|  | //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the SelectionDAG class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/MRegisterInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include <iostream> | 
|  | #include <set> | 
|  | #include <cmath> | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | static bool isCommutativeBinOp(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::MULHU: | 
|  | case ISD::MULHS: | 
|  | case ISD::FADD: | 
|  | case ISD::FMUL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: return true; | 
|  | default: return false; // FIXME: Need commutative info for user ops! | 
|  | } | 
|  | } | 
|  |  | 
|  | // isInvertibleForFree - Return true if there is no cost to emitting the logical | 
|  | // inverse of this node. | 
|  | static bool isInvertibleForFree(SDOperand N) { | 
|  | if (isa<ConstantSDNode>(N.Val)) return true; | 
|  | if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              ConstantFPSDNode Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isExactlyValue - We don't rely on operator== working on double values, as | 
|  | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. | 
|  | /// As such, this method can be used to do an exact bit-for-bit comparison of | 
|  | /// two floating point values. | 
|  | bool ConstantFPSDNode::isExactlyValue(double V) const { | 
|  | return DoubleToBits(V) == DoubleToBits(Value); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              ISD Namespace | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isBuildVectorAllOnes - Return true if the specified node is a | 
|  | /// BUILD_VECTOR where all of the elements are ~0 or undef. | 
|  | bool ISD::isBuildVectorAllOnes(const SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) return false; | 
|  |  | 
|  | unsigned i = 0, e = N->getNumOperands(); | 
|  |  | 
|  | // Skip over all of the undef values. | 
|  | while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) | 
|  | ++i; | 
|  |  | 
|  | // Do not accept an all-undef vector. | 
|  | if (i == e) return false; | 
|  |  | 
|  | // Do not accept build_vectors that aren't all constants or which have non-~0 | 
|  | // elements. | 
|  | SDOperand NotZero = N->getOperand(i); | 
|  | if (isa<ConstantSDNode>(NotZero)) { | 
|  | if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue()) | 
|  | return false; | 
|  | } else if (isa<ConstantFPSDNode>(NotZero)) { | 
|  | MVT::ValueType VT = NotZero.getValueType(); | 
|  | if (VT== MVT::f64) { | 
|  | if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) != | 
|  | (uint64_t)-1) | 
|  | return false; | 
|  | } else { | 
|  | if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) != | 
|  | (uint32_t)-1) | 
|  | return false; | 
|  | } | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Okay, we have at least one ~0 value, check to see if the rest match or are | 
|  | // undefs. | 
|  | for (++i; i != e; ++i) | 
|  | if (N->getOperand(i) != NotZero && | 
|  | N->getOperand(i).getOpcode() != ISD::UNDEF) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isBuildVectorAllZeros - Return true if the specified node is a | 
|  | /// BUILD_VECTOR where all of the elements are 0 or undef. | 
|  | bool ISD::isBuildVectorAllZeros(const SDNode *N) { | 
|  | if (N->getOpcode() != ISD::BUILD_VECTOR) return false; | 
|  |  | 
|  | unsigned i = 0, e = N->getNumOperands(); | 
|  |  | 
|  | // Skip over all of the undef values. | 
|  | while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) | 
|  | ++i; | 
|  |  | 
|  | // Do not accept an all-undef vector. | 
|  | if (i == e) return false; | 
|  |  | 
|  | // Do not accept build_vectors that aren't all constants or which have non-~0 | 
|  | // elements. | 
|  | SDOperand Zero = N->getOperand(i); | 
|  | if (isa<ConstantSDNode>(Zero)) { | 
|  | if (!cast<ConstantSDNode>(Zero)->isNullValue()) | 
|  | return false; | 
|  | } else if (isa<ConstantFPSDNode>(Zero)) { | 
|  | if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0)) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // Okay, we have at least one ~0 value, check to see if the rest match or are | 
|  | // undefs. | 
|  | for (++i; i != e; ++i) | 
|  | if (N->getOperand(i) != Zero && | 
|  | N->getOperand(i).getOpcode() != ISD::UNDEF) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) | 
|  | /// when given the operation for (X op Y). | 
|  | ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { | 
|  | // To perform this operation, we just need to swap the L and G bits of the | 
|  | // operation. | 
|  | unsigned OldL = (Operation >> 2) & 1; | 
|  | unsigned OldG = (Operation >> 1) & 1; | 
|  | return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits | 
|  | (OldL << 1) |       // New G bit | 
|  | (OldG << 2));        // New L bit. | 
|  | } | 
|  |  | 
|  | /// getSetCCInverse - Return the operation corresponding to !(X op Y), where | 
|  | /// 'op' is a valid SetCC operation. | 
|  | ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { | 
|  | unsigned Operation = Op; | 
|  | if (isInteger) | 
|  | Operation ^= 7;   // Flip L, G, E bits, but not U. | 
|  | else | 
|  | Operation ^= 15;  // Flip all of the condition bits. | 
|  | if (Operation > ISD::SETTRUE2) | 
|  | Operation &= ~8;     // Don't let N and U bits get set. | 
|  | return ISD::CondCode(Operation); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isSignedOp - For an integer comparison, return 1 if the comparison is a | 
|  | /// signed operation and 2 if the result is an unsigned comparison.  Return zero | 
|  | /// if the operation does not depend on the sign of the input (setne and seteq). | 
|  | static int isSignedOp(ISD::CondCode Opcode) { | 
|  | switch (Opcode) { | 
|  | default: assert(0 && "Illegal integer setcc operation!"); | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: return 0; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: return 1; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getSetCCOrOperation - Return the result of a logical OR between different | 
|  | /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function | 
|  | /// returns SETCC_INVALID if it is not possible to represent the resultant | 
|  | /// comparison. | 
|  | ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, | 
|  | bool isInteger) { | 
|  | if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) | 
|  | // Cannot fold a signed integer setcc with an unsigned integer setcc. | 
|  | return ISD::SETCC_INVALID; | 
|  |  | 
|  | unsigned Op = Op1 | Op2;  // Combine all of the condition bits. | 
|  |  | 
|  | // If the N and U bits get set then the resultant comparison DOES suddenly | 
|  | // care about orderedness, and is true when ordered. | 
|  | if (Op > ISD::SETTRUE2) | 
|  | Op &= ~16;     // Clear the N bit. | 
|  | return ISD::CondCode(Op); | 
|  | } | 
|  |  | 
|  | /// getSetCCAndOperation - Return the result of a logical AND between different | 
|  | /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This | 
|  | /// function returns zero if it is not possible to represent the resultant | 
|  | /// comparison. | 
|  | ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, | 
|  | bool isInteger) { | 
|  | if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) | 
|  | // Cannot fold a signed setcc with an unsigned setcc. | 
|  | return ISD::SETCC_INVALID; | 
|  |  | 
|  | // Combine all of the condition bits. | 
|  | return ISD::CondCode(Op1 & Op2); | 
|  | } | 
|  |  | 
|  | const TargetMachine &SelectionDAG::getTarget() const { | 
|  | return TLI.getTargetMachine(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              SelectionDAG Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// RemoveDeadNodes - This method deletes all unreachable nodes in the | 
|  | /// SelectionDAG, including nodes (like loads) that have uses of their token | 
|  | /// chain but no other uses and no side effect.  If a node is passed in as an | 
|  | /// argument, it is used as the seed for node deletion. | 
|  | void SelectionDAG::RemoveDeadNodes(SDNode *N) { | 
|  | // Create a dummy node (which is not added to allnodes), that adds a reference | 
|  | // to the root node, preventing it from being deleted. | 
|  | HandleSDNode Dummy(getRoot()); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // If we have a hint to start from, use it. | 
|  | if (N && N->use_empty()) { | 
|  | DestroyDeadNode(N); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) | 
|  | if (I->use_empty() && I->getOpcode() != 65535) { | 
|  | // Node is dead, recursively delete newly dead uses. | 
|  | DestroyDeadNode(I); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // Walk the nodes list, removing the nodes we've marked as dead. | 
|  | if (MadeChange) { | 
|  | for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) { | 
|  | SDNode *N = I++; | 
|  | if (N->use_empty()) | 
|  | AllNodes.erase(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the root changed (e.g. it was a dead load, update the root). | 
|  | setRoot(Dummy.getValue()); | 
|  | } | 
|  |  | 
|  | /// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the | 
|  | /// graph.  If it is the last user of any of its operands, recursively process | 
|  | /// them the same way. | 
|  | /// | 
|  | void SelectionDAG::DestroyDeadNode(SDNode *N) { | 
|  | // Okay, we really are going to delete this node.  First take this out of the | 
|  | // appropriate CSE map. | 
|  | RemoveNodeFromCSEMaps(N); | 
|  |  | 
|  | // Next, brutally remove the operand list.  This is safe to do, as there are | 
|  | // no cycles in the graph. | 
|  | for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { | 
|  | SDNode *O = I->Val; | 
|  | O->removeUser(N); | 
|  |  | 
|  | // Now that we removed this operand, see if there are no uses of it left. | 
|  | if (O->use_empty()) | 
|  | DestroyDeadNode(O); | 
|  | } | 
|  | delete[] N->OperandList; | 
|  | N->OperandList = 0; | 
|  | N->NumOperands = 0; | 
|  |  | 
|  | // Mark the node as dead. | 
|  | N->MorphNodeTo(65535); | 
|  | } | 
|  |  | 
|  | void SelectionDAG::DeleteNode(SDNode *N) { | 
|  | assert(N->use_empty() && "Cannot delete a node that is not dead!"); | 
|  |  | 
|  | // First take this out of the appropriate CSE map. | 
|  | RemoveNodeFromCSEMaps(N); | 
|  |  | 
|  | // Finally, remove uses due to operands of this node, remove from the | 
|  | // AllNodes list, and delete the node. | 
|  | DeleteNodeNotInCSEMaps(N); | 
|  | } | 
|  |  | 
|  | void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { | 
|  |  | 
|  | // Remove it from the AllNodes list. | 
|  | AllNodes.remove(N); | 
|  |  | 
|  | // Drop all of the operands and decrement used nodes use counts. | 
|  | for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) | 
|  | I->Val->removeUser(N); | 
|  | delete[] N->OperandList; | 
|  | N->OperandList = 0; | 
|  | N->NumOperands = 0; | 
|  |  | 
|  | delete N; | 
|  | } | 
|  |  | 
|  | /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that | 
|  | /// correspond to it.  This is useful when we're about to delete or repurpose | 
|  | /// the node.  We don't want future request for structurally identical nodes | 
|  | /// to return N anymore. | 
|  | void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { | 
|  | bool Erased = false; | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::HANDLENODE: return;  // noop. | 
|  | case ISD::Constant: | 
|  | Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(), | 
|  | N->getValueType(0))); | 
|  | break; | 
|  | case ISD::TargetConstant: | 
|  | Erased = TargetConstants.erase(std::make_pair( | 
|  | cast<ConstantSDNode>(N)->getValue(), | 
|  | N->getValueType(0))); | 
|  | break; | 
|  | case ISD::ConstantFP: { | 
|  | uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue()); | 
|  | Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0))); | 
|  | break; | 
|  | } | 
|  | case ISD::TargetConstantFP: { | 
|  | uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue()); | 
|  | Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0))); | 
|  | break; | 
|  | } | 
|  | case ISD::STRING: | 
|  | Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue()); | 
|  | break; | 
|  | case ISD::CONDCODE: | 
|  | assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && | 
|  | "Cond code doesn't exist!"); | 
|  | Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0; | 
|  | CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; | 
|  | break; | 
|  | case ISD::GlobalAddress: { | 
|  | GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N); | 
|  | Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(), | 
|  | GN->getOffset())); | 
|  | break; | 
|  | } | 
|  | case ISD::TargetGlobalAddress: { | 
|  | GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N); | 
|  | Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(), | 
|  | GN->getOffset())); | 
|  | break; | 
|  | } | 
|  | case ISD::FrameIndex: | 
|  | Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex()); | 
|  | break; | 
|  | case ISD::TargetFrameIndex: | 
|  | Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex()); | 
|  | break; | 
|  | case ISD::ConstantPool: | 
|  | Erased = ConstantPoolIndices. | 
|  | erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(), | 
|  | std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(), | 
|  | cast<ConstantPoolSDNode>(N)->getAlignment()))); | 
|  | break; | 
|  | case ISD::TargetConstantPool: | 
|  | Erased = TargetConstantPoolIndices. | 
|  | erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(), | 
|  | std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(), | 
|  | cast<ConstantPoolSDNode>(N)->getAlignment()))); | 
|  | break; | 
|  | case ISD::BasicBlock: | 
|  | Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock()); | 
|  | break; | 
|  | case ISD::ExternalSymbol: | 
|  | Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); | 
|  | break; | 
|  | case ISD::TargetExternalSymbol: | 
|  | Erased = | 
|  | TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); | 
|  | break; | 
|  | case ISD::VALUETYPE: | 
|  | Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0; | 
|  | ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0; | 
|  | break; | 
|  | case ISD::Register: | 
|  | Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(), | 
|  | N->getValueType(0))); | 
|  | break; | 
|  | case ISD::SRCVALUE: { | 
|  | SrcValueSDNode *SVN = cast<SrcValueSDNode>(N); | 
|  | Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset())); | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: | 
|  | Erased = Loads.erase(std::make_pair(N->getOperand(1), | 
|  | std::make_pair(N->getOperand(0), | 
|  | N->getValueType(0)))); | 
|  | break; | 
|  | default: | 
|  | if (N->getNumValues() == 1) { | 
|  | if (N->getNumOperands() == 0) { | 
|  | Erased = NullaryOps.erase(std::make_pair(N->getOpcode(), | 
|  | N->getValueType(0))); | 
|  | } else if (N->getNumOperands() == 1) { | 
|  | Erased = | 
|  | UnaryOps.erase(std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getOperand(0), | 
|  | N->getValueType(0)))); | 
|  | } else if (N->getNumOperands() == 2) { | 
|  | Erased = | 
|  | BinaryOps.erase(std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getOperand(0), | 
|  | N->getOperand(1)))); | 
|  | } else { | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | Erased = | 
|  | OneResultNodes.erase(std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getValueType(0), | 
|  | Ops))); | 
|  | } | 
|  | } else { | 
|  | // Remove the node from the ArbitraryNodes map. | 
|  | std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); | 
|  | std::vector<SDOperand>     Ops(N->op_begin(), N->op_end()); | 
|  | Erased = | 
|  | ArbitraryNodes.erase(std::make_pair(N->getOpcode(), | 
|  | std::make_pair(RV, Ops))); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | // Verify that the node was actually in one of the CSE maps, unless it has a | 
|  | // flag result (which cannot be CSE'd) or is one of the special cases that are | 
|  | // not subject to CSE. | 
|  | if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && | 
|  | !N->isTargetOpcode()) { | 
|  | N->dump(); | 
|  | assert(0 && "Node is not in map!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It | 
|  | /// has been taken out and modified in some way.  If the specified node already | 
|  | /// exists in the CSE maps, do not modify the maps, but return the existing node | 
|  | /// instead.  If it doesn't exist, add it and return null. | 
|  | /// | 
|  | SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { | 
|  | assert(N->getNumOperands() && "This is a leaf node!"); | 
|  | if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
|  | return 0;    // Never add these nodes. | 
|  |  | 
|  | // Check that remaining values produced are not flags. | 
|  | for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
|  | if (N->getValueType(i) == MVT::Flag) | 
|  | return 0;   // Never CSE anything that produces a flag. | 
|  |  | 
|  | if (N->getNumValues() == 1) { | 
|  | if (N->getNumOperands() == 1) { | 
|  | SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getOperand(0), | 
|  | N->getValueType(0)))]; | 
|  | if (U) return U; | 
|  | U = N; | 
|  | } else if (N->getNumOperands() == 2) { | 
|  | SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getOperand(0), | 
|  | N->getOperand(1)))]; | 
|  | if (B) return B; | 
|  | B = N; | 
|  | } else { | 
|  | std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); | 
|  | SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getValueType(0), Ops))]; | 
|  | if (ORN) return ORN; | 
|  | ORN = N; | 
|  | } | 
|  | } else { | 
|  | if (N->getOpcode() == ISD::LOAD) { | 
|  | SDNode *&L = Loads[std::make_pair(N->getOperand(1), | 
|  | std::make_pair(N->getOperand(0), | 
|  | N->getValueType(0)))]; | 
|  | if (L) return L; | 
|  | L = N; | 
|  | } else { | 
|  | // Remove the node from the ArbitraryNodes map. | 
|  | std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); | 
|  | std::vector<SDOperand>     Ops(N->op_begin(), N->op_end()); | 
|  | SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(RV, Ops))]; | 
|  | if (AN) return AN; | 
|  | AN = N; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FindModifiedNodeSlot - Find a slot for the specified node if its operands | 
|  | /// were replaced with those specified.  If this node is never memoized, | 
|  | /// return null, otherwise return a pointer to the slot it would take.  If a | 
|  | /// node already exists with these operands, the slot will be non-null. | 
|  | SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) { | 
|  | if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
|  | return 0;    // Never add these nodes. | 
|  |  | 
|  | // Check that remaining values produced are not flags. | 
|  | for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
|  | if (N->getValueType(i) == MVT::Flag) | 
|  | return 0;   // Never CSE anything that produces a flag. | 
|  |  | 
|  | if (N->getNumValues() == 1) { | 
|  | return &UnaryOps[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(Op, N->getValueType(0)))]; | 
|  | } else { | 
|  | // Remove the node from the ArbitraryNodes map. | 
|  | std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op); | 
|  | return &ArbitraryNodes[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(RV, Ops))]; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FindModifiedNodeSlot - Find a slot for the specified node if its operands | 
|  | /// were replaced with those specified.  If this node is never memoized, | 
|  | /// return null, otherwise return a pointer to the slot it would take.  If a | 
|  | /// node already exists with these operands, the slot will be non-null. | 
|  | SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, | 
|  | SDOperand Op1, SDOperand Op2) { | 
|  | if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
|  | return 0;    // Never add these nodes. | 
|  |  | 
|  | // Check that remaining values produced are not flags. | 
|  | for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
|  | if (N->getValueType(i) == MVT::Flag) | 
|  | return 0;   // Never CSE anything that produces a flag. | 
|  |  | 
|  | if (N->getNumValues() == 1) { | 
|  | return &BinaryOps[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(Op1, Op2))]; | 
|  | } else { | 
|  | std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | return &ArbitraryNodes[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(RV, Ops))]; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// FindModifiedNodeSlot - Find a slot for the specified node if its operands | 
|  | /// were replaced with those specified.  If this node is never memoized, | 
|  | /// return null, otherwise return a pointer to the slot it would take.  If a | 
|  | /// node already exists with these operands, the slot will be non-null. | 
|  | SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, | 
|  | const std::vector<SDOperand> &Ops) { | 
|  | if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
|  | return 0;    // Never add these nodes. | 
|  |  | 
|  | // Check that remaining values produced are not flags. | 
|  | for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
|  | if (N->getValueType(i) == MVT::Flag) | 
|  | return 0;   // Never CSE anything that produces a flag. | 
|  |  | 
|  | if (N->getNumValues() == 1) { | 
|  | if (N->getNumOperands() == 1) { | 
|  | return &UnaryOps[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(Ops[0], | 
|  | N->getValueType(0)))]; | 
|  | } else if (N->getNumOperands() == 2) { | 
|  | return &BinaryOps[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(Ops[0], Ops[1]))]; | 
|  | } else { | 
|  | return &OneResultNodes[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(N->getValueType(0), | 
|  | Ops))]; | 
|  | } | 
|  | } else { | 
|  | if (N->getOpcode() == ISD::LOAD) { | 
|  | return &Loads[std::make_pair(Ops[1], | 
|  | std::make_pair(Ops[0], N->getValueType(0)))]; | 
|  | } else { | 
|  | std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); | 
|  | return &ArbitraryNodes[std::make_pair(N->getOpcode(), | 
|  | std::make_pair(RV, Ops))]; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | SelectionDAG::~SelectionDAG() { | 
|  | while (!AllNodes.empty()) { | 
|  | SDNode *N = AllNodes.begin(); | 
|  | delete [] N->OperandList; | 
|  | N->OperandList = 0; | 
|  | N->NumOperands = 0; | 
|  | AllNodes.pop_front(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { | 
|  | if (Op.getValueType() == VT) return Op; | 
|  | int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); | 
|  | return getNode(ISD::AND, Op.getValueType(), Op, | 
|  | getConstant(Imm, Op.getValueType())); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) { | 
|  | assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); | 
|  | assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!"); | 
|  |  | 
|  | // Mask out any bits that are not valid for this constant. | 
|  | if (VT != MVT::i64) | 
|  | Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; | 
|  |  | 
|  | SDNode *&N = Constants[std::make_pair(Val, VT)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ConstantSDNode(false, Val, VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getString(const std::string &Val) { | 
|  | StringSDNode *&N = StringNodes[Val]; | 
|  | if (!N) { | 
|  | N = new StringSDNode(Val); | 
|  | AllNodes.push_back(N); | 
|  | } | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) { | 
|  | assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); | 
|  | // Mask out any bits that are not valid for this constant. | 
|  | if (VT != MVT::i64) | 
|  | Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; | 
|  |  | 
|  | SDNode *&N = TargetConstants[std::make_pair(Val, VT)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ConstantSDNode(true, Val, VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) { | 
|  | assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); | 
|  | if (VT == MVT::f32) | 
|  | Val = (float)Val;  // Mask out extra precision. | 
|  |  | 
|  | // Do the map lookup using the actual bit pattern for the floating point | 
|  | // value, so that we don't have problems with 0.0 comparing equal to -0.0, and | 
|  | // we don't have issues with SNANs. | 
|  | SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ConstantFPSDNode(false, Val, VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) { | 
|  | assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); | 
|  | if (VT == MVT::f32) | 
|  | Val = (float)Val;  // Mask out extra precision. | 
|  |  | 
|  | // Do the map lookup using the actual bit pattern for the floating point | 
|  | // value, so that we don't have problems with 0.0 comparing equal to -0.0, and | 
|  | // we don't have issues with SNANs. | 
|  | SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ConstantFPSDNode(true, Val, VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, | 
|  | MVT::ValueType VT, int offset) { | 
|  | SDNode *&N = GlobalValues[std::make_pair(GV, offset)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new GlobalAddressSDNode(false, GV, VT, offset); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV, | 
|  | MVT::ValueType VT, int offset) { | 
|  | SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new GlobalAddressSDNode(true, GV, VT, offset); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) { | 
|  | SDNode *&N = FrameIndices[FI]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new FrameIndexSDNode(FI, VT, false); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) { | 
|  | SDNode *&N = TargetFrameIndices[FI]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new FrameIndexSDNode(FI, VT, true); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT, | 
|  | unsigned Alignment,  int Offset) { | 
|  | SDNode *&N = ConstantPoolIndices[std::make_pair(C, | 
|  | std::make_pair(Offset, Alignment))]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT, | 
|  | unsigned Alignment,  int Offset) { | 
|  | SDNode *&N = TargetConstantPoolIndices[std::make_pair(C, | 
|  | std::make_pair(Offset, Alignment))]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { | 
|  | SDNode *&N = BBNodes[MBB]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new BasicBlockSDNode(MBB); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { | 
|  | if ((unsigned)VT >= ValueTypeNodes.size()) | 
|  | ValueTypeNodes.resize(VT+1); | 
|  | if (ValueTypeNodes[VT] == 0) { | 
|  | ValueTypeNodes[VT] = new VTSDNode(VT); | 
|  | AllNodes.push_back(ValueTypeNodes[VT]); | 
|  | } | 
|  |  | 
|  | return SDOperand(ValueTypeNodes[VT], 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { | 
|  | SDNode *&N = ExternalSymbols[Sym]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ExternalSymbolSDNode(false, Sym, VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, | 
|  | MVT::ValueType VT) { | 
|  | SDNode *&N = TargetExternalSymbols[Sym]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new ExternalSymbolSDNode(true, Sym, VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { | 
|  | if ((unsigned)Cond >= CondCodeNodes.size()) | 
|  | CondCodeNodes.resize(Cond+1); | 
|  |  | 
|  | if (CondCodeNodes[Cond] == 0) { | 
|  | CondCodeNodes[Cond] = new CondCodeSDNode(Cond); | 
|  | AllNodes.push_back(CondCodeNodes[Cond]); | 
|  | } | 
|  | return SDOperand(CondCodeNodes[Cond], 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) { | 
|  | RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)]; | 
|  | if (!Reg) { | 
|  | Reg = new RegisterSDNode(RegNo, VT); | 
|  | AllNodes.push_back(Reg); | 
|  | } | 
|  | return SDOperand(Reg, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1, | 
|  | SDOperand N2, ISD::CondCode Cond) { | 
|  | // These setcc operations always fold. | 
|  | switch (Cond) { | 
|  | default: break; | 
|  | case ISD::SETFALSE: | 
|  | case ISD::SETFALSE2: return getConstant(0, VT); | 
|  | case ISD::SETTRUE: | 
|  | case ISD::SETTRUE2:  return getConstant(1, VT); | 
|  | } | 
|  |  | 
|  | if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) { | 
|  | uint64_t C2 = N2C->getValue(); | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { | 
|  | uint64_t C1 = N1C->getValue(); | 
|  |  | 
|  | // Sign extend the operands if required | 
|  | if (ISD::isSignedIntSetCC(Cond)) { | 
|  | C1 = N1C->getSignExtended(); | 
|  | C2 = N2C->getSignExtended(); | 
|  | } | 
|  |  | 
|  | switch (Cond) { | 
|  | default: assert(0 && "Unknown integer setcc!"); | 
|  | case ISD::SETEQ:  return getConstant(C1 == C2, VT); | 
|  | case ISD::SETNE:  return getConstant(C1 != C2, VT); | 
|  | case ISD::SETULT: return getConstant(C1 <  C2, VT); | 
|  | case ISD::SETUGT: return getConstant(C1 >  C2, VT); | 
|  | case ISD::SETULE: return getConstant(C1 <= C2, VT); | 
|  | case ISD::SETUGE: return getConstant(C1 >= C2, VT); | 
|  | case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT); | 
|  | case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT); | 
|  | case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT); | 
|  | case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT); | 
|  | } | 
|  | } else { | 
|  | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. | 
|  | if (N1.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType()); | 
|  |  | 
|  | // If the comparison constant has bits in the upper part, the | 
|  | // zero-extended value could never match. | 
|  | if (C2 & (~0ULL << InSize)) { | 
|  | unsigned VSize = MVT::getSizeInBits(N1.getValueType()); | 
|  | switch (Cond) { | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETEQ: return getConstant(0, VT); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETNE: return getConstant(1, VT); | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | // True if the sign bit of C2 is set. | 
|  | return getConstant((C2 & (1ULL << VSize)) != 0, VT); | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | // True if the sign bit of C2 isn't set. | 
|  | return getConstant((C2 & (1ULL << VSize)) == 0, VT); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can perform the comparison with the low bits. | 
|  | switch (Cond) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | return getSetCC(VT, N1.getOperand(0), | 
|  | getConstant(C2, N1.getOperand(0).getValueType()), | 
|  | Cond); | 
|  | default: | 
|  | break;   // todo, be more careful with signed comparisons | 
|  | } | 
|  | } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT(); | 
|  | unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); | 
|  | MVT::ValueType ExtDstTy = N1.getValueType(); | 
|  | unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); | 
|  |  | 
|  | // If the extended part has any inconsistent bits, it cannot ever | 
|  | // compare equal.  In other words, they have to be all ones or all | 
|  | // zeros. | 
|  | uint64_t ExtBits = | 
|  | (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); | 
|  | if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits) | 
|  | return getConstant(Cond == ISD::SETNE, VT); | 
|  |  | 
|  | // Otherwise, make this a use of a zext. | 
|  | return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy), | 
|  | getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy), | 
|  | Cond); | 
|  | } | 
|  |  | 
|  | uint64_t MinVal, MaxVal; | 
|  | unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0)); | 
|  | if (ISD::isSignedIntSetCC(Cond)) { | 
|  | MinVal = 1ULL << (OperandBitSize-1); | 
|  | if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined. | 
|  | MaxVal = ~0ULL >> (65-OperandBitSize); | 
|  | else | 
|  | MaxVal = 0; | 
|  | } else { | 
|  | MinVal = 0; | 
|  | MaxVal = ~0ULL >> (64-OperandBitSize); | 
|  | } | 
|  |  | 
|  | // Canonicalize GE/LE comparisons to use GT/LT comparisons. | 
|  | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { | 
|  | if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true | 
|  | --C2;                                          // X >= C1 --> X > (C1-1) | 
|  | return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), | 
|  | (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { | 
|  | if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true | 
|  | ++C2;                                          // X <= C1 --> X < (C1+1) | 
|  | return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), | 
|  | (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); | 
|  | } | 
|  |  | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal) | 
|  | return getConstant(0, VT);      // X < MIN --> false | 
|  |  | 
|  | // Canonicalize setgt X, Min --> setne X, Min | 
|  | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal) | 
|  | return getSetCC(VT, N1, N2, ISD::SETNE); | 
|  |  | 
|  | // If we have setult X, 1, turn it into seteq X, 0 | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1) | 
|  | return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()), | 
|  | ISD::SETEQ); | 
|  | // If we have setugt X, Max-1, turn it into seteq X, Max | 
|  | else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1) | 
|  | return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()), | 
|  | ISD::SETEQ); | 
|  |  | 
|  | // If we have "setcc X, C1", check to see if we can shrink the immediate | 
|  | // by changing cc. | 
|  |  | 
|  | // SETUGT X, SINTMAX  -> SETLT X, 0 | 
|  | if (Cond == ISD::SETUGT && OperandBitSize != 1 && | 
|  | C2 == (~0ULL >> (65-OperandBitSize))) | 
|  | return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT); | 
|  |  | 
|  | // FIXME: Implement the rest of these. | 
|  |  | 
|  |  | 
|  | // Fold bit comparisons when we can. | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | VT == N1.getValueType() && N1.getOpcode() == ISD::AND) | 
|  | if (ConstantSDNode *AndRHS = | 
|  | dyn_cast<ConstantSDNode>(N1.getOperand(1))) { | 
|  | if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3 | 
|  | // Perform the xform if the AND RHS is a single bit. | 
|  | if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { | 
|  | return getNode(ISD::SRL, VT, N1, | 
|  | getConstant(Log2_64(AndRHS->getValue()), | 
|  | TLI.getShiftAmountTy())); | 
|  | } | 
|  | } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) { | 
|  | // (X & 8) == 8  -->  (X & 8) >> 3 | 
|  | // Perform the xform if C2 is a single bit. | 
|  | if ((C2 & (C2-1)) == 0) { | 
|  | return getNode(ISD::SRL, VT, N1, | 
|  | getConstant(Log2_64(C2),TLI.getShiftAmountTy())); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (isa<ConstantSDNode>(N1.Val)) { | 
|  | // Ensure that the constant occurs on the RHS. | 
|  | return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); | 
|  | } | 
|  |  | 
|  | if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) | 
|  | if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) { | 
|  | double C1 = N1C->getValue(), C2 = N2C->getValue(); | 
|  |  | 
|  | switch (Cond) { | 
|  | default: break; // FIXME: Implement the rest of these! | 
|  | case ISD::SETEQ:  return getConstant(C1 == C2, VT); | 
|  | case ISD::SETNE:  return getConstant(C1 != C2, VT); | 
|  | case ISD::SETLT:  return getConstant(C1 < C2, VT); | 
|  | case ISD::SETGT:  return getConstant(C1 > C2, VT); | 
|  | case ISD::SETLE:  return getConstant(C1 <= C2, VT); | 
|  | case ISD::SETGE:  return getConstant(C1 >= C2, VT); | 
|  | } | 
|  | } else { | 
|  | // Ensure that the constant occurs on the RHS. | 
|  | return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); | 
|  | } | 
|  |  | 
|  | // Could not fold it. | 
|  | return SDOperand(); | 
|  | } | 
|  |  | 
|  | /// getNode - Gets or creates the specified node. | 
|  | /// | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { | 
|  | SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)]; | 
|  | if (!N) { | 
|  | N = new SDNode(Opcode, VT); | 
|  | AllNodes.push_back(N); | 
|  | } | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Operand) { | 
|  | unsigned Tmp1; | 
|  | // Constant fold unary operations with an integer constant operand. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) { | 
|  | uint64_t Val = C->getValue(); | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ZERO_EXTEND: return getConstant(Val, VT); | 
|  | case ISD::TRUNCATE:    return getConstant(Val, VT); | 
|  | case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT); | 
|  | case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT); | 
|  | case ISD::BIT_CONVERT: | 
|  | if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) | 
|  | return getConstantFP(BitsToFloat(Val), VT); | 
|  | else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) | 
|  | return getConstantFP(BitsToDouble(Val), VT); | 
|  | break; | 
|  | case ISD::BSWAP: | 
|  | switch(VT) { | 
|  | default: assert(0 && "Invalid bswap!"); break; | 
|  | case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT); | 
|  | case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT); | 
|  | case MVT::i64: return getConstant(ByteSwap_64(Val), VT); | 
|  | } | 
|  | break; | 
|  | case ISD::CTPOP: | 
|  | switch(VT) { | 
|  | default: assert(0 && "Invalid ctpop!"); break; | 
|  | case MVT::i1: return getConstant(Val != 0, VT); | 
|  | case MVT::i8: | 
|  | Tmp1 = (unsigned)Val & 0xFF; | 
|  | return getConstant(CountPopulation_32(Tmp1), VT); | 
|  | case MVT::i16: | 
|  | Tmp1 = (unsigned)Val & 0xFFFF; | 
|  | return getConstant(CountPopulation_32(Tmp1), VT); | 
|  | case MVT::i32: | 
|  | return getConstant(CountPopulation_32((unsigned)Val), VT); | 
|  | case MVT::i64: | 
|  | return getConstant(CountPopulation_64(Val), VT); | 
|  | } | 
|  | case ISD::CTLZ: | 
|  | switch(VT) { | 
|  | default: assert(0 && "Invalid ctlz!"); break; | 
|  | case MVT::i1: return getConstant(Val == 0, VT); | 
|  | case MVT::i8: | 
|  | Tmp1 = (unsigned)Val & 0xFF; | 
|  | return getConstant(CountLeadingZeros_32(Tmp1)-24, VT); | 
|  | case MVT::i16: | 
|  | Tmp1 = (unsigned)Val & 0xFFFF; | 
|  | return getConstant(CountLeadingZeros_32(Tmp1)-16, VT); | 
|  | case MVT::i32: | 
|  | return getConstant(CountLeadingZeros_32((unsigned)Val), VT); | 
|  | case MVT::i64: | 
|  | return getConstant(CountLeadingZeros_64(Val), VT); | 
|  | } | 
|  | case ISD::CTTZ: | 
|  | switch(VT) { | 
|  | default: assert(0 && "Invalid cttz!"); break; | 
|  | case MVT::i1: return getConstant(Val == 0, VT); | 
|  | case MVT::i8: | 
|  | Tmp1 = (unsigned)Val | 0x100; | 
|  | return getConstant(CountTrailingZeros_32(Tmp1), VT); | 
|  | case MVT::i16: | 
|  | Tmp1 = (unsigned)Val | 0x10000; | 
|  | return getConstant(CountTrailingZeros_32(Tmp1), VT); | 
|  | case MVT::i32: | 
|  | return getConstant(CountTrailingZeros_32((unsigned)Val), VT); | 
|  | case MVT::i64: | 
|  | return getConstant(CountTrailingZeros_64(Val), VT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Constant fold unary operations with an floating point constant operand. | 
|  | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) | 
|  | switch (Opcode) { | 
|  | case ISD::FNEG: | 
|  | return getConstantFP(-C->getValue(), VT); | 
|  | case ISD::FABS: | 
|  | return getConstantFP(fabs(C->getValue()), VT); | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FP_EXTEND: | 
|  | return getConstantFP(C->getValue(), VT); | 
|  | case ISD::FP_TO_SINT: | 
|  | return getConstant((int64_t)C->getValue(), VT); | 
|  | case ISD::FP_TO_UINT: | 
|  | return getConstant((uint64_t)C->getValue(), VT); | 
|  | case ISD::BIT_CONVERT: | 
|  | if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) | 
|  | return getConstant(FloatToBits(C->getValue()), VT); | 
|  | else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) | 
|  | return getConstant(DoubleToBits(C->getValue()), VT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned OpOpcode = Operand.Val->getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ISD::TokenFactor: | 
|  | return Operand;         // Factor of one node?  No factor. | 
|  | case ISD::SIGN_EXTEND: | 
|  | if (Operand.getValueType() == VT) return Operand;   // noop extension | 
|  | assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!"); | 
|  | if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) | 
|  | return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); | 
|  | break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | if (Operand.getValueType() == VT) return Operand;   // noop extension | 
|  | assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!"); | 
|  | if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x) | 
|  | return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); | 
|  | break; | 
|  | case ISD::ANY_EXTEND: | 
|  | if (Operand.getValueType() == VT) return Operand;   // noop extension | 
|  | assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!"); | 
|  | if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) | 
|  | // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x) | 
|  | return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); | 
|  | break; | 
|  | case ISD::TRUNCATE: | 
|  | if (Operand.getValueType() == VT) return Operand;   // noop truncate | 
|  | assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!"); | 
|  | if (OpOpcode == ISD::TRUNCATE) | 
|  | return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); | 
|  | else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || | 
|  | OpOpcode == ISD::ANY_EXTEND) { | 
|  | // If the source is smaller than the dest, we still need an extend. | 
|  | if (Operand.Val->getOperand(0).getValueType() < VT) | 
|  | return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); | 
|  | else if (Operand.Val->getOperand(0).getValueType() > VT) | 
|  | return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); | 
|  | else | 
|  | return Operand.Val->getOperand(0); | 
|  | } | 
|  | break; | 
|  | case ISD::BIT_CONVERT: | 
|  | // Basic sanity checking. | 
|  | assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()) | 
|  | && "Cannot BIT_CONVERT between two different types!"); | 
|  | if (VT == Operand.getValueType()) return Operand;  // noop conversion. | 
|  | if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x) | 
|  | return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); | 
|  | if (OpOpcode == ISD::UNDEF) | 
|  | return getNode(ISD::UNDEF, VT); | 
|  | break; | 
|  | case ISD::SCALAR_TO_VECTOR: | 
|  | assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) && | 
|  | MVT::getVectorBaseType(VT) == Operand.getValueType() && | 
|  | "Illegal SCALAR_TO_VECTOR node!"); | 
|  | break; | 
|  | case ISD::FNEG: | 
|  | if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X) | 
|  | return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1), | 
|  | Operand.Val->getOperand(0)); | 
|  | if (OpOpcode == ISD::FNEG)  // --X -> X | 
|  | return Operand.Val->getOperand(0); | 
|  | break; | 
|  | case ISD::FABS: | 
|  | if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X) | 
|  | return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDNode *N; | 
|  | if (VT != MVT::Flag) { // Don't CSE flag producing nodes | 
|  | SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))]; | 
|  | if (E) return SDOperand(E, 0); | 
|  | E = N = new SDNode(Opcode, Operand); | 
|  | } else { | 
|  | N = new SDNode(Opcode, Operand); | 
|  | } | 
|  | N->setValueTypes(VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand N1, SDOperand N2) { | 
|  | #ifndef NDEBUG | 
|  | switch (Opcode) { | 
|  | case ISD::TokenFactor: | 
|  | assert(VT == MVT::Other && N1.getValueType() == MVT::Other && | 
|  | N2.getValueType() == MVT::Other && "Invalid token factor!"); | 
|  | break; | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::UDIV: | 
|  | case ISD::UREM: | 
|  | case ISD::MULHU: | 
|  | case ISD::MULHS: | 
|  | assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); | 
|  | // fall through | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::SDIV: | 
|  | case ISD::SREM: | 
|  | assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops"); | 
|  | // fall through. | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | assert(N1.getValueType() == N2.getValueType() && | 
|  | N1.getValueType() == VT && "Binary operator types must match!"); | 
|  | break; | 
|  | case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match. | 
|  | assert(N1.getValueType() == VT && | 
|  | MVT::isFloatingPoint(N1.getValueType()) && | 
|  | MVT::isFloatingPoint(N2.getValueType()) && | 
|  | "Invalid FCOPYSIGN!"); | 
|  | break; | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | assert(VT == N1.getValueType() && | 
|  | "Shift operators return type must be the same as their first arg"); | 
|  | assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && | 
|  | VT != MVT::i1 && "Shifts only work on integers"); | 
|  | break; | 
|  | case ISD::FP_ROUND_INREG: { | 
|  | MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); | 
|  | assert(VT == N1.getValueType() && "Not an inreg round!"); | 
|  | assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && | 
|  | "Cannot FP_ROUND_INREG integer types"); | 
|  | assert(EVT <= VT && "Not rounding down!"); | 
|  | break; | 
|  | } | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext: | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); | 
|  | assert(VT == N1.getValueType() && "Not an inreg extend!"); | 
|  | assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && | 
|  | "Cannot *_EXTEND_INREG FP types"); | 
|  | assert(EVT <= VT && "Not extending!"); | 
|  | } | 
|  |  | 
|  | default: break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); | 
|  | if (N1C) { | 
|  | if (N2C) { | 
|  | uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); | 
|  | switch (Opcode) { | 
|  | case ISD::ADD: return getConstant(C1 + C2, VT); | 
|  | case ISD::SUB: return getConstant(C1 - C2, VT); | 
|  | case ISD::MUL: return getConstant(C1 * C2, VT); | 
|  | case ISD::UDIV: | 
|  | if (C2) return getConstant(C1 / C2, VT); | 
|  | break; | 
|  | case ISD::UREM : | 
|  | if (C2) return getConstant(C1 % C2, VT); | 
|  | break; | 
|  | case ISD::SDIV : | 
|  | if (C2) return getConstant(N1C->getSignExtended() / | 
|  | N2C->getSignExtended(), VT); | 
|  | break; | 
|  | case ISD::SREM : | 
|  | if (C2) return getConstant(N1C->getSignExtended() % | 
|  | N2C->getSignExtended(), VT); | 
|  | break; | 
|  | case ISD::AND  : return getConstant(C1 & C2, VT); | 
|  | case ISD::OR   : return getConstant(C1 | C2, VT); | 
|  | case ISD::XOR  : return getConstant(C1 ^ C2, VT); | 
|  | case ISD::SHL  : return getConstant(C1 << C2, VT); | 
|  | case ISD::SRL  : return getConstant(C1 >> C2, VT); | 
|  | case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT); | 
|  | case ISD::ROTL : | 
|  | return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)), | 
|  | VT); | 
|  | case ISD::ROTR : | 
|  | return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)), | 
|  | VT); | 
|  | default: break; | 
|  | } | 
|  | } else {      // Cannonicalize constant to RHS if commutative | 
|  | if (isCommutativeBinOp(Opcode)) { | 
|  | std::swap(N1C, N2C); | 
|  | std::swap(N1, N2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val); | 
|  | ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val); | 
|  | if (N1CFP) { | 
|  | if (N2CFP) { | 
|  | double C1 = N1CFP->getValue(), C2 = N2CFP->getValue(); | 
|  | switch (Opcode) { | 
|  | case ISD::FADD: return getConstantFP(C1 + C2, VT); | 
|  | case ISD::FSUB: return getConstantFP(C1 - C2, VT); | 
|  | case ISD::FMUL: return getConstantFP(C1 * C2, VT); | 
|  | case ISD::FDIV: | 
|  | if (C2) return getConstantFP(C1 / C2, VT); | 
|  | break; | 
|  | case ISD::FREM : | 
|  | if (C2) return getConstantFP(fmod(C1, C2), VT); | 
|  | break; | 
|  | case ISD::FCOPYSIGN: { | 
|  | union { | 
|  | double   F; | 
|  | uint64_t I; | 
|  | } u1; | 
|  | union { | 
|  | double  F; | 
|  | int64_t I; | 
|  | } u2; | 
|  | u1.F = C1; | 
|  | u2.F = C2; | 
|  | if (u2.I < 0)  // Sign bit of RHS set? | 
|  | u1.I |= 1ULL << 63;      // Set the sign bit of the LHS. | 
|  | else | 
|  | u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS. | 
|  | return getConstantFP(u1.F, VT); | 
|  | } | 
|  | default: break; | 
|  | } | 
|  | } else {      // Cannonicalize constant to RHS if commutative | 
|  | if (isCommutativeBinOp(Opcode)) { | 
|  | std::swap(N1CFP, N2CFP); | 
|  | std::swap(N1, N2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, fold operations that do not require constants. | 
|  | switch (Opcode) { | 
|  | case ISD::FP_ROUND_INREG: | 
|  | if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding. | 
|  | break; | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); | 
|  | if (EVT == VT) return N1;  // Not actually extending | 
|  | break; | 
|  | } | 
|  |  | 
|  | // FIXME: figure out how to safely handle things like | 
|  | // int foo(int x) { return 1 << (x & 255); } | 
|  | // int bar() { return foo(256); } | 
|  | #if 0 | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1) | 
|  | return getNode(Opcode, VT, N1, N2.getOperand(0)); | 
|  | else if (N2.getOpcode() == ISD::AND) | 
|  | if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) { | 
|  | // If the and is only masking out bits that cannot effect the shift, | 
|  | // eliminate the and. | 
|  | unsigned NumBits = MVT::getSizeInBits(VT); | 
|  | if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) | 
|  | return getNode(Opcode, VT, N1, N2.getOperand(0)); | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Memoize this node if possible. | 
|  | SDNode *N; | 
|  | if (VT != MVT::Flag) { | 
|  | SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))]; | 
|  | if (BON) return SDOperand(BON, 0); | 
|  |  | 
|  | BON = N = new SDNode(Opcode, N1, N2); | 
|  | } else { | 
|  | N = new SDNode(Opcode, N1, N2); | 
|  | } | 
|  |  | 
|  | N->setValueTypes(VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand N1, SDOperand N2, SDOperand N3) { | 
|  | // Perform various simplifications. | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); | 
|  | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); | 
|  | ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val); | 
|  | switch (Opcode) { | 
|  | case ISD::SETCC: { | 
|  | // Use SimplifySetCC  to simplify SETCC's. | 
|  | SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get()); | 
|  | if (Simp.Val) return Simp; | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: | 
|  | if (N1C) | 
|  | if (N1C->getValue()) | 
|  | return N2;             // select true, X, Y -> X | 
|  | else | 
|  | return N3;             // select false, X, Y -> Y | 
|  |  | 
|  | if (N2 == N3) return N2;   // select C, X, X -> X | 
|  | break; | 
|  | case ISD::BRCOND: | 
|  | if (N2C) | 
|  | if (N2C->getValue()) // Unconditional branch | 
|  | return getNode(ISD::BR, MVT::Other, N1, N3); | 
|  | else | 
|  | return N1;         // Never-taken branch | 
|  | break; | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | assert(VT == N1.getValueType() && VT == N2.getValueType() && | 
|  | MVT::isVector(VT) && MVT::isVector(N3.getValueType()) && | 
|  | N3.getOpcode() == ISD::BUILD_VECTOR && | 
|  | MVT::getVectorNumElements(VT) == N3.getNumOperands() && | 
|  | "Illegal VECTOR_SHUFFLE node!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(3); | 
|  | Ops.push_back(N1); | 
|  | Ops.push_back(N2); | 
|  | Ops.push_back(N3); | 
|  |  | 
|  | // Memoize node if it doesn't produce a flag. | 
|  | SDNode *N; | 
|  | if (VT != MVT::Flag) { | 
|  | SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))]; | 
|  | if (E) return SDOperand(E, 0); | 
|  | E = N = new SDNode(Opcode, N1, N2, N3); | 
|  | } else { | 
|  | N = new SDNode(Opcode, N1, N2, N3); | 
|  | } | 
|  | N->setValueTypes(VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand N1, SDOperand N2, SDOperand N3, | 
|  | SDOperand N4) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(4); | 
|  | Ops.push_back(N1); | 
|  | Ops.push_back(N2); | 
|  | Ops.push_back(N3); | 
|  | Ops.push_back(N4); | 
|  | return getNode(Opcode, VT, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand N1, SDOperand N2, SDOperand N3, | 
|  | SDOperand N4, SDOperand N5) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(5); | 
|  | Ops.push_back(N1); | 
|  | Ops.push_back(N2); | 
|  | Ops.push_back(N3); | 
|  | Ops.push_back(N4); | 
|  | Ops.push_back(N5); | 
|  | return getNode(Opcode, VT, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getLoad(MVT::ValueType VT, | 
|  | SDOperand Chain, SDOperand Ptr, | 
|  | SDOperand SV) { | 
|  | SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | N = new SDNode(ISD::LOAD, Chain, Ptr, SV); | 
|  |  | 
|  | // Loads have a token chain. | 
|  | setNodeValueTypes(N, VT, MVT::Other); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT, | 
|  | SDOperand Chain, SDOperand Ptr, | 
|  | SDOperand SV) { | 
|  | SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))]; | 
|  | if (N) return SDOperand(N, 0); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(5); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Ptr); | 
|  | Ops.push_back(SV); | 
|  | Ops.push_back(getConstant(Count, MVT::i32)); | 
|  | Ops.push_back(getValueType(EVT)); | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | VTs.reserve(2); | 
|  | VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain. | 
|  | return getNode(ISD::VLOAD, VTs, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Chain, SDOperand Ptr, SDOperand SV, | 
|  | MVT::ValueType EVT) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(4); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Ptr); | 
|  | Ops.push_back(SV); | 
|  | Ops.push_back(getValueType(EVT)); | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | VTs.reserve(2); | 
|  | VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain. | 
|  | return getNode(Opcode, VTs, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { | 
|  | assert((!V || isa<PointerType>(V->getType())) && | 
|  | "SrcValue is not a pointer?"); | 
|  | SDNode *&N = ValueNodes[std::make_pair(V, Offset)]; | 
|  | if (N) return SDOperand(N, 0); | 
|  |  | 
|  | N = new SrcValueSDNode(V, Offset); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getVAArg(MVT::ValueType VT, | 
|  | SDOperand Chain, SDOperand Ptr, | 
|  | SDOperand SV) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(3); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Ptr); | 
|  | Ops.push_back(SV); | 
|  | std::vector<MVT::ValueType> VTs; | 
|  | VTs.reserve(2); | 
|  | VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain. | 
|  | return getNode(ISD::VAARG, VTs, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
|  | std::vector<SDOperand> &Ops) { | 
|  | switch (Ops.size()) { | 
|  | case 0: return getNode(Opcode, VT); | 
|  | case 1: return getNode(Opcode, VT, Ops[0]); | 
|  | case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); | 
|  | case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val); | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ISD::TRUNCSTORE: { | 
|  | assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!"); | 
|  | MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT(); | 
|  | #if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store | 
|  | // If this is a truncating store of a constant, convert to the desired type | 
|  | // and store it instead. | 
|  | if (isa<Constant>(Ops[0])) { | 
|  | SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1); | 
|  | if (isa<Constant>(Op)) | 
|  | N1 = Op; | 
|  | } | 
|  | // Also for ConstantFP? | 
|  | #endif | 
|  | if (Ops[0].getValueType() == EVT)       // Normal store? | 
|  | return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]); | 
|  | assert(Ops[1].getValueType() > EVT && "Not a truncation?"); | 
|  | assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) && | 
|  | "Can't do FP-INT conversion!"); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!"); | 
|  | assert(Ops[0].getValueType() == Ops[1].getValueType() && | 
|  | "LHS and RHS of condition must have same type!"); | 
|  | assert(Ops[2].getValueType() == Ops[3].getValueType() && | 
|  | "True and False arms of SelectCC must have same type!"); | 
|  | assert(Ops[2].getValueType() == VT && | 
|  | "select_cc node must be of same type as true and false value!"); | 
|  | break; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | assert(Ops.size() == 5 && "BR_CC takes 5 operands!"); | 
|  | assert(Ops[2].getValueType() == Ops[3].getValueType() && | 
|  | "LHS/RHS of comparison should match types!"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Memoize nodes. | 
|  | SDNode *N; | 
|  | if (VT != MVT::Flag) { | 
|  | SDNode *&E = | 
|  | OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))]; | 
|  | if (E) return SDOperand(E, 0); | 
|  | E = N = new SDNode(Opcode, Ops); | 
|  | } else { | 
|  | N = new SDNode(Opcode, Ops); | 
|  | } | 
|  | N->setValueTypes(VT); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::getNode(unsigned Opcode, | 
|  | std::vector<MVT::ValueType> &ResultTys, | 
|  | std::vector<SDOperand> &Ops) { | 
|  | if (ResultTys.size() == 1) | 
|  | return getNode(Opcode, ResultTys[0], Ops); | 
|  |  | 
|  | switch (Opcode) { | 
|  | case ISD::EXTLOAD: | 
|  | case ISD::SEXTLOAD: | 
|  | case ISD::ZEXTLOAD: { | 
|  | MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT(); | 
|  | assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!"); | 
|  | // If they are asking for an extending load from/to the same thing, return a | 
|  | // normal load. | 
|  | if (ResultTys[0] == EVT) | 
|  | return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]); | 
|  | if (MVT::isVector(ResultTys[0])) { | 
|  | assert(EVT == MVT::getVectorBaseType(ResultTys[0]) && | 
|  | "Invalid vector extload!"); | 
|  | } else { | 
|  | assert(EVT < ResultTys[0] && | 
|  | "Should only be an extending load, not truncating!"); | 
|  | } | 
|  | assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) && | 
|  | "Cannot sign/zero extend a FP/Vector load!"); | 
|  | assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) && | 
|  | "Cannot convert from FP to Int or Int -> FP!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // FIXME: figure out how to safely handle things like | 
|  | // int foo(int x) { return 1 << (x & 255); } | 
|  | // int bar() { return foo(256); } | 
|  | #if 0 | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS: | 
|  | case ISD::SHL_PARTS: | 
|  | if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) | 
|  | return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); | 
|  | else if (N3.getOpcode() == ISD::AND) | 
|  | if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { | 
|  | // If the and is only masking out bits that cannot effect the shift, | 
|  | // eliminate the and. | 
|  | unsigned NumBits = MVT::getSizeInBits(VT)*2; | 
|  | if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) | 
|  | return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Memoize the node unless it returns a flag. | 
|  | SDNode *N; | 
|  | if (ResultTys.back() != MVT::Flag) { | 
|  | SDNode *&E = | 
|  | ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))]; | 
|  | if (E) return SDOperand(E, 0); | 
|  | E = N = new SDNode(Opcode, Ops); | 
|  | } else { | 
|  | N = new SDNode(Opcode, Ops); | 
|  | } | 
|  | setNodeValueTypes(N, ResultTys); | 
|  | AllNodes.push_back(N); | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | void SelectionDAG::setNodeValueTypes(SDNode *N, | 
|  | std::vector<MVT::ValueType> &RetVals) { | 
|  | switch (RetVals.size()) { | 
|  | case 0: return; | 
|  | case 1: N->setValueTypes(RetVals[0]); return; | 
|  | case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return; | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | std::list<std::vector<MVT::ValueType> >::iterator I = | 
|  | std::find(VTList.begin(), VTList.end(), RetVals); | 
|  | if (I == VTList.end()) { | 
|  | VTList.push_front(RetVals); | 
|  | I = VTList.begin(); | 
|  | } | 
|  |  | 
|  | N->setValueTypes(&(*I)[0], I->size()); | 
|  | } | 
|  |  | 
|  | void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2) { | 
|  | for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), | 
|  | E = VTList.end(); I != E; ++I) { | 
|  | if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) { | 
|  | N->setValueTypes(&(*I)[0], 2); | 
|  | return; | 
|  | } | 
|  | } | 
|  | std::vector<MVT::ValueType> V; | 
|  | V.push_back(VT1); | 
|  | V.push_back(VT2); | 
|  | VTList.push_front(V); | 
|  | N->setValueTypes(&(*VTList.begin())[0], 2); | 
|  | } | 
|  |  | 
|  | /// UpdateNodeOperands - *Mutate* the specified node in-place to have the | 
|  | /// specified operands.  If the resultant node already exists in the DAG, | 
|  | /// this does not modify the specified node, instead it returns the node that | 
|  | /// already exists.  If the resultant node does not exist in the DAG, the | 
|  | /// input node is returned.  As a degenerate case, if you specify the same | 
|  | /// input operands as the node already has, the input node is returned. | 
|  | SDOperand SelectionDAG:: | 
|  | UpdateNodeOperands(SDOperand InN, SDOperand Op) { | 
|  | SDNode *N = InN.Val; | 
|  | assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); | 
|  |  | 
|  | // Check to see if there is no change. | 
|  | if (Op == N->getOperand(0)) return InN; | 
|  |  | 
|  | // See if the modified node already exists. | 
|  | SDNode **NewSlot = FindModifiedNodeSlot(N, Op); | 
|  | if (NewSlot && *NewSlot) | 
|  | return SDOperand(*NewSlot, InN.ResNo); | 
|  |  | 
|  | // Nope it doesn't.  Remove the node from it's current place in the maps. | 
|  | if (NewSlot) | 
|  | RemoveNodeFromCSEMaps(N); | 
|  |  | 
|  | // Now we update the operands. | 
|  | N->OperandList[0].Val->removeUser(N); | 
|  | Op.Val->addUser(N); | 
|  | N->OperandList[0] = Op; | 
|  |  | 
|  | // If this gets put into a CSE map, add it. | 
|  | if (NewSlot) *NewSlot = N; | 
|  | return InN; | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG:: | 
|  | UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) { | 
|  | SDNode *N = InN.Val; | 
|  | assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); | 
|  |  | 
|  | // Check to see if there is no change. | 
|  | bool AnyChange = false; | 
|  | if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) | 
|  | return InN;   // No operands changed, just return the input node. | 
|  |  | 
|  | // See if the modified node already exists. | 
|  | SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2); | 
|  | if (NewSlot && *NewSlot) | 
|  | return SDOperand(*NewSlot, InN.ResNo); | 
|  |  | 
|  | // Nope it doesn't.  Remove the node from it's current place in the maps. | 
|  | if (NewSlot) | 
|  | RemoveNodeFromCSEMaps(N); | 
|  |  | 
|  | // Now we update the operands. | 
|  | if (N->OperandList[0] != Op1) { | 
|  | N->OperandList[0].Val->removeUser(N); | 
|  | Op1.Val->addUser(N); | 
|  | N->OperandList[0] = Op1; | 
|  | } | 
|  | if (N->OperandList[1] != Op2) { | 
|  | N->OperandList[1].Val->removeUser(N); | 
|  | Op2.Val->addUser(N); | 
|  | N->OperandList[1] = Op2; | 
|  | } | 
|  |  | 
|  | // If this gets put into a CSE map, add it. | 
|  | if (NewSlot) *NewSlot = N; | 
|  | return InN; | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG:: | 
|  | UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | return UpdateNodeOperands(N, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG:: | 
|  | UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | return UpdateNodeOperands(N, Ops); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG:: | 
|  | UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | return UpdateNodeOperands(N, Ops); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDOperand SelectionDAG:: | 
|  | UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) { | 
|  | SDNode *N = InN.Val; | 
|  | assert(N->getNumOperands() == Ops.size() && | 
|  | "Update with wrong number of operands"); | 
|  |  | 
|  | // Check to see if there is no change. | 
|  | unsigned NumOps = Ops.size(); | 
|  | bool AnyChange = false; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | if (Ops[i] != N->getOperand(i)) { | 
|  | AnyChange = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No operands changed, just return the input node. | 
|  | if (!AnyChange) return InN; | 
|  |  | 
|  | // See if the modified node already exists. | 
|  | SDNode **NewSlot = FindModifiedNodeSlot(N, Ops); | 
|  | if (NewSlot && *NewSlot) | 
|  | return SDOperand(*NewSlot, InN.ResNo); | 
|  |  | 
|  | // Nope it doesn't.  Remove the node from it's current place in the maps. | 
|  | if (NewSlot) | 
|  | RemoveNodeFromCSEMaps(N); | 
|  |  | 
|  | // Now we update the operands. | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | if (N->OperandList[i] != Ops[i]) { | 
|  | N->OperandList[i].Val->removeUser(N); | 
|  | Ops[i].Val->addUser(N); | 
|  | N->OperandList[i] = Ops[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this gets put into a CSE map, add it. | 
|  | if (NewSlot) *NewSlot = N; | 
|  | return InN; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /// SelectNodeTo - These are used for target selectors to *mutate* the | 
|  | /// specified node to have the specified return type, Target opcode, and | 
|  | /// operands.  Note that target opcodes are stored as | 
|  | /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. | 
|  | /// | 
|  | /// Note that SelectNodeTo returns the resultant node.  If there is already a | 
|  | /// node of the specified opcode and operands, it returns that node instead of | 
|  | /// the current one. | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT) { | 
|  | // If an identical node already exists, use it. | 
|  | SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  |  | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1) { | 
|  | // If an identical node already exists, use it. | 
|  | SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(Op1, VT))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2) { | 
|  | // If an identical node already exists, use it. | 
|  | SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(Op1, Op2))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2, SDOperand Op3) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VT, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2, Op3); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2, SDOperand Op3, | 
|  | SDOperand Op4) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); | 
|  | SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VT, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2, Op3, Op4); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2, SDOperand Op3,SDOperand Op4, | 
|  | SDOperand Op5) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); OpList.push_back(Op5); | 
|  | SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VT, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2, Op3, Op4, Op5); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2, SDOperand Op3,SDOperand Op4, | 
|  | SDOperand Op5, SDOperand Op6) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6); | 
|  | SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VT, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2, SDOperand Op3,SDOperand Op4, | 
|  | SDOperand Op5, SDOperand Op6, | 
|  | SDOperand Op7) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6); | 
|  | OpList.push_back(Op7); | 
|  | SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VT, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT, SDOperand Op1, | 
|  | SDOperand Op2, SDOperand Op3,SDOperand Op4, | 
|  | SDOperand Op5, SDOperand Op6, | 
|  | SDOperand Op7, SDOperand Op8) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6); | 
|  | OpList.push_back(Op7); OpList.push_back(Op8); | 
|  | SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VT, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | N->setValueTypes(VT); | 
|  | N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT1, MVT::ValueType VT2, | 
|  | SDOperand Op1, SDOperand Op2) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); | 
|  | std::vector<MVT::ValueType> VTList; | 
|  | VTList.push_back(VT1); VTList.push_back(VT2); | 
|  | SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VTList, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | setNodeValueTypes(N, VT1, VT2); | 
|  | N->setOperands(Op1, Op2); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT1, MVT::ValueType VT2, | 
|  | SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | std::vector<MVT::ValueType> VTList; | 
|  | VTList.push_back(VT1); VTList.push_back(VT2); | 
|  | SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VTList, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | setNodeValueTypes(N, VT1, VT2); | 
|  | N->setOperands(Op1, Op2, Op3); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT1, MVT::ValueType VT2, | 
|  | SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); | 
|  | std::vector<MVT::ValueType> VTList; | 
|  | VTList.push_back(VT1); VTList.push_back(VT2); | 
|  | SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VTList, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | setNodeValueTypes(N, VT1, VT2); | 
|  | N->setOperands(Op1, Op2, Op3, Op4); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
|  | MVT::ValueType VT1, MVT::ValueType VT2, | 
|  | SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, | 
|  | SDOperand Op5) { | 
|  | // If an identical node already exists, use it. | 
|  | std::vector<SDOperand> OpList; | 
|  | OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); | 
|  | OpList.push_back(Op4); OpList.push_back(Op5); | 
|  | std::vector<MVT::ValueType> VTList; | 
|  | VTList.push_back(VT1); VTList.push_back(VT2); | 
|  | SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, | 
|  | std::make_pair(VTList, OpList))]; | 
|  | if (ON) return SDOperand(ON, 0); | 
|  |  | 
|  | RemoveNodeFromCSEMaps(N); | 
|  | N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); | 
|  | setNodeValueTypes(N, VT1, VT2); | 
|  | N->setOperands(Op1, Op2, Op3, Op4, Op5); | 
|  |  | 
|  | ON = N;   // Memoize the new node. | 
|  | return SDOperand(N, 0); | 
|  | } | 
|  |  | 
|  | /// getTargetNode - These are used for target selectors to create a new node | 
|  | /// with specified return type(s), target opcode, and operands. | 
|  | /// | 
|  | /// Note that getTargetNode returns the resultant node.  If there is already a | 
|  | /// node of the specified opcode and operands, it returns that node instead of | 
|  | /// the current one. | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2, SDOperand Op3) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2, SDOperand Op3, | 
|  | SDOperand Op4) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2, SDOperand Op3, | 
|  | SDOperand Op4, SDOperand Op5) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2, SDOperand Op3, | 
|  | SDOperand Op4, SDOperand Op5, SDOperand Op6) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(6); | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2, SDOperand Op3, | 
|  | SDOperand Op4, SDOperand Op5, SDOperand Op6, | 
|  | SDOperand Op7) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(7); | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | Ops.push_back(Op7); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | SDOperand Op1, SDOperand Op2, SDOperand Op3, | 
|  | SDOperand Op4, SDOperand Op5, SDOperand Op6, | 
|  | SDOperand Op7, SDOperand Op8) { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.reserve(8); | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | Ops.push_back(Op7); | 
|  | Ops.push_back(Op8); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
|  | std::vector<SDOperand> &Ops) { | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5, | 
|  | SDOperand Op6) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5, | 
|  | SDOperand Op6, SDOperand Op7) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | Ops.push_back(Op7); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, MVT::ValueType VT3, | 
|  | SDOperand Op1, SDOperand Op2) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | ResultTys.push_back(VT3); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, MVT::ValueType VT3, | 
|  | SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | ResultTys.push_back(VT3); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, MVT::ValueType VT3, | 
|  | SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5, | 
|  | SDOperand Op6) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | ResultTys.push_back(VT3); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, MVT::ValueType VT3, | 
|  | SDOperand Op1, SDOperand Op2, | 
|  | SDOperand Op3, SDOperand Op4, SDOperand Op5, | 
|  | SDOperand Op6, SDOperand Op7) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | ResultTys.push_back(VT3); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op1); | 
|  | Ops.push_back(Op2); | 
|  | Ops.push_back(Op3); | 
|  | Ops.push_back(Op4); | 
|  | Ops.push_back(Op5); | 
|  | Ops.push_back(Op6); | 
|  | Ops.push_back(Op7); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
|  | MVT::ValueType VT2, std::vector<SDOperand> &Ops) { | 
|  | std::vector<MVT::ValueType> ResultTys; | 
|  | ResultTys.push_back(VT1); | 
|  | ResultTys.push_back(VT2); | 
|  | return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; | 
|  | } | 
|  |  | 
|  | // ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. | 
|  | /// This can cause recursive merging of nodes in the DAG. | 
|  | /// | 
|  | /// This version assumes From/To have a single result value. | 
|  | /// | 
|  | void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN, | 
|  | std::vector<SDNode*> *Deleted) { | 
|  | SDNode *From = FromN.Val, *To = ToN.Val; | 
|  | assert(From->getNumValues() == 1 && To->getNumValues() == 1 && | 
|  | "Cannot replace with this method!"); | 
|  | assert(From != To && "Cannot replace uses of with self"); | 
|  |  | 
|  | while (!From->use_empty()) { | 
|  | // Process users until they are all gone. | 
|  | SDNode *U = *From->use_begin(); | 
|  |  | 
|  | // This node is about to morph, remove its old self from the CSE maps. | 
|  | RemoveNodeFromCSEMaps(U); | 
|  |  | 
|  | for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; | 
|  | I != E; ++I) | 
|  | if (I->Val == From) { | 
|  | From->removeUser(U); | 
|  | I->Val = To; | 
|  | To->addUser(U); | 
|  | } | 
|  |  | 
|  | // Now that we have modified U, add it back to the CSE maps.  If it already | 
|  | // exists there, recursively merge the results together. | 
|  | if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { | 
|  | ReplaceAllUsesWith(U, Existing, Deleted); | 
|  | // U is now dead. | 
|  | if (Deleted) Deleted->push_back(U); | 
|  | DeleteNodeNotInCSEMaps(U); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. | 
|  | /// This can cause recursive merging of nodes in the DAG. | 
|  | /// | 
|  | /// This version assumes From/To have matching types and numbers of result | 
|  | /// values. | 
|  | /// | 
|  | void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, | 
|  | std::vector<SDNode*> *Deleted) { | 
|  | assert(From != To && "Cannot replace uses of with self"); | 
|  | assert(From->getNumValues() == To->getNumValues() && | 
|  | "Cannot use this version of ReplaceAllUsesWith!"); | 
|  | if (From->getNumValues() == 1) {  // If possible, use the faster version. | 
|  | ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (!From->use_empty()) { | 
|  | // Process users until they are all gone. | 
|  | SDNode *U = *From->use_begin(); | 
|  |  | 
|  | // This node is about to morph, remove its old self from the CSE maps. | 
|  | RemoveNodeFromCSEMaps(U); | 
|  |  | 
|  | for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; | 
|  | I != E; ++I) | 
|  | if (I->Val == From) { | 
|  | From->removeUser(U); | 
|  | I->Val = To; | 
|  | To->addUser(U); | 
|  | } | 
|  |  | 
|  | // Now that we have modified U, add it back to the CSE maps.  If it already | 
|  | // exists there, recursively merge the results together. | 
|  | if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { | 
|  | ReplaceAllUsesWith(U, Existing, Deleted); | 
|  | // U is now dead. | 
|  | if (Deleted) Deleted->push_back(U); | 
|  | DeleteNodeNotInCSEMaps(U); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. | 
|  | /// This can cause recursive merging of nodes in the DAG. | 
|  | /// | 
|  | /// This version can replace From with any result values.  To must match the | 
|  | /// number and types of values returned by From. | 
|  | void SelectionDAG::ReplaceAllUsesWith(SDNode *From, | 
|  | const std::vector<SDOperand> &To, | 
|  | std::vector<SDNode*> *Deleted) { | 
|  | assert(From->getNumValues() == To.size() && | 
|  | "Incorrect number of values to replace with!"); | 
|  | if (To.size() == 1 && To[0].Val->getNumValues() == 1) { | 
|  | // Degenerate case handled above. | 
|  | ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (!From->use_empty()) { | 
|  | // Process users until they are all gone. | 
|  | SDNode *U = *From->use_begin(); | 
|  |  | 
|  | // This node is about to morph, remove its old self from the CSE maps. | 
|  | RemoveNodeFromCSEMaps(U); | 
|  |  | 
|  | for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; | 
|  | I != E; ++I) | 
|  | if (I->Val == From) { | 
|  | const SDOperand &ToOp = To[I->ResNo]; | 
|  | From->removeUser(U); | 
|  | *I = ToOp; | 
|  | ToOp.Val->addUser(U); | 
|  | } | 
|  |  | 
|  | // Now that we have modified U, add it back to the CSE maps.  If it already | 
|  | // exists there, recursively merge the results together. | 
|  | if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { | 
|  | ReplaceAllUsesWith(U, Existing, Deleted); | 
|  | // U is now dead. | 
|  | if (Deleted) Deleted->push_back(U); | 
|  | DeleteNodeNotInCSEMaps(U); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving | 
|  | /// uses of other values produced by From.Val alone.  The Deleted vector is | 
|  | /// handled the same was as for ReplaceAllUsesWith. | 
|  | void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, | 
|  | std::vector<SDNode*> &Deleted) { | 
|  | assert(From != To && "Cannot replace a value with itself"); | 
|  | // Handle the simple, trivial, case efficiently. | 
|  | if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) { | 
|  | ReplaceAllUsesWith(From, To, &Deleted); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get all of the users in a nice, deterministically ordered, uniqued set. | 
|  | SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end()); | 
|  |  | 
|  | while (!Users.empty()) { | 
|  | // We know that this user uses some value of From.  If it is the right | 
|  | // value, update it. | 
|  | SDNode *User = Users.back(); | 
|  | Users.pop_back(); | 
|  |  | 
|  | for (SDOperand *Op = User->OperandList, | 
|  | *E = User->OperandList+User->NumOperands; Op != E; ++Op) { | 
|  | if (*Op == From) { | 
|  | // Okay, we know this user needs to be updated.  Remove its old self | 
|  | // from the CSE maps. | 
|  | RemoveNodeFromCSEMaps(User); | 
|  |  | 
|  | // Update all operands that match "From". | 
|  | for (; Op != E; ++Op) { | 
|  | if (*Op == From) { | 
|  | From.Val->removeUser(User); | 
|  | *Op = To; | 
|  | To.Val->addUser(User); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have modified User, add it back to the CSE maps.  If it | 
|  | // already exists there, recursively merge the results together. | 
|  | if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) { | 
|  | unsigned NumDeleted = Deleted.size(); | 
|  | ReplaceAllUsesWith(User, Existing, &Deleted); | 
|  |  | 
|  | // User is now dead. | 
|  | Deleted.push_back(User); | 
|  | DeleteNodeNotInCSEMaps(User); | 
|  |  | 
|  | // We have to be careful here, because ReplaceAllUsesWith could have | 
|  | // deleted a user of From, which means there may be dangling pointers | 
|  | // in the "Users" setvector.  Scan over the deleted node pointers and | 
|  | // remove them from the setvector. | 
|  | for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i) | 
|  | Users.remove(Deleted[i]); | 
|  | } | 
|  | break;   // Exit the operand scanning loop. | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              SDNode Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | /// getValueTypeList - Return a pointer to the specified value type. | 
|  | /// | 
|  | MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) { | 
|  | static MVT::ValueType VTs[MVT::LAST_VALUETYPE]; | 
|  | VTs[VT] = VT; | 
|  | return &VTs[VT]; | 
|  | } | 
|  |  | 
|  | /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the | 
|  | /// indicated value.  This method ignores uses of other values defined by this | 
|  | /// operation. | 
|  | bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { | 
|  | assert(Value < getNumValues() && "Bad value!"); | 
|  |  | 
|  | // If there is only one value, this is easy. | 
|  | if (getNumValues() == 1) | 
|  | return use_size() == NUses; | 
|  | if (Uses.size() < NUses) return false; | 
|  |  | 
|  | SDOperand TheValue(const_cast<SDNode *>(this), Value); | 
|  |  | 
|  | std::set<SDNode*> UsersHandled; | 
|  |  | 
|  | for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end(); | 
|  | UI != E; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (User->getNumOperands() == 1 || | 
|  | UsersHandled.insert(User).second)     // First time we've seen this? | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) | 
|  | if (User->getOperand(i) == TheValue) { | 
|  | if (NUses == 0) | 
|  | return false;   // too many uses | 
|  | --NUses; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Found exactly the right number of uses? | 
|  | return NUses == 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // isOnlyUse - Return true if this node is the only use of N. | 
|  | bool SDNode::isOnlyUse(SDNode *N) const { | 
|  | bool Seen = false; | 
|  | for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { | 
|  | SDNode *User = *I; | 
|  | if (User == this) | 
|  | Seen = true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return Seen; | 
|  | } | 
|  |  | 
|  | // isOperand - Return true if this node is an operand of N. | 
|  | bool SDOperand::isOperand(SDNode *N) const { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | if (*this == N->getOperand(i)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SDNode::isOperand(SDNode *N) const { | 
|  | for (unsigned i = 0, e = N->NumOperands; i != e; ++i) | 
|  | if (this == N->OperandList[i].Val) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const char *SDNode::getOperationName(const SelectionDAG *G) const { | 
|  | switch (getOpcode()) { | 
|  | default: | 
|  | if (getOpcode() < ISD::BUILTIN_OP_END) | 
|  | return "<<Unknown DAG Node>>"; | 
|  | else { | 
|  | if (G) { | 
|  | if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) | 
|  | if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes()) | 
|  | return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); | 
|  |  | 
|  | TargetLowering &TLI = G->getTargetLoweringInfo(); | 
|  | const char *Name = | 
|  | TLI.getTargetNodeName(getOpcode()); | 
|  | if (Name) return Name; | 
|  | } | 
|  |  | 
|  | return "<<Unknown Target Node>>"; | 
|  | } | 
|  |  | 
|  | case ISD::PCMARKER:      return "PCMarker"; | 
|  | case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; | 
|  | case ISD::SRCVALUE:      return "SrcValue"; | 
|  | case ISD::EntryToken:    return "EntryToken"; | 
|  | case ISD::TokenFactor:   return "TokenFactor"; | 
|  | case ISD::AssertSext:    return "AssertSext"; | 
|  | case ISD::AssertZext:    return "AssertZext"; | 
|  |  | 
|  | case ISD::STRING:        return "String"; | 
|  | case ISD::BasicBlock:    return "BasicBlock"; | 
|  | case ISD::VALUETYPE:     return "ValueType"; | 
|  | case ISD::Register:      return "Register"; | 
|  |  | 
|  | case ISD::Constant:      return "Constant"; | 
|  | case ISD::ConstantFP:    return "ConstantFP"; | 
|  | case ISD::GlobalAddress: return "GlobalAddress"; | 
|  | case ISD::FrameIndex:    return "FrameIndex"; | 
|  | case ISD::ConstantPool:  return "ConstantPool"; | 
|  | case ISD::ExternalSymbol: return "ExternalSymbol"; | 
|  | case ISD::INTRINSIC_WO_CHAIN: { | 
|  | unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue(); | 
|  | return Intrinsic::getName((Intrinsic::ID)IID); | 
|  | } | 
|  | case ISD::INTRINSIC_VOID: | 
|  | case ISD::INTRINSIC_W_CHAIN: { | 
|  | unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue(); | 
|  | return Intrinsic::getName((Intrinsic::ID)IID); | 
|  | } | 
|  |  | 
|  | case ISD::BUILD_VECTOR:   return "BUILD_VECTOR"; | 
|  | case ISD::TargetConstant: return "TargetConstant"; | 
|  | case ISD::TargetConstantFP:return "TargetConstantFP"; | 
|  | case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; | 
|  | case ISD::TargetFrameIndex: return "TargetFrameIndex"; | 
|  | case ISD::TargetConstantPool:  return "TargetConstantPool"; | 
|  | case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; | 
|  |  | 
|  | case ISD::CopyToReg:     return "CopyToReg"; | 
|  | case ISD::CopyFromReg:   return "CopyFromReg"; | 
|  | case ISD::UNDEF:         return "undef"; | 
|  | case ISD::MERGE_VALUES:  return "mergevalues"; | 
|  | case ISD::INLINEASM:     return "inlineasm"; | 
|  | case ISD::HANDLENODE:    return "handlenode"; | 
|  |  | 
|  | // Unary operators | 
|  | case ISD::FABS:   return "fabs"; | 
|  | case ISD::FNEG:   return "fneg"; | 
|  | case ISD::FSQRT:  return "fsqrt"; | 
|  | case ISD::FSIN:   return "fsin"; | 
|  | case ISD::FCOS:   return "fcos"; | 
|  |  | 
|  | // Binary operators | 
|  | case ISD::ADD:    return "add"; | 
|  | case ISD::SUB:    return "sub"; | 
|  | case ISD::MUL:    return "mul"; | 
|  | case ISD::MULHU:  return "mulhu"; | 
|  | case ISD::MULHS:  return "mulhs"; | 
|  | case ISD::SDIV:   return "sdiv"; | 
|  | case ISD::UDIV:   return "udiv"; | 
|  | case ISD::SREM:   return "srem"; | 
|  | case ISD::UREM:   return "urem"; | 
|  | case ISD::AND:    return "and"; | 
|  | case ISD::OR:     return "or"; | 
|  | case ISD::XOR:    return "xor"; | 
|  | case ISD::SHL:    return "shl"; | 
|  | case ISD::SRA:    return "sra"; | 
|  | case ISD::SRL:    return "srl"; | 
|  | case ISD::ROTL:   return "rotl"; | 
|  | case ISD::ROTR:   return "rotr"; | 
|  | case ISD::FADD:   return "fadd"; | 
|  | case ISD::FSUB:   return "fsub"; | 
|  | case ISD::FMUL:   return "fmul"; | 
|  | case ISD::FDIV:   return "fdiv"; | 
|  | case ISD::FREM:   return "frem"; | 
|  | case ISD::FCOPYSIGN: return "fcopysign"; | 
|  | case ISD::VADD:   return "vadd"; | 
|  | case ISD::VSUB:   return "vsub"; | 
|  | case ISD::VMUL:   return "vmul"; | 
|  | case ISD::VSDIV:  return "vsdiv"; | 
|  | case ISD::VUDIV:  return "vudiv"; | 
|  | case ISD::VAND:   return "vand"; | 
|  | case ISD::VOR:    return "vor"; | 
|  | case ISD::VXOR:   return "vxor"; | 
|  |  | 
|  | case ISD::SETCC:       return "setcc"; | 
|  | case ISD::SELECT:      return "select"; | 
|  | case ISD::SELECT_CC:   return "select_cc"; | 
|  | case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; | 
|  | case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt"; | 
|  | case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt"; | 
|  | case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt"; | 
|  | case ISD::SCALAR_TO_VECTOR:   return "scalar_to_vector"; | 
|  | case ISD::VBUILD_VECTOR: return "vbuild_vector"; | 
|  | case ISD::VECTOR_SHUFFLE: return "vector_shuffle"; | 
|  | case ISD::VVECTOR_SHUFFLE: return "vvector_shuffle"; | 
|  | case ISD::VBIT_CONVERT: return "vbit_convert"; | 
|  | case ISD::ADDC:        return "addc"; | 
|  | case ISD::ADDE:        return "adde"; | 
|  | case ISD::SUBC:        return "subc"; | 
|  | case ISD::SUBE:        return "sube"; | 
|  | case ISD::SHL_PARTS:   return "shl_parts"; | 
|  | case ISD::SRA_PARTS:   return "sra_parts"; | 
|  | case ISD::SRL_PARTS:   return "srl_parts"; | 
|  |  | 
|  | // Conversion operators. | 
|  | case ISD::SIGN_EXTEND: return "sign_extend"; | 
|  | case ISD::ZERO_EXTEND: return "zero_extend"; | 
|  | case ISD::ANY_EXTEND:  return "any_extend"; | 
|  | case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; | 
|  | case ISD::TRUNCATE:    return "truncate"; | 
|  | case ISD::FP_ROUND:    return "fp_round"; | 
|  | case ISD::FP_ROUND_INREG: return "fp_round_inreg"; | 
|  | case ISD::FP_EXTEND:   return "fp_extend"; | 
|  |  | 
|  | case ISD::SINT_TO_FP:  return "sint_to_fp"; | 
|  | case ISD::UINT_TO_FP:  return "uint_to_fp"; | 
|  | case ISD::FP_TO_SINT:  return "fp_to_sint"; | 
|  | case ISD::FP_TO_UINT:  return "fp_to_uint"; | 
|  | case ISD::BIT_CONVERT: return "bit_convert"; | 
|  |  | 
|  | // Control flow instructions | 
|  | case ISD::BR:      return "br"; | 
|  | case ISD::BRCOND:  return "brcond"; | 
|  | case ISD::BR_CC:   return "br_cc"; | 
|  | case ISD::RET:     return "ret"; | 
|  | case ISD::CALLSEQ_START:  return "callseq_start"; | 
|  | case ISD::CALLSEQ_END:    return "callseq_end"; | 
|  |  | 
|  | // Other operators | 
|  | case ISD::LOAD:               return "load"; | 
|  | case ISD::STORE:              return "store"; | 
|  | case ISD::VLOAD:              return "vload"; | 
|  | case ISD::EXTLOAD:            return "extload"; | 
|  | case ISD::SEXTLOAD:           return "sextload"; | 
|  | case ISD::ZEXTLOAD:           return "zextload"; | 
|  | case ISD::TRUNCSTORE:         return "truncstore"; | 
|  | case ISD::VAARG:              return "vaarg"; | 
|  | case ISD::VACOPY:             return "vacopy"; | 
|  | case ISD::VAEND:              return "vaend"; | 
|  | case ISD::VASTART:            return "vastart"; | 
|  | case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; | 
|  | case ISD::EXTRACT_ELEMENT:    return "extract_element"; | 
|  | case ISD::BUILD_PAIR:         return "build_pair"; | 
|  | case ISD::STACKSAVE:          return "stacksave"; | 
|  | case ISD::STACKRESTORE:       return "stackrestore"; | 
|  |  | 
|  | // Block memory operations. | 
|  | case ISD::MEMSET:  return "memset"; | 
|  | case ISD::MEMCPY:  return "memcpy"; | 
|  | case ISD::MEMMOVE: return "memmove"; | 
|  |  | 
|  | // Bit manipulation | 
|  | case ISD::BSWAP:   return "bswap"; | 
|  | case ISD::CTPOP:   return "ctpop"; | 
|  | case ISD::CTTZ:    return "cttz"; | 
|  | case ISD::CTLZ:    return "ctlz"; | 
|  |  | 
|  | // Debug info | 
|  | case ISD::LOCATION: return "location"; | 
|  | case ISD::DEBUG_LOC: return "debug_loc"; | 
|  | case ISD::DEBUG_LABEL: return "debug_label"; | 
|  |  | 
|  | case ISD::CONDCODE: | 
|  | switch (cast<CondCodeSDNode>(this)->get()) { | 
|  | default: assert(0 && "Unknown setcc condition!"); | 
|  | case ISD::SETOEQ:  return "setoeq"; | 
|  | case ISD::SETOGT:  return "setogt"; | 
|  | case ISD::SETOGE:  return "setoge"; | 
|  | case ISD::SETOLT:  return "setolt"; | 
|  | case ISD::SETOLE:  return "setole"; | 
|  | case ISD::SETONE:  return "setone"; | 
|  |  | 
|  | case ISD::SETO:    return "seto"; | 
|  | case ISD::SETUO:   return "setuo"; | 
|  | case ISD::SETUEQ:  return "setue"; | 
|  | case ISD::SETUGT:  return "setugt"; | 
|  | case ISD::SETUGE:  return "setuge"; | 
|  | case ISD::SETULT:  return "setult"; | 
|  | case ISD::SETULE:  return "setule"; | 
|  | case ISD::SETUNE:  return "setune"; | 
|  |  | 
|  | case ISD::SETEQ:   return "seteq"; | 
|  | case ISD::SETGT:   return "setgt"; | 
|  | case ISD::SETGE:   return "setge"; | 
|  | case ISD::SETLT:   return "setlt"; | 
|  | case ISD::SETLE:   return "setle"; | 
|  | case ISD::SETNE:   return "setne"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SDNode::dump() const { dump(0); } | 
|  | void SDNode::dump(const SelectionDAG *G) const { | 
|  | std::cerr << (void*)this << ": "; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumValues(); i != e; ++i) { | 
|  | if (i) std::cerr << ","; | 
|  | if (getValueType(i) == MVT::Other) | 
|  | std::cerr << "ch"; | 
|  | else | 
|  | std::cerr << MVT::getValueTypeString(getValueType(i)); | 
|  | } | 
|  | std::cerr << " = " << getOperationName(G); | 
|  |  | 
|  | std::cerr << " "; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | if (i) std::cerr << ", "; | 
|  | std::cerr << (void*)getOperand(i).Val; | 
|  | if (unsigned RN = getOperand(i).ResNo) | 
|  | std::cerr << ":" << RN; | 
|  | } | 
|  |  | 
|  | if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) { | 
|  | std::cerr << "<" << CSDN->getValue() << ">"; | 
|  | } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) { | 
|  | std::cerr << "<" << CSDN->getValue() << ">"; | 
|  | } else if (const GlobalAddressSDNode *GADN = | 
|  | dyn_cast<GlobalAddressSDNode>(this)) { | 
|  | int offset = GADN->getOffset(); | 
|  | std::cerr << "<"; | 
|  | WriteAsOperand(std::cerr, GADN->getGlobal()) << ">"; | 
|  | if (offset > 0) | 
|  | std::cerr << " + " << offset; | 
|  | else | 
|  | std::cerr << " " << offset; | 
|  | } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) { | 
|  | std::cerr << "<" << FIDN->getIndex() << ">"; | 
|  | } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){ | 
|  | int offset = CP->getOffset(); | 
|  | std::cerr << "<" << *CP->get() << ">"; | 
|  | if (offset > 0) | 
|  | std::cerr << " + " << offset; | 
|  | else | 
|  | std::cerr << " " << offset; | 
|  | } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) { | 
|  | std::cerr << "<"; | 
|  | const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); | 
|  | if (LBB) | 
|  | std::cerr << LBB->getName() << " "; | 
|  | std::cerr << (const void*)BBDN->getBasicBlock() << ">"; | 
|  | } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) { | 
|  | if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) { | 
|  | std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg()); | 
|  | } else { | 
|  | std::cerr << " #" << R->getReg(); | 
|  | } | 
|  | } else if (const ExternalSymbolSDNode *ES = | 
|  | dyn_cast<ExternalSymbolSDNode>(this)) { | 
|  | std::cerr << "'" << ES->getSymbol() << "'"; | 
|  | } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) { | 
|  | if (M->getValue()) | 
|  | std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; | 
|  | else | 
|  | std::cerr << "<null:" << M->getOffset() << ">"; | 
|  | } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) { | 
|  | std::cerr << ":" << getValueTypeString(N->getVT()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i).Val->hasOneUse()) | 
|  | DumpNodes(N->getOperand(i).Val, indent+2, G); | 
|  | else | 
|  | std::cerr << "\n" << std::string(indent+2, ' ') | 
|  | << (void*)N->getOperand(i).Val << ": <multiple use>"; | 
|  |  | 
|  |  | 
|  | std::cerr << "\n" << std::string(indent, ' '); | 
|  | N->dump(G); | 
|  | } | 
|  |  | 
|  | void SelectionDAG::dump() const { | 
|  | std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; | 
|  | std::vector<const SDNode*> Nodes; | 
|  | for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); | 
|  | I != E; ++I) | 
|  | Nodes.push_back(I); | 
|  |  | 
|  | std::sort(Nodes.begin(), Nodes.end()); | 
|  |  | 
|  | for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { | 
|  | if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) | 
|  | DumpNodes(Nodes[i], 2, this); | 
|  | } | 
|  |  | 
|  | DumpNodes(getRoot().Val, 2, this); | 
|  |  | 
|  | std::cerr << "\n\n"; | 
|  | } | 
|  |  | 
|  | /// InsertISelMapEntry - A helper function to insert a key / element pair | 
|  | /// into a SDOperand to SDOperand map. This is added to avoid the map | 
|  | /// insertion operator from being inlined. | 
|  | void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map, | 
|  | SDNode *Key, unsigned KeyResNo, | 
|  | SDNode *Element, unsigned ElementResNo) { | 
|  | Map.insert(std::make_pair(SDOperand(Key, KeyResNo), | 
|  | SDOperand(Element, ElementResNo))); | 
|  | } |