|  | //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass identifies expensive constants to hoist and coalesces them to | 
|  | // better prepare it for SelectionDAG-based code generation. This works around | 
|  | // the limitations of the basic-block-at-a-time approach. | 
|  | // | 
|  | // First it scans all instructions for integer constants and calculates its | 
|  | // cost. If the constant can be folded into the instruction (the cost is | 
|  | // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't | 
|  | // consider it expensive and leave it alone. This is the default behavior and | 
|  | // the default implementation of getIntImmCost will always return TCC_Free. | 
|  | // | 
|  | // If the cost is more than TCC_BASIC, then the integer constant can't be folded | 
|  | // into the instruction and it might be beneficial to hoist the constant. | 
|  | // Similar constants are coalesced to reduce register pressure and | 
|  | // materialization code. | 
|  | // | 
|  | // When a constant is hoisted, it is also hidden behind a bitcast to force it to | 
|  | // be live-out of the basic block. Otherwise the constant would be just | 
|  | // duplicated and each basic block would have its own copy in the SelectionDAG. | 
|  | // The SelectionDAG recognizes such constants as opaque and doesn't perform | 
|  | // certain transformations on them, which would create a new expensive constant. | 
|  | // | 
|  | // This optimization is only applied to integer constants in instructions and | 
|  | // simple (this means not nested) constant cast expressions. For example: | 
|  | // %0 = load i64* inttoptr (i64 big_constant to i64*) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/ConstantHoisting.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace consthoist; | 
|  |  | 
|  | #define DEBUG_TYPE "consthoist" | 
|  |  | 
|  | STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); | 
|  | STATISTIC(NumConstantsRebased, "Number of constants rebased"); | 
|  |  | 
|  | static cl::opt<bool> ConstHoistWithBlockFrequency( | 
|  | "consthoist-with-block-frequency", cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable the use of the block frequency analysis to reduce the " | 
|  | "chance to execute const materialization more frequently than " | 
|  | "without hoisting.")); | 
|  |  | 
|  | static cl::opt<bool> ConstHoistGEP( | 
|  | "consthoist-gep", cl::init(false), cl::Hidden, | 
|  | cl::desc("Try hoisting constant gep expressions")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// The constant hoisting pass. | 
|  | class ConstantHoistingLegacyPass : public FunctionPass { | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | ConstantHoistingLegacyPass() : FunctionPass(ID) { | 
|  | initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &Fn) override; | 
|  |  | 
|  | StringRef getPassName() const override { return "Constant Hoisting"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | if (ConstHoistWithBlockFrequency) | 
|  | AU.addRequired<BlockFrequencyInfoWrapperPass>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | void releaseMemory() override { Impl.releaseMemory(); } | 
|  |  | 
|  | private: | 
|  | ConstantHoistingPass Impl; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char ConstantHoistingLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", | 
|  | "Constant Hoisting", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", | 
|  | "Constant Hoisting", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createConstantHoistingPass() { | 
|  | return new ConstantHoistingLegacyPass(); | 
|  | } | 
|  |  | 
|  | /// Perform the constant hoisting optimization for the given function. | 
|  | bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { | 
|  | if (skipFunction(Fn)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); | 
|  | LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); | 
|  |  | 
|  | bool MadeChange = | 
|  | Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), | 
|  | getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | ConstHoistWithBlockFrequency | 
|  | ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() | 
|  | : nullptr, | 
|  | Fn.getEntryBlock()); | 
|  |  | 
|  | if (MadeChange) { | 
|  | LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " | 
|  | << Fn.getName() << '\n'); | 
|  | LLVM_DEBUG(dbgs() << Fn); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Find the constant materialization insertion point. | 
|  | Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, | 
|  | unsigned Idx) const { | 
|  | // If the operand is a cast instruction, then we have to materialize the | 
|  | // constant before the cast instruction. | 
|  | if (Idx != ~0U) { | 
|  | Value *Opnd = Inst->getOperand(Idx); | 
|  | if (auto CastInst = dyn_cast<Instruction>(Opnd)) | 
|  | if (CastInst->isCast()) | 
|  | return CastInst; | 
|  | } | 
|  |  | 
|  | // The simple and common case. This also includes constant expressions. | 
|  | if (!isa<PHINode>(Inst) && !Inst->isEHPad()) | 
|  | return Inst; | 
|  |  | 
|  | // We can't insert directly before a phi node or an eh pad. Insert before | 
|  | // the terminator of the incoming or dominating block. | 
|  | assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); | 
|  | if (Idx != ~0U && isa<PHINode>(Inst)) | 
|  | return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator(); | 
|  |  | 
|  | // This must be an EH pad. Iterate over immediate dominators until we find a | 
|  | // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads | 
|  | // and terminators. | 
|  | auto IDom = DT->getNode(Inst->getParent())->getIDom(); | 
|  | while (IDom->getBlock()->isEHPad()) { | 
|  | assert(Entry != IDom->getBlock() && "eh pad in entry block"); | 
|  | IDom = IDom->getIDom(); | 
|  | } | 
|  |  | 
|  | return IDom->getBlock()->getTerminator(); | 
|  | } | 
|  |  | 
|  | /// Given \p BBs as input, find another set of BBs which collectively | 
|  | /// dominates \p BBs and have the minimal sum of frequencies. Return the BB | 
|  | /// set found in \p BBs. | 
|  | static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, | 
|  | BasicBlock *Entry, | 
|  | SmallPtrSet<BasicBlock *, 8> &BBs) { | 
|  | assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); | 
|  | // Nodes on the current path to the root. | 
|  | SmallPtrSet<BasicBlock *, 8> Path; | 
|  | // Candidates includes any block 'BB' in set 'BBs' that is not strictly | 
|  | // dominated by any other blocks in set 'BBs', and all nodes in the path | 
|  | // in the dominator tree from Entry to 'BB'. | 
|  | SmallPtrSet<BasicBlock *, 16> Candidates; | 
|  | for (auto BB : BBs) { | 
|  | Path.clear(); | 
|  | // Walk up the dominator tree until Entry or another BB in BBs | 
|  | // is reached. Insert the nodes on the way to the Path. | 
|  | BasicBlock *Node = BB; | 
|  | // The "Path" is a candidate path to be added into Candidates set. | 
|  | bool isCandidate = false; | 
|  | do { | 
|  | Path.insert(Node); | 
|  | if (Node == Entry || Candidates.count(Node)) { | 
|  | isCandidate = true; | 
|  | break; | 
|  | } | 
|  | assert(DT.getNode(Node)->getIDom() && | 
|  | "Entry doens't dominate current Node"); | 
|  | Node = DT.getNode(Node)->getIDom()->getBlock(); | 
|  | } while (!BBs.count(Node)); | 
|  |  | 
|  | // If isCandidate is false, Node is another Block in BBs dominating | 
|  | // current 'BB'. Drop the nodes on the Path. | 
|  | if (!isCandidate) | 
|  | continue; | 
|  |  | 
|  | // Add nodes on the Path into Candidates. | 
|  | Candidates.insert(Path.begin(), Path.end()); | 
|  | } | 
|  |  | 
|  | // Sort the nodes in Candidates in top-down order and save the nodes | 
|  | // in Orders. | 
|  | unsigned Idx = 0; | 
|  | SmallVector<BasicBlock *, 16> Orders; | 
|  | Orders.push_back(Entry); | 
|  | while (Idx != Orders.size()) { | 
|  | BasicBlock *Node = Orders[Idx++]; | 
|  | for (auto ChildDomNode : DT.getNode(Node)->getChildren()) { | 
|  | if (Candidates.count(ChildDomNode->getBlock())) | 
|  | Orders.push_back(ChildDomNode->getBlock()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit Orders in bottom-up order. | 
|  | using InsertPtsCostPair = | 
|  | std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>; | 
|  |  | 
|  | // InsertPtsMap is a map from a BB to the best insertion points for the | 
|  | // subtree of BB (subtree not including the BB itself). | 
|  | DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; | 
|  | InsertPtsMap.reserve(Orders.size() + 1); | 
|  | for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) { | 
|  | BasicBlock *Node = *RIt; | 
|  | bool NodeInBBs = BBs.count(Node); | 
|  | SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first; | 
|  | BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; | 
|  |  | 
|  | // Return the optimal insert points in BBs. | 
|  | if (Node == Entry) { | 
|  | BBs.clear(); | 
|  | if (InsertPtsFreq > BFI.getBlockFreq(Node) || | 
|  | (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) | 
|  | BBs.insert(Entry); | 
|  | else | 
|  | BBs.insert(InsertPts.begin(), InsertPts.end()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); | 
|  | // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child | 
|  | // will update its parent's ParentInsertPts and ParentPtsFreq. | 
|  | SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first; | 
|  | BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; | 
|  | // Choose to insert in Node or in subtree of Node. | 
|  | // Don't hoist to EHPad because we may not find a proper place to insert | 
|  | // in EHPad. | 
|  | // If the total frequency of InsertPts is the same as the frequency of the | 
|  | // target Node, and InsertPts contains more than one nodes, choose hoisting | 
|  | // to reduce code size. | 
|  | if (NodeInBBs || | 
|  | (!Node->isEHPad() && | 
|  | (InsertPtsFreq > BFI.getBlockFreq(Node) || | 
|  | (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { | 
|  | ParentInsertPts.insert(Node); | 
|  | ParentPtsFreq += BFI.getBlockFreq(Node); | 
|  | } else { | 
|  | ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); | 
|  | ParentPtsFreq += InsertPtsFreq; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Find an insertion point that dominates all uses. | 
|  | SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint( | 
|  | const ConstantInfo &ConstInfo) const { | 
|  | assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); | 
|  | // Collect all basic blocks. | 
|  | SmallPtrSet<BasicBlock *, 8> BBs; | 
|  | SmallPtrSet<Instruction *, 8> InsertPts; | 
|  | for (auto const &RCI : ConstInfo.RebasedConstants) | 
|  | for (auto const &U : RCI.Uses) | 
|  | BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); | 
|  |  | 
|  | if (BBs.count(Entry)) { | 
|  | InsertPts.insert(&Entry->front()); | 
|  | return InsertPts; | 
|  | } | 
|  |  | 
|  | if (BFI) { | 
|  | findBestInsertionSet(*DT, *BFI, Entry, BBs); | 
|  | for (auto BB : BBs) { | 
|  | BasicBlock::iterator InsertPt = BB->begin(); | 
|  | for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) | 
|  | ; | 
|  | InsertPts.insert(&*InsertPt); | 
|  | } | 
|  | return InsertPts; | 
|  | } | 
|  |  | 
|  | while (BBs.size() >= 2) { | 
|  | BasicBlock *BB, *BB1, *BB2; | 
|  | BB1 = *BBs.begin(); | 
|  | BB2 = *std::next(BBs.begin()); | 
|  | BB = DT->findNearestCommonDominator(BB1, BB2); | 
|  | if (BB == Entry) { | 
|  | InsertPts.insert(&Entry->front()); | 
|  | return InsertPts; | 
|  | } | 
|  | BBs.erase(BB1); | 
|  | BBs.erase(BB2); | 
|  | BBs.insert(BB); | 
|  | } | 
|  | assert((BBs.size() == 1) && "Expected only one element."); | 
|  | Instruction &FirstInst = (*BBs.begin())->front(); | 
|  | InsertPts.insert(findMatInsertPt(&FirstInst)); | 
|  | return InsertPts; | 
|  | } | 
|  |  | 
|  | /// Record constant integer ConstInt for instruction Inst at operand | 
|  | /// index Idx. | 
|  | /// | 
|  | /// The operand at index Idx is not necessarily the constant integer itself. It | 
|  | /// could also be a cast instruction or a constant expression that uses the | 
|  | /// constant integer. | 
|  | void ConstantHoistingPass::collectConstantCandidates( | 
|  | ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, | 
|  | ConstantInt *ConstInt) { | 
|  | unsigned Cost; | 
|  | // Ask the target about the cost of materializing the constant for the given | 
|  | // instruction and operand index. | 
|  | if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) | 
|  | Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx, | 
|  | ConstInt->getValue(), ConstInt->getType()); | 
|  | else | 
|  | Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(), | 
|  | ConstInt->getType()); | 
|  |  | 
|  | // Ignore cheap integer constants. | 
|  | if (Cost > TargetTransformInfo::TCC_Basic) { | 
|  | ConstCandMapType::iterator Itr; | 
|  | bool Inserted; | 
|  | ConstPtrUnionType Cand = ConstInt; | 
|  | std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); | 
|  | if (Inserted) { | 
|  | ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); | 
|  | Itr->second = ConstIntCandVec.size() - 1; | 
|  | } | 
|  | ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost); | 
|  | LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() | 
|  | << "Collect constant " << *ConstInt << " from " << *Inst | 
|  | << " with cost " << Cost << '\n'; | 
|  | else dbgs() << "Collect constant " << *ConstInt | 
|  | << " indirectly from " << *Inst << " via " | 
|  | << *Inst->getOperand(Idx) << " with cost " << Cost | 
|  | << '\n';); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Record constant GEP expression for instruction Inst at operand index Idx. | 
|  | void ConstantHoistingPass::collectConstantCandidates( | 
|  | ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, | 
|  | ConstantExpr *ConstExpr) { | 
|  | // TODO: Handle vector GEPs | 
|  | if (ConstExpr->getType()->isVectorTy()) | 
|  | return; | 
|  |  | 
|  | GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); | 
|  | if (!BaseGV) | 
|  | return; | 
|  |  | 
|  | // Get offset from the base GV. | 
|  | PointerType *GVPtrTy = dyn_cast<PointerType>(BaseGV->getType()); | 
|  | IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); | 
|  | APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); | 
|  | auto *GEPO = cast<GEPOperator>(ConstExpr); | 
|  | if (!GEPO->accumulateConstantOffset(*DL, Offset)) | 
|  | return; | 
|  |  | 
|  | if (!Offset.isIntN(32)) | 
|  | return; | 
|  |  | 
|  | // A constant GEP expression that has a GlobalVariable as base pointer is | 
|  | // usually lowered to a load from constant pool. Such operation is unlikely | 
|  | // to be cheaper than compute it by <Base + Offset>, which can be lowered to | 
|  | // an ADD instruction or folded into Load/Store instruction. | 
|  | int Cost = TTI->getIntImmCost(Instruction::Add, 1, Offset, PtrIntTy); | 
|  | ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; | 
|  | ConstCandMapType::iterator Itr; | 
|  | bool Inserted; | 
|  | ConstPtrUnionType Cand = ConstExpr; | 
|  | std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); | 
|  | if (Inserted) { | 
|  | ExprCandVec.push_back(ConstantCandidate( | 
|  | ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), | 
|  | ConstExpr)); | 
|  | Itr->second = ExprCandVec.size() - 1; | 
|  | } | 
|  | ExprCandVec[Itr->second].addUser(Inst, Idx, Cost); | 
|  | } | 
|  |  | 
|  | /// Check the operand for instruction Inst at index Idx. | 
|  | void ConstantHoistingPass::collectConstantCandidates( | 
|  | ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { | 
|  | Value *Opnd = Inst->getOperand(Idx); | 
|  |  | 
|  | // Visit constant integers. | 
|  | if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { | 
|  | collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Visit cast instructions that have constant integers. | 
|  | if (auto CastInst = dyn_cast<Instruction>(Opnd)) { | 
|  | // Only visit cast instructions, which have been skipped. All other | 
|  | // instructions should have already been visited. | 
|  | if (!CastInst->isCast()) | 
|  | return; | 
|  |  | 
|  | if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { | 
|  | // Pretend the constant is directly used by the instruction and ignore | 
|  | // the cast instruction. | 
|  | collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit constant expressions that have constant integers. | 
|  | if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { | 
|  | // Handle constant gep expressions. | 
|  | if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) | 
|  | collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); | 
|  |  | 
|  | // Only visit constant cast expressions. | 
|  | if (!ConstExpr->isCast()) | 
|  | return; | 
|  |  | 
|  | if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { | 
|  | // Pretend the constant is directly used by the instruction and ignore | 
|  | // the constant expression. | 
|  | collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Scan the instruction for expensive integer constants and record them | 
|  | /// in the constant candidate vector. | 
|  | void ConstantHoistingPass::collectConstantCandidates( | 
|  | ConstCandMapType &ConstCandMap, Instruction *Inst) { | 
|  | // Skip all cast instructions. They are visited indirectly later on. | 
|  | if (Inst->isCast()) | 
|  | return; | 
|  |  | 
|  | // Scan all operands. | 
|  | for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { | 
|  | // The cost of materializing the constants (defined in | 
|  | // `TargetTransformInfo::getIntImmCost`) for instructions which only take | 
|  | // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So | 
|  | // it's safe for us to collect constant candidates from all IntrinsicInsts. | 
|  | if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) { | 
|  | collectConstantCandidates(ConstCandMap, Inst, Idx); | 
|  | } | 
|  | } // end of for all operands | 
|  | } | 
|  |  | 
|  | /// Collect all integer constants in the function that cannot be folded | 
|  | /// into an instruction itself. | 
|  | void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { | 
|  | ConstCandMapType ConstCandMap; | 
|  | for (BasicBlock &BB : Fn) | 
|  | for (Instruction &Inst : BB) | 
|  | collectConstantCandidates(ConstCandMap, &Inst); | 
|  | } | 
|  |  | 
|  | // This helper function is necessary to deal with values that have different | 
|  | // bit widths (APInt Operator- does not like that). If the value cannot be | 
|  | // represented in uint64 we return an "empty" APInt. This is then interpreted | 
|  | // as the value is not in range. | 
|  | static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { | 
|  | Optional<APInt> Res = None; | 
|  | unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? | 
|  | V1.getBitWidth() : V2.getBitWidth(); | 
|  | uint64_t LimVal1 = V1.getLimitedValue(); | 
|  | uint64_t LimVal2 = V2.getLimitedValue(); | 
|  |  | 
|  | if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) | 
|  | return Res; | 
|  |  | 
|  | uint64_t Diff = LimVal1 - LimVal2; | 
|  | return APInt(BW, Diff, true); | 
|  | } | 
|  |  | 
|  | // From a list of constants, one needs to picked as the base and the other | 
|  | // constants will be transformed into an offset from that base constant. The | 
|  | // question is which we can pick best? For example, consider these constants | 
|  | // and their number of uses: | 
|  | // | 
|  | //  Constants| 2 | 4 | 12 | 42 | | 
|  | //  NumUses  | 3 | 2 |  8 |  7 | | 
|  | // | 
|  | // Selecting constant 12 because it has the most uses will generate negative | 
|  | // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative | 
|  | // offsets lead to less optimal code generation, then there might be better | 
|  | // solutions. Suppose immediates in the range of 0..35 are most optimally | 
|  | // supported by the architecture, then selecting constant 2 is most optimal | 
|  | // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in | 
|  | // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would | 
|  | // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in | 
|  | // selecting the base constant the range of the offsets is a very important | 
|  | // factor too that we take into account here. This algorithm calculates a total | 
|  | // costs for selecting a constant as the base and substract the costs if | 
|  | // immediates are out of range. It has quadratic complexity, so we call this | 
|  | // function only when we're optimising for size and there are less than 100 | 
|  | // constants, we fall back to the straightforward algorithm otherwise | 
|  | // which does not do all the offset calculations. | 
|  | unsigned | 
|  | ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, | 
|  | ConstCandVecType::iterator E, | 
|  | ConstCandVecType::iterator &MaxCostItr) { | 
|  | unsigned NumUses = 0; | 
|  |  | 
|  | if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) { | 
|  | for (auto ConstCand = S; ConstCand != E; ++ConstCand) { | 
|  | NumUses += ConstCand->Uses.size(); | 
|  | if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) | 
|  | MaxCostItr = ConstCand; | 
|  | } | 
|  | return NumUses; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); | 
|  | int MaxCost = -1; | 
|  | for (auto ConstCand = S; ConstCand != E; ++ConstCand) { | 
|  | auto Value = ConstCand->ConstInt->getValue(); | 
|  | Type *Ty = ConstCand->ConstInt->getType(); | 
|  | int Cost = 0; | 
|  | NumUses += ConstCand->Uses.size(); | 
|  | LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() | 
|  | << "\n"); | 
|  |  | 
|  | for (auto User : ConstCand->Uses) { | 
|  | unsigned Opcode = User.Inst->getOpcode(); | 
|  | unsigned OpndIdx = User.OpndIdx; | 
|  | Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty); | 
|  | LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); | 
|  |  | 
|  | for (auto C2 = S; C2 != E; ++C2) { | 
|  | Optional<APInt> Diff = calculateOffsetDiff( | 
|  | C2->ConstInt->getValue(), | 
|  | ConstCand->ConstInt->getValue()); | 
|  | if (Diff) { | 
|  | const int ImmCosts = | 
|  | TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); | 
|  | Cost -= ImmCosts; | 
|  | LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " | 
|  | << "has penalty: " << ImmCosts << "\n" | 
|  | << "Adjusted cost: " << Cost << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); | 
|  | if (Cost > MaxCost) { | 
|  | MaxCost = Cost; | 
|  | MaxCostItr = ConstCand; | 
|  | LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() | 
|  | << "\n"); | 
|  | } | 
|  | } | 
|  | return NumUses; | 
|  | } | 
|  |  | 
|  | /// Find the base constant within the given range and rebase all other | 
|  | /// constants with respect to the base constant. | 
|  | void ConstantHoistingPass::findAndMakeBaseConstant( | 
|  | ConstCandVecType::iterator S, ConstCandVecType::iterator E, | 
|  | SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { | 
|  | auto MaxCostItr = S; | 
|  | unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); | 
|  |  | 
|  | // Don't hoist constants that have only one use. | 
|  | if (NumUses <= 1) | 
|  | return; | 
|  |  | 
|  | ConstantInt *ConstInt = MaxCostItr->ConstInt; | 
|  | ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; | 
|  | ConstantInfo ConstInfo; | 
|  | ConstInfo.BaseInt = ConstInt; | 
|  | ConstInfo.BaseExpr = ConstExpr; | 
|  | Type *Ty = ConstInt->getType(); | 
|  |  | 
|  | // Rebase the constants with respect to the base constant. | 
|  | for (auto ConstCand = S; ConstCand != E; ++ConstCand) { | 
|  | APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); | 
|  | Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); | 
|  | Type *ConstTy = | 
|  | ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; | 
|  | ConstInfo.RebasedConstants.push_back( | 
|  | RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); | 
|  | } | 
|  | ConstInfoVec.push_back(std::move(ConstInfo)); | 
|  | } | 
|  |  | 
|  | /// Finds and combines constant candidates that can be easily | 
|  | /// rematerialized with an add from a common base constant. | 
|  | void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { | 
|  | // If BaseGV is nullptr, find base among candidate constant integers; | 
|  | // Otherwise find base among constant GEPs that share the same BaseGV. | 
|  | ConstCandVecType &ConstCandVec = BaseGV ? | 
|  | ConstGEPCandMap[BaseGV] : ConstIntCandVec; | 
|  | ConstInfoVecType &ConstInfoVec = BaseGV ? | 
|  | ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; | 
|  |  | 
|  | // Sort the constants by value and type. This invalidates the mapping! | 
|  | std::stable_sort(ConstCandVec.begin(), ConstCandVec.end(), | 
|  | [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) { | 
|  | if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) | 
|  | return LHS.ConstInt->getType()->getBitWidth() < | 
|  | RHS.ConstInt->getType()->getBitWidth(); | 
|  | return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); | 
|  | }); | 
|  |  | 
|  | // Simple linear scan through the sorted constant candidate vector for viable | 
|  | // merge candidates. | 
|  | auto MinValItr = ConstCandVec.begin(); | 
|  | for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); | 
|  | CC != E; ++CC) { | 
|  | if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { | 
|  | Type *MemUseValTy = nullptr; | 
|  | for (auto &U : CC->Uses) { | 
|  | auto *UI = U.Inst; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { | 
|  | MemUseValTy = LI->getType(); | 
|  | break; | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { | 
|  | // Make sure the constant is used as pointer operand of the StoreInst. | 
|  | if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { | 
|  | MemUseValTy = SI->getValueOperand()->getType(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the constant is in range of an add with immediate. | 
|  | APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); | 
|  | if ((Diff.getBitWidth() <= 64) && | 
|  | TTI->isLegalAddImmediate(Diff.getSExtValue()) && | 
|  | // Check if Diff can be used as offset in addressing mode of the user | 
|  | // memory instruction. | 
|  | (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, | 
|  | /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), | 
|  | /*HasBaseReg*/true, /*Scale*/0))) | 
|  | continue; | 
|  | } | 
|  | // We either have now a different constant type or the constant is not in | 
|  | // range of an add with immediate anymore. | 
|  | findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); | 
|  | // Start a new base constant search. | 
|  | MinValItr = CC; | 
|  | } | 
|  | // Finalize the last base constant search. | 
|  | findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); | 
|  | } | 
|  |  | 
|  | /// Updates the operand at Idx in instruction Inst with the result of | 
|  | ///        instruction Mat. If the instruction is a PHI node then special | 
|  | ///        handling for duplicate values form the same incoming basic block is | 
|  | ///        required. | 
|  | /// \return The update will always succeed, but the return value indicated if | 
|  | ///         Mat was used for the update or not. | 
|  | static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { | 
|  | if (auto PHI = dyn_cast<PHINode>(Inst)) { | 
|  | // Check if any previous operand of the PHI node has the same incoming basic | 
|  | // block. This is a very odd case that happens when the incoming basic block | 
|  | // has a switch statement. In this case use the same value as the previous | 
|  | // operand(s), otherwise we will fail verification due to different values. | 
|  | // The values are actually the same, but the variable names are different | 
|  | // and the verifier doesn't like that. | 
|  | BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); | 
|  | for (unsigned i = 0; i < Idx; ++i) { | 
|  | if (PHI->getIncomingBlock(i) == IncomingBB) { | 
|  | Value *IncomingVal = PHI->getIncomingValue(i); | 
|  | Inst->setOperand(Idx, IncomingVal); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Inst->setOperand(Idx, Mat); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Emit materialization code for all rebased constants and update their | 
|  | /// users. | 
|  | void ConstantHoistingPass::emitBaseConstants(Instruction *Base, | 
|  | Constant *Offset, | 
|  | Type *Ty, | 
|  | const ConstantUser &ConstUser) { | 
|  | Instruction *Mat = Base; | 
|  |  | 
|  | // The same offset can be dereferenced to different types in nested struct. | 
|  | if (!Offset && Ty && Ty != Base->getType()) | 
|  | Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); | 
|  |  | 
|  | if (Offset) { | 
|  | Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, | 
|  | ConstUser.OpndIdx); | 
|  | if (Ty) { | 
|  | // Constant being rebased is a ConstantExpr. | 
|  | PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, | 
|  | cast<PointerType>(Ty)->getAddressSpace()); | 
|  | Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); | 
|  | Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base, | 
|  | Offset, "mat_gep", InsertionPt); | 
|  | Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); | 
|  | } else | 
|  | // Constant being rebased is a ConstantInt. | 
|  | Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, | 
|  | "const_mat", InsertionPt); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) | 
|  | << " + " << *Offset << ") in BB " | 
|  | << Mat->getParent()->getName() << '\n' | 
|  | << *Mat << '\n'); | 
|  | Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); | 
|  | } | 
|  | Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); | 
|  |  | 
|  | // Visit constant integer. | 
|  | if (isa<ConstantInt>(Opnd)) { | 
|  | LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); | 
|  | if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) | 
|  | Mat->eraseFromParent(); | 
|  | LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Visit cast instruction. | 
|  | if (auto CastInst = dyn_cast<Instruction>(Opnd)) { | 
|  | assert(CastInst->isCast() && "Expected an cast instruction!"); | 
|  | // Check if we already have visited this cast instruction before to avoid | 
|  | // unnecessary cloning. | 
|  | Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; | 
|  | if (!ClonedCastInst) { | 
|  | ClonedCastInst = CastInst->clone(); | 
|  | ClonedCastInst->setOperand(0, Mat); | 
|  | ClonedCastInst->insertAfter(CastInst); | 
|  | // Use the same debug location as the original cast instruction. | 
|  | ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); | 
|  | LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' | 
|  | << "To               : " << *ClonedCastInst << '\n'); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); | 
|  | updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); | 
|  | LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Visit constant expression. | 
|  | if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { | 
|  | if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { | 
|  | // Operand is a ConstantGEP, replace it. | 
|  | updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Aside from constant GEPs, only constant cast expressions are collected. | 
|  | assert(ConstExpr->isCast() && "ConstExpr should be a cast"); | 
|  | Instruction *ConstExprInst = ConstExpr->getAsInstruction(); | 
|  | ConstExprInst->setOperand(0, Mat); | 
|  | ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst, | 
|  | ConstUser.OpndIdx)); | 
|  |  | 
|  | // Use the same debug location as the instruction we are about to update. | 
|  | ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' | 
|  | << "From              : " << *ConstExpr << '\n'); | 
|  | LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); | 
|  | if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { | 
|  | ConstExprInst->eraseFromParent(); | 
|  | if (Offset) | 
|  | Mat->eraseFromParent(); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Hoist and hide the base constant behind a bitcast and emit | 
|  | /// materialization code for derived constants. | 
|  | bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { | 
|  | bool MadeChange = false; | 
|  | SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = | 
|  | BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; | 
|  | for (auto const &ConstInfo : ConstInfoVec) { | 
|  | SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo); | 
|  | assert(!IPSet.empty() && "IPSet is empty"); | 
|  |  | 
|  | unsigned UsesNum = 0; | 
|  | unsigned ReBasesNum = 0; | 
|  | for (Instruction *IP : IPSet) { | 
|  | Instruction *Base = nullptr; | 
|  | // Hoist and hide the base constant behind a bitcast. | 
|  | if (ConstInfo.BaseExpr) { | 
|  | assert(BaseGV && "A base constant expression must have an base GV"); | 
|  | Type *Ty = ConstInfo.BaseExpr->getType(); | 
|  | Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); | 
|  | } else { | 
|  | IntegerType *Ty = ConstInfo.BaseInt->getType(); | 
|  | Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); | 
|  | } | 
|  |  | 
|  | Base->setDebugLoc(IP->getDebugLoc()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt | 
|  | << ") to BB " << IP->getParent()->getName() << '\n' | 
|  | << *Base << '\n'); | 
|  |  | 
|  | // Emit materialization code for all rebased constants. | 
|  | unsigned Uses = 0; | 
|  | for (auto const &RCI : ConstInfo.RebasedConstants) { | 
|  | for (auto const &U : RCI.Uses) { | 
|  | Uses++; | 
|  | BasicBlock *OrigMatInsertBB = | 
|  | findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); | 
|  | // If Base constant is to be inserted in multiple places, | 
|  | // generate rebase for U using the Base dominating U. | 
|  | if (IPSet.size() == 1 || | 
|  | DT->dominates(Base->getParent(), OrigMatInsertBB)) { | 
|  | emitBaseConstants(Base, RCI.Offset, RCI.Ty, U); | 
|  | ReBasesNum++; | 
|  | } | 
|  |  | 
|  | Base->setDebugLoc(DILocation::getMergedLocation( | 
|  | Base->getDebugLoc(), U.Inst->getDebugLoc())); | 
|  | } | 
|  | } | 
|  | UsesNum = Uses; | 
|  |  | 
|  | // Use the same debug location as the last user of the constant. | 
|  | assert(!Base->use_empty() && "The use list is empty!?"); | 
|  | assert(isa<Instruction>(Base->user_back()) && | 
|  | "All uses should be instructions."); | 
|  | } | 
|  | (void)UsesNum; | 
|  | (void)ReBasesNum; | 
|  | // Expect all uses are rebased after rebase is done. | 
|  | assert(UsesNum == ReBasesNum && "Not all uses are rebased"); | 
|  |  | 
|  | NumConstantsHoisted++; | 
|  |  | 
|  | // Base constant is also included in ConstInfo.RebasedConstants, so | 
|  | // deduct 1 from ConstInfo.RebasedConstants.size(). | 
|  | NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; | 
|  |  | 
|  | MadeChange = true; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Check all cast instructions we made a copy of and remove them if they | 
|  | /// have no more users. | 
|  | void ConstantHoistingPass::deleteDeadCastInst() const { | 
|  | for (auto const &I : ClonedCastMap) | 
|  | if (I.first->use_empty()) | 
|  | I.first->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// Optimize expensive integer constants in the given function. | 
|  | bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, | 
|  | DominatorTree &DT, BlockFrequencyInfo *BFI, | 
|  | BasicBlock &Entry) { | 
|  | this->TTI = &TTI; | 
|  | this->DT = &DT; | 
|  | this->BFI = BFI; | 
|  | this->DL = &Fn.getParent()->getDataLayout(); | 
|  | this->Ctx = &Fn.getContext(); | 
|  | this->Entry = &Entry; | 
|  | // Collect all constant candidates. | 
|  | collectConstantCandidates(Fn); | 
|  |  | 
|  | // Combine constants that can be easily materialized with an add from a common | 
|  | // base constant. | 
|  | if (!ConstIntCandVec.empty()) | 
|  | findBaseConstants(nullptr); | 
|  | for (auto &MapEntry : ConstGEPCandMap) | 
|  | if (!MapEntry.second.empty()) | 
|  | findBaseConstants(MapEntry.first); | 
|  |  | 
|  | // Finally hoist the base constant and emit materialization code for dependent | 
|  | // constants. | 
|  | bool MadeChange = false; | 
|  | if (!ConstIntInfoVec.empty()) | 
|  | MadeChange = emitBaseConstants(nullptr); | 
|  | for (auto MapEntry : ConstGEPInfoMap) | 
|  | if (!MapEntry.second.empty()) | 
|  | MadeChange |= emitBaseConstants(MapEntry.first); | 
|  |  | 
|  |  | 
|  | // Cleanup dead instructions. | 
|  | deleteDeadCastInst(); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses ConstantHoistingPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto &TTI = AM.getResult<TargetIRAnalysis>(F); | 
|  | auto BFI = ConstHoistWithBlockFrequency | 
|  | ? &AM.getResult<BlockFrequencyAnalysis>(F) | 
|  | : nullptr; | 
|  | if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock())) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | return PA; | 
|  | } |