blob: 64ddcb4a7ee4731e0dcc101a040993d00071070a [file] [log] [blame]
//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the IdentifierInfo, IdentifierVisitor, and
// IdentifierTable interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/IdentifierTable.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Basic/LangOptions.h"
#include <iostream>
using namespace llvm;
using namespace clang;
//===----------------------------------------------------------------------===//
// IdentifierInfo Implementation
//===----------------------------------------------------------------------===//
void IdentifierInfo::Destroy() {
delete Macro;
}
//===----------------------------------------------------------------------===//
// IdentifierVisitor Implementation
//===----------------------------------------------------------------------===//
IdentifierVisitor::~IdentifierVisitor() {
}
//===----------------------------------------------------------------------===//
// Memory Allocation Support
//===----------------------------------------------------------------------===//
/// The identifier table has a very simple memory allocation pattern: it just
/// keeps allocating identifiers, then never frees them unless it frees them
/// all. As such, we use a simple bump-pointer memory allocator to make
/// allocation speedy. Shark showed that malloc was 27% of the time spent in
/// IdentifierTable::getIdentifier with malloc, and takes a 4.3% time with this.
#define USE_ALLOCATOR 1
#if USE_ALLOCATOR
namespace {
class MemRegion {
unsigned RegionSize;
MemRegion *Next;
char *NextPtr;
public:
void Init(unsigned size, MemRegion *next) {
RegionSize = size;
Next = next;
NextPtr = (char*)(this+1);
// FIXME: uses GCC extension.
unsigned Alignment = __alignof__(IdentifierInfo);
NextPtr = (char*)((intptr_t)(NextPtr+Alignment-1) &
~(intptr_t)(Alignment-1));
}
const MemRegion *getNext() const { return Next; }
unsigned getNumBytesAllocated() const {
return NextPtr-(const char*)this;
}
/// Allocate - Allocate and return at least the specified number of bytes.
///
void *Allocate(unsigned AllocSize, MemRegion **RegPtr) {
// FIXME: uses GCC extension.
unsigned Alignment = __alignof__(IdentifierInfo);
// Round size up to an even multiple of the alignment.
AllocSize = (AllocSize+Alignment-1) & ~(Alignment-1);
// If there is space in this region for the identifier, return it.
if (unsigned(NextPtr+AllocSize-(char*)this) <= RegionSize) {
void *Result = NextPtr;
NextPtr += AllocSize;
return Result;
}
// Otherwise, we have to allocate a new chunk. Create one twice as big as
// this one.
MemRegion *NewRegion = (MemRegion *)malloc(RegionSize*2);
NewRegion->Init(RegionSize*2, this);
// Update the current "first region" pointer to point to the new region.
*RegPtr = NewRegion;
// Try allocating from it now.
return NewRegion->Allocate(AllocSize, RegPtr);
}
/// Deallocate - Release all memory for this region to the system.
///
void Deallocate() {
MemRegion *next = Next;
free(this);
if (next)
next->Deallocate();
}
};
}
#endif
//===----------------------------------------------------------------------===//
// IdentifierTable Implementation
//===----------------------------------------------------------------------===//
/// IdentifierBucket - The hash table consists of an array of these. If Info is
/// non-null, this is an extant entry, otherwise, it is a hole.
struct IdentifierBucket {
/// FullHashValue - This remembers the full hash value of the identifier for
/// easy scanning.
unsigned FullHashValue;
/// Info - This is a pointer to the actual identifier info object.
IdentifierInfo *Info;
};
IdentifierTable::IdentifierTable(const LangOptions &LangOpts) {
HashTableSize = 8192; // Start with space for 8K identifiers.
IdentifierBucket *TableArray = new IdentifierBucket[HashTableSize]();
memset(TableArray, 0, HashTableSize*sizeof(IdentifierBucket));
TheTable = TableArray;
NumIdentifiers = 0;
#if USE_ALLOCATOR
TheMemory = malloc(8*4096);
((MemRegion*)TheMemory)->Init(8*4096, 0);
#endif
// Populate the identifier table with info about keywords for the current
// language.
AddKeywords(LangOpts);
}
IdentifierTable::~IdentifierTable() {
IdentifierBucket *TableArray = (IdentifierBucket*)TheTable;
for (unsigned i = 0, e = HashTableSize; i != e; ++i) {
if (IdentifierInfo *Id = TableArray[i].Info) {
// Free memory referenced by the identifier (e.g. macro info).
Id->Destroy();
#if !USE_ALLOCATOR
// Free the memory for the identifier itself.
free(Id);
#endif
}
}
#if USE_ALLOCATOR
((MemRegion*)TheMemory)->Deallocate();
#endif
delete [] TableArray;
}
/// HashString - Compute a hash code for the specified string.
///
static unsigned HashString(const char *Start, const char *End) {
unsigned int Result = 0;
// Perl hash function.
while (Start != End)
Result = Result * 33 + *Start++;
Result = Result + (Result >> 5);
return Result;
}
IdentifierInfo &IdentifierTable::get(const char *NameStart,
const char *NameEnd) {
IdentifierBucket *TableArray = (IdentifierBucket*)TheTable;
unsigned HTSize = HashTableSize;
unsigned FullHashValue = HashString(NameStart, NameEnd);
unsigned BucketNo = FullHashValue & (HTSize-1);
unsigned Length = NameEnd-NameStart;
unsigned ProbeAmt = 1;
while (1) {
IdentifierBucket &Bucket = TableArray[BucketNo];
IdentifierInfo *BucketII = Bucket.Info;
// If we found an empty bucket, this identifier isn't in the table yet.
if (BucketII == 0) break;
// If the full hash value matches, check deeply for a match. The common
// case here is that we are only looking at the buckets (for identifier info
// being non-null and for the full hash value) not at the identifiers. This
// is important for cache locality.
if (Bucket.FullHashValue == FullHashValue &&
BucketII->getNameLength() == Length &&
memcmp(BucketII->getName(), NameStart, Length) == 0)
// We found a match!
return *BucketII;
// Okay, we didn't find the identifier. Probe to the next bucket.
BucketNo = (BucketNo+ProbeAmt) & (HashTableSize-1);
// Use quadratic probing, it has fewer clumping artifacts than linear
// probing and has good cache behavior in the common case.
++ProbeAmt;
}
// Okay, the identifier doesn't already exist, and BucketNo is the bucket to
// fill in. Allocate a new identifier with space for the null-terminated
// string at the end.
unsigned AllocSize = sizeof(IdentifierInfo)+Length+1;
#if USE_ALLOCATOR
IdentifierInfo *Identifier = (IdentifierInfo*)
((MemRegion*)TheMemory)->Allocate(AllocSize, (MemRegion**)&TheMemory);
#else
IdentifierInfo *Identifier = (IdentifierInfo*)malloc(AllocSize);
#endif
Identifier->NameLen = Length;
Identifier->Macro = 0;
Identifier->TokenID = tok::identifier;
Identifier->PPID = tok::pp_not_keyword;
Identifier->ObjCID = tok::objc_not_keyword;
Identifier->IsExtension = false;
Identifier->IsPoisoned = false;
Identifier->IsOtherTargetMacro = false;
Identifier->FETokenInfo = 0;
++NumIdentifiers;
// Copy the string information.
char *StrBuffer = (char*)(Identifier+1);
memcpy(StrBuffer, NameStart, Length);
StrBuffer[Length] = 0; // Null terminate string.
// Fill in the bucket for the hash table.
TableArray[BucketNo].Info = Identifier;
TableArray[BucketNo].FullHashValue = FullHashValue;
// If the hash table is now more than 3/4 full, rehash into a larger table.
if (NumIdentifiers > HashTableSize*3/4)
RehashTable();
return *Identifier;
}
IdentifierInfo &IdentifierTable::get(const std::string &Name) {
// Don't use c_str() here: no need to be null terminated.
const char *NameBytes = &Name[0];
unsigned Size = Name.size();
return get(NameBytes, NameBytes+Size);
}
void IdentifierTable::RehashTable() {
unsigned NewSize = HashTableSize*2;
IdentifierBucket *NewTableArray = new IdentifierBucket[NewSize]();
memset(NewTableArray, 0, NewSize*sizeof(IdentifierBucket));
// Rehash all the identifier into their new buckets. Luckily we already have
// the hash values available :).
IdentifierBucket *CurTable = (IdentifierBucket *)TheTable;
for (IdentifierBucket *IB = CurTable, *E = CurTable+HashTableSize;
IB != E; ++IB) {
if (IB->Info) {
// Fast case, bucket available.
unsigned FullHash = IB->FullHashValue;
unsigned NewBucket = FullHash & (NewSize-1);
if (NewTableArray[NewBucket].Info == 0) {
NewTableArray[FullHash & (NewSize-1)].Info = IB->Info;
NewTableArray[FullHash & (NewSize-1)].FullHashValue = FullHash;
continue;
}
unsigned ProbeSize = 1;
do {
NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
} while (NewTableArray[NewBucket].Info);
// Finally found a slot. Fill it in.
NewTableArray[NewBucket].Info = IB->Info;
NewTableArray[NewBucket].FullHashValue = FullHash;
}
}
delete[] CurTable;
TheTable = NewTableArray;
HashTableSize = NewSize;
}
/// VisitIdentifiers - This method walks through all of the identifiers,
/// invoking IV->VisitIdentifier for each of them.
void IdentifierTable::VisitIdentifiers(const IdentifierVisitor &IV) {
IdentifierBucket *TableArray = (IdentifierBucket*)TheTable;
for (unsigned i = 0, e = HashTableSize; i != e; ++i) {
if (IdentifierInfo *Id = TableArray[i].Info)
IV.VisitIdentifier(*Id);
}
}
//===----------------------------------------------------------------------===//
// Language Keyword Implementation
//===----------------------------------------------------------------------===//
/// AddKeyword - This method is used to associate a token ID with specific
/// identifiers because they are language keywords. This causes the lexer to
/// automatically map matching identifiers to specialized token codes.
///
/// The C90/C99/CPP flags are set to 0 if the token should be enabled in the
/// specified langauge, set to 1 if it is an extension in the specified
/// language, and set to 2 if disabled in the specified language.
static void AddKeyword(const std::string &Keyword, tok::TokenKind TokenCode,
int C90, int C99, int CXX,
const LangOptions &LangOpts, IdentifierTable &Table) {
int Flags = LangOpts.CPlusPlus ? CXX : (LangOpts.C99 ? C99 : C90);
// Don't add this keyword if disabled in this language or if an extension
// and extensions are disabled.
if (Flags + LangOpts.NoExtensions >= 2) return;
const char *Str = &Keyword[0];
IdentifierInfo &Info = Table.get(Str, Str+Keyword.size());
Info.setTokenID(TokenCode);
Info.setIsExtensionToken(Flags == 1);
}
/// AddPPKeyword - Register a preprocessor keyword like "define" "undef" or
/// "elif".
static void AddPPKeyword(tok::PPKeywordKind PPID,
const char *Name, unsigned NameLen,
IdentifierTable &Table) {
Table.get(Name, Name+NameLen).setPPKeywordID(PPID);
}
/// AddObjCKeyword - Register an Objective-C @keyword like "class" "selector" or
/// "property".
static void AddObjCKeyword(tok::ObjCKeywordKind ObjCID,
const char *Name, unsigned NameLen,
IdentifierTable &Table) {
Table.get(Name, Name+NameLen).setObjCKeywordID(ObjCID);
}
/// AddKeywords - Add all keywords to the symbol table.
///
void IdentifierTable::AddKeywords(const LangOptions &LangOpts) {
enum {
C90Shift = 0,
EXTC90 = 1 << C90Shift,
NOTC90 = 2 << C90Shift,
C99Shift = 2,
EXTC99 = 1 << C99Shift,
NOTC99 = 2 << C99Shift,
CPPShift = 4,
EXTCPP = 1 << CPPShift,
NOTCPP = 2 << CPPShift,
Mask = 3
};
// Add keywords and tokens for the current language.
#define KEYWORD(NAME, FLAGS) \
AddKeyword(#NAME, tok::kw_ ## NAME, \
((FLAGS) >> C90Shift) & Mask, \
((FLAGS) >> C99Shift) & Mask, \
((FLAGS) >> CPPShift) & Mask, LangOpts, *this);
#define ALIAS(NAME, TOK) \
AddKeyword(NAME, tok::kw_ ## TOK, 0, 0, 0, LangOpts, *this);
#define PPKEYWORD(NAME) \
AddPPKeyword(tok::pp_##NAME, #NAME, strlen(#NAME), *this);
#define OBJC1_AT_KEYWORD(NAME) \
if (LangOpts.ObjC1) \
AddObjCKeyword(tok::objc_##NAME, #NAME, strlen(#NAME), *this);
#define OBJC2_AT_KEYWORD(NAME) \
if (LangOpts.ObjC2) \
AddObjCKeyword(tok::objc_##NAME, #NAME, strlen(#NAME), *this);
#include "clang/Basic/TokenKinds.def"
}
//===----------------------------------------------------------------------===//
// Stats Implementation
//===----------------------------------------------------------------------===//
/// PrintStats - Print statistics about how well the identifier table is doing
/// at hashing identifiers.
void IdentifierTable::PrintStats() const {
unsigned NumEmptyBuckets = 0;
unsigned AverageIdentifierSize = 0;
unsigned MaxIdentifierLength = 0;
unsigned NumProbed = 0;
IdentifierBucket *TableArray = (IdentifierBucket*)TheTable;
for (unsigned i = 0, e = HashTableSize; i != e; ++i) {
if (TableArray[i].Info == 0) {
++NumEmptyBuckets;
continue;
}
IdentifierInfo *Id = TableArray[i].Info;
AverageIdentifierSize += Id->getNameLength();
if (MaxIdentifierLength < Id->getNameLength())
MaxIdentifierLength = Id->getNameLength();
// Count the number of times something was probed.
if ((TableArray[i].FullHashValue & (e-1)) != i)
++NumProbed;
// TODO: Figure out maximum times an identifier had to probe for -stats.
}
std::cerr << "\n*** Identifier Table Stats:\n";
std::cerr << "# Identifiers: " << NumIdentifiers << "\n";
std::cerr << "# Empty Buckets: " << NumEmptyBuckets << "\n";
std::cerr << "Hash density (#identifiers per bucket): "
<< NumIdentifiers/(double)HashTableSize << "\n";
std::cerr << "Num probed identifiers: " << NumProbed << " ("
<< NumProbed*100.0/NumIdentifiers << "%)\n";
std::cerr << "Ave identifier length: "
<< (AverageIdentifierSize/(double)NumIdentifiers) << "\n";
std::cerr << "Max identifier length: " << MaxIdentifierLength << "\n";
// Compute statistics about the memory allocated for identifiers.
#if USE_ALLOCATOR
unsigned BytesUsed = 0;
unsigned NumRegions = 0;
const MemRegion *R = (MemRegion*)TheMemory;
for (; R; R = R->getNext(), ++NumRegions) {
BytesUsed += R->getNumBytesAllocated();
}
std::cerr << "\nNumber of memory regions: " << NumRegions << "\n";
std::cerr << "Bytes allocated for identifiers: " << BytesUsed << "\n";
#endif
}