|  | //=== ARMCallingConv.h - ARM Custom Calling Convention Routines -*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the custom routines for the ARM Calling Convention that | 
|  | // aren't done by tablegen. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H | 
|  | #define LLVM_LIB_TARGET_ARM_ARMCALLINGCONV_H | 
|  |  | 
|  | #include "ARM.h" | 
|  | #include "ARMBaseInstrInfo.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | // APCS f64 is in register pairs, possibly split to stack | 
|  | static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | CCState &State, bool CanFail) { | 
|  | static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; | 
|  |  | 
|  | // Try to get the first register. | 
|  | if (unsigned Reg = State.AllocateReg(RegList)) | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | else { | 
|  | // For the 2nd half of a v2f64, do not fail. | 
|  | if (CanFail) | 
|  | return false; | 
|  |  | 
|  | // Put the whole thing on the stack. | 
|  | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, | 
|  | State.AllocateStack(8, 4), | 
|  | LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to get the second register. | 
|  | if (unsigned Reg = State.AllocateReg(RegList)) | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | else | 
|  | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, | 
|  | State.AllocateStack(4, 4), | 
|  | LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) | 
|  | return false; | 
|  | if (LocVT == MVT::v2f64 && | 
|  | !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) | 
|  | return false; | 
|  | return true;  // we handled it | 
|  | } | 
|  |  | 
|  | // AAPCS f64 is in aligned register pairs | 
|  | static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | CCState &State, bool CanFail) { | 
|  | static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; | 
|  | static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; | 
|  | static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 }; | 
|  | static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; | 
|  |  | 
|  | unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList); | 
|  | if (Reg == 0) { | 
|  |  | 
|  | // If we had R3 unallocated only, now we still must to waste it. | 
|  | Reg = State.AllocateReg(GPRArgRegs); | 
|  | assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64"); | 
|  |  | 
|  | // For the 2nd half of a v2f64, do not just fail. | 
|  | if (CanFail) | 
|  | return false; | 
|  |  | 
|  | // Put the whole thing on the stack. | 
|  | State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, | 
|  | State.AllocateStack(8, 8), | 
|  | LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned i; | 
|  | for (i = 0; i < 2; ++i) | 
|  | if (HiRegList[i] == Reg) | 
|  | break; | 
|  |  | 
|  | unsigned T = State.AllocateReg(LoRegList[i]); | 
|  | (void)T; | 
|  | assert(T == LoRegList[i] && "Could not allocate register"); | 
|  |  | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], | 
|  | LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) | 
|  | return false; | 
|  | if (LocVT == MVT::v2f64 && | 
|  | !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) | 
|  | return false; | 
|  | return true;  // we handled it | 
|  | } | 
|  |  | 
|  | static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, CCState &State) { | 
|  | static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; | 
|  | static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; | 
|  |  | 
|  | unsigned Reg = State.AllocateReg(HiRegList, LoRegList); | 
|  | if (Reg == 0) | 
|  | return false; // we didn't handle it | 
|  |  | 
|  | unsigned i; | 
|  | for (i = 0; i < 2; ++i) | 
|  | if (HiRegList[i] == Reg) | 
|  | break; | 
|  |  | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
|  | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], | 
|  | LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) | 
|  | return false; | 
|  | if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) | 
|  | return false; | 
|  | return true;  // we handled it | 
|  | } | 
|  |  | 
|  | static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, | 
|  | State); | 
|  | } | 
|  |  | 
|  | static const MCPhysReg RRegList[] = { ARM::R0,  ARM::R1,  ARM::R2,  ARM::R3 }; | 
|  |  | 
|  | static const MCPhysReg SRegList[] = { ARM::S0,  ARM::S1,  ARM::S2,  ARM::S3, | 
|  | ARM::S4,  ARM::S5,  ARM::S6,  ARM::S7, | 
|  | ARM::S8,  ARM::S9,  ARM::S10, ARM::S11, | 
|  | ARM::S12, ARM::S13, ARM::S14,  ARM::S15 }; | 
|  | static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, | 
|  | ARM::D4, ARM::D5, ARM::D6, ARM::D7 }; | 
|  | static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 }; | 
|  |  | 
|  |  | 
|  | // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA | 
|  | // has InConsecutiveRegs set, and that the last member also has | 
|  | // InConsecutiveRegsLast set. We must process all members of the HA before | 
|  | // we can allocate it, as we need to know the total number of registers that | 
|  | // will be needed in order to (attempt to) allocate a contiguous block. | 
|  | static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); | 
|  |  | 
|  | // AAPCS HFAs must have 1-4 elements, all of the same type | 
|  | if (PendingMembers.size() > 0) | 
|  | assert(PendingMembers[0].getLocVT() == LocVT); | 
|  |  | 
|  | // Add the argument to the list to be allocated once we know the size of the | 
|  | // aggregate. Store the type's required alignmnent as extra info for later: in | 
|  | // the [N x i64] case all trace has been removed by the time we actually get | 
|  | // to do allocation. | 
|  | PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo, | 
|  | ArgFlags.getOrigAlign())); | 
|  |  | 
|  | if (!ArgFlags.isInConsecutiveRegsLast()) | 
|  | return true; | 
|  |  | 
|  | // Try to allocate a contiguous block of registers, each of the correct | 
|  | // size to hold one member. | 
|  | auto &DL = State.getMachineFunction().getDataLayout(); | 
|  | unsigned StackAlign = DL.getStackAlignment(); | 
|  | unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign); | 
|  |  | 
|  | ArrayRef<MCPhysReg> RegList; | 
|  | switch (LocVT.SimpleTy) { | 
|  | case MVT::i32: { | 
|  | RegList = RRegList; | 
|  | unsigned RegIdx = State.getFirstUnallocated(RegList); | 
|  |  | 
|  | // First consume all registers that would give an unaligned object. Whether | 
|  | // we go on stack or in regs, no-one will be using them in future. | 
|  | unsigned RegAlign = alignTo(Align, 4) / 4; | 
|  | while (RegIdx % RegAlign != 0 && RegIdx < RegList.size()) | 
|  | State.AllocateReg(RegList[RegIdx++]); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case MVT::f32: | 
|  | RegList = SRegList; | 
|  | break; | 
|  | case MVT::f64: | 
|  | RegList = DRegList; | 
|  | break; | 
|  | case MVT::v2f64: | 
|  | RegList = QRegList; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected member type for block aggregate"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size()); | 
|  | if (RegResult) { | 
|  | for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin(); | 
|  | It != PendingMembers.end(); ++It) { | 
|  | It->convertToReg(RegResult); | 
|  | State.addLoc(*It); | 
|  | ++RegResult; | 
|  | } | 
|  | PendingMembers.clear(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Register allocation failed, we'll be needing the stack | 
|  | unsigned Size = LocVT.getSizeInBits() / 8; | 
|  | if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) { | 
|  | // If nothing else has used the stack until this point, a non-HFA aggregate | 
|  | // can be split between regs and stack. | 
|  | unsigned RegIdx = State.getFirstUnallocated(RegList); | 
|  | for (auto &It : PendingMembers) { | 
|  | if (RegIdx >= RegList.size()) | 
|  | It.convertToMem(State.AllocateStack(Size, Size)); | 
|  | else | 
|  | It.convertToReg(State.AllocateReg(RegList[RegIdx++])); | 
|  |  | 
|  | State.addLoc(It); | 
|  | } | 
|  | PendingMembers.clear(); | 
|  | return true; | 
|  | } else if (LocVT != MVT::i32) | 
|  | RegList = SRegList; | 
|  |  | 
|  | // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core) | 
|  | for (auto Reg : RegList) | 
|  | State.AllocateReg(Reg); | 
|  |  | 
|  | for (auto &It : PendingMembers) { | 
|  | It.convertToMem(State.AllocateStack(Size, Align)); | 
|  | State.addLoc(It); | 
|  |  | 
|  | // After the first item has been allocated, the rest are packed as tightly | 
|  | // as possible. (E.g. an incoming i64 would have starting Align of 8, but | 
|  | // we'll be allocating a bunch of i32 slots). | 
|  | Align = Size; | 
|  | } | 
|  |  | 
|  | // All pending members have now been allocated | 
|  | PendingMembers.clear(); | 
|  |  | 
|  | // This will be allocated by the last member of the aggregate | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // End llvm namespace | 
|  |  | 
|  | #endif |