement, | 
|  | // i.e, the reduction statement. | 
|  |  | 
|  | OpChainList     MACCandidates;    // The MAC candidates associated with | 
|  | // this reduction statement. | 
|  | Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; | 
|  | }; | 
|  |  | 
|  | class ARMParallelDSP : public LoopPass { | 
|  | ScalarEvolution   *SE; | 
|  | AliasAnalysis     *AA; | 
|  | TargetLibraryInfo *TLI; | 
|  | DominatorTree     *DT; | 
|  | LoopInfo          *LI; | 
|  | Loop              *L; | 
|  | const DataLayout  *DL; | 
|  | Module            *M; | 
|  |  | 
|  | bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs); | 
|  | bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); | 
|  | PMACPairList CreateParallelMACPairs(OpChainList &Candidates); | 
|  | Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, | 
|  | Instruction *Acc, bool Exchange, | 
|  | Instruction *InsertAfter); | 
|  |  | 
|  | /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate | 
|  | /// Dual performs two signed 16x16-bit multiplications. It adds the | 
|  | /// products to a 32-bit accumulate operand. Optionally, the instruction can | 
|  | /// exchange the halfwords of the second operand before performing the | 
|  | /// arithmetic. | 
|  | bool MatchSMLAD(Function &F); | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | ARMParallelDSP() : LoopPass(ID) { } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | LoopPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<ScalarEvolutionWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetPassConfig>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *TheLoop, LPPassManager &) override { | 
|  | if (DisableParallelDSP) | 
|  | return false; | 
|  | L = TheLoop; | 
|  | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | auto &TPC = getAnalysis<TargetPassConfig>(); | 
|  |  | 
|  | BasicBlock *Header = TheLoop->getHeader(); | 
|  | if (!Header) | 
|  | return false; | 
|  |  | 
|  | // TODO: We assume the loop header and latch to be the same block. | 
|  | // This is not a fundamental restriction, but lifting this would just | 
|  | // require more work to do the transformation and then patch up the CFG. | 
|  | if (Header != TheLoop->getLoopLatch()) { | 
|  | LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " | 
|  | "running pass ARMParallelDSP\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Function &F = *Header->getParent(); | 
|  | M = F.getParent(); | 
|  | DL = &M->getDataLayout(); | 
|  |  | 
|  | auto &TM = TPC.getTM<TargetMachine>(); | 
|  | auto *ST = &TM.getSubtarget<ARMSubtarget>(F); | 
|  |  | 
|  | if (!ST->allowsUnalignedMem()) { | 
|  | LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " | 
|  | "running pass ARMParallelDSP\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ST->hasDSP()) { | 
|  | LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " | 
|  | "ARMParallelDSP\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); | 
|  | bool Changes = false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); | 
|  | LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); | 
|  | Changes = MatchSMLAD(F); | 
|  | return Changes; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP | 
|  | // instructions, which is set to 16. So here we should collect all i8 and i16 | 
|  | // narrow operations. | 
|  | // TODO: we currently only collect i16, and will support i8 later, so that's | 
|  | // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. | 
|  | template<unsigned MaxBitWidth> | 
|  | static bool IsNarrowSequence(Value *V, ValueList &VL) { | 
|  | LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); | 
|  | ConstantInt *CInt; | 
|  |  | 
|  | if (match(V, m_ConstantInt(CInt))) { | 
|  | // TODO: if a constant is used, it needs to fit within the bit width. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | Value *Val, *LHS, *RHS; | 
|  | if (match(V, m_Trunc(m_Value(Val)))) { | 
|  | if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) | 
|  | return IsNarrowSequence<MaxBitWidth>(Val, VL); | 
|  | } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { | 
|  | // TODO: we need to implement sadd16/sadd8 for this, which enables to | 
|  | // also do the rewrite for smlad8.ll, but it is unsupported for now. | 
|  | LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); | 
|  | return false; | 
|  | } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { | 
|  | if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { | 
|  | LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << | 
|  | cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (match(Val, m_Load(m_Value()))) { | 
|  | LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); | 
|  | VL.push_back(Val); | 
|  | VL.push_back(I); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Element-by-element comparison of Value lists returning true if they are | 
|  | // instructions with the same opcode or constants with the same value. | 
|  | static bool AreSymmetrical(const ValueList &VL0, | 
|  | const ValueList &VL1) { | 
|  | if (VL0.size() != VL1.size()) { | 
|  | LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " | 
|  | << VL0.size() << " != " << VL1.size() << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const unsigned Pairs = VL0.size(); | 
|  | LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); | 
|  |  | 
|  | for (unsigned i = 0; i < Pairs; ++i) { | 
|  | const Value *V0 = VL0[i]; | 
|  | const Value *V1 = VL1[i]; | 
|  | const auto *Inst0 = dyn_cast<Instruction>(V0); | 
|  | const auto *Inst1 = dyn_cast<Instruction>(V1); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; | 
|  | dbgs() << "mul1: "; V0->dump(); | 
|  | dbgs() << "mul2: "; V1->dump()); | 
|  |  | 
|  | if (!Inst0 || !Inst1) | 
|  | return false; | 
|  |  | 
|  | if (Inst0->isSameOperationAs(Inst1)) { | 
|  | LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const APInt *C0, *C1; | 
|  | if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<typename MemInst> | 
|  | static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, | 
|  | MemInstList &VecMem, const DataLayout &DL, | 
|  | ScalarEvolution &SE) { | 
|  | if (!MemOp0->isSimple() || !MemOp1->isSimple()) { | 
|  | LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); | 
|  | return false; | 
|  | } | 
|  | if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { | 
|  | VecMem.clear(); | 
|  | VecMem.push_back(MemOp0); | 
|  | VecMem.push_back(MemOp1); | 
|  | LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); | 
|  | return true; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, | 
|  | MemInstList &VecMem) { | 
|  | if (!Ld0 || !Ld1) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; | 
|  | dbgs() << "Ld0:"; Ld0->dump(); | 
|  | dbgs() << "Ld1:"; Ld1->dump(); | 
|  | ); | 
|  |  | 
|  | if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { | 
|  | LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE); | 
|  | } | 
|  |  | 
|  | PMACPairList | 
|  | ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) { | 
|  | const unsigned Elems = Candidates.size(); | 
|  | PMACPairList PMACPairs; | 
|  |  | 
|  | if (Elems < 2) | 
|  | return PMACPairs; | 
|  |  | 
|  | SmallPtrSet<const Instruction*, 4> Paired; | 
|  | for (unsigned i = 0; i < Elems; ++i) { | 
|  | BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); | 
|  | if (Paired.count(PMul0->Root)) | 
|  | continue; | 
|  |  | 
|  | for (unsigned j = 0; j < Elems; ++j) { | 
|  | if (i == j) | 
|  | continue; | 
|  |  | 
|  | BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get()); | 
|  | if (Paired.count(PMul1->Root)) | 
|  | continue; | 
|  |  | 
|  | const Instruction *Mul0 = PMul0->Root; | 
|  | const Instruction *Mul1 = PMul1->Root; | 
|  | if (Mul0 == Mul1) | 
|  | continue; | 
|  |  | 
|  | assert(PMul0 != PMul1 && "expected different chains"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; | 
|  | dbgs() << "- "; Mul0->dump(); | 
|  | dbgs() << "- "; Mul1->dump()); | 
|  |  | 
|  | const ValueList &Mul0_LHS = PMul0->LHS; | 
|  | const ValueList &Mul0_RHS = PMul0->RHS; | 
|  | const ValueList &Mul1_LHS = PMul1->LHS; | 
|  | const ValueList &Mul1_RHS = PMul1->RHS; | 
|  |  | 
|  | if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) || | 
|  | !AreSymmetrical(Mul0_RHS, Mul1_RHS)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); | 
|  | // The first elements of each vector should be loads with sexts. If we | 
|  | // find that its two pairs of consecutive loads, then these can be | 
|  | // transformed into two wider loads and the users can be replaced with | 
|  | // DSP intrinsics. | 
|  | bool Found = false; | 
|  | for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) { | 
|  | auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]); | 
|  | auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]); | 
|  | auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]); | 
|  | auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]); | 
|  |  | 
|  | if (!Ld0 || !Ld1 || !Ld2 || !Ld3) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n" | 
|  | << "\t Ld0: " << *Ld0 << "\n" | 
|  | << "\t Ld1: " << *Ld1 << "\n" | 
|  | << "and operands " << x + 2 << ":\n" | 
|  | << "\t Ld2: " << *Ld2 << "\n" | 
|  | << "\t Ld3: " << *Ld3 << "\n"); | 
|  |  | 
|  | if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { | 
|  | if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { | 
|  | LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); | 
|  | PMACPairs.push_back(std::make_pair(PMul0, PMul1)); | 
|  | Found = true; | 
|  | } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { | 
|  | LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); | 
|  | LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n"); | 
|  | PMul1->Exchange = true; | 
|  | PMACPairs.push_back(std::make_pair(PMul0, PMul1)); | 
|  | Found = true; | 
|  | } | 
|  | } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd)) { | 
|  | if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { | 
|  | LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); | 
|  | LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n"); | 
|  | LLVM_DEBUG(dbgs() << "    and swapping muls\n"); | 
|  | PMul0->Exchange = true; | 
|  | // Only the second operand can be exchanged, so swap the muls. | 
|  | PMACPairs.push_back(std::make_pair(PMul1, PMul0)); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Found) { | 
|  | Paired.insert(Mul0); | 
|  | Paired.insert(Mul1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return PMACPairs; | 
|  | } | 
|  |  | 
|  | bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction, | 
|  | PMACPairList &PMACPairs) { | 
|  | Instruction *Acc = Reduction.Phi; | 
|  | Instruction *InsertAfter = Reduction.AccIntAdd; | 
|  |  | 
|  | for (auto &Pair : PMACPairs) { | 
|  | BinOpChain *PMul0 = Pair.first; | 
|  | BinOpChain *PMul1 = Pair.second; | 
|  | LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; | 
|  | dbgs() << "- "; PMul0->Root->dump(); | 
|  | dbgs() << "- "; PMul1->Root->dump()); | 
|  |  | 
|  | auto *VecLd0 = cast<LoadInst>(PMul0->VecLd[0]); | 
|  | auto *VecLd1 = cast<LoadInst>(PMul1->VecLd[0]); | 
|  | Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, PMul1->Exchange, InsertAfter); | 
|  | InsertAfter = Acc; | 
|  | } | 
|  |  | 
|  | if (Acc != Reduction.Phi) { | 
|  | LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); | 
|  | Reduction.AccIntAdd->replaceAllUsesWith(Acc); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, | 
|  | ReductionList &Reductions) { | 
|  | RecurrenceDescriptor RecDesc; | 
|  | const bool HasFnNoNaNAttr = | 
|  | F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; | 
|  | const BasicBlock *Latch = TheLoop->getLoopLatch(); | 
|  |  | 
|  | // We need a preheader as getIncomingValueForBlock assumes there is one. | 
|  | if (!TheLoop->getLoopPreheader()) { | 
|  | LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (PHINode &Phi : Header->phis()) { | 
|  | const auto *Ty = Phi.getType(); | 
|  | if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) | 
|  | continue; | 
|  |  | 
|  | const bool IsReduction = | 
|  | RecurrenceDescriptor::AddReductionVar(&Phi, | 
|  | RecurrenceDescriptor::RK_IntegerAdd, | 
|  | TheLoop, HasFnNoNaNAttr, RecDesc); | 
|  | if (!IsReduction) | 
|  | continue; | 
|  |  | 
|  | Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); | 
|  | if (!Acc) | 
|  | continue; | 
|  |  | 
|  | Reductions.push_back(Reduction(&Phi, Acc)); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "\nAccumulating integer additions (reductions) found:\n"; | 
|  | for (auto &R : Reductions) { | 
|  | dbgs() << "-  "; R.Phi->dump(); | 
|  | dbgs() << "-> "; R.AccIntAdd->dump(); | 
|  | } | 
|  | ); | 
|  | } | 
|  |  | 
|  | static void AddMACCandidate(OpChainList &Candidates, | 
|  | Instruction *Mul, | 
|  | Value *MulOp0, Value *MulOp1) { | 
|  | LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); | 
|  | assert(Mul->getOpcode() == Instruction::Mul && | 
|  | "expected mul instruction"); | 
|  | ValueList LHS; | 
|  | ValueList RHS; | 
|  | if (IsNarrowSequence<16>(MulOp0, LHS) && | 
|  | IsNarrowSequence<16>(MulOp1, RHS)) { | 
|  | LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); | 
|  | Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void MatchParallelMACSequences(Reduction &R, | 
|  | OpChainList &Candidates) { | 
|  | Instruction *Acc = R.AccIntAdd; | 
|  | LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc); | 
|  |  | 
|  | // Returns false to signal the search should be stopped. | 
|  | std::function<bool(Value*)> Match = | 
|  | [&Candidates, &Match](Value *V) -> bool { | 
|  |  | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return false; | 
|  |  | 
|  | Value *MulOp0, *MulOp1; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | if (Match(I->getOperand(0)) || (Match(I->getOperand(1)))) | 
|  | return true; | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (match (I, (m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) { | 
|  | AddMACCandidate(Candidates, I, MulOp0, MulOp1); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case Instruction::SExt: | 
|  | if (match (I, (m_SExt(m_Mul(m_Value(MulOp0), m_Value(MulOp1)))))) { | 
|  | Instruction *Mul = cast<Instruction>(I->getOperand(0)); | 
|  | AddMACCandidate(Candidates, Mul, MulOp0, MulOp1); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | while (Match (Acc)); | 
|  | LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found " | 
|  | << Candidates.size() << " candidates.\n"); | 
|  | } | 
|  |  | 
|  | // Collects all instructions that are not part of the MAC chains, which is the | 
|  | // set of instructions that can potentially alias with the MAC operands. | 
|  | static void AliasCandidates(BasicBlock *Header, Instructions &Reads, | 
|  | Instructions &Writes) { | 
|  | for (auto &I : *Header) { | 
|  | if (I.mayReadFromMemory()) | 
|  | Reads.push_back(&I); | 
|  | if (I.mayWriteToMemory()) | 
|  | Writes.push_back(&I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether statements in the basic block that write to memory alias with | 
|  | // the memory locations accessed by the MAC-chains. | 
|  | // TODO: we need the read statements when we accept more complicated chains. | 
|  | static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, | 
|  | Instructions &Writes, OpChainList &MACCandidates) { | 
|  | LLVM_DEBUG(dbgs() << "Alias checks:\n"); | 
|  | for (auto &MAC : MACCandidates) { | 
|  | LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); | 
|  |  | 
|  | // At the moment, we allow only simple chains that only consist of reads, | 
|  | // accumulate their result with an integer add, and thus that don't write | 
|  | // memory, and simply bail if they do. | 
|  | if (!MAC->ReadOnly) | 
|  | return true; | 
|  |  | 
|  | // Now for all writes in the basic block, check that they don't alias with | 
|  | // the memory locations accessed by our MAC-chain: | 
|  | for (auto *I : Writes) { | 
|  | LLVM_DEBUG(dbgs() << "- "; I->dump()); | 
|  | assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); | 
|  | for (auto &MemLoc : MAC->MemLocs) { | 
|  | if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), | 
|  | ModRefInfo::ModRef))) { | 
|  | LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool CheckMACMemory(OpChainList &Candidates) { | 
|  | for (auto &C : Candidates) { | 
|  | // A mul has 2 operands, and a narrow op consist of sext and a load; thus | 
|  | // we expect at least 4 items in this operand value list. | 
|  | if (C->size() < 4) { | 
|  | LLVM_DEBUG(dbgs() << "Operand list too short.\n"); | 
|  | return false; | 
|  | } | 
|  | C->SetMemoryLocations(); | 
|  | ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; | 
|  | ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; | 
|  |  | 
|  | // Use +=2 to skip over the expected extend instructions. | 
|  | for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { | 
|  | if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector | 
|  | // multiplications. | 
|  | // To use SMLAD: | 
|  | // 1) we first need to find integer add reduction PHIs, | 
|  | // 2) then from the PHI, look for this pattern: | 
|  | // | 
|  | // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] | 
|  | // ld0 = load i16 | 
|  | // sext0 = sext i16 %ld0 to i32 | 
|  | // ld1 = load i16 | 
|  | // sext1 = sext i16 %ld1 to i32 | 
|  | // mul0 = mul %sext0, %sext1 | 
|  | // ld2 = load i16 | 
|  | // sext2 = sext i16 %ld2 to i32 | 
|  | // ld3 = load i16 | 
|  | // sext3 = sext i16 %ld3 to i32 | 
|  | // mul1 = mul i32 %sext2, %sext3 | 
|  | // add0 = add i32 %mul0, %acc0 | 
|  | // acc1 = add i32 %add0, %mul1 | 
|  | // | 
|  | // Which can be selected to: | 
|  | // | 
|  | // ldr.h r0 | 
|  | // ldr.h r1 | 
|  | // smlad r2, r0, r1, r2 | 
|  | // | 
|  | // If constants are used instead of loads, these will need to be hoisted | 
|  | // out and into a register. | 
|  | // | 
|  | // If loop invariants are used instead of loads, these need to be packed | 
|  | // before the loop begins. | 
|  | // | 
|  | bool ARMParallelDSP::MatchSMLAD(Function &F) { | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; | 
|  | dbgs() << "Header block:\n"; Header->dump(); | 
|  | dbgs() << "Loop info:\n\n"; L->dump()); | 
|  |  | 
|  | bool Changed = false; | 
|  | ReductionList Reductions; | 
|  | MatchReductions(F, L, Header, Reductions); | 
|  |  | 
|  | for (auto &R : Reductions) { | 
|  | OpChainList MACCandidates; | 
|  | MatchParallelMACSequences(R, MACCandidates); | 
|  | if (!CheckMACMemory(MACCandidates)) | 
|  | continue; | 
|  |  | 
|  | R.MACCandidates = std::move(MACCandidates); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "MAC candidates:\n"; | 
|  | for (auto &M : R.MACCandidates) | 
|  | M->Root->dump(); | 
|  | dbgs() << "\n";); | 
|  | } | 
|  |  | 
|  | // Collect all instructions that may read or write memory. Our alias | 
|  | // analysis checks bail out if any of these instructions aliases with an | 
|  | // instruction from the MAC-chain. | 
|  | Instructions Reads, Writes; | 
|  | AliasCandidates(Header, Reads, Writes); | 
|  |  | 
|  | for (auto &R : Reductions) { | 
|  | if (AreAliased(AA, Reads, Writes, R.MACCandidates)) | 
|  | return false; | 
|  | PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates); | 
|  | Changed |= InsertParallelMACs(R, PMACPairs); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static LoadInst *CreateLoadIns(IRBuilder<NoFolder> &IRB, LoadInst &BaseLoad, | 
|  | const Type *LoadTy) { | 
|  | const unsigned AddrSpace = BaseLoad.getPointerAddressSpace(); | 
|  |  | 
|  | Value *VecPtr = IRB.CreateBitCast(BaseLoad.getPointerOperand(), | 
|  | LoadTy->getPointerTo(AddrSpace)); | 
|  | return IRB.CreateAlignedLoad(VecPtr, BaseLoad.getAlignment()); | 
|  | } | 
|  |  | 
|  | Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, | 
|  | Instruction *Acc, bool Exchange, | 
|  | Instruction *InsertAfter) { | 
|  | LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n" | 
|  | << "- " << *VecLd0 << "\n" | 
|  | << "- " << *VecLd1 << "\n" | 
|  | << "- " << *Acc << "\n" | 
|  | << "Exchange: " << Exchange << "\n"); | 
|  |  | 
|  | IRBuilder<NoFolder> Builder(InsertAfter->getParent(), | 
|  | ++BasicBlock::iterator(InsertAfter)); | 
|  |  | 
|  | // Replace the reduction chain with an intrinsic call | 
|  | const Type *Ty = IntegerType::get(M->getContext(), 32); | 
|  | LoadInst *NewLd0 = CreateLoadIns(Builder, VecLd0[0], Ty); | 
|  | LoadInst *NewLd1 = CreateLoadIns(Builder, VecLd1[0], Ty); | 
|  | Value* Args[] = { NewLd0, NewLd1, Acc }; | 
|  | Function *SMLAD = nullptr; | 
|  | if (Exchange) | 
|  | SMLAD = Acc->getType()->isIntegerTy(32) ? | 
|  | Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : | 
|  | Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); | 
|  | else | 
|  | SMLAD = Acc->getType()->isIntegerTy(32) ? | 
|  | Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : | 
|  | Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); | 
|  | CallInst *Call = Builder.CreateCall(SMLAD, Args); | 
|  | NumSMLAD++; | 
|  | return Call; | 
|  | } | 
|  |  | 
|  | Pass *llvm::createARMParallelDSPPass() { | 
|  | return new ARMParallelDSP(); | 
|  | } | 
|  |  | 
|  | char ARMParallelDSP::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", | 
|  | "Transform loops to use DSP intrinsics", false, false) | 
|  | INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", | 
|  | "Transform loops to use DSP intrinsics", false, false) |