|  | //===-- X86/MachineCodeEmitter.cpp - Convert X86 code to machine code -----===// | 
|  | // | 
|  | // This file contains the pass that transforms the X86 machine instructions into | 
|  | // actual executable machine code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86TargetMachine.h" | 
|  | #include "X86.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/CodeGen/MachineCodeEmitter.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/Value.h" | 
|  |  | 
|  | namespace { | 
|  | class Emitter : public FunctionPass { | 
|  | X86TargetMachine    &TM; | 
|  | const X86InstrInfo  ⅈ | 
|  | MachineCodeEmitter  &MCE; | 
|  | public: | 
|  |  | 
|  | Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce) | 
|  | : TM(tm), II(TM.getInstrInfo()), MCE(mce) {} | 
|  |  | 
|  | bool runOnFunction(Function &F); | 
|  |  | 
|  | private: | 
|  | void emitBasicBlock(MachineBasicBlock &MBB); | 
|  | void emitInstruction(MachineInstr &MI); | 
|  |  | 
|  | void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); | 
|  | void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); | 
|  | void emitConstant(unsigned Val, unsigned Size); | 
|  |  | 
|  | void emitMemModRMByte(const MachineInstr &MI, | 
|  | unsigned Op, unsigned RegOpcodeField); | 
|  |  | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get | 
|  | /// machine code emitted.  This uses a MAchineCodeEmitter object to handle | 
|  | /// actually outputting the machine code and resolving things like the address | 
|  | /// of functions.  This method should returns true if machine code emission is | 
|  | /// not supported. | 
|  | /// | 
|  | bool X86TargetMachine::addPassesToEmitMachineCode(PassManager &PM, | 
|  | MachineCodeEmitter &MCE) { | 
|  | PM.add(new Emitter(*this, MCE)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Emitter::runOnFunction(Function &F) { | 
|  | MachineFunction &MF = MachineFunction::get(&F); | 
|  |  | 
|  | MCE.startFunction(MF); | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | emitBasicBlock(*I); | 
|  | MCE.finishFunction(MF); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Emitter::emitBasicBlock(MachineBasicBlock &MBB) { | 
|  | MCE.startBasicBlock(MBB); | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) | 
|  | emitInstruction(**I); | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace N86 {  // Native X86 Register numbers... | 
|  | enum { | 
|  | EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 | 
|  | }; | 
|  | } | 
|  |  | 
|  |  | 
|  | // getX86RegNum - This function maps LLVM register identifiers to their X86 | 
|  | // specific numbering, which is used in various places encoding instructions. | 
|  | // | 
|  | static unsigned getX86RegNum(unsigned RegNo) { | 
|  | switch(RegNo) { | 
|  | case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; | 
|  | case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; | 
|  | case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; | 
|  | case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; | 
|  | case X86::ESP: case X86::SP: case X86::AH: return N86::ESP; | 
|  | case X86::EBP: case X86::BP: case X86::CH: return N86::EBP; | 
|  | case X86::ESI: case X86::SI: case X86::DH: return N86::ESI; | 
|  | case X86::EDI: case X86::DI: case X86::BH: return N86::EDI; | 
|  | default: | 
|  | assert(RegNo >= MRegisterInfo::FirstVirtualRegister && | 
|  | "Unknown physical register!"); | 
|  | assert(0 && "Register allocator hasn't allocated reg correctly yet!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, | 
|  | unsigned RM) { | 
|  | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); | 
|  | return RM | (RegOpcode << 3) | (Mod << 6); | 
|  | } | 
|  |  | 
|  | void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ | 
|  | MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); | 
|  | } | 
|  |  | 
|  | void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { | 
|  | // SIB byte is in the same format as the ModRMByte... | 
|  | MCE.emitByte(ModRMByte(SS, Index, Base)); | 
|  | } | 
|  |  | 
|  | void Emitter::emitConstant(unsigned Val, unsigned Size) { | 
|  | // Output the constant in little endian byte order... | 
|  | for (unsigned i = 0; i != Size; ++i) { | 
|  | MCE.emitByte(Val & 255); | 
|  | Val >>= 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isDisp8(int Value) { | 
|  | return Value == (signed char)Value; | 
|  | } | 
|  |  | 
|  | void Emitter::emitMemModRMByte(const MachineInstr &MI, | 
|  | unsigned Op, unsigned RegOpcodeField) { | 
|  | const MachineOperand &BaseReg  = MI.getOperand(Op); | 
|  | const MachineOperand &Scale    = MI.getOperand(Op+1); | 
|  | const MachineOperand &IndexReg = MI.getOperand(Op+2); | 
|  | const MachineOperand &Disp     = MI.getOperand(Op+3); | 
|  |  | 
|  | // Is a SIB byte needed? | 
|  | if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) { | 
|  | if (BaseReg.getReg() == 0) {  // Just a displacement? | 
|  | // Emit special case [disp32] encoding | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); | 
|  | emitConstant(Disp.getImmedValue(), 4); | 
|  | } else { | 
|  | unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); | 
|  | if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) { | 
|  | // Emit simple indirect register encoding... [EAX] f.e. | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); | 
|  | } else if (isDisp8(Disp.getImmedValue())) { | 
|  | // Emit the disp8 encoding... [REG+disp8] | 
|  | MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); | 
|  | emitConstant(Disp.getImmedValue(), 1); | 
|  | } else { | 
|  | // Emit the most general non-SIB encoding: [REG+disp32] | 
|  | MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); | 
|  | emitConstant(Disp.getImmedValue(), 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else {  // We need a SIB byte, so start by outputting the ModR/M byte first | 
|  | assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!"); | 
|  |  | 
|  | bool ForceDisp32 = false; | 
|  | if (BaseReg.getReg() == 0) { | 
|  | // If there is no base register, we emit the special case SIB byte with | 
|  | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); | 
|  | ForceDisp32 = true; | 
|  | } else if (Disp.getImmedValue() == 0) { | 
|  | // Emit no displacement ModR/M byte | 
|  | MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); | 
|  | } else if (isDisp8(Disp.getImmedValue())) { | 
|  | // Emit the disp8 encoding... | 
|  | MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); | 
|  | } else { | 
|  | // Emit the normal disp32 encoding... | 
|  | MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); | 
|  | } | 
|  |  | 
|  | // Calculate what the SS field value should be... | 
|  | static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; | 
|  | unsigned SS = SSTable[Scale.getImmedValue()]; | 
|  |  | 
|  | if (BaseReg.getReg() == 0) { | 
|  | // Handle the SIB byte for the case where there is no base.  The | 
|  | // displacement has already been output. | 
|  | assert(IndexReg.getReg() && "Index register must be specified!"); | 
|  | emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); | 
|  | } else { | 
|  | unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); | 
|  | unsigned IndexRegNo = getX86RegNum(IndexReg.getReg()); | 
|  | emitSIBByte(SS, IndexRegNo, BaseRegNo); | 
|  | } | 
|  |  | 
|  | // Do we need to output a displacement? | 
|  | if (Disp.getImmedValue() != 0 || ForceDisp32) { | 
|  | if (!ForceDisp32 && isDisp8(Disp.getImmedValue())) | 
|  | emitConstant(Disp.getImmedValue(), 1); | 
|  | else | 
|  | emitConstant(Disp.getImmedValue(), 4); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isImmediate(const MachineOperand &MO) { | 
|  | return MO.getType() == MachineOperand::MO_SignExtendedImmed || | 
|  | MO.getType() == MachineOperand::MO_UnextendedImmed; | 
|  | } | 
|  |  | 
|  | unsigned sizeOfPtr (const MachineInstrDescriptor &Desc) { | 
|  | switch (Desc.TSFlags & X86II::ArgMask) { | 
|  | case X86II::Arg8:   return 1; | 
|  | case X86II::Arg16:  return 2; | 
|  | case X86II::Arg32:  return 4; | 
|  | case X86II::Arg64:  return 8; | 
|  | case X86II::Arg80:  return 10; | 
|  | case X86II::Arg128: return 16; | 
|  | default: assert(0 && "Memory size not set!"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Emitter::emitInstruction(MachineInstr &MI) { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const MachineInstrDescriptor &Desc = II.get(Opcode); | 
|  |  | 
|  | // Emit instruction prefixes if neccesary | 
|  | if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size... | 
|  | if (Desc.TSFlags & X86II::TB)     MCE.emitByte(0x0F);// Two-byte opcode prefix | 
|  |  | 
|  | unsigned char BaseOpcode = II.getBaseOpcodeFor(Opcode); | 
|  | switch (Desc.TSFlags & X86II::FormMask) { | 
|  | case X86II::RawFrm: | 
|  | MCE.emitByte(BaseOpcode); | 
|  |  | 
|  | if (MI.getNumOperands() == 1) { | 
|  | assert(MI.getOperand(0).getType() == MachineOperand::MO_PCRelativeDisp); | 
|  | MCE.emitPCRelativeDisp(MI.getOperand(0).getVRegValue()); | 
|  | } | 
|  | break; | 
|  | case X86II::AddRegFrm: | 
|  | MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg())); | 
|  | if (MI.getNumOperands() == 2) { | 
|  | unsigned Size = sizeOfPtr(Desc); | 
|  | if (Value *V = MI.getOperand(1).getVRegValueOrNull()) { | 
|  | assert(Size == 4 && "Don't know how to emit non-pointer values!"); | 
|  | MCE.emitGlobalAddress(cast<GlobalValue>(V)); | 
|  | } else { | 
|  | emitConstant(MI.getOperand(1).getImmedValue(), Size); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86II::MRMDestReg: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitRegModRMByte(MI.getOperand(0).getReg(), | 
|  | getX86RegNum(MI.getOperand(MI.getNumOperands()-1).getReg())); | 
|  | break; | 
|  | case X86II::MRMDestMem: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); | 
|  | break; | 
|  | case X86II::MRMSrcReg: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(), | 
|  | getX86RegNum(MI.getOperand(0).getReg())); | 
|  | break; | 
|  | case X86II::MRMSrcMem: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitMemModRMByte(MI, MI.getNumOperands()-4, | 
|  | getX86RegNum(MI.getOperand(0).getReg())); | 
|  | break; | 
|  |  | 
|  | case X86II::MRMS0r: case X86II::MRMS1r: | 
|  | case X86II::MRMS2r: case X86II::MRMS3r: | 
|  | case X86II::MRMS4r: case X86II::MRMS5r: | 
|  | case X86II::MRMS6r: case X86II::MRMS7r: | 
|  | MCE.emitByte(BaseOpcode); | 
|  | emitRegModRMByte(MI.getOperand(0).getReg(), | 
|  | (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r); | 
|  |  | 
|  | if (isImmediate(MI.getOperand(MI.getNumOperands()-1))) { | 
|  | unsigned Size = sizeOfPtr(Desc); | 
|  | emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size); | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | } | 
|  | } |