|  | //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the SelectionDAGISel class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "ScheduleDAGSDNodes.h" | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/SchedulerRegistry.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/DebugInfo.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetLibraryInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); | 
|  | STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); | 
|  | STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); | 
|  | STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); | 
|  | STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<bool> | 
|  | EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, | 
|  | cl::desc("Enable extra verbose messages in the \"fast\" " | 
|  | "instruction selector")); | 
|  | // Terminators | 
|  | STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); | 
|  | STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); | 
|  | STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); | 
|  | STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); | 
|  | STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); | 
|  | STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); | 
|  | STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); | 
|  |  | 
|  | // Standard binary operators... | 
|  | STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); | 
|  | STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); | 
|  | STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); | 
|  | STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); | 
|  | STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); | 
|  | STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); | 
|  | STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); | 
|  | STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); | 
|  | STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); | 
|  | STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); | 
|  | STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); | 
|  | STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); | 
|  |  | 
|  | // Logical operators... | 
|  | STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); | 
|  | STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); | 
|  | STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); | 
|  |  | 
|  | // Memory instructions... | 
|  | STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); | 
|  | STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); | 
|  | STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); | 
|  | STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); | 
|  | STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); | 
|  | STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); | 
|  | STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); | 
|  |  | 
|  | // Convert instructions... | 
|  | STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); | 
|  | STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); | 
|  | STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); | 
|  | STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); | 
|  | STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); | 
|  | STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); | 
|  | STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); | 
|  | STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); | 
|  | STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); | 
|  | STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); | 
|  | STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); | 
|  | STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); | 
|  |  | 
|  | // Other instructions... | 
|  | STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); | 
|  | STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); | 
|  | STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); | 
|  | STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); | 
|  | STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); | 
|  | STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); | 
|  | STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); | 
|  | STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); | 
|  | STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); | 
|  | STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); | 
|  | STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); | 
|  | STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); | 
|  | STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); | 
|  | STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); | 
|  | STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); | 
|  | #endif | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, | 
|  | cl::desc("Enable verbose messages in the \"fast\" " | 
|  | "instruction selector")); | 
|  | static cl::opt<bool> | 
|  | EnableFastISelAbort("fast-isel-abort", cl::Hidden, | 
|  | cl::desc("Enable abort calls when \"fast\" instruction fails")); | 
|  | static cl::opt<bool> | 
|  | EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden, | 
|  | cl::desc("Enable abort calls when \"fast\" instruction fails to " | 
|  | "lower formal arguments")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseMBPI("use-mbpi", | 
|  | cl::desc("use Machine Branch Probability Info"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the first " | 
|  | "dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before legalize types")); | 
|  | static cl::opt<bool> | 
|  | ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before legalize")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the second " | 
|  | "dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the post legalize types" | 
|  | " dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewISelDAGs("view-isel-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show isel dags as they are selected")); | 
|  | static cl::opt<bool> | 
|  | ViewSchedDAGs("view-sched-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show sched dags as they are processed")); | 
|  | static cl::opt<bool> | 
|  | ViewSUnitDAGs("view-sunit-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show SUnit dags after they are processed")); | 
|  | #else | 
|  | static const bool ViewDAGCombine1 = false, | 
|  | ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, | 
|  | ViewDAGCombine2 = false, | 
|  | ViewDAGCombineLT = false, | 
|  | ViewISelDAGs = false, ViewSchedDAGs = false, | 
|  | ViewSUnitDAGs = false; | 
|  | #endif | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | /// | 
|  | /// RegisterScheduler class - Track the registration of instruction schedulers. | 
|  | /// | 
|  | //===---------------------------------------------------------------------===// | 
|  | MachinePassRegistry RegisterScheduler::Registry; | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | /// | 
|  | /// ISHeuristic command line option for instruction schedulers. | 
|  | /// | 
|  | //===---------------------------------------------------------------------===// | 
|  | static cl::opt<RegisterScheduler::FunctionPassCtor, false, | 
|  | RegisterPassParser<RegisterScheduler> > | 
|  | ISHeuristic("pre-RA-sched", | 
|  | cl::init(&createDefaultScheduler), | 
|  | cl::desc("Instruction schedulers available (before register" | 
|  | " allocation):")); | 
|  |  | 
|  | static RegisterScheduler | 
|  | defaultListDAGScheduler("default", "Best scheduler for the target", | 
|  | createDefaultScheduler); | 
|  |  | 
|  | namespace llvm { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// createDefaultScheduler - This creates an instruction scheduler appropriate | 
|  | /// for the target. | 
|  | ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | const TargetLowering &TLI = IS->getTargetLowering(); | 
|  | const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>(); | 
|  |  | 
|  | if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() || | 
|  | TLI.getSchedulingPreference() == Sched::Source) | 
|  | return createSourceListDAGScheduler(IS, OptLevel); | 
|  | if (TLI.getSchedulingPreference() == Sched::RegPressure) | 
|  | return createBURRListDAGScheduler(IS, OptLevel); | 
|  | if (TLI.getSchedulingPreference() == Sched::Hybrid) | 
|  | return createHybridListDAGScheduler(IS, OptLevel); | 
|  | if (TLI.getSchedulingPreference() == Sched::VLIW) | 
|  | return createVLIWDAGScheduler(IS, OptLevel); | 
|  | assert(TLI.getSchedulingPreference() == Sched::ILP && | 
|  | "Unknown sched type!"); | 
|  | return createILPListDAGScheduler(IS, OptLevel); | 
|  | } | 
|  | } | 
|  |  | 
|  | // EmitInstrWithCustomInserter - This method should be implemented by targets | 
|  | // that mark instructions with the 'usesCustomInserter' flag.  These | 
|  | // instructions are special in various ways, which require special support to | 
|  | // insert.  The specified MachineInstr is created but not inserted into any | 
|  | // basic blocks, and this method is called to expand it into a sequence of | 
|  | // instructions, potentially also creating new basic blocks and control flow. | 
|  | // When new basic blocks are inserted and the edges from MBB to its successors | 
|  | // are modified, the method should insert pairs of <OldSucc, NewSucc> into the | 
|  | // DenseMap. | 
|  | MachineBasicBlock * | 
|  | TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "If a target marks an instruction with " | 
|  | "'usesCustomInserter', it must implement " | 
|  | "TargetLowering::EmitInstrWithCustomInserter!"; | 
|  | #endif | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, | 
|  | SDNode *Node) const { | 
|  | assert(!MI->hasPostISelHook() && | 
|  | "If a target marks an instruction with 'hasPostISelHook', " | 
|  | "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SelectionDAGISel code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, | 
|  | CodeGenOpt::Level OL) : | 
|  | MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()), | 
|  | FuncInfo(new FunctionLoweringInfo(TLI)), | 
|  | CurDAG(new SelectionDAG(tm, OL)), | 
|  | SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), | 
|  | GFI(), | 
|  | OptLevel(OL), | 
|  | DAGSize(0) { | 
|  | initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); | 
|  | initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); | 
|  | initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); | 
|  | initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | SelectionDAGISel::~SelectionDAGISel() { | 
|  | delete SDB; | 
|  | delete CurDAG; | 
|  | delete FuncInfo; | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addPreserved<AliasAnalysis>(); | 
|  | AU.addRequired<GCModuleInfo>(); | 
|  | AU.addPreserved<GCModuleInfo>(); | 
|  | AU.addRequired<TargetLibraryInfo>(); | 
|  | if (UseMBPI && OptLevel != CodeGenOpt::None) | 
|  | AU.addRequired<BranchProbabilityInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that | 
|  | /// may trap on it.  In this case we have to split the edge so that the path | 
|  | /// through the predecessor block that doesn't go to the phi block doesn't | 
|  | /// execute the possibly trapping instruction. | 
|  | /// | 
|  | /// This is required for correctness, so it must be done at -O0. | 
|  | /// | 
|  | static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { | 
|  | // Loop for blocks with phi nodes. | 
|  | for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { | 
|  | PHINode *PN = dyn_cast<PHINode>(BB->begin()); | 
|  | if (PN == 0) continue; | 
|  |  | 
|  | ReprocessBlock: | 
|  | // For each block with a PHI node, check to see if any of the input values | 
|  | // are potentially trapping constant expressions.  Constant expressions are | 
|  | // the only potentially trapping value that can occur as the argument to a | 
|  | // PHI. | 
|  | for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); | 
|  | if (CE == 0 || !CE->canTrap()) continue; | 
|  |  | 
|  | // The only case we have to worry about is when the edge is critical. | 
|  | // Since this block has a PHI Node, we assume it has multiple input | 
|  | // edges: check to see if the pred has multiple successors. | 
|  | BasicBlock *Pred = PN->getIncomingBlock(i); | 
|  | if (Pred->getTerminator()->getNumSuccessors() == 1) | 
|  | continue; | 
|  |  | 
|  | // Okay, we have to split this edge. | 
|  | SplitCriticalEdge(Pred->getTerminator(), | 
|  | GetSuccessorNumber(Pred, BB), SDISel, true); | 
|  | goto ReprocessBlock; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { | 
|  | // Do some sanity-checking on the command-line options. | 
|  | assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && | 
|  | "-fast-isel-verbose requires -fast-isel"); | 
|  | assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && | 
|  | "-fast-isel-abort requires -fast-isel"); | 
|  |  | 
|  | const Function &Fn = *mf.getFunction(); | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); | 
|  |  | 
|  | MF = &mf; | 
|  | RegInfo = &MF->getRegInfo(); | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  | LibInfo = &getAnalysis<TargetLibraryInfo>(); | 
|  | TTI = getAnalysisIfAvailable<TargetTransformInfo>(); | 
|  | GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0; | 
|  |  | 
|  | TargetSubtargetInfo &ST = | 
|  | const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>()); | 
|  | ST.resetSubtargetFeatures(MF); | 
|  |  | 
|  | DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); | 
|  |  | 
|  | SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); | 
|  |  | 
|  | CurDAG->init(*MF, TTI); | 
|  | FuncInfo->set(Fn, *MF); | 
|  |  | 
|  | if (UseMBPI && OptLevel != CodeGenOpt::None) | 
|  | FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); | 
|  | else | 
|  | FuncInfo->BPI = 0; | 
|  |  | 
|  | SDB->init(GFI, *AA, LibInfo); | 
|  |  | 
|  | MF->setHasMSInlineAsm(false); | 
|  | SelectAllBasicBlocks(Fn); | 
|  |  | 
|  | // If the first basic block in the function has live ins that need to be | 
|  | // copied into vregs, emit the copies into the top of the block before | 
|  | // emitting the code for the block. | 
|  | MachineBasicBlock *EntryMBB = MF->begin(); | 
|  | RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); | 
|  |  | 
|  | DenseMap<unsigned, unsigned> LiveInMap; | 
|  | if (!FuncInfo->ArgDbgValues.empty()) | 
|  | for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), | 
|  | E = RegInfo->livein_end(); LI != E; ++LI) | 
|  | if (LI->second) | 
|  | LiveInMap.insert(std::make_pair(LI->first, LI->second)); | 
|  |  | 
|  | // Insert DBG_VALUE instructions for function arguments to the entry block. | 
|  | for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { | 
|  | MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; | 
|  | unsigned Reg = MI->getOperand(0).getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | EntryMBB->insert(EntryMBB->begin(), MI); | 
|  | else { | 
|  | MachineInstr *Def = RegInfo->getVRegDef(Reg); | 
|  | MachineBasicBlock::iterator InsertPos = Def; | 
|  | // FIXME: VR def may not be in entry block. | 
|  | Def->getParent()->insert(llvm::next(InsertPos), MI); | 
|  | } | 
|  |  | 
|  | // If Reg is live-in then update debug info to track its copy in a vreg. | 
|  | DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); | 
|  | if (LDI != LiveInMap.end()) { | 
|  | MachineInstr *Def = RegInfo->getVRegDef(LDI->second); | 
|  | MachineBasicBlock::iterator InsertPos = Def; | 
|  | const MDNode *Variable = | 
|  | MI->getOperand(MI->getNumOperands()-1).getMetadata(); | 
|  | unsigned Offset = MI->getOperand(1).getImm(); | 
|  | // Def is never a terminator here, so it is ok to increment InsertPos. | 
|  | BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), | 
|  | TII.get(TargetOpcode::DBG_VALUE)) | 
|  | .addReg(LDI->second, RegState::Debug) | 
|  | .addImm(Offset).addMetadata(Variable); | 
|  |  | 
|  | // If this vreg is directly copied into an exported register then | 
|  | // that COPY instructions also need DBG_VALUE, if it is the only | 
|  | // user of LDI->second. | 
|  | MachineInstr *CopyUseMI = NULL; | 
|  | for (MachineRegisterInfo::use_iterator | 
|  | UI = RegInfo->use_begin(LDI->second); | 
|  | MachineInstr *UseMI = UI.skipInstruction();) { | 
|  | if (UseMI->isDebugValue()) continue; | 
|  | if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { | 
|  | CopyUseMI = UseMI; continue; | 
|  | } | 
|  | // Otherwise this is another use or second copy use. | 
|  | CopyUseMI = NULL; break; | 
|  | } | 
|  | if (CopyUseMI) { | 
|  | MachineInstr *NewMI = | 
|  | BuildMI(*MF, CopyUseMI->getDebugLoc(), | 
|  | TII.get(TargetOpcode::DBG_VALUE)) | 
|  | .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug) | 
|  | .addImm(Offset).addMetadata(Variable); | 
|  | MachineBasicBlock::iterator Pos = CopyUseMI; | 
|  | EntryMBB->insertAfter(Pos, NewMI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine if there are any calls in this machine function. | 
|  | MachineFrameInfo *MFI = MF->getFrameInfo(); | 
|  | for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; | 
|  | ++I) { | 
|  |  | 
|  | if (MFI->hasCalls() && MF->hasMSInlineAsm()) | 
|  | break; | 
|  |  | 
|  | const MachineBasicBlock *MBB = I; | 
|  | for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end(); | 
|  | II != IE; ++II) { | 
|  | const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode()); | 
|  | if ((MCID.isCall() && !MCID.isReturn()) || | 
|  | II->isStackAligningInlineAsm()) { | 
|  | MFI->setHasCalls(true); | 
|  | } | 
|  | if (II->isMSInlineAsm()) { | 
|  | MF->setHasMSInlineAsm(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine if there is a call to setjmp in the machine function. | 
|  | MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); | 
|  |  | 
|  | // Replace forward-declared registers with the registers containing | 
|  | // the desired value. | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | for (DenseMap<unsigned, unsigned>::iterator | 
|  | I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); | 
|  | I != E; ++I) { | 
|  | unsigned From = I->first; | 
|  | unsigned To = I->second; | 
|  | // If To is also scheduled to be replaced, find what its ultimate | 
|  | // replacement is. | 
|  | for (;;) { | 
|  | DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); | 
|  | if (J == E) break; | 
|  | To = J->second; | 
|  | } | 
|  | // Replace it. | 
|  | MRI.replaceRegWith(From, To); | 
|  | } | 
|  |  | 
|  | // Freeze the set of reserved registers now that MachineFrameInfo has been | 
|  | // set up. All the information required by getReservedRegs() should be | 
|  | // available now. | 
|  | MRI.freezeReservedRegs(*MF); | 
|  |  | 
|  | // Release function-specific state. SDB and CurDAG are already cleared | 
|  | // at this point. | 
|  | FuncInfo->clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, | 
|  | BasicBlock::const_iterator End, | 
|  | bool &HadTailCall) { | 
|  | // Lower all of the non-terminator instructions. If a call is emitted | 
|  | // as a tail call, cease emitting nodes for this block. Terminators | 
|  | // are handled below. | 
|  | for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) | 
|  | SDB->visit(*I); | 
|  |  | 
|  | // Make sure the root of the DAG is up-to-date. | 
|  | CurDAG->setRoot(SDB->getControlRoot()); | 
|  | HadTailCall = SDB->HasTailCall; | 
|  | SDB->clear(); | 
|  |  | 
|  | // Final step, emit the lowered DAG as machine code. | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::ComputeLiveOutVRegInfo() { | 
|  | SmallPtrSet<SDNode*, 128> VisitedNodes; | 
|  | SmallVector<SDNode*, 128> Worklist; | 
|  |  | 
|  | Worklist.push_back(CurDAG->getRoot().getNode()); | 
|  |  | 
|  | APInt KnownZero; | 
|  | APInt KnownOne; | 
|  |  | 
|  | do { | 
|  | SDNode *N = Worklist.pop_back_val(); | 
|  |  | 
|  | // If we've already seen this node, ignore it. | 
|  | if (!VisitedNodes.insert(N)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add all chain operands to the worklist. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i).getValueType() == MVT::Other) | 
|  | Worklist.push_back(N->getOperand(i).getNode()); | 
|  |  | 
|  | // If this is a CopyToReg with a vreg dest, process it. | 
|  | if (N->getOpcode() != ISD::CopyToReg) | 
|  | continue; | 
|  |  | 
|  | unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DestReg)) | 
|  | continue; | 
|  |  | 
|  | // Ignore non-scalar or non-integer values. | 
|  | SDValue Src = N->getOperand(2); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (!SrcVT.isInteger() || SrcVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); | 
|  | CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne); | 
|  | FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::CodeGenAndEmitDAG() { | 
|  | std::string GroupName; | 
|  | if (TimePassesIsEnabled) | 
|  | GroupName = "Instruction Selection and Scheduling"; | 
|  | std::string BlockName; | 
|  | int BlockNumber = -1; | 
|  | (void)BlockNumber; | 
|  | #ifdef NDEBUG | 
|  | if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || | 
|  | ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || | 
|  | ViewSUnitDAGs) | 
|  | #endif | 
|  | { | 
|  | BlockNumber = FuncInfo->MBB->getNumber(); | 
|  | BlockName = MF->getName().str() + ":" + | 
|  | FuncInfo->MBB->getBasicBlock()->getName().str(); | 
|  | } | 
|  | DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in pre-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); | 
|  | CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | // Second step, hack on the DAG until it only uses operations and types that | 
|  | // the target supports. | 
|  | if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + | 
|  | BlockName); | 
|  |  | 
|  | bool Changed; | 
|  | { | 
|  | NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); | 
|  | Changed = CurDAG->LegalizeTypes(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (Changed) { | 
|  | if (ViewDAGCombineLT) | 
|  | CurDAG->viewGraph("dag-combine-lt input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-type-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("DAG Combining after legalize types", GroupName, | 
|  | TimePassesIsEnabled); | 
|  | CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  | } | 
|  |  | 
|  | { | 
|  | NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); | 
|  | Changed = CurDAG->LegalizeVectors(); | 
|  | } | 
|  |  | 
|  | if (Changed) { | 
|  | { | 
|  | NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); | 
|  | CurDAG->LegalizeTypes(); | 
|  | } | 
|  |  | 
|  | if (ViewDAGCombineLT) | 
|  | CurDAG->viewGraph("dag-combine-lv input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-type-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, | 
|  | TimePassesIsEnabled); | 
|  | CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" | 
|  | << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  | } | 
|  |  | 
|  | if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); | 
|  |  | 
|  | { | 
|  | NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); | 
|  | CurDAG->Legalize(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-legalize mode. | 
|  | { | 
|  | NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); | 
|  | CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None) | 
|  | ComputeLiveOutVRegInfo(); | 
|  |  | 
|  | if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); | 
|  |  | 
|  | // Third, instruction select all of the operations to machine code, adding the | 
|  | // code to the MachineBasicBlock. | 
|  | { | 
|  | NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); | 
|  | DoInstructionSelection(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber | 
|  | << " '" << BlockName << "'\n"; CurDAG->dump()); | 
|  |  | 
|  | if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); | 
|  |  | 
|  | // Schedule machine code. | 
|  | ScheduleDAGSDNodes *Scheduler = CreateScheduler(); | 
|  | { | 
|  | NamedRegionTimer T("Instruction Scheduling", GroupName, | 
|  | TimePassesIsEnabled); | 
|  | Scheduler->Run(CurDAG, FuncInfo->MBB); | 
|  | } | 
|  |  | 
|  | if (ViewSUnitDAGs) Scheduler->viewGraph(); | 
|  |  | 
|  | // Emit machine code to BB.  This can change 'BB' to the last block being | 
|  | // inserted into. | 
|  | MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; | 
|  | { | 
|  | NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); | 
|  |  | 
|  | // FuncInfo->InsertPt is passed by reference and set to the end of the | 
|  | // scheduled instructions. | 
|  | LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); | 
|  | } | 
|  |  | 
|  | // If the block was split, make sure we update any references that are used to | 
|  | // update PHI nodes later on. | 
|  | if (FirstMBB != LastMBB) | 
|  | SDB->UpdateSplitBlock(FirstMBB, LastMBB); | 
|  |  | 
|  | // Free the scheduler state. | 
|  | { | 
|  | NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, | 
|  | TimePassesIsEnabled); | 
|  | delete Scheduler; | 
|  | } | 
|  |  | 
|  | // Free the SelectionDAG state, now that we're finished with it. | 
|  | CurDAG->clear(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// ISelUpdater - helper class to handle updates of the instruction selection | 
|  | /// graph. | 
|  | class ISelUpdater : public SelectionDAG::DAGUpdateListener { | 
|  | SelectionDAG::allnodes_iterator &ISelPosition; | 
|  | public: | 
|  | ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) | 
|  | : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} | 
|  |  | 
|  | /// NodeDeleted - Handle nodes deleted from the graph. If the node being | 
|  | /// deleted is the current ISelPosition node, update ISelPosition. | 
|  | /// | 
|  | virtual void NodeDeleted(SDNode *N, SDNode *E) { | 
|  | if (ISelPosition == SelectionDAG::allnodes_iterator(N)) | 
|  | ++ISelPosition; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void SelectionDAGISel::DoInstructionSelection() { | 
|  | DEBUG(errs() << "===== Instruction selection begins: BB#" | 
|  | << FuncInfo->MBB->getNumber() | 
|  | << " '" << FuncInfo->MBB->getName() << "'\n"); | 
|  |  | 
|  | PreprocessISelDAG(); | 
|  |  | 
|  | // Select target instructions for the DAG. | 
|  | { | 
|  | // Number all nodes with a topological order and set DAGSize. | 
|  | DAGSize = CurDAG->AssignTopologicalOrder(); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds | 
|  | // a reference to the root node, preventing it from being deleted, | 
|  | // and tracking any changes of the root. | 
|  | HandleSDNode Dummy(CurDAG->getRoot()); | 
|  | SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); | 
|  | ++ISelPosition; | 
|  |  | 
|  | // Make sure that ISelPosition gets properly updated when nodes are deleted | 
|  | // in calls made from this function. | 
|  | ISelUpdater ISU(*CurDAG, ISelPosition); | 
|  |  | 
|  | // The AllNodes list is now topological-sorted. Visit the | 
|  | // nodes by starting at the end of the list (the root of the | 
|  | // graph) and preceding back toward the beginning (the entry | 
|  | // node). | 
|  | while (ISelPosition != CurDAG->allnodes_begin()) { | 
|  | SDNode *Node = --ISelPosition; | 
|  | // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, | 
|  | // but there are currently some corner cases that it misses. Also, this | 
|  | // makes it theoretically possible to disable the DAGCombiner. | 
|  | if (Node->use_empty()) | 
|  | continue; | 
|  |  | 
|  | SDNode *ResNode = Select(Node); | 
|  |  | 
|  | // FIXME: This is pretty gross.  'Select' should be changed to not return | 
|  | // anything at all and this code should be nuked with a tactical strike. | 
|  |  | 
|  | // If node should not be replaced, continue with the next one. | 
|  | if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) | 
|  | continue; | 
|  | // Replace node. | 
|  | if (ResNode) | 
|  | ReplaceUses(Node, ResNode); | 
|  |  | 
|  | // If after the replacement this node is not used any more, | 
|  | // remove this dead node. | 
|  | if (Node->use_empty()) // Don't delete EntryToken, etc. | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | } | 
|  |  | 
|  | CurDAG->setRoot(Dummy.getValue()); | 
|  | } | 
|  |  | 
|  | DEBUG(errs() << "===== Instruction selection ends:\n"); | 
|  |  | 
|  | PostprocessISelDAG(); | 
|  | } | 
|  |  | 
|  | /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and | 
|  | /// do other setup for EH landing-pad blocks. | 
|  | void SelectionDAGISel::PrepareEHLandingPad() { | 
|  | MachineBasicBlock *MBB = FuncInfo->MBB; | 
|  |  | 
|  | // Add a label to mark the beginning of the landing pad.  Deletion of the | 
|  | // landing pad can thus be detected via the MachineModuleInfo. | 
|  | MCSymbol *Label = MF->getMMI().addLandingPad(MBB); | 
|  |  | 
|  | // Assign the call site to the landing pad's begin label. | 
|  | MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); | 
|  |  | 
|  | const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); | 
|  | BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) | 
|  | .addSym(Label); | 
|  |  | 
|  | // Mark exception register as live in. | 
|  | unsigned Reg = TLI.getExceptionPointerRegister(); | 
|  | if (Reg) MBB->addLiveIn(Reg); | 
|  |  | 
|  | // Mark exception selector register as live in. | 
|  | Reg = TLI.getExceptionSelectorRegister(); | 
|  | if (Reg) MBB->addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified | 
|  | /// load into the specified FoldInst.  Note that we could have a sequence where | 
|  | /// multiple LLVM IR instructions are folded into the same machineinstr.  For | 
|  | /// example we could have: | 
|  | ///   A: x = load i32 *P | 
|  | ///   B: y = icmp A, 42 | 
|  | ///   C: br y, ... | 
|  | /// | 
|  | /// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and | 
|  | /// any other folded instructions) because it is between A and C. | 
|  | /// | 
|  | /// If we succeed in folding the load into the operation, return true. | 
|  | /// | 
|  | bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI, | 
|  | const Instruction *FoldInst, | 
|  | FastISel *FastIS) { | 
|  | // We know that the load has a single use, but don't know what it is.  If it | 
|  | // isn't one of the folded instructions, then we can't succeed here.  Handle | 
|  | // this by scanning the single-use users of the load until we get to FoldInst. | 
|  | unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs. | 
|  |  | 
|  | const Instruction *TheUser = LI->use_back(); | 
|  | while (TheUser != FoldInst &&   // Scan up until we find FoldInst. | 
|  | // Stay in the right block. | 
|  | TheUser->getParent() == FoldInst->getParent() && | 
|  | --MaxUsers) {  // Don't scan too far. | 
|  | // If there are multiple or no uses of this instruction, then bail out. | 
|  | if (!TheUser->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | TheUser = TheUser->use_back(); | 
|  | } | 
|  |  | 
|  | // If we didn't find the fold instruction, then we failed to collapse the | 
|  | // sequence. | 
|  | if (TheUser != FoldInst) | 
|  | return false; | 
|  |  | 
|  | // Don't try to fold volatile loads.  Target has to deal with alignment | 
|  | // constraints. | 
|  | if (LI->isVolatile()) return false; | 
|  |  | 
|  | // Figure out which vreg this is going into.  If there is no assigned vreg yet | 
|  | // then there actually was no reference to it.  Perhaps the load is referenced | 
|  | // by a dead instruction. | 
|  | unsigned LoadReg = FastIS->getRegForValue(LI); | 
|  | if (LoadReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Check to see what the uses of this vreg are.  If it has no uses, or more | 
|  | // than one use (at the machine instr level) then we can't fold it. | 
|  | MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg); | 
|  | if (RI == RegInfo->reg_end()) | 
|  | return false; | 
|  |  | 
|  | // See if there is exactly one use of the vreg.  If there are multiple uses, | 
|  | // then the instruction got lowered to multiple machine instructions or the | 
|  | // use of the loaded value ended up being multiple operands of the result, in | 
|  | // either case, we can't fold this. | 
|  | MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI; | 
|  | if (PostRI != RegInfo->reg_end()) | 
|  | return false; | 
|  |  | 
|  | assert(RI.getOperand().isUse() && | 
|  | "The only use of the vreg must be a use, we haven't emitted the def!"); | 
|  |  | 
|  | MachineInstr *User = &*RI; | 
|  |  | 
|  | // Set the insertion point properly.  Folding the load can cause generation of | 
|  | // other random instructions (like sign extends) for addressing modes, make | 
|  | // sure they get inserted in a logical place before the new instruction. | 
|  | FuncInfo->InsertPt = User; | 
|  | FuncInfo->MBB = User->getParent(); | 
|  |  | 
|  | // Ask the target to try folding the load. | 
|  | return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI); | 
|  | } | 
|  |  | 
|  | /// isFoldedOrDeadInstruction - Return true if the specified instruction is | 
|  | /// side-effect free and is either dead or folded into a generated instruction. | 
|  | /// Return false if it needs to be emitted. | 
|  | static bool isFoldedOrDeadInstruction(const Instruction *I, | 
|  | FunctionLoweringInfo *FuncInfo) { | 
|  | return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. | 
|  | !isa<TerminatorInst>(I) && // Terminators aren't folded. | 
|  | !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded. | 
|  | !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded. | 
|  | !FuncInfo->isExportedInst(I); // Exported instrs must be computed. | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Collect per Instruction statistics for fast-isel misses.  Only those | 
|  | // instructions that cause the bail are accounted for.  It does not account for | 
|  | // instructions higher in the block.  Thus, summing the per instructions stats | 
|  | // will not add up to what is reported by NumFastIselFailures. | 
|  | static void collectFailStats(const Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | default: assert (0 && "<Invalid operator> "); | 
|  |  | 
|  | // Terminators | 
|  | case Instruction::Ret:         NumFastIselFailRet++; return; | 
|  | case Instruction::Br:          NumFastIselFailBr++; return; | 
|  | case Instruction::Switch:      NumFastIselFailSwitch++; return; | 
|  | case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return; | 
|  | case Instruction::Invoke:      NumFastIselFailInvoke++; return; | 
|  | case Instruction::Resume:      NumFastIselFailResume++; return; | 
|  | case Instruction::Unreachable: NumFastIselFailUnreachable++; return; | 
|  |  | 
|  | // Standard binary operators... | 
|  | case Instruction::Add:  NumFastIselFailAdd++; return; | 
|  | case Instruction::FAdd: NumFastIselFailFAdd++; return; | 
|  | case Instruction::Sub:  NumFastIselFailSub++; return; | 
|  | case Instruction::FSub: NumFastIselFailFSub++; return; | 
|  | case Instruction::Mul:  NumFastIselFailMul++; return; | 
|  | case Instruction::FMul: NumFastIselFailFMul++; return; | 
|  | case Instruction::UDiv: NumFastIselFailUDiv++; return; | 
|  | case Instruction::SDiv: NumFastIselFailSDiv++; return; | 
|  | case Instruction::FDiv: NumFastIselFailFDiv++; return; | 
|  | case Instruction::URem: NumFastIselFailURem++; return; | 
|  | case Instruction::SRem: NumFastIselFailSRem++; return; | 
|  | case Instruction::FRem: NumFastIselFailFRem++; return; | 
|  |  | 
|  | // Logical operators... | 
|  | case Instruction::And: NumFastIselFailAnd++; return; | 
|  | case Instruction::Or:  NumFastIselFailOr++; return; | 
|  | case Instruction::Xor: NumFastIselFailXor++; return; | 
|  |  | 
|  | // Memory instructions... | 
|  | case Instruction::Alloca:        NumFastIselFailAlloca++; return; | 
|  | case Instruction::Load:          NumFastIselFailLoad++; return; | 
|  | case Instruction::Store:         NumFastIselFailStore++; return; | 
|  | case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; | 
|  | case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return; | 
|  | case Instruction::Fence:         NumFastIselFailFence++; return; | 
|  | case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; | 
|  |  | 
|  | // Convert instructions... | 
|  | case Instruction::Trunc:    NumFastIselFailTrunc++; return; | 
|  | case Instruction::ZExt:     NumFastIselFailZExt++; return; | 
|  | case Instruction::SExt:     NumFastIselFailSExt++; return; | 
|  | case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return; | 
|  | case Instruction::FPExt:    NumFastIselFailFPExt++; return; | 
|  | case Instruction::FPToUI:   NumFastIselFailFPToUI++; return; | 
|  | case Instruction::FPToSI:   NumFastIselFailFPToSI++; return; | 
|  | case Instruction::UIToFP:   NumFastIselFailUIToFP++; return; | 
|  | case Instruction::SIToFP:   NumFastIselFailSIToFP++; return; | 
|  | case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; | 
|  | case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; | 
|  | case Instruction::BitCast:  NumFastIselFailBitCast++; return; | 
|  |  | 
|  | // Other instructions... | 
|  | case Instruction::ICmp:           NumFastIselFailICmp++; return; | 
|  | case Instruction::FCmp:           NumFastIselFailFCmp++; return; | 
|  | case Instruction::PHI:            NumFastIselFailPHI++; return; | 
|  | case Instruction::Select:         NumFastIselFailSelect++; return; | 
|  | case Instruction::Call:           NumFastIselFailCall++; return; | 
|  | case Instruction::Shl:            NumFastIselFailShl++; return; | 
|  | case Instruction::LShr:           NumFastIselFailLShr++; return; | 
|  | case Instruction::AShr:           NumFastIselFailAShr++; return; | 
|  | case Instruction::VAArg:          NumFastIselFailVAArg++; return; | 
|  | case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; | 
|  | case Instruction::InsertElement:  NumFastIselFailInsertElement++; return; | 
|  | case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return; | 
|  | case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return; | 
|  | case Instruction::InsertValue:    NumFastIselFailInsertValue++; return; | 
|  | case Instruction::LandingPad:     NumFastIselFailLandingPad++; return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { | 
|  | // Initialize the Fast-ISel state, if needed. | 
|  | FastISel *FastIS = 0; | 
|  | if (TM.Options.EnableFastISel) | 
|  | FastIS = TLI.createFastISel(*FuncInfo, LibInfo); | 
|  |  | 
|  | // Iterate over all basic blocks in the function. | 
|  | ReversePostOrderTraversal<const Function*> RPOT(&Fn); | 
|  | for (ReversePostOrderTraversal<const Function*>::rpo_iterator | 
|  | I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { | 
|  | const BasicBlock *LLVMBB = *I; | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None) { | 
|  | bool AllPredsVisited = true; | 
|  | for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); | 
|  | PI != PE; ++PI) { | 
|  | if (!FuncInfo->VisitedBBs.count(*PI)) { | 
|  | AllPredsVisited = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllPredsVisited) { | 
|  | for (BasicBlock::const_iterator I = LLVMBB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | FuncInfo->ComputePHILiveOutRegInfo(PN); | 
|  | } else { | 
|  | for (BasicBlock::const_iterator I = LLVMBB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | FuncInfo->InvalidatePHILiveOutRegInfo(PN); | 
|  | } | 
|  |  | 
|  | FuncInfo->VisitedBBs.insert(LLVMBB); | 
|  | } | 
|  |  | 
|  | FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); | 
|  |  | 
|  | BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); | 
|  | BasicBlock::const_iterator const End = LLVMBB->end(); | 
|  | BasicBlock::const_iterator BI = End; | 
|  |  | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); | 
|  |  | 
|  | // Setup an EH landing-pad block. | 
|  | if (FuncInfo->MBB->isLandingPad()) | 
|  | PrepareEHLandingPad(); | 
|  |  | 
|  | // Before doing SelectionDAG ISel, see if FastISel has been requested. | 
|  | if (FastIS) { | 
|  | FastIS->startNewBlock(); | 
|  |  | 
|  | // Emit code for any incoming arguments. This must happen before | 
|  | // beginning FastISel on the entry block. | 
|  | if (LLVMBB == &Fn.getEntryBlock()) { | 
|  | // Lower any arguments needed in this block if this is the entry block. | 
|  | if (!FastIS->LowerArguments()) { | 
|  |  | 
|  | if (EnableFastISelAbortArgs) | 
|  | // The "fast" selector couldn't lower these arguments.  For the | 
|  | // purpose of debugging, just abort. | 
|  | llvm_unreachable("FastISel didn't lower all arguments"); | 
|  |  | 
|  | // Call target indepedent SDISel argument lowering code if the target | 
|  | // specific routine is not successful. | 
|  | LowerArguments(LLVMBB); | 
|  | CurDAG->setRoot(SDB->getControlRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | // If we inserted any instructions at the beginning, make a note of | 
|  | // where they are, so we can be sure to emit subsequent instructions | 
|  | // after them. | 
|  | if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) | 
|  | FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); | 
|  | else | 
|  | FastIS->setLastLocalValue(0); | 
|  | } | 
|  |  | 
|  | unsigned NumFastIselRemaining = std::distance(Begin, End); | 
|  | // Do FastISel on as many instructions as possible. | 
|  | for (; BI != Begin; --BI) { | 
|  | const Instruction *Inst = llvm::prior(BI); | 
|  |  | 
|  | // If we no longer require this instruction, skip it. | 
|  | if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { | 
|  | --NumFastIselRemaining; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Bottom-up: reset the insert pos at the top, after any local-value | 
|  | // instructions. | 
|  | FastIS->recomputeInsertPt(); | 
|  |  | 
|  | // Try to select the instruction with FastISel. | 
|  | if (FastIS->SelectInstruction(Inst)) { | 
|  | --NumFastIselRemaining; | 
|  | ++NumFastIselSuccess; | 
|  | // If fast isel succeeded, skip over all the folded instructions, and | 
|  | // then see if there is a load right before the selected instructions. | 
|  | // Try to fold the load if so. | 
|  | const Instruction *BeforeInst = Inst; | 
|  | while (BeforeInst != Begin) { | 
|  | BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst)); | 
|  | if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) | 
|  | break; | 
|  | } | 
|  | if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && | 
|  | BeforeInst->hasOneUse() && | 
|  | TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) { | 
|  | // If we succeeded, don't re-select the load. | 
|  | BI = llvm::next(BasicBlock::const_iterator(BeforeInst)); | 
|  | --NumFastIselRemaining; | 
|  | ++NumFastIselSuccess; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (EnableFastISelVerbose2) | 
|  | collectFailStats(Inst); | 
|  | #endif | 
|  |  | 
|  | // Then handle certain instructions as single-LLVM-Instruction blocks. | 
|  | if (isa<CallInst>(Inst)) { | 
|  |  | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) { | 
|  | dbgs() << "FastISel missed call: "; | 
|  | Inst->dump(); | 
|  | } | 
|  |  | 
|  | if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { | 
|  | unsigned &R = FuncInfo->ValueMap[Inst]; | 
|  | if (!R) | 
|  | R = FuncInfo->CreateRegs(Inst->getType()); | 
|  | } | 
|  |  | 
|  | bool HadTailCall = false; | 
|  | MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; | 
|  | SelectBasicBlock(Inst, BI, HadTailCall); | 
|  |  | 
|  | // If the call was emitted as a tail call, we're done with the block. | 
|  | // We also need to delete any previously emitted instructions. | 
|  | if (HadTailCall) { | 
|  | FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); | 
|  | --BI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Recompute NumFastIselRemaining as Selection DAG instruction | 
|  | // selection may have handled the call, input args, etc. | 
|  | unsigned RemainingNow = std::distance(Begin, BI); | 
|  | NumFastIselFailures += NumFastIselRemaining - RemainingNow; | 
|  | NumFastIselRemaining = RemainingNow; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { | 
|  | // Don't abort, and use a different message for terminator misses. | 
|  | NumFastIselFailures += NumFastIselRemaining; | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) { | 
|  | dbgs() << "FastISel missed terminator: "; | 
|  | Inst->dump(); | 
|  | } | 
|  | } else { | 
|  | NumFastIselFailures += NumFastIselRemaining; | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) { | 
|  | dbgs() << "FastISel miss: "; | 
|  | Inst->dump(); | 
|  | } | 
|  | if (EnableFastISelAbort) | 
|  | // The "fast" selector couldn't handle something and bailed. | 
|  | // For the purpose of debugging, just abort. | 
|  | llvm_unreachable("FastISel didn't select the entire block"); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | FastIS->recomputeInsertPt(); | 
|  | } else { | 
|  | // Lower any arguments needed in this block if this is the entry block. | 
|  | if (LLVMBB == &Fn.getEntryBlock()) | 
|  | LowerArguments(LLVMBB); | 
|  | } | 
|  |  | 
|  | if (Begin != BI) | 
|  | ++NumDAGBlocks; | 
|  | else | 
|  | ++NumFastIselBlocks; | 
|  |  | 
|  | if (Begin != BI) { | 
|  | // Run SelectionDAG instruction selection on the remainder of the block | 
|  | // not handled by FastISel. If FastISel is not run, this is the entire | 
|  | // block. | 
|  | bool HadTailCall; | 
|  | SelectBasicBlock(Begin, BI, HadTailCall); | 
|  | } | 
|  |  | 
|  | FinishBasicBlock(); | 
|  | FuncInfo->PHINodesToUpdate.clear(); | 
|  | } | 
|  |  | 
|  | delete FastIS; | 
|  | SDB->clearDanglingDebugInfo(); | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGISel::FinishBasicBlock() { | 
|  |  | 
|  | DEBUG(dbgs() << "Total amount of phi nodes to update: " | 
|  | << FuncInfo->PHINodesToUpdate.size() << "\n"; | 
|  | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) | 
|  | dbgs() << "Node " << i << " : (" | 
|  | << FuncInfo->PHINodesToUpdate[i].first | 
|  | << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); | 
|  |  | 
|  | // Next, now that we know what the last MBB the LLVM BB expanded is, update | 
|  | // PHI nodes in successors. | 
|  | if (SDB->SwitchCases.empty() && | 
|  | SDB->JTCases.empty() && | 
|  | SDB->BitTestCases.empty()) { | 
|  | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) | 
|  | continue; | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { | 
|  | // Lower header first, if it wasn't already lowered | 
|  | if (!SDB->BitTestCases[i].Emitted) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->BitTestCases[i].Parent; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | uint32_t UnhandledWeight = 0; | 
|  | for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) | 
|  | UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight; | 
|  |  | 
|  | for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { | 
|  | UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight; | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | if (j+1 != ej) | 
|  | SDB->visitBitTestCase(SDB->BitTestCases[i], | 
|  | SDB->BitTestCases[i].Cases[j+1].ThisBB, | 
|  | UnhandledWeight, | 
|  | SDB->BitTestCases[i].Reg, | 
|  | SDB->BitTestCases[i].Cases[j], | 
|  | FuncInfo->MBB); | 
|  | else | 
|  | SDB->visitBitTestCase(SDB->BitTestCases[i], | 
|  | SDB->BitTestCases[i].Default, | 
|  | UnhandledWeight, | 
|  | SDB->BitTestCases[i].Reg, | 
|  | SDB->BitTestCases[i].Cases[j], | 
|  | FuncInfo->MBB); | 
|  |  | 
|  |  | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | // Update PHI Nodes | 
|  | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); | 
|  | pi != pe; ++pi) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); | 
|  | MachineBasicBlock *PHIBB = PHI->getParent(); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | // This is "default" BB. We have two jumps to it. From "header" BB and | 
|  | // from last "case" BB. | 
|  | if (PHIBB == SDB->BitTestCases[i].Default) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) | 
|  | .addMBB(SDB->BitTestCases[i].Parent) | 
|  | .addReg(FuncInfo->PHINodesToUpdate[pi].second) | 
|  | .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB); | 
|  | // One of "cases" BB. | 
|  | for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); | 
|  | j != ej; ++j) { | 
|  | MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; | 
|  | if (cBB->isSuccessor(PHIBB)) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); | 
|  | } | 
|  | } | 
|  | } | 
|  | SDB->BitTestCases.clear(); | 
|  |  | 
|  | // If the JumpTable record is filled in, then we need to emit a jump table. | 
|  | // Updating the PHI nodes is tricky in this case, since we need to determine | 
|  | // whether the PHI is a successor of the range check MBB or the jump table MBB | 
|  | for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { | 
|  | // Lower header first, if it wasn't already lowered | 
|  | if (!SDB->JTCases[i].first.Emitted) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, | 
|  | FuncInfo->MBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  | } | 
|  |  | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->JTCases[i].second.MBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // Emit the code | 
|  | SDB->visitJumpTable(SDB->JTCases[i].second); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // Update PHI Nodes | 
|  | for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); | 
|  | pi != pe; ++pi) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); | 
|  | MachineBasicBlock *PHIBB = PHI->getParent(); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | // "default" BB. We can go there only from header BB. | 
|  | if (PHIBB == SDB->JTCases[i].second.Default) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) | 
|  | .addMBB(SDB->JTCases[i].first.HeaderBB); | 
|  | // JT BB. Just iterate over successors here | 
|  | if (FuncInfo->MBB->isSuccessor(PHIBB)) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); | 
|  | } | 
|  | } | 
|  | SDB->JTCases.clear(); | 
|  |  | 
|  | // If the switch block involved a branch to one of the actual successors, we | 
|  | // need to update PHI nodes in that block. | 
|  | for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { | 
|  | MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | if (FuncInfo->MBB->isSuccessor(PHI->getParent())) | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); | 
|  | } | 
|  |  | 
|  | // If we generated any switch lowering information, build and codegen any | 
|  | // additional DAGs necessary. | 
|  | for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  |  | 
|  | // Determine the unique successors. | 
|  | SmallVector<MachineBasicBlock *, 2> Succs; | 
|  | Succs.push_back(SDB->SwitchCases[i].TrueBB); | 
|  | if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) | 
|  | Succs.push_back(SDB->SwitchCases[i].FalseBB); | 
|  |  | 
|  | // Emit the code. Note that this could result in FuncInfo->MBB being split. | 
|  | SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | SDB->clear(); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // Remember the last block, now that any splitting is done, for use in | 
|  | // populating PHI nodes in successors. | 
|  | MachineBasicBlock *ThisBB = FuncInfo->MBB; | 
|  |  | 
|  | // Handle any PHI nodes in successors of this chunk, as if we were coming | 
|  | // from the original BB before switch expansion.  Note that PHI nodes can | 
|  | // occur multiple times in PHINodesToUpdate.  We have to be very careful to | 
|  | // handle them the right number of times. | 
|  | for (unsigned i = 0, e = Succs.size(); i != e; ++i) { | 
|  | FuncInfo->MBB = Succs[i]; | 
|  | FuncInfo->InsertPt = FuncInfo->MBB->end(); | 
|  | // FuncInfo->MBB may have been removed from the CFG if a branch was | 
|  | // constant folded. | 
|  | if (ThisBB->isSuccessor(FuncInfo->MBB)) { | 
|  | for (MachineBasicBlock::iterator | 
|  | MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); | 
|  | MBBI != MBBE && MBBI->isPHI(); ++MBBI) { | 
|  | MachineInstrBuilder PHI(*MF, MBBI); | 
|  | // This value for this PHI node is recorded in PHINodesToUpdate. | 
|  | for (unsigned pn = 0; ; ++pn) { | 
|  | assert(pn != FuncInfo->PHINodesToUpdate.size() && | 
|  | "Didn't find PHI entry!"); | 
|  | if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { | 
|  | PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | SDB->SwitchCases.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Create the scheduler. If a specific scheduler was specified | 
|  | /// via the SchedulerRegistry, use it, otherwise select the | 
|  | /// one preferred by the target. | 
|  | /// | 
|  | ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { | 
|  | RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); | 
|  |  | 
|  | if (!Ctor) { | 
|  | Ctor = ISHeuristic; | 
|  | RegisterScheduler::setDefault(Ctor); | 
|  | } | 
|  |  | 
|  | return Ctor(this, OptLevel); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions used by the generated instruction selector. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Calls to these methods are generated by tblgen. | 
|  |  | 
|  | /// CheckAndMask - The isel is trying to match something like (and X, 255).  If | 
|  | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
|  | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value | 
|  | /// specified in the .td file (e.g. 255). | 
|  | bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, | 
|  | int64_t DesiredMaskS) const { | 
|  | const APInt &ActualMask = RHS->getAPIntValue(); | 
|  | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); | 
|  |  | 
|  | // If the actual mask exactly matches, success! | 
|  | if (ActualMask == DesiredMask) | 
|  | return true; | 
|  |  | 
|  | // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
|  | if (ActualMask.intersects(~DesiredMask)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the DAG Combiner may have proven that the value coming in is | 
|  | // either already zero or is not demanded.  Check for known zero input bits. | 
|  | APInt NeededMask = DesiredMask & ~ActualMask; | 
|  | if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) | 
|  | return true; | 
|  |  | 
|  | // TODO: check to see if missing bits are just not demanded. | 
|  |  | 
|  | // Otherwise, this pattern doesn't match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckOrMask - The isel is trying to match something like (or X, 255).  If | 
|  | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
|  | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value | 
|  | /// specified in the .td file (e.g. 255). | 
|  | bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, | 
|  | int64_t DesiredMaskS) const { | 
|  | const APInt &ActualMask = RHS->getAPIntValue(); | 
|  | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); | 
|  |  | 
|  | // If the actual mask exactly matches, success! | 
|  | if (ActualMask == DesiredMask) | 
|  | return true; | 
|  |  | 
|  | // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
|  | if (ActualMask.intersects(~DesiredMask)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the DAG Combiner may have proven that the value coming in is | 
|  | // either already zero or is not demanded.  Check for known zero input bits. | 
|  | APInt NeededMask = DesiredMask & ~ActualMask; | 
|  |  | 
|  | APInt KnownZero, KnownOne; | 
|  | CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne); | 
|  |  | 
|  | // If all the missing bits in the or are already known to be set, match! | 
|  | if ((NeededMask & KnownOne) == NeededMask) | 
|  | return true; | 
|  |  | 
|  | // TODO: check to see if missing bits are just not demanded. | 
|  |  | 
|  | // Otherwise, this pattern doesn't match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated | 
|  | /// by tblgen.  Others should not call it. | 
|  | void SelectionDAGISel:: | 
|  | SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { | 
|  | std::vector<SDValue> InOps; | 
|  | std::swap(InOps, Ops); | 
|  |  | 
|  | Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 | 
|  | Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1 | 
|  | Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc | 
|  | Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack) | 
|  |  | 
|  | unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); | 
|  | if (InOps[e-1].getValueType() == MVT::Glue) | 
|  | --e;  // Don't process a glue operand if it is here. | 
|  |  | 
|  | while (i != e) { | 
|  | unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); | 
|  | if (!InlineAsm::isMemKind(Flags)) { | 
|  | // Just skip over this operand, copying the operands verbatim. | 
|  | Ops.insert(Ops.end(), InOps.begin()+i, | 
|  | InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); | 
|  | i += InlineAsm::getNumOperandRegisters(Flags) + 1; | 
|  | } else { | 
|  | assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && | 
|  | "Memory operand with multiple values?"); | 
|  | // Otherwise, this is a memory operand.  Ask the target to select it. | 
|  | std::vector<SDValue> SelOps; | 
|  | if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) | 
|  | report_fatal_error("Could not match memory address.  Inline asm" | 
|  | " failure!"); | 
|  |  | 
|  | // Add this to the output node. | 
|  | unsigned NewFlags = | 
|  | InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); | 
|  | Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); | 
|  | Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the glue input back if present. | 
|  | if (e != InOps.size()) | 
|  | Ops.push_back(InOps.back()); | 
|  | } | 
|  |  | 
|  | /// findGlueUse - Return use of MVT::Glue value produced by the specified | 
|  | /// SDNode. | 
|  | /// | 
|  | static SDNode *findGlueUse(SDNode *N) { | 
|  | unsigned FlagResNo = N->getNumValues()-1; | 
|  | for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { | 
|  | SDUse &Use = I.getUse(); | 
|  | if (Use.getResNo() == FlagResNo) | 
|  | return Use.getUser(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". | 
|  | /// This function recursively traverses up the operand chain, ignoring | 
|  | /// certain nodes. | 
|  | static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, | 
|  | SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, | 
|  | bool IgnoreChains) { | 
|  | // The NodeID's are given uniques ID's where a node ID is guaranteed to be | 
|  | // greater than all of its (recursive) operands.  If we scan to a point where | 
|  | // 'use' is smaller than the node we're scanning for, then we know we will | 
|  | // never find it. | 
|  | // | 
|  | // The Use may be -1 (unassigned) if it is a newly allocated node.  This can | 
|  | // happen because we scan down to newly selected nodes in the case of glue | 
|  | // uses. | 
|  | if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) | 
|  | return false; | 
|  |  | 
|  | // Don't revisit nodes if we already scanned it and didn't fail, we know we | 
|  | // won't fail if we scan it again. | 
|  | if (!Visited.insert(Use)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { | 
|  | // Ignore chain uses, they are validated by HandleMergeInputChains. | 
|  | if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) | 
|  | continue; | 
|  |  | 
|  | SDNode *N = Use->getOperand(i).getNode(); | 
|  | if (N == Def) { | 
|  | if (Use == ImmedUse || Use == Root) | 
|  | continue;  // We are not looking for immediate use. | 
|  | assert(N != Root); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Traverse up the operand chain. | 
|  | if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsProfitableToFold - Returns true if it's profitable to fold the specific | 
|  | /// operand node N of U during instruction selection that starts at Root. | 
|  | bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, | 
|  | SDNode *Root) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  | return N.hasOneUse(); | 
|  | } | 
|  |  | 
|  | /// IsLegalToFold - Returns true if the specific operand node N of | 
|  | /// U can be folded during instruction selection that starts at Root. | 
|  | bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, | 
|  | CodeGenOpt::Level OptLevel, | 
|  | bool IgnoreChains) { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  |  | 
|  | // If Root use can somehow reach N through a path that that doesn't contain | 
|  | // U then folding N would create a cycle. e.g. In the following | 
|  | // diagram, Root can reach N through X. If N is folded into into Root, then | 
|  | // X is both a predecessor and a successor of U. | 
|  | // | 
|  | //          [N*]           // | 
|  | //         ^   ^           // | 
|  | //        /     \          // | 
|  | //      [U*]    [X]?       // | 
|  | //        ^     ^          // | 
|  | //         \   /           // | 
|  | //          \ /            // | 
|  | //         [Root*]         // | 
|  | // | 
|  | // * indicates nodes to be folded together. | 
|  | // | 
|  | // If Root produces glue, then it gets (even more) interesting. Since it | 
|  | // will be "glued" together with its glue use in the scheduler, we need to | 
|  | // check if it might reach N. | 
|  | // | 
|  | //          [N*]           // | 
|  | //         ^   ^           // | 
|  | //        /     \          // | 
|  | //      [U*]    [X]?       // | 
|  | //        ^       ^        // | 
|  | //         \       \       // | 
|  | //          \      |       // | 
|  | //         [Root*] |       // | 
|  | //          ^      |       // | 
|  | //          f      |       // | 
|  | //          |      /       // | 
|  | //         [Y]    /        // | 
|  | //           ^   /         // | 
|  | //           f  /          // | 
|  | //           | /           // | 
|  | //          [GU]           // | 
|  | // | 
|  | // If GU (glue use) indirectly reaches N (the load), and Root folds N | 
|  | // (call it Fold), then X is a predecessor of GU and a successor of | 
|  | // Fold. But since Fold and GU are glued together, this will create | 
|  | // a cycle in the scheduling graph. | 
|  |  | 
|  | // If the node has glue, walk down the graph to the "lowest" node in the | 
|  | // glueged set. | 
|  | EVT VT = Root->getValueType(Root->getNumValues()-1); | 
|  | while (VT == MVT::Glue) { | 
|  | SDNode *GU = findGlueUse(Root); | 
|  | if (GU == NULL) | 
|  | break; | 
|  | Root = GU; | 
|  | VT = Root->getValueType(Root->getNumValues()-1); | 
|  |  | 
|  | // If our query node has a glue result with a use, we've walked up it.  If | 
|  | // the user (which has already been selected) has a chain or indirectly uses | 
|  | // the chain, our WalkChainUsers predicate will not consider it.  Because of | 
|  | // this, we cannot ignore chains in this predicate. | 
|  | IgnoreChains = false; | 
|  | } | 
|  |  | 
|  |  | 
|  | SmallPtrSet<SDNode*, 16> Visited; | 
|  | return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); | 
|  | } | 
|  |  | 
|  | SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { | 
|  | std::vector<SDValue> Ops(N->op_begin(), N->op_end()); | 
|  | SelectInlineAsmMemoryOperands(Ops); | 
|  |  | 
|  | std::vector<EVT> VTs; | 
|  | VTs.push_back(MVT::Other); | 
|  | VTs.push_back(MVT::Glue); | 
|  | SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), | 
|  | VTs, &Ops[0], Ops.size()); | 
|  | New->setNodeId(-1); | 
|  | return New.getNode(); | 
|  | } | 
|  |  | 
|  | SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { | 
|  | return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// GetVBR - decode a vbr encoding whose top bit is set. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t | 
|  | GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { | 
|  | assert(Val >= 128 && "Not a VBR"); | 
|  | Val &= 127;  // Remove first vbr bit. | 
|  |  | 
|  | unsigned Shift = 7; | 
|  | uint64_t NextBits; | 
|  | do { | 
|  | NextBits = MatcherTable[Idx++]; | 
|  | Val |= (NextBits&127) << Shift; | 
|  | Shift += 7; | 
|  | } while (NextBits & 128); | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// UpdateChainsAndGlue - When a match is complete, this method updates uses of | 
|  | /// interior glue and chain results to use the new glue and chain results. | 
|  | void SelectionDAGISel:: | 
|  | UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, | 
|  | const SmallVectorImpl<SDNode*> &ChainNodesMatched, | 
|  | SDValue InputGlue, | 
|  | const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, | 
|  | bool isMorphNodeTo) { | 
|  | SmallVector<SDNode*, 4> NowDeadNodes; | 
|  |  | 
|  | // Now that all the normal results are replaced, we replace the chain and | 
|  | // glue results if present. | 
|  | if (!ChainNodesMatched.empty()) { | 
|  | assert(InputChain.getNode() != 0 && | 
|  | "Matched input chains but didn't produce a chain"); | 
|  | // Loop over all of the nodes we matched that produced a chain result. | 
|  | // Replace all the chain results with the final chain we ended up with. | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | SDNode *ChainNode = ChainNodesMatched[i]; | 
|  |  | 
|  | // If this node was already deleted, don't look at it. | 
|  | if (ChainNode->getOpcode() == ISD::DELETED_NODE) | 
|  | continue; | 
|  |  | 
|  | // Don't replace the results of the root node if we're doing a | 
|  | // MorphNodeTo. | 
|  | if (ChainNode == NodeToMatch && isMorphNodeTo) | 
|  | continue; | 
|  |  | 
|  | SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); | 
|  | if (ChainVal.getValueType() == MVT::Glue) | 
|  | ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); | 
|  | assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); | 
|  |  | 
|  | // If the node became dead and we haven't already seen it, delete it. | 
|  | if (ChainNode->use_empty() && | 
|  | !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) | 
|  | NowDeadNodes.push_back(ChainNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the result produces glue, update any glue results in the matched | 
|  | // pattern with the glue result. | 
|  | if (InputGlue.getNode() != 0) { | 
|  | // Handle any interior nodes explicitly marked. | 
|  | for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { | 
|  | SDNode *FRN = GlueResultNodesMatched[i]; | 
|  |  | 
|  | // If this node was already deleted, don't look at it. | 
|  | if (FRN->getOpcode() == ISD::DELETED_NODE) | 
|  | continue; | 
|  |  | 
|  | assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && | 
|  | "Doesn't have a glue result"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), | 
|  | InputGlue); | 
|  |  | 
|  | // If the node became dead and we haven't already seen it, delete it. | 
|  | if (FRN->use_empty() && | 
|  | !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) | 
|  | NowDeadNodes.push_back(FRN); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NowDeadNodes.empty()) | 
|  | CurDAG->RemoveDeadNodes(NowDeadNodes); | 
|  |  | 
|  | DEBUG(errs() << "ISEL: Match complete!\n"); | 
|  | } | 
|  |  | 
|  | enum ChainResult { | 
|  | CR_Simple, | 
|  | CR_InducesCycle, | 
|  | CR_LeadsToInteriorNode | 
|  | }; | 
|  |  | 
|  | /// WalkChainUsers - Walk down the users of the specified chained node that is | 
|  | /// part of the pattern we're matching, looking at all of the users we find. | 
|  | /// This determines whether something is an interior node, whether we have a | 
|  | /// non-pattern node in between two pattern nodes (which prevent folding because | 
|  | /// it would induce a cycle) and whether we have a TokenFactor node sandwiched | 
|  | /// between pattern nodes (in which case the TF becomes part of the pattern). | 
|  | /// | 
|  | /// The walk we do here is guaranteed to be small because we quickly get down to | 
|  | /// already selected nodes "below" us. | 
|  | static ChainResult | 
|  | WalkChainUsers(const SDNode *ChainedNode, | 
|  | SmallVectorImpl<SDNode*> &ChainedNodesInPattern, | 
|  | SmallVectorImpl<SDNode*> &InteriorChainedNodes) { | 
|  | ChainResult Result = CR_Simple; | 
|  |  | 
|  | for (SDNode::use_iterator UI = ChainedNode->use_begin(), | 
|  | E = ChainedNode->use_end(); UI != E; ++UI) { | 
|  | // Make sure the use is of the chain, not some other value we produce. | 
|  | if (UI.getUse().getValueType() != MVT::Other) continue; | 
|  |  | 
|  | SDNode *User = *UI; | 
|  |  | 
|  | // If we see an already-selected machine node, then we've gone beyond the | 
|  | // pattern that we're selecting down into the already selected chunk of the | 
|  | // DAG. | 
|  | if (User->isMachineOpcode() || | 
|  | User->getOpcode() == ISD::HANDLENODE)  // Root of the graph. | 
|  | continue; | 
|  |  | 
|  | unsigned UserOpcode = User->getOpcode(); | 
|  | if (UserOpcode == ISD::CopyToReg || | 
|  | UserOpcode == ISD::CopyFromReg || | 
|  | UserOpcode == ISD::INLINEASM || | 
|  | UserOpcode == ISD::EH_LABEL || | 
|  | UserOpcode == ISD::LIFETIME_START || | 
|  | UserOpcode == ISD::LIFETIME_END) { | 
|  | // If their node ID got reset to -1 then they've already been selected. | 
|  | // Treat them like a MachineOpcode. | 
|  | if (User->getNodeId() == -1) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a TokenFactor, we handle it specially. | 
|  | if (User->getOpcode() != ISD::TokenFactor) { | 
|  | // If the node isn't a token factor and isn't part of our pattern, then it | 
|  | // must be a random chained node in between two nodes we're selecting. | 
|  | // This happens when we have something like: | 
|  | //   x = load ptr | 
|  | //   call | 
|  | //   y = x+4 | 
|  | //   store y -> ptr | 
|  | // Because we structurally match the load/store as a read/modify/write, | 
|  | // but the call is chained between them.  We cannot fold in this case | 
|  | // because it would induce a cycle in the graph. | 
|  | if (!std::count(ChainedNodesInPattern.begin(), | 
|  | ChainedNodesInPattern.end(), User)) | 
|  | return CR_InducesCycle; | 
|  |  | 
|  | // Otherwise we found a node that is part of our pattern.  For example in: | 
|  | //   x = load ptr | 
|  | //   y = x+4 | 
|  | //   store y -> ptr | 
|  | // This would happen when we're scanning down from the load and see the | 
|  | // store as a user.  Record that there is a use of ChainedNode that is | 
|  | // part of the pattern and keep scanning uses. | 
|  | Result = CR_LeadsToInteriorNode; | 
|  | InteriorChainedNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we found a TokenFactor, there are two cases to consider: first if the | 
|  | // TokenFactor is just hanging "below" the pattern we're matching (i.e. no | 
|  | // uses of the TF are in our pattern) we just want to ignore it.  Second, | 
|  | // the TokenFactor can be sandwiched in between two chained nodes, like so: | 
|  | //     [Load chain] | 
|  | //         ^ | 
|  | //         | | 
|  | //       [Load] | 
|  | //       ^    ^ | 
|  | //       |    \                    DAG's like cheese | 
|  | //      /       \                       do you? | 
|  | //     /         | | 
|  | // [TokenFactor] [Op] | 
|  | //     ^          ^ | 
|  | //     |          | | 
|  | //      \        / | 
|  | //       \      / | 
|  | //       [Store] | 
|  | // | 
|  | // In this case, the TokenFactor becomes part of our match and we rewrite it | 
|  | // as a new TokenFactor. | 
|  | // | 
|  | // To distinguish these two cases, do a recursive walk down the uses. | 
|  | switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { | 
|  | case CR_Simple: | 
|  | // If the uses of the TokenFactor are just already-selected nodes, ignore | 
|  | // it, it is "below" our pattern. | 
|  | continue; | 
|  | case CR_InducesCycle: | 
|  | // If the uses of the TokenFactor lead to nodes that are not part of our | 
|  | // pattern that are not selected, folding would turn this into a cycle, | 
|  | // bail out now. | 
|  | return CR_InducesCycle; | 
|  | case CR_LeadsToInteriorNode: | 
|  | break;  // Otherwise, keep processing. | 
|  | } | 
|  |  | 
|  | // Okay, we know we're in the interesting interior case.  The TokenFactor | 
|  | // is now going to be considered part of the pattern so that we rewrite its | 
|  | // uses (it may have uses that are not part of the pattern) with the | 
|  | // ultimate chain result of the generated code.  We will also add its chain | 
|  | // inputs as inputs to the ultimate TokenFactor we create. | 
|  | Result = CR_LeadsToInteriorNode; | 
|  | ChainedNodesInPattern.push_back(User); | 
|  | InteriorChainedNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains | 
|  | /// operation for when the pattern matched at least one node with a chains.  The | 
|  | /// input vector contains a list of all of the chained nodes that we match.  We | 
|  | /// must determine if this is a valid thing to cover (i.e. matching it won't | 
|  | /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will | 
|  | /// be used as the input node chain for the generated nodes. | 
|  | static SDValue | 
|  | HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, | 
|  | SelectionDAG *CurDAG) { | 
|  | // Walk all of the chained nodes we've matched, recursively scanning down the | 
|  | // users of the chain result. This adds any TokenFactor nodes that are caught | 
|  | // in between chained nodes to the chained and interior nodes list. | 
|  | SmallVector<SDNode*, 3> InteriorChainedNodes; | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, | 
|  | InteriorChainedNodes) == CR_InducesCycle) | 
|  | return SDValue(); // Would induce a cycle. | 
|  | } | 
|  |  | 
|  | // Okay, we have walked all the matched nodes and collected TokenFactor nodes | 
|  | // that we are interested in.  Form our input TokenFactor node. | 
|  | SmallVector<SDValue, 3> InputChains; | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | // Add the input chain of this node to the InputChains list (which will be | 
|  | // the operands of the generated TokenFactor) if it's not an interior node. | 
|  | SDNode *N = ChainNodesMatched[i]; | 
|  | if (N->getOpcode() != ISD::TokenFactor) { | 
|  | if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add the input chain. | 
|  | SDValue InChain = ChainNodesMatched[i]->getOperand(0); | 
|  | assert(InChain.getValueType() == MVT::Other && "Not a chain"); | 
|  | InputChains.push_back(InChain); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a token factor, we want to add all inputs of the token factor | 
|  | // that are not part of the pattern we're matching. | 
|  | for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { | 
|  | if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), | 
|  | N->getOperand(op).getNode())) | 
|  | InputChains.push_back(N->getOperand(op)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Res; | 
|  | if (InputChains.size() == 1) | 
|  | return InputChains[0]; | 
|  | return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), | 
|  | MVT::Other, &InputChains[0], InputChains.size()); | 
|  | } | 
|  |  | 
|  | /// MorphNode - Handle morphing a node in place for the selector. | 
|  | SDNode *SelectionDAGISel:: | 
|  | MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, | 
|  | const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { | 
|  | // It is possible we're using MorphNodeTo to replace a node with no | 
|  | // normal results with one that has a normal result (or we could be | 
|  | // adding a chain) and the input could have glue and chains as well. | 
|  | // In this case we need to shift the operands down. | 
|  | // FIXME: This is a horrible hack and broken in obscure cases, no worse | 
|  | // than the old isel though. | 
|  | int OldGlueResultNo = -1, OldChainResultNo = -1; | 
|  |  | 
|  | unsigned NTMNumResults = Node->getNumValues(); | 
|  | if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { | 
|  | OldGlueResultNo = NTMNumResults-1; | 
|  | if (NTMNumResults != 1 && | 
|  | Node->getValueType(NTMNumResults-2) == MVT::Other) | 
|  | OldChainResultNo = NTMNumResults-2; | 
|  | } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) | 
|  | OldChainResultNo = NTMNumResults-1; | 
|  |  | 
|  | // Call the underlying SelectionDAG routine to do the transmogrification. Note | 
|  | // that this deletes operands of the old node that become dead. | 
|  | SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); | 
|  |  | 
|  | // MorphNodeTo can operate in two ways: if an existing node with the | 
|  | // specified operands exists, it can just return it.  Otherwise, it | 
|  | // updates the node in place to have the requested operands. | 
|  | if (Res == Node) { | 
|  | // If we updated the node in place, reset the node ID.  To the isel, | 
|  | // this should be just like a newly allocated machine node. | 
|  | Res->setNodeId(-1); | 
|  | } | 
|  |  | 
|  | unsigned ResNumResults = Res->getNumValues(); | 
|  | // Move the glue if needed. | 
|  | if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && | 
|  | (unsigned)OldGlueResultNo != ResNumResults-1) | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), | 
|  | SDValue(Res, ResNumResults-1)); | 
|  |  | 
|  | if ((EmitNodeInfo & OPFL_GlueOutput) != 0) | 
|  | --ResNumResults; | 
|  |  | 
|  | // Move the chain reference if needed. | 
|  | if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && | 
|  | (unsigned)OldChainResultNo != ResNumResults-1) | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), | 
|  | SDValue(Res, ResNumResults-1)); | 
|  |  | 
|  | // Otherwise, no replacement happened because the node already exists. Replace | 
|  | // Uses of the old node with the new one. | 
|  | if (Res != Node) | 
|  | CurDAG->ReplaceAllUsesWith(Node, Res); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// CheckSame - Implements OP_CheckSame. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, | 
|  | const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { | 
|  | // Accept if it is exactly the same as a previously recorded node. | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | return N == RecordedNodes[RecNo].first; | 
|  | } | 
|  |  | 
|  | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | const SelectionDAGISel &SDISel) { | 
|  | return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); | 
|  | } | 
|  |  | 
|  | /// CheckNodePredicate - Implements OP_CheckNodePredicate. | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | const SelectionDAGISel &SDISel, SDNode *N) { | 
|  | return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDNode *N) { | 
|  | uint16_t Opc = MatcherTable[MatcherIndex++]; | 
|  | Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  | return N->getOpcode() == Opc; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering &TLI) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (N.getValueType() == VT) return true; | 
|  |  | 
|  | // Handle the case when VT is iPTR. | 
|  | return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering &TLI, | 
|  | unsigned ChildNo) { | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | return false;  // Match fails if out of range child #. | 
|  | return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); | 
|  | } | 
|  |  | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N) { | 
|  | return cast<CondCodeSDNode>(N)->get() == | 
|  | (ISD::CondCode)MatcherTable[MatcherIndex++]; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering &TLI) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (cast<VTSDNode>(N)->getVT() == VT) | 
|  | return true; | 
|  |  | 
|  | // Handle the case when VT is iPTR. | 
|  | return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); | 
|  | return C != 0 && C->getSExtValue() == Val; | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const SelectionDAGISel &SDISel) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | if (N->getOpcode() != ISD::AND) return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); | 
|  | } | 
|  |  | 
|  | LLVM_ATTRIBUTE_ALWAYS_INLINE static bool | 
|  | CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const SelectionDAGISel &SDISel) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | if (N->getOpcode() != ISD::OR) return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); | 
|  | } | 
|  |  | 
|  | /// IsPredicateKnownToFail - If we know how and can do so without pushing a | 
|  | /// scope, evaluate the current node.  If the current predicate is known to | 
|  | /// fail, set Result=true and return anything.  If the current predicate is | 
|  | /// known to pass, set Result=false and return the MatcherIndex to continue | 
|  | /// with.  If the current predicate is unknown, set Result=false and return the | 
|  | /// MatcherIndex to continue with. | 
|  | static unsigned IsPredicateKnownToFail(const unsigned char *Table, | 
|  | unsigned Index, SDValue N, | 
|  | bool &Result, | 
|  | const SelectionDAGISel &SDISel, | 
|  | SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { | 
|  | switch (Table[Index++]) { | 
|  | default: | 
|  | Result = false; | 
|  | return Index-1;  // Could not evaluate this predicate. | 
|  | case SelectionDAGISel::OPC_CheckSame: | 
|  | Result = !::CheckSame(Table, Index, N, RecordedNodes); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckPatternPredicate: | 
|  | Result = !::CheckPatternPredicate(Table, Index, SDISel); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckPredicate: | 
|  | Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckOpcode: | 
|  | Result = !::CheckOpcode(Table, Index, N.getNode()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckType: | 
|  | Result = !::CheckType(Table, Index, N, SDISel.TLI); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckChild0Type: | 
|  | case SelectionDAGISel::OPC_CheckChild1Type: | 
|  | case SelectionDAGISel::OPC_CheckChild2Type: | 
|  | case SelectionDAGISel::OPC_CheckChild3Type: | 
|  | case SelectionDAGISel::OPC_CheckChild4Type: | 
|  | case SelectionDAGISel::OPC_CheckChild5Type: | 
|  | case SelectionDAGISel::OPC_CheckChild6Type: | 
|  | case SelectionDAGISel::OPC_CheckChild7Type: | 
|  | Result = !::CheckChildType(Table, Index, N, SDISel.TLI, | 
|  | Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckCondCode: | 
|  | Result = !::CheckCondCode(Table, Index, N); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckValueType: | 
|  | Result = !::CheckValueType(Table, Index, N, SDISel.TLI); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckInteger: | 
|  | Result = !::CheckInteger(Table, Index, N); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckAndImm: | 
|  | Result = !::CheckAndImm(Table, Index, N, SDISel); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckOrImm: | 
|  | Result = !::CheckOrImm(Table, Index, N, SDISel); | 
|  | return Index; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct MatchScope { | 
|  | /// FailIndex - If this match fails, this is the index to continue with. | 
|  | unsigned FailIndex; | 
|  |  | 
|  | /// NodeStack - The node stack when the scope was formed. | 
|  | SmallVector<SDValue, 4> NodeStack; | 
|  |  | 
|  | /// NumRecordedNodes - The number of recorded nodes when the scope was formed. | 
|  | unsigned NumRecordedNodes; | 
|  |  | 
|  | /// NumMatchedMemRefs - The number of matched memref entries. | 
|  | unsigned NumMatchedMemRefs; | 
|  |  | 
|  | /// InputChain/InputGlue - The current chain/glue | 
|  | SDValue InputChain, InputGlue; | 
|  |  | 
|  | /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. | 
|  | bool HasChainNodesMatched, HasGlueResultNodesMatched; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | SDNode *SelectionDAGISel:: | 
|  | SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, | 
|  | unsigned TableSize) { | 
|  | // FIXME: Should these even be selected?  Handle these cases in the caller? | 
|  | switch (NodeToMatch->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::EntryToken:       // These nodes remain the same. | 
|  | case ISD::BasicBlock: | 
|  | case ISD::Register: | 
|  | case ISD::RegisterMask: | 
|  | //case ISD::VALUETYPE: | 
|  | //case ISD::CONDCODE: | 
|  | case ISD::HANDLENODE: | 
|  | case ISD::MDNODE_SDNODE: | 
|  | case ISD::TargetConstant: | 
|  | case ISD::TargetConstantFP: | 
|  | case ISD::TargetConstantPool: | 
|  | case ISD::TargetFrameIndex: | 
|  | case ISD::TargetExternalSymbol: | 
|  | case ISD::TargetBlockAddress: | 
|  | case ISD::TargetJumpTable: | 
|  | case ISD::TargetGlobalTLSAddress: | 
|  | case ISD::TargetGlobalAddress: | 
|  | case ISD::TokenFactor: | 
|  | case ISD::CopyFromReg: | 
|  | case ISD::CopyToReg: | 
|  | case ISD::EH_LABEL: | 
|  | case ISD::LIFETIME_START: | 
|  | case ISD::LIFETIME_END: | 
|  | NodeToMatch->setNodeId(-1); // Mark selected. | 
|  | return 0; | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext: | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), | 
|  | NodeToMatch->getOperand(0)); | 
|  | return 0; | 
|  | case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); | 
|  | case ISD::UNDEF:     return Select_UNDEF(NodeToMatch); | 
|  | } | 
|  |  | 
|  | assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); | 
|  |  | 
|  | // Set up the node stack with NodeToMatch as the only node on the stack. | 
|  | SmallVector<SDValue, 8> NodeStack; | 
|  | SDValue N = SDValue(NodeToMatch, 0); | 
|  | NodeStack.push_back(N); | 
|  |  | 
|  | // MatchScopes - Scopes used when matching, if a match failure happens, this | 
|  | // indicates where to continue checking. | 
|  | SmallVector<MatchScope, 8> MatchScopes; | 
|  |  | 
|  | // RecordedNodes - This is the set of nodes that have been recorded by the | 
|  | // state machine.  The second value is the parent of the node, or null if the | 
|  | // root is recorded. | 
|  | SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; | 
|  |  | 
|  | // MatchedMemRefs - This is the set of MemRef's we've seen in the input | 
|  | // pattern. | 
|  | SmallVector<MachineMemOperand*, 2> MatchedMemRefs; | 
|  |  | 
|  | // These are the current input chain and glue for use when generating nodes. | 
|  | // Various Emit operations change these.  For example, emitting a copytoreg | 
|  | // uses and updates these. | 
|  | SDValue InputChain, InputGlue; | 
|  |  | 
|  | // ChainNodesMatched - If a pattern matches nodes that have input/output | 
|  | // chains, the OPC_EmitMergeInputChains operation is emitted which indicates | 
|  | // which ones they are.  The result is captured into this list so that we can | 
|  | // update the chain results when the pattern is complete. | 
|  | SmallVector<SDNode*, 3> ChainNodesMatched; | 
|  | SmallVector<SDNode*, 3> GlueResultNodesMatched; | 
|  |  | 
|  | DEBUG(errs() << "ISEL: Starting pattern match on root node: "; | 
|  | NodeToMatch->dump(CurDAG); | 
|  | errs() << '\n'); | 
|  |  | 
|  | // Determine where to start the interpreter.  Normally we start at opcode #0, | 
|  | // but if the state machine starts with an OPC_SwitchOpcode, then we | 
|  | // accelerate the first lookup (which is guaranteed to be hot) with the | 
|  | // OpcodeOffset table. | 
|  | unsigned MatcherIndex = 0; | 
|  |  | 
|  | if (!OpcodeOffset.empty()) { | 
|  | // Already computed the OpcodeOffset table, just index into it. | 
|  | if (N.getOpcode() < OpcodeOffset.size()) | 
|  | MatcherIndex = OpcodeOffset[N.getOpcode()]; | 
|  | DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n"); | 
|  |  | 
|  | } else if (MatcherTable[0] == OPC_SwitchOpcode) { | 
|  | // Otherwise, the table isn't computed, but the state machine does start | 
|  | // with an OPC_SwitchOpcode instruction.  Populate the table now, since this | 
|  | // is the first time we're selecting an instruction. | 
|  | unsigned Idx = 1; | 
|  | while (1) { | 
|  | // Get the size of this case. | 
|  | unsigned CaseSize = MatcherTable[Idx++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, Idx); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Get the opcode, add the index to the table. | 
|  | uint16_t Opc = MatcherTable[Idx++]; | 
|  | Opc |= (unsigned short)MatcherTable[Idx++] << 8; | 
|  | if (Opc >= OpcodeOffset.size()) | 
|  | OpcodeOffset.resize((Opc+1)*2); | 
|  | OpcodeOffset[Opc] = Idx; | 
|  | Idx += CaseSize; | 
|  | } | 
|  |  | 
|  | // Okay, do the lookup for the first opcode. | 
|  | if (N.getOpcode() < OpcodeOffset.size()) | 
|  | MatcherIndex = OpcodeOffset[N.getOpcode()]; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | assert(MatcherIndex < TableSize && "Invalid index"); | 
|  | #ifndef NDEBUG | 
|  | unsigned CurrentOpcodeIndex = MatcherIndex; | 
|  | #endif | 
|  | BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; | 
|  | switch (Opcode) { | 
|  | case OPC_Scope: { | 
|  | // Okay, the semantics of this operation are that we should push a scope | 
|  | // then evaluate the first child.  However, pushing a scope only to have | 
|  | // the first check fail (which then pops it) is inefficient.  If we can | 
|  | // determine immediately that the first check (or first several) will | 
|  | // immediately fail, don't even bother pushing a scope for them. | 
|  | unsigned FailIndex; | 
|  |  | 
|  | while (1) { | 
|  | unsigned NumToSkip = MatcherTable[MatcherIndex++]; | 
|  | if (NumToSkip & 128) | 
|  | NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); | 
|  | // Found the end of the scope with no match. | 
|  | if (NumToSkip == 0) { | 
|  | FailIndex = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | FailIndex = MatcherIndex+NumToSkip; | 
|  |  | 
|  | unsigned MatcherIndexOfPredicate = MatcherIndex; | 
|  | (void)MatcherIndexOfPredicate; // silence warning. | 
|  |  | 
|  | // If we can't evaluate this predicate without pushing a scope (e.g. if | 
|  | // it is a 'MoveParent') or if the predicate succeeds on this node, we | 
|  | // push the scope and evaluate the full predicate chain. | 
|  | bool Result; | 
|  | MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, | 
|  | Result, *this, RecordedNodes); | 
|  | if (!Result) | 
|  | break; | 
|  |  | 
|  | DEBUG(errs() << "  Skipped scope entry (due to false predicate) at " | 
|  | << "index " << MatcherIndexOfPredicate | 
|  | << ", continuing at " << FailIndex << "\n"); | 
|  | ++NumDAGIselRetries; | 
|  |  | 
|  | // Otherwise, we know that this case of the Scope is guaranteed to fail, | 
|  | // move to the next case. | 
|  | MatcherIndex = FailIndex; | 
|  | } | 
|  |  | 
|  | // If the whole scope failed to match, bail. | 
|  | if (FailIndex == 0) break; | 
|  |  | 
|  | // Push a MatchScope which indicates where to go if the first child fails | 
|  | // to match. | 
|  | MatchScope NewEntry; | 
|  | NewEntry.FailIndex = FailIndex; | 
|  | NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); | 
|  | NewEntry.NumRecordedNodes = RecordedNodes.size(); | 
|  | NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); | 
|  | NewEntry.InputChain = InputChain; | 
|  | NewEntry.InputGlue = InputGlue; | 
|  | NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); | 
|  | NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); | 
|  | MatchScopes.push_back(NewEntry); | 
|  | continue; | 
|  | } | 
|  | case OPC_RecordNode: { | 
|  | // Remember this node, it may end up being an operand in the pattern. | 
|  | SDNode *Parent = 0; | 
|  | if (NodeStack.size() > 1) | 
|  | Parent = NodeStack[NodeStack.size()-2].getNode(); | 
|  | RecordedNodes.push_back(std::make_pair(N, Parent)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_RecordChild0: case OPC_RecordChild1: | 
|  | case OPC_RecordChild2: case OPC_RecordChild3: | 
|  | case OPC_RecordChild4: case OPC_RecordChild5: | 
|  | case OPC_RecordChild6: case OPC_RecordChild7: { | 
|  | unsigned ChildNo = Opcode-OPC_RecordChild0; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  |  | 
|  | RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), | 
|  | N.getNode())); | 
|  | continue; | 
|  | } | 
|  | case OPC_RecordMemRef: | 
|  | MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); | 
|  | continue; | 
|  |  | 
|  | case OPC_CaptureGlueInput: | 
|  | // If the current node has an input glue, capture it in InputGlue. | 
|  | if (N->getNumOperands() != 0 && | 
|  | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) | 
|  | InputGlue = N->getOperand(N->getNumOperands()-1); | 
|  | continue; | 
|  |  | 
|  | case OPC_MoveChild: { | 
|  | unsigned ChildNo = MatcherTable[MatcherIndex++]; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  | N = N.getOperand(ChildNo); | 
|  | NodeStack.push_back(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_MoveParent: | 
|  | // Pop the current node off the NodeStack. | 
|  | NodeStack.pop_back(); | 
|  | assert(!NodeStack.empty() && "Node stack imbalance!"); | 
|  | N = NodeStack.back(); | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckSame: | 
|  | if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; | 
|  | continue; | 
|  | case OPC_CheckPatternPredicate: | 
|  | if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; | 
|  | continue; | 
|  | case OPC_CheckPredicate: | 
|  | if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, | 
|  | N.getNode())) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckComplexPat: { | 
|  | unsigned CPNum = MatcherTable[MatcherIndex++]; | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); | 
|  | if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, | 
|  | RecordedNodes[RecNo].first, CPNum, | 
|  | RecordedNodes)) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | case OPC_CheckOpcode: | 
|  | if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckType: | 
|  | if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_SwitchOpcode: { | 
|  | unsigned CurNodeOpcode = N.getOpcode(); | 
|  | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; | 
|  | unsigned CaseSize; | 
|  | while (1) { | 
|  | // Get the size of this case. | 
|  | CaseSize = MatcherTable[MatcherIndex++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | uint16_t Opc = MatcherTable[MatcherIndex++]; | 
|  | Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  |  | 
|  | // If the opcode matches, then we will execute this case. | 
|  | if (CurNodeOpcode == Opc) | 
|  | break; | 
|  |  | 
|  | // Otherwise, skip over this case. | 
|  | MatcherIndex += CaseSize; | 
|  | } | 
|  |  | 
|  | // If no cases matched, bail out. | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Otherwise, execute the case we found. | 
|  | DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart | 
|  | << " to " << MatcherIndex << "\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_SwitchType: { | 
|  | MVT CurNodeVT = N.getValueType().getSimpleVT(); | 
|  | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; | 
|  | unsigned CaseSize; | 
|  | while (1) { | 
|  | // Get the size of this case. | 
|  | CaseSize = MatcherTable[MatcherIndex++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (CaseVT == MVT::iPTR) | 
|  | CaseVT = TLI.getPointerTy(); | 
|  |  | 
|  | // If the VT matches, then we will execute this case. | 
|  | if (CurNodeVT == CaseVT) | 
|  | break; | 
|  |  | 
|  | // Otherwise, skip over this case. | 
|  | MatcherIndex += CaseSize; | 
|  | } | 
|  |  | 
|  | // If no cases matched, bail out. | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Otherwise, execute the case we found. | 
|  | DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString() | 
|  | << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); | 
|  | continue; | 
|  | } | 
|  | case OPC_CheckChild0Type: case OPC_CheckChild1Type: | 
|  | case OPC_CheckChild2Type: case OPC_CheckChild3Type: | 
|  | case OPC_CheckChild4Type: case OPC_CheckChild5Type: | 
|  | case OPC_CheckChild6Type: case OPC_CheckChild7Type: | 
|  | if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, | 
|  | Opcode-OPC_CheckChild0Type)) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckCondCode: | 
|  | if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; | 
|  | continue; | 
|  | case OPC_CheckValueType: | 
|  | if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; | 
|  | continue; | 
|  | case OPC_CheckInteger: | 
|  | if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; | 
|  | continue; | 
|  | case OPC_CheckAndImm: | 
|  | if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; | 
|  | continue; | 
|  | case OPC_CheckOrImm: | 
|  | if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckFoldableChainNode: { | 
|  | assert(NodeStack.size() != 1 && "No parent node"); | 
|  | // Verify that all intermediate nodes between the root and this one have | 
|  | // a single use. | 
|  | bool HasMultipleUses = false; | 
|  | for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) | 
|  | if (!NodeStack[i].hasOneUse()) { | 
|  | HasMultipleUses = true; | 
|  | break; | 
|  | } | 
|  | if (HasMultipleUses) break; | 
|  |  | 
|  | // Check to see that the target thinks this is profitable to fold and that | 
|  | // we can fold it without inducing cycles in the graph. | 
|  | if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), | 
|  | NodeToMatch) || | 
|  | !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), | 
|  | NodeToMatch, OptLevel, | 
|  | true/*We validate our own chains*/)) | 
|  | break; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitInteger: { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  | RecordedNodes.push_back(std::pair<SDValue, SDNode*>( | 
|  | CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitRegister: { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | unsigned RegNo = MatcherTable[MatcherIndex++]; | 
|  | RecordedNodes.push_back(std::pair<SDValue, SDNode*>( | 
|  | CurDAG->getRegister(RegNo, VT), (SDNode*)0)); | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitRegister2: { | 
|  | // For targets w/ more than 256 register names, the register enum | 
|  | // values are stored in two bytes in the matcher table (just like | 
|  | // opcodes). | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | unsigned RegNo = MatcherTable[MatcherIndex++]; | 
|  | RegNo |= MatcherTable[MatcherIndex++] << 8; | 
|  | RecordedNodes.push_back(std::pair<SDValue, SDNode*>( | 
|  | CurDAG->getRegister(RegNo, VT), (SDNode*)0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitConvertToTarget:  { | 
|  | // Convert from IMM/FPIMM to target version. | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | SDValue Imm = RecordedNodes[RecNo].first; | 
|  |  | 
|  | if (Imm->getOpcode() == ISD::Constant) { | 
|  | int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); | 
|  | Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); | 
|  | } else if (Imm->getOpcode() == ISD::ConstantFP) { | 
|  | const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); | 
|  | Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); | 
|  | } | 
|  |  | 
|  | RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0 | 
|  | case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1 | 
|  | // These are space-optimized forms of OPC_EmitMergeInputChains. | 
|  | assert(InputChain.getNode() == 0 && | 
|  | "EmitMergeInputChains should be the first chain producing node"); | 
|  | assert(ChainNodesMatched.empty() && | 
|  | "Should only have one EmitMergeInputChains per match"); | 
|  |  | 
|  | // Read all of the chained nodes. | 
|  | unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); | 
|  |  | 
|  | // FIXME: What if other value results of the node have uses not matched | 
|  | // by this pattern? | 
|  | if (ChainNodesMatched.back() != NodeToMatch && | 
|  | !RecordedNodes[RecNo].first.hasOneUse()) { | 
|  | ChainNodesMatched.clear(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Merge the input chains if they are not intra-pattern references. | 
|  | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); | 
|  |  | 
|  | if (InputChain.getNode() == 0) | 
|  | break;  // Failed to merge. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitMergeInputChains: { | 
|  | assert(InputChain.getNode() == 0 && | 
|  | "EmitMergeInputChains should be the first chain producing node"); | 
|  | // This node gets a list of nodes we matched in the input that have | 
|  | // chains.  We want to token factor all of the input chains to these nodes | 
|  | // together.  However, if any of the input chains is actually one of the | 
|  | // nodes matched in this pattern, then we have an intra-match reference. | 
|  | // Ignore these because the newly token factored chain should not refer to | 
|  | // the old nodes. | 
|  | unsigned NumChains = MatcherTable[MatcherIndex++]; | 
|  | assert(NumChains != 0 && "Can't TF zero chains"); | 
|  |  | 
|  | assert(ChainNodesMatched.empty() && | 
|  | "Should only have one EmitMergeInputChains per match"); | 
|  |  | 
|  | // Read all of the chained nodes. | 
|  | for (unsigned i = 0; i != NumChains; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); | 
|  |  | 
|  | // FIXME: What if other value results of the node have uses not matched | 
|  | // by this pattern? | 
|  | if (ChainNodesMatched.back() != NodeToMatch && | 
|  | !RecordedNodes[RecNo].first.hasOneUse()) { | 
|  | ChainNodesMatched.clear(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the inner loop broke out, the match fails. | 
|  | if (ChainNodesMatched.empty()) | 
|  | break; | 
|  |  | 
|  | // Merge the input chains if they are not intra-pattern references. | 
|  | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); | 
|  |  | 
|  | if (InputChain.getNode() == 0) | 
|  | break;  // Failed to merge. | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitCopyToReg: { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | unsigned DestPhysReg = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | if (InputChain.getNode() == 0) | 
|  | InputChain = CurDAG->getEntryNode(); | 
|  |  | 
|  | InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), | 
|  | DestPhysReg, RecordedNodes[RecNo].first, | 
|  | InputGlue); | 
|  |  | 
|  | InputGlue = InputChain.getValue(1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitNodeXForm: { | 
|  | unsigned XFormNo = MatcherTable[MatcherIndex++]; | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); | 
|  | RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitNode: | 
|  | case OPC_MorphNodeTo: { | 
|  | uint16_t TargetOpc = MatcherTable[MatcherIndex++]; | 
|  | TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  | unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; | 
|  | // Get the result VT list. | 
|  | unsigned NumVTs = MatcherTable[MatcherIndex++]; | 
|  | SmallVector<EVT, 4> VTs; | 
|  | for (unsigned i = 0; i != NumVTs; ++i) { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; | 
|  | VTs.push_back(VT); | 
|  | } | 
|  |  | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | VTs.push_back(MVT::Other); | 
|  | if (EmitNodeInfo & OPFL_GlueOutput) | 
|  | VTs.push_back(MVT::Glue); | 
|  |  | 
|  | // This is hot code, so optimize the two most common cases of 1 and 2 | 
|  | // results. | 
|  | SDVTList VTList; | 
|  | if (VTs.size() == 1) | 
|  | VTList = CurDAG->getVTList(VTs[0]); | 
|  | else if (VTs.size() == 2) | 
|  | VTList = CurDAG->getVTList(VTs[0], VTs[1]); | 
|  | else | 
|  | VTList = CurDAG->getVTList(VTs.data(), VTs.size()); | 
|  |  | 
|  | // Get the operand list. | 
|  | unsigned NumOps = MatcherTable[MatcherIndex++]; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | if (RecNo & 128) | 
|  | RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); | 
|  | Ops.push_back(RecordedNodes[RecNo].first); | 
|  | } | 
|  |  | 
|  | // If there are variadic operands to add, handle them now. | 
|  | if (EmitNodeInfo & OPFL_VariadicInfo) { | 
|  | // Determine the start index to copy from. | 
|  | unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); | 
|  | FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; | 
|  | assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && | 
|  | "Invalid variadic node"); | 
|  | // Copy all of the variadic operands, not including a potential glue | 
|  | // input. | 
|  | for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); | 
|  | i != e; ++i) { | 
|  | SDValue V = NodeToMatch->getOperand(i); | 
|  | if (V.getValueType() == MVT::Glue) break; | 
|  | Ops.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this has chain/glue inputs, add them. | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | Ops.push_back(InputChain); | 
|  | if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) | 
|  | Ops.push_back(InputGlue); | 
|  |  | 
|  | // Create the node. | 
|  | SDNode *Res = 0; | 
|  | if (Opcode != OPC_MorphNodeTo) { | 
|  | // If this is a normal EmitNode command, just create the new node and | 
|  | // add the results to the RecordedNodes list. | 
|  | Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), | 
|  | VTList, Ops.data(), Ops.size()); | 
|  |  | 
|  | // Add all the non-glue/non-chain results to the RecordedNodes list. | 
|  | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | 
|  | if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; | 
|  | RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), | 
|  | (SDNode*) 0)); | 
|  | } | 
|  |  | 
|  | } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) { | 
|  | Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), | 
|  | EmitNodeInfo); | 
|  | } else { | 
|  | // NodeToMatch was eliminated by CSE when the target changed the DAG. | 
|  | // We will visit the equivalent node later. | 
|  | DEBUG(dbgs() << "Node was eliminated by CSE\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If the node had chain/glue results, update our notion of the current | 
|  | // chain and glue. | 
|  | if (EmitNodeInfo & OPFL_GlueOutput) { | 
|  | InputGlue = SDValue(Res, VTs.size()-1); | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | InputChain = SDValue(Res, VTs.size()-2); | 
|  | } else if (EmitNodeInfo & OPFL_Chain) | 
|  | InputChain = SDValue(Res, VTs.size()-1); | 
|  |  | 
|  | // If the OPFL_MemRefs glue is set on this node, slap all of the | 
|  | // accumulated memrefs onto it. | 
|  | // | 
|  | // FIXME: This is vastly incorrect for patterns with multiple outputs | 
|  | // instructions that access memory and for ComplexPatterns that match | 
|  | // loads. | 
|  | if (EmitNodeInfo & OPFL_MemRefs) { | 
|  | // Only attach load or store memory operands if the generated | 
|  | // instruction may load or store. | 
|  | const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); | 
|  | bool mayLoad = MCID.mayLoad(); | 
|  | bool mayStore = MCID.mayStore(); | 
|  |  | 
|  | unsigned NumMemRefs = 0; | 
|  | for (SmallVector<MachineMemOperand*, 2>::const_iterator I = | 
|  | MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { | 
|  | if ((*I)->isLoad()) { | 
|  | if (mayLoad) | 
|  | ++NumMemRefs; | 
|  | } else if ((*I)->isStore()) { | 
|  | if (mayStore) | 
|  | ++NumMemRefs; | 
|  | } else { | 
|  | ++NumMemRefs; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemRefs = | 
|  | MF->allocateMemRefsArray(NumMemRefs); | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemRefsPos = MemRefs; | 
|  | for (SmallVector<MachineMemOperand*, 2>::const_iterator I = | 
|  | MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { | 
|  | if ((*I)->isLoad()) { | 
|  | if (mayLoad) | 
|  | *MemRefsPos++ = *I; | 
|  | } else if ((*I)->isStore()) { | 
|  | if (mayStore) | 
|  | *MemRefsPos++ = *I; | 
|  | } else { | 
|  | *MemRefsPos++ = *I; | 
|  | } | 
|  | } | 
|  |  | 
|  | cast<MachineSDNode>(Res) | 
|  | ->setMemRefs(MemRefs, MemRefs + NumMemRefs); | 
|  | } | 
|  |  | 
|  | DEBUG(errs() << "  " | 
|  | << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") | 
|  | << " node: "; Res->dump(CurDAG); errs() << "\n"); | 
|  |  | 
|  | // If this was a MorphNodeTo then we're completely done! | 
|  | if (Opcode == OPC_MorphNodeTo) { | 
|  | // Update chain and glue uses. | 
|  | UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, | 
|  | InputGlue, GlueResultNodesMatched, true); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_MarkGlueResults: { | 
|  | unsigned NumNodes = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | // Read and remember all the glue-result nodes. | 
|  | for (unsigned i = 0; i != NumNodes; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | if (RecNo & 128) | 
|  | RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_CompleteMatch: { | 
|  | // The match has been completed, and any new nodes (if any) have been | 
|  | // created.  Patch up references to the matched dag to use the newly | 
|  | // created nodes. | 
|  | unsigned NumResults = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | for (unsigned i = 0; i != NumResults; ++i) { | 
|  | unsigned ResSlot = MatcherTable[MatcherIndex++]; | 
|  | if (ResSlot & 128) | 
|  | ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | SDValue Res = RecordedNodes[ResSlot].first; | 
|  |  | 
|  | assert(i < NodeToMatch->getNumValues() && | 
|  | NodeToMatch->getValueType(i) != MVT::Other && | 
|  | NodeToMatch->getValueType(i) != MVT::Glue && | 
|  | "Invalid number of results to complete!"); | 
|  | assert((NodeToMatch->getValueType(i) == Res.getValueType() || | 
|  | NodeToMatch->getValueType(i) == MVT::iPTR || | 
|  | Res.getValueType() == MVT::iPTR || | 
|  | NodeToMatch->getValueType(i).getSizeInBits() == | 
|  | Res.getValueType().getSizeInBits()) && | 
|  | "invalid replacement"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); | 
|  | } | 
|  |  | 
|  | // If the root node defines glue, add it to the glue nodes to update list. | 
|  | if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) | 
|  | GlueResultNodesMatched.push_back(NodeToMatch); | 
|  |  | 
|  | // Update chain and glue uses. | 
|  | UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, | 
|  | InputGlue, GlueResultNodesMatched, false); | 
|  |  | 
|  | assert(NodeToMatch->use_empty() && | 
|  | "Didn't replace all uses of the node?"); | 
|  |  | 
|  | // FIXME: We just return here, which interacts correctly with SelectRoot | 
|  | // above.  We should fix this to not return an SDNode* anymore. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the code reached this point, then the match failed.  See if there is | 
|  | // another child to try in the current 'Scope', otherwise pop it until we | 
|  | // find a case to check. | 
|  | DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n"); | 
|  | ++NumDAGIselRetries; | 
|  | while (1) { | 
|  | if (MatchScopes.empty()) { | 
|  | CannotYetSelect(NodeToMatch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Restore the interpreter state back to the point where the scope was | 
|  | // formed. | 
|  | MatchScope &LastScope = MatchScopes.back(); | 
|  | RecordedNodes.resize(LastScope.NumRecordedNodes); | 
|  | NodeStack.clear(); | 
|  | NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); | 
|  | N = NodeStack.back(); | 
|  |  | 
|  | if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) | 
|  | MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); | 
|  | MatcherIndex = LastScope.FailIndex; | 
|  |  | 
|  | DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n"); | 
|  |  | 
|  | InputChain = LastScope.InputChain; | 
|  | InputGlue = LastScope.InputGlue; | 
|  | if (!LastScope.HasChainNodesMatched) | 
|  | ChainNodesMatched.clear(); | 
|  | if (!LastScope.HasGlueResultNodesMatched) | 
|  | GlueResultNodesMatched.clear(); | 
|  |  | 
|  | // Check to see what the offset is at the new MatcherIndex.  If it is zero | 
|  | // we have reached the end of this scope, otherwise we have another child | 
|  | // in the current scope to try. | 
|  | unsigned NumToSkip = MatcherTable[MatcherIndex++]; | 
|  | if (NumToSkip & 128) | 
|  | NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); | 
|  |  | 
|  | // If we have another child in this scope to match, update FailIndex and | 
|  | // try it. | 
|  | if (NumToSkip != 0) { | 
|  | LastScope.FailIndex = MatcherIndex+NumToSkip; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // End of this scope, pop it and try the next child in the containing | 
|  | // scope. | 
|  | MatchScopes.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void SelectionDAGISel::CannotYetSelect(SDNode *N) { | 
|  | std::string msg; | 
|  | raw_string_ostream Msg(msg); | 
|  | Msg << "Cannot select: "; | 
|  |  | 
|  | if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && | 
|  | N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && | 
|  | N->getOpcode() != ISD::INTRINSIC_VOID) { | 
|  | N->printrFull(Msg, CurDAG); | 
|  | Msg << "\nIn function: " << MF->getName(); | 
|  | } else { | 
|  | bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; | 
|  | unsigned iid = | 
|  | cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); | 
|  | if (iid < Intrinsic::num_intrinsics) | 
|  | Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); | 
|  | else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) | 
|  | Msg << "target intrinsic %" << TII->getName(iid); | 
|  | else | 
|  | Msg << "unknown intrinsic #" << iid; | 
|  | } | 
|  | report_fatal_error(Msg.str()); | 
|  | } | 
|  |  | 
|  | char SelectionDAGISel::ID = 0; |