|  | //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Subclass of MipsTargetLowering specialized for mips32/64. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MipsSEISelLowering.h" | 
|  | #include "MipsMachineFunction.h" | 
|  | #include "MipsRegisterInfo.h" | 
|  | #include "MipsSubtarget.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineValueType.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "mips-isel" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseMipsTailCalls("mips-tail-calls", cl::Hidden, | 
|  | cl::desc("MIPS: permit tail calls."), cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false), | 
|  | cl::desc("Expand double precision loads and " | 
|  | "stores to their single precision " | 
|  | "counterparts")); | 
|  |  | 
|  | MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM, | 
|  | const MipsSubtarget &STI) | 
|  | : MipsTargetLowering(TM, STI) { | 
|  | // Set up the register classes | 
|  | addRegisterClass(MVT::i32, &Mips::GPR32RegClass); | 
|  |  | 
|  | if (Subtarget.isGP64bit()) | 
|  | addRegisterClass(MVT::i64, &Mips::GPR64RegClass); | 
|  |  | 
|  | if (Subtarget.hasDSP() || Subtarget.hasMSA()) { | 
|  | // Expand all truncating stores and extending loads. | 
|  | for (MVT VT0 : MVT::vector_valuetypes()) { | 
|  | for (MVT VT1 : MVT::vector_valuetypes()) { | 
|  | setTruncStoreAction(VT0, VT1, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasDSP()) { | 
|  | MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8}; | 
|  |  | 
|  | for (unsigned i = 0; i < array_lengthof(VecTys); ++i) { | 
|  | addRegisterClass(VecTys[i], &Mips::DSPRRegClass); | 
|  |  | 
|  | // Expand all builtin opcodes. | 
|  | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) | 
|  | setOperationAction(Opc, VecTys[i], Expand); | 
|  |  | 
|  | setOperationAction(ISD::ADD, VecTys[i], Legal); | 
|  | setOperationAction(ISD::SUB, VecTys[i], Legal); | 
|  | setOperationAction(ISD::LOAD, VecTys[i], Legal); | 
|  | setOperationAction(ISD::STORE, VecTys[i], Legal); | 
|  | setOperationAction(ISD::BITCAST, VecTys[i], Legal); | 
|  | } | 
|  |  | 
|  | setTargetDAGCombine(ISD::SHL); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::SRL); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | setTargetDAGCombine(ISD::VSELECT); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasDSPR2()) | 
|  | setOperationAction(ISD::MUL, MVT::v2i16, Legal); | 
|  |  | 
|  | if (Subtarget.hasMSA()) { | 
|  | addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass); | 
|  | addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass); | 
|  | addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass); | 
|  | addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass); | 
|  | addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass); | 
|  | addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass); | 
|  | addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass); | 
|  |  | 
|  | // f16 is a storage-only type, always promote it to f32. | 
|  | addRegisterClass(MVT::f16, &Mips::MSA128HRegClass); | 
|  | setOperationAction(ISD::SETCC, MVT::f16, Promote); | 
|  | setOperationAction(ISD::BR_CC, MVT::f16, Promote); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); | 
|  | setOperationAction(ISD::SELECT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FADD, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FSUB, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FMUL, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FDIV, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FREM, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FMA, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FNEG, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FABS, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FCEIL, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FCOS, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FFLOOR, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FPOW, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FPOWI, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FRINT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FSIN, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FSINCOS, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FSQRT, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FEXP, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FEXP2, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FLOG, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FLOG2, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FLOG10, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FROUND, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FTRUNC, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FMINNUM, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FMINNAN, MVT::f16, Promote); | 
|  | setOperationAction(ISD::FMAXNAN, MVT::f16, Promote); | 
|  |  | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::SRA); | 
|  | setTargetDAGCombine(ISD::VSELECT); | 
|  | setTargetDAGCombine(ISD::XOR); | 
|  | } | 
|  |  | 
|  | if (!Subtarget.useSoftFloat()) { | 
|  | addRegisterClass(MVT::f32, &Mips::FGR32RegClass); | 
|  |  | 
|  | // When dealing with single precision only, use libcalls | 
|  | if (!Subtarget.isSingleFloat()) { | 
|  | if (Subtarget.isFP64bit()) | 
|  | addRegisterClass(MVT::f64, &Mips::FGR64RegClass); | 
|  | else | 
|  | addRegisterClass(MVT::f64, &Mips::AFGR64RegClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom); | 
|  | setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom); | 
|  | setOperationAction(ISD::MULHS,              MVT::i32, Custom); | 
|  | setOperationAction(ISD::MULHU,              MVT::i32, Custom); | 
|  |  | 
|  | if (Subtarget.hasCnMips()) | 
|  | setOperationAction(ISD::MUL,              MVT::i64, Legal); | 
|  | else if (Subtarget.isGP64bit()) | 
|  | setOperationAction(ISD::MUL,              MVT::i64, Custom); | 
|  |  | 
|  | if (Subtarget.isGP64bit()) { | 
|  | setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom); | 
|  | setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom); | 
|  | setOperationAction(ISD::MULHS,            MVT::i64, Custom); | 
|  | setOperationAction(ISD::MULHU,            MVT::i64, Custom); | 
|  | setOperationAction(ISD::SDIVREM,          MVT::i64, Custom); | 
|  | setOperationAction(ISD::UDIVREM,          MVT::i64, Custom); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SDIVREM, MVT::i32, Custom); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i32, Custom); | 
|  | setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom); | 
|  | setOperationAction(ISD::LOAD,               MVT::i32, Custom); | 
|  | setOperationAction(ISD::STORE,              MVT::i32, Custom); | 
|  |  | 
|  | setTargetDAGCombine(ISD::MUL); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  |  | 
|  | if (NoDPLoadStore) { | 
|  | setOperationAction(ISD::LOAD, MVT::f64, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::f64, Custom); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasMips32r6()) { | 
|  | // MIPS32r6 replaces the accumulator-based multiplies with a three register | 
|  | // instruction | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | 
|  | setOperationAction(ISD::MUL, MVT::i32, Legal); | 
|  | setOperationAction(ISD::MULHS, MVT::i32, Legal); | 
|  | setOperationAction(ISD::MULHU, MVT::i32, Legal); | 
|  |  | 
|  | // MIPS32r6 replaces the accumulator-based division/remainder with separate | 
|  | // three register division and remainder instructions. | 
|  | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SDIV, MVT::i32, Legal); | 
|  | setOperationAction(ISD::UDIV, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SREM, MVT::i32, Legal); | 
|  | setOperationAction(ISD::UREM, MVT::i32, Legal); | 
|  |  | 
|  | // MIPS32r6 replaces conditional moves with an equivalent that removes the | 
|  | // need for three GPR read ports. | 
|  | setOperationAction(ISD::SETCC, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, MVT::f32, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::f32, Legal); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); | 
|  |  | 
|  | assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6"); | 
|  | setOperationAction(ISD::SETCC, MVT::f64, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Custom); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Legal); | 
|  |  | 
|  | // Floating point > and >= are supported via < and <= | 
|  | setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETOGT, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); | 
|  |  | 
|  | setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETOGT, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, MVT::f64, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); | 
|  | } | 
|  |  | 
|  | if (Subtarget.hasMips64r6()) { | 
|  | // MIPS64r6 replaces the accumulator-based multiplies with a three register | 
|  | // instruction | 
|  | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | 
|  | setOperationAction(ISD::MUL, MVT::i64, Legal); | 
|  | setOperationAction(ISD::MULHS, MVT::i64, Legal); | 
|  | setOperationAction(ISD::MULHU, MVT::i64, Legal); | 
|  |  | 
|  | // MIPS32r6 replaces the accumulator-based division/remainder with separate | 
|  | // three register division and remainder instructions. | 
|  | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SDIV, MVT::i64, Legal); | 
|  | setOperationAction(ISD::UDIV, MVT::i64, Legal); | 
|  | setOperationAction(ISD::SREM, MVT::i64, Legal); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Legal); | 
|  |  | 
|  | // MIPS64r6 replaces conditional moves with an equivalent that removes the | 
|  | // need for three GPR read ports. | 
|  | setOperationAction(ISD::SETCC, MVT::i64, Legal); | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Legal); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | 
|  | } | 
|  |  | 
|  | computeRegisterProperties(Subtarget.getRegisterInfo()); | 
|  | } | 
|  |  | 
|  | const MipsTargetLowering * | 
|  | llvm::createMipsSETargetLowering(const MipsTargetMachine &TM, | 
|  | const MipsSubtarget &STI) { | 
|  | return new MipsSETargetLowering(TM, STI); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass * | 
|  | MipsSETargetLowering::getRepRegClassFor(MVT VT) const { | 
|  | if (VT == MVT::Untyped) | 
|  | return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass; | 
|  |  | 
|  | return TargetLowering::getRepRegClassFor(VT); | 
|  | } | 
|  |  | 
|  | // Enable MSA support for the given integer type and Register class. | 
|  | void MipsSETargetLowering:: | 
|  | addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { | 
|  | addRegisterClass(Ty, RC); | 
|  |  | 
|  | // Expand all builtin opcodes. | 
|  | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) | 
|  | setOperationAction(Opc, Ty, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BITCAST, Ty, Legal); | 
|  | setOperationAction(ISD::LOAD, Ty, Legal); | 
|  | setOperationAction(ISD::STORE, Ty, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR, Ty, Custom); | 
|  |  | 
|  | setOperationAction(ISD::ADD, Ty, Legal); | 
|  | setOperationAction(ISD::AND, Ty, Legal); | 
|  | setOperationAction(ISD::CTLZ, Ty, Legal); | 
|  | setOperationAction(ISD::CTPOP, Ty, Legal); | 
|  | setOperationAction(ISD::MUL, Ty, Legal); | 
|  | setOperationAction(ISD::OR, Ty, Legal); | 
|  | setOperationAction(ISD::SDIV, Ty, Legal); | 
|  | setOperationAction(ISD::SREM, Ty, Legal); | 
|  | setOperationAction(ISD::SHL, Ty, Legal); | 
|  | setOperationAction(ISD::SRA, Ty, Legal); | 
|  | setOperationAction(ISD::SRL, Ty, Legal); | 
|  | setOperationAction(ISD::SUB, Ty, Legal); | 
|  | setOperationAction(ISD::SMAX, Ty, Legal); | 
|  | setOperationAction(ISD::SMIN, Ty, Legal); | 
|  | setOperationAction(ISD::UDIV, Ty, Legal); | 
|  | setOperationAction(ISD::UREM, Ty, Legal); | 
|  | setOperationAction(ISD::UMAX, Ty, Legal); | 
|  | setOperationAction(ISD::UMIN, Ty, Legal); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom); | 
|  | setOperationAction(ISD::VSELECT, Ty, Legal); | 
|  | setOperationAction(ISD::XOR, Ty, Legal); | 
|  |  | 
|  | if (Ty == MVT::v4i32 || Ty == MVT::v2i64) { | 
|  | setOperationAction(ISD::FP_TO_SINT, Ty, Legal); | 
|  | setOperationAction(ISD::FP_TO_UINT, Ty, Legal); | 
|  | setOperationAction(ISD::SINT_TO_FP, Ty, Legal); | 
|  | setOperationAction(ISD::UINT_TO_FP, Ty, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::SETCC, Ty, Legal); | 
|  | setCondCodeAction(ISD::SETNE, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETGE, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETGT, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, Ty, Expand); | 
|  | } | 
|  |  | 
|  | // Enable MSA support for the given floating-point type and Register class. | 
|  | void MipsSETargetLowering:: | 
|  | addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { | 
|  | addRegisterClass(Ty, RC); | 
|  |  | 
|  | // Expand all builtin opcodes. | 
|  | for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) | 
|  | setOperationAction(Opc, Ty, Expand); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, Ty, Legal); | 
|  | setOperationAction(ISD::STORE, Ty, Legal); | 
|  | setOperationAction(ISD::BITCAST, Ty, Legal); | 
|  | setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal); | 
|  | setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal); | 
|  | setOperationAction(ISD::BUILD_VECTOR, Ty, Custom); | 
|  |  | 
|  | if (Ty != MVT::v8f16) { | 
|  | setOperationAction(ISD::FABS,  Ty, Legal); | 
|  | setOperationAction(ISD::FADD,  Ty, Legal); | 
|  | setOperationAction(ISD::FDIV,  Ty, Legal); | 
|  | setOperationAction(ISD::FEXP2, Ty, Legal); | 
|  | setOperationAction(ISD::FLOG2, Ty, Legal); | 
|  | setOperationAction(ISD::FMA,   Ty, Legal); | 
|  | setOperationAction(ISD::FMUL,  Ty, Legal); | 
|  | setOperationAction(ISD::FRINT, Ty, Legal); | 
|  | setOperationAction(ISD::FSQRT, Ty, Legal); | 
|  | setOperationAction(ISD::FSUB,  Ty, Legal); | 
|  | setOperationAction(ISD::VSELECT, Ty, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, Ty, Legal); | 
|  | setCondCodeAction(ISD::SETOGE, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETOGT, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETUGE, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETUGT, Ty, Expand); | 
|  | setCondCodeAction(ISD::SETGE,  Ty, Expand); | 
|  | setCondCodeAction(ISD::SETGT,  Ty, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | if(!Subtarget.hasMips32r6()) | 
|  | return MipsTargetLowering::LowerOperation(Op, DAG); | 
|  |  | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the | 
|  | // floating point register are undefined. Not really an issue as sel.d, which | 
|  | // is produced from an FSELECT node, only looks at bit 0. | 
|  | SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0)); | 
|  | return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | } | 
|  |  | 
|  | bool | 
|  | MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned, | 
|  | unsigned, | 
|  | bool *Fast) const { | 
|  | MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; | 
|  |  | 
|  | if (Subtarget.systemSupportsUnalignedAccess()) { | 
|  | // MIPS32r6/MIPS64r6 is required to support unaligned access. It's | 
|  | // implementation defined whether this is handled by hardware, software, or | 
|  | // a hybrid of the two but it's expected that most implementations will | 
|  | // handle the majority of cases in hardware. | 
|  | if (Fast) | 
|  | *Fast = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (SVT) { | 
|  | case MVT::i64: | 
|  | case MVT::i32: | 
|  | if (Fast) | 
|  | *Fast = true; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::LowerOperation(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | switch(Op.getOpcode()) { | 
|  | case ISD::LOAD:  return lowerLOAD(Op, DAG); | 
|  | case ISD::STORE: return lowerSTORE(Op, DAG); | 
|  | case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG); | 
|  | case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG); | 
|  | case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG); | 
|  | case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG); | 
|  | case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG); | 
|  | case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG); | 
|  | case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true, | 
|  | DAG); | 
|  | case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG); | 
|  | case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); | 
|  | case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG); | 
|  | case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG); | 
|  | case ISD::SELECT:             return lowerSELECT(Op, DAG); | 
|  | } | 
|  |  | 
|  | return MipsTargetLowering::LowerOperation(Op, DAG); | 
|  | } | 
|  |  | 
|  | // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT | 
|  | // | 
|  | // Performs the following transformations: | 
|  | // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its | 
|  | //   sign/zero-extension is completely overwritten by the new one performed by | 
|  | //   the ISD::AND. | 
|  | // - Removes redundant zero extensions performed by an ISD::AND. | 
|  | static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | if (!Subtarget.hasMSA()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | unsigned Op0Opcode = Op0->getOpcode(); | 
|  |  | 
|  | // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d) | 
|  | // where $d + 1 == 2^n and n == 32 | 
|  | // or    $d + 1 == 2^n and n <= 32 and ZExt | 
|  | // -> (MipsVExtractZExt $a, $b, $c) | 
|  | if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT || | 
|  | Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) { | 
|  | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1); | 
|  |  | 
|  | if (!Mask) | 
|  | return SDValue(); | 
|  |  | 
|  | int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2(); | 
|  |  | 
|  | if (Log2IfPositive <= 0) | 
|  | return SDValue(); // Mask+1 is not a power of 2 | 
|  |  | 
|  | SDValue Op0Op2 = Op0->getOperand(2); | 
|  | EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT(); | 
|  | unsigned ExtendTySize = ExtendTy.getSizeInBits(); | 
|  | unsigned Log2 = Log2IfPositive; | 
|  |  | 
|  | if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) || | 
|  | Log2 == ExtendTySize) { | 
|  | SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 }; | 
|  | return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0), | 
|  | Op0->getVTList(), | 
|  | makeArrayRef(Ops, Op0->getNumOperands())); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Determine if the specified node is a constant vector splat. | 
|  | // | 
|  | // Returns true and sets Imm if: | 
|  | // * N is a ISD::BUILD_VECTOR representing a constant splat | 
|  | // | 
|  | // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The | 
|  | // differences are that it assumes the MSA has already been checked and the | 
|  | // arbitrary requirement for a maximum of 32-bit integers isn't applied (and | 
|  | // must not be in order for binsri.d to be selectable). | 
|  | static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) { | 
|  | BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode()); | 
|  |  | 
|  | if (!Node) | 
|  | return false; | 
|  |  | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, | 
|  | 8, !IsLittleEndian)) | 
|  | return false; | 
|  |  | 
|  | Imm = SplatValue; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Test whether the given node is an all-ones build_vector. | 
|  | static bool isVectorAllOnes(SDValue N) { | 
|  | // Look through bitcasts. Endianness doesn't matter because we are looking | 
|  | // for an all-ones value. | 
|  | if (N->getOpcode() == ISD::BITCAST) | 
|  | N = N->getOperand(0); | 
|  |  | 
|  | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N); | 
|  |  | 
|  | if (!BVN) | 
|  | return false; | 
|  |  | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | // Endianness doesn't matter in this context because we are looking for | 
|  | // an all-ones value. | 
|  | if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs)) | 
|  | return SplatValue.isAllOnesValue(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Test whether N is the bitwise inverse of OfNode. | 
|  | static bool isBitwiseInverse(SDValue N, SDValue OfNode) { | 
|  | if (N->getOpcode() != ISD::XOR) | 
|  | return false; | 
|  |  | 
|  | if (isVectorAllOnes(N->getOperand(0))) | 
|  | return N->getOperand(1) == OfNode; | 
|  |  | 
|  | if (isVectorAllOnes(N->getOperand(1))) | 
|  | return N->getOperand(0) == OfNode; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform combines where ISD::OR is the root node. | 
|  | // | 
|  | // Performs the following transformations: | 
|  | // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b) | 
|  | //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit | 
|  | //   vector type. | 
|  | static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | if (!Subtarget.hasMSA()) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if (!Ty.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) { | 
|  | SDValue Op0Op0 = Op0->getOperand(0); | 
|  | SDValue Op0Op1 = Op0->getOperand(1); | 
|  | SDValue Op1Op0 = Op1->getOperand(0); | 
|  | SDValue Op1Op1 = Op1->getOperand(1); | 
|  | bool IsLittleEndian = !Subtarget.isLittle(); | 
|  |  | 
|  | SDValue IfSet, IfClr, Cond; | 
|  | bool IsConstantMask = false; | 
|  | APInt Mask, InvMask; | 
|  |  | 
|  | // If Op0Op0 is an appropriate mask, try to find it's inverse in either | 
|  | // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while | 
|  | // looking. | 
|  | // IfClr will be set if we find a valid match. | 
|  | if (isVSplat(Op0Op0, Mask, IsLittleEndian)) { | 
|  | Cond = Op0Op0; | 
|  | IfSet = Op0Op1; | 
|  |  | 
|  | if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && | 
|  | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) | 
|  | IfClr = Op1Op1; | 
|  | else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && | 
|  | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) | 
|  | IfClr = Op1Op0; | 
|  |  | 
|  | IsConstantMask = true; | 
|  | } | 
|  |  | 
|  | // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same | 
|  | // thing again using this mask. | 
|  | // IfClr will be set if we find a valid match. | 
|  | if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) { | 
|  | Cond = Op0Op1; | 
|  | IfSet = Op0Op0; | 
|  |  | 
|  | if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && | 
|  | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) | 
|  | IfClr = Op1Op1; | 
|  | else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && | 
|  | Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) | 
|  | IfClr = Op1Op0; | 
|  |  | 
|  | IsConstantMask = true; | 
|  | } | 
|  |  | 
|  | // If IfClr is not yet set, try looking for a non-constant match. | 
|  | // IfClr will be set if we find a valid match amongst the eight | 
|  | // possibilities. | 
|  | if (!IfClr.getNode()) { | 
|  | if (isBitwiseInverse(Op0Op0, Op1Op0)) { | 
|  | Cond = Op1Op0; | 
|  | IfSet = Op1Op1; | 
|  | IfClr = Op0Op1; | 
|  | } else if (isBitwiseInverse(Op0Op1, Op1Op0)) { | 
|  | Cond = Op1Op0; | 
|  | IfSet = Op1Op1; | 
|  | IfClr = Op0Op0; | 
|  | } else if (isBitwiseInverse(Op0Op0, Op1Op1)) { | 
|  | Cond = Op1Op1; | 
|  | IfSet = Op1Op0; | 
|  | IfClr = Op0Op1; | 
|  | } else if (isBitwiseInverse(Op0Op1, Op1Op1)) { | 
|  | Cond = Op1Op1; | 
|  | IfSet = Op1Op0; | 
|  | IfClr = Op0Op0; | 
|  | } else if (isBitwiseInverse(Op1Op0, Op0Op0)) { | 
|  | Cond = Op0Op0; | 
|  | IfSet = Op0Op1; | 
|  | IfClr = Op1Op1; | 
|  | } else if (isBitwiseInverse(Op1Op1, Op0Op0)) { | 
|  | Cond = Op0Op0; | 
|  | IfSet = Op0Op1; | 
|  | IfClr = Op1Op0; | 
|  | } else if (isBitwiseInverse(Op1Op0, Op0Op1)) { | 
|  | Cond = Op0Op1; | 
|  | IfSet = Op0Op0; | 
|  | IfClr = Op1Op1; | 
|  | } else if (isBitwiseInverse(Op1Op1, Op0Op1)) { | 
|  | Cond = Op0Op1; | 
|  | IfSet = Op0Op0; | 
|  | IfClr = Op1Op0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // At this point, IfClr will be set if we have a valid match. | 
|  | if (!IfClr.getNode()) | 
|  | return SDValue(); | 
|  |  | 
|  | assert(Cond.getNode() && IfSet.getNode()); | 
|  |  | 
|  | // Fold degenerate cases. | 
|  | if (IsConstantMask) { | 
|  | if (Mask.isAllOnesValue()) | 
|  | return IfSet; | 
|  | else if (Mask == 0) | 
|  | return IfClr; | 
|  | } | 
|  |  | 
|  | // Transform the DAG into an equivalent VSELECT. | 
|  | return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT, | 
|  | EVT ShiftTy, SelectionDAG &DAG) { | 
|  | // Return 0. | 
|  | if (C == 0) | 
|  | return DAG.getConstant(0, DL, VT); | 
|  |  | 
|  | // Return x. | 
|  | if (C == 1) | 
|  | return X; | 
|  |  | 
|  | // If c is power of 2, return (shl x, log2(c)). | 
|  | if (C.isPowerOf2()) | 
|  | return DAG.getNode(ISD::SHL, DL, VT, X, | 
|  | DAG.getConstant(C.logBase2(), DL, ShiftTy)); | 
|  |  | 
|  | unsigned BitWidth = C.getBitWidth(); | 
|  | APInt Floor = APInt(BitWidth, 1) << C.logBase2(); | 
|  | APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) : | 
|  | APInt(BitWidth, 1) << C.ceilLogBase2(); | 
|  |  | 
|  | // If |c - floor_c| <= |c - ceil_c|, | 
|  | // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))), | 
|  | // return (add constMult(x, floor_c), constMult(x, c - floor_c)). | 
|  | if ((C - Floor).ule(Ceil - C)) { | 
|  | SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG); | 
|  | SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG); | 
|  | return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); | 
|  | } | 
|  |  | 
|  | // If |c - floor_c| > |c - ceil_c|, | 
|  | // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)). | 
|  | SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG); | 
|  | SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG); | 
|  | return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); | 
|  | } | 
|  |  | 
|  | static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSETargetLowering *TL) { | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (!VT.isVector()) | 
|  | return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT, | 
|  | TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT), | 
|  | DAG); | 
|  |  | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty, | 
|  | SelectionDAG &DAG, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | // See if this is a vector splat immediate node. | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  | unsigned EltSize = Ty.getScalarSizeInBits(); | 
|  | BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); | 
|  |  | 
|  | if (!Subtarget.hasDSP()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!BV || | 
|  | !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, | 
|  | EltSize, !Subtarget.isLittle()) || | 
|  | (SplatBitSize != EltSize) || | 
|  | (SplatValue.getZExtValue() >= EltSize)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(Opc, DL, Ty, N->getOperand(0), | 
|  | DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) | 
|  | return SDValue(); | 
|  |  | 
|  | return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget); | 
|  | } | 
|  |  | 
|  | // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold | 
|  | // constant splats into MipsISD::SHRA_DSP for DSPr2. | 
|  | // | 
|  | // Performs the following transformations: | 
|  | // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its | 
|  | //   sign/zero-extension is completely overwritten by the new one performed by | 
|  | //   the ISD::SRA and ISD::SHL nodes. | 
|  | // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL | 
|  | //   sequence. | 
|  | // | 
|  | // See performDSPShiftCombine for more information about the transformation | 
|  | // used for DSPr2. | 
|  | static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if (Subtarget.hasMSA()) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d) | 
|  | // where $d + sizeof($c) == 32 | 
|  | // or    $d + sizeof($c) <= 32 and SExt | 
|  | // -> (MipsVExtractSExt $a, $b, $c) | 
|  | if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) { | 
|  | SDValue Op0Op0 = Op0->getOperand(0); | 
|  | ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1); | 
|  |  | 
|  | if (!ShAmount) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT && | 
|  | Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT) | 
|  | return SDValue(); | 
|  |  | 
|  | EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT(); | 
|  | unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits(); | 
|  |  | 
|  | if (TotalBits == 32 || | 
|  | (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT && | 
|  | TotalBits <= 32)) { | 
|  | SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1), | 
|  | Op0Op0->getOperand(2) }; | 
|  | return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0), | 
|  | Op0Op0->getVTList(), | 
|  | makeArrayRef(Ops, Op0Op0->getNumOperands())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2())) | 
|  | return SDValue(); | 
|  |  | 
|  | return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget); | 
|  | } | 
|  |  | 
|  |  | 
|  | static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, | 
|  | TargetLowering::DAGCombinerInfo &DCI, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8)) | 
|  | return SDValue(); | 
|  |  | 
|  | return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget); | 
|  | } | 
|  |  | 
|  | static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) { | 
|  | bool IsV216 = (Ty == MVT::v2i16); | 
|  |  | 
|  | switch (CC) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE:  return true; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE:  return IsV216; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: return !IsV216; | 
|  | default:          return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get())) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0), | 
|  | N->getOperand(1), N->getOperand(2)); | 
|  | } | 
|  |  | 
|  | static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) { | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if (Ty == MVT::v2i16 || Ty == MVT::v4i8) { | 
|  | SDValue SetCC = N->getOperand(0); | 
|  |  | 
|  | if (SetCC.getOpcode() != MipsISD::SETCC_DSP) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty, | 
|  | SetCC.getOperand(0), SetCC.getOperand(1), | 
|  | N->getOperand(1), N->getOperand(2), SetCC.getOperand(2)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | EVT Ty = N->getValueType(0); | 
|  |  | 
|  | if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) { | 
|  | // Try the following combines: | 
|  | //   (xor (or $a, $b), (build_vector allones)) | 
|  | //   (xor (or $a, $b), (bitcast (build_vector allones))) | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | SDValue NotOp; | 
|  |  | 
|  | if (ISD::isBuildVectorAllOnes(Op0.getNode())) | 
|  | NotOp = Op1; | 
|  | else if (ISD::isBuildVectorAllOnes(Op1.getNode())) | 
|  | NotOp = Op0; | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | if (NotOp->getOpcode() == ISD::OR) | 
|  | return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0), | 
|  | NotOp->getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Val; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | case ISD::AND: | 
|  | Val = performANDCombine(N, DAG, DCI, Subtarget); | 
|  | break; | 
|  | case ISD::OR: | 
|  | Val = performORCombine(N, DAG, DCI, Subtarget); | 
|  | break; | 
|  | case ISD::MUL: | 
|  | return performMULCombine(N, DAG, DCI, this); | 
|  | case ISD::SHL: | 
|  | Val = performSHLCombine(N, DAG, DCI, Subtarget); | 
|  | break; | 
|  | case ISD::SRA: | 
|  | return performSRACombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::SRL: | 
|  | return performSRLCombine(N, DAG, DCI, Subtarget); | 
|  | case ISD::VSELECT: | 
|  | return performVSELECTCombine(N, DAG); | 
|  | case ISD::XOR: | 
|  | Val = performXORCombine(N, DAG, Subtarget); | 
|  | break; | 
|  | case ISD::SETCC: | 
|  | Val = performSETCCCombine(N, DAG); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Val.getNode()) { | 
|  | DEBUG(dbgs() << "\nMipsSE DAG Combine:\n"; | 
|  | N->printrWithDepth(dbgs(), &DAG); | 
|  | dbgs() << "\n=> \n"; | 
|  | Val.getNode()->printrWithDepth(dbgs(), &DAG); | 
|  | dbgs() << "\n"); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | return MipsTargetLowering::PerformDAGCombine(N, DCI); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); | 
|  | case Mips::BPOSGE32_PSEUDO: | 
|  | return emitBPOSGE32(MI, BB); | 
|  | case Mips::SNZ_B_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B); | 
|  | case Mips::SNZ_H_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H); | 
|  | case Mips::SNZ_W_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W); | 
|  | case Mips::SNZ_D_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D); | 
|  | case Mips::SNZ_V_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V); | 
|  | case Mips::SZ_B_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BZ_B); | 
|  | case Mips::SZ_H_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BZ_H); | 
|  | case Mips::SZ_W_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BZ_W); | 
|  | case Mips::SZ_D_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BZ_D); | 
|  | case Mips::SZ_V_PSEUDO: | 
|  | return emitMSACBranchPseudo(MI, BB, Mips::BZ_V); | 
|  | case Mips::COPY_FW_PSEUDO: | 
|  | return emitCOPY_FW(MI, BB); | 
|  | case Mips::COPY_FD_PSEUDO: | 
|  | return emitCOPY_FD(MI, BB); | 
|  | case Mips::INSERT_FW_PSEUDO: | 
|  | return emitINSERT_FW(MI, BB); | 
|  | case Mips::INSERT_FD_PSEUDO: | 
|  | return emitINSERT_FD(MI, BB); | 
|  | case Mips::INSERT_B_VIDX_PSEUDO: | 
|  | case Mips::INSERT_B_VIDX64_PSEUDO: | 
|  | return emitINSERT_DF_VIDX(MI, BB, 1, false); | 
|  | case Mips::INSERT_H_VIDX_PSEUDO: | 
|  | case Mips::INSERT_H_VIDX64_PSEUDO: | 
|  | return emitINSERT_DF_VIDX(MI, BB, 2, false); | 
|  | case Mips::INSERT_W_VIDX_PSEUDO: | 
|  | case Mips::INSERT_W_VIDX64_PSEUDO: | 
|  | return emitINSERT_DF_VIDX(MI, BB, 4, false); | 
|  | case Mips::INSERT_D_VIDX_PSEUDO: | 
|  | case Mips::INSERT_D_VIDX64_PSEUDO: | 
|  | return emitINSERT_DF_VIDX(MI, BB, 8, false); | 
|  | case Mips::INSERT_FW_VIDX_PSEUDO: | 
|  | case Mips::INSERT_FW_VIDX64_PSEUDO: | 
|  | return emitINSERT_DF_VIDX(MI, BB, 4, true); | 
|  | case Mips::INSERT_FD_VIDX_PSEUDO: | 
|  | case Mips::INSERT_FD_VIDX64_PSEUDO: | 
|  | return emitINSERT_DF_VIDX(MI, BB, 8, true); | 
|  | case Mips::FILL_FW_PSEUDO: | 
|  | return emitFILL_FW(MI, BB); | 
|  | case Mips::FILL_FD_PSEUDO: | 
|  | return emitFILL_FD(MI, BB); | 
|  | case Mips::FEXP2_W_1_PSEUDO: | 
|  | return emitFEXP2_W_1(MI, BB); | 
|  | case Mips::FEXP2_D_1_PSEUDO: | 
|  | return emitFEXP2_D_1(MI, BB); | 
|  | case Mips::ST_F16: | 
|  | return emitST_F16_PSEUDO(MI, BB); | 
|  | case Mips::LD_F16: | 
|  | return emitLD_F16_PSEUDO(MI, BB); | 
|  | case Mips::MSA_FP_EXTEND_W_PSEUDO: | 
|  | return emitFPEXTEND_PSEUDO(MI, BB, false); | 
|  | case Mips::MSA_FP_ROUND_W_PSEUDO: | 
|  | return emitFPROUND_PSEUDO(MI, BB, false); | 
|  | case Mips::MSA_FP_EXTEND_D_PSEUDO: | 
|  | return emitFPEXTEND_PSEUDO(MI, BB, true); | 
|  | case Mips::MSA_FP_ROUND_D_PSEUDO: | 
|  | return emitFPROUND_PSEUDO(MI, BB, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MipsSETargetLowering::isEligibleForTailCallOptimization( | 
|  | const CCState &CCInfo, unsigned NextStackOffset, | 
|  | const MipsFunctionInfo &FI) const { | 
|  | if (!UseMipsTailCalls) | 
|  | return false; | 
|  |  | 
|  | // Exception has to be cleared with eret. | 
|  | if (FI.isISR()) | 
|  | return false; | 
|  |  | 
|  | // Return false if either the callee or caller has a byval argument. | 
|  | if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg()) | 
|  | return false; | 
|  |  | 
|  | // Return true if the callee's argument area is no larger than the | 
|  | // caller's. | 
|  | return NextStackOffset <= FI.getIncomingArgSize(); | 
|  | } | 
|  |  | 
|  | void MipsSETargetLowering:: | 
|  | getOpndList(SmallVectorImpl<SDValue> &Ops, | 
|  | std::deque<std::pair<unsigned, SDValue>> &RegsToPass, | 
|  | bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, | 
|  | bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, | 
|  | SDValue Chain) const { | 
|  | Ops.push_back(Callee); | 
|  | MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, | 
|  | InternalLinkage, IsCallReloc, CLI, Callee, | 
|  | Chain); | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { | 
|  | LoadSDNode &Nd = *cast<LoadSDNode>(Op); | 
|  |  | 
|  | if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) | 
|  | return MipsTargetLowering::lowerLOAD(Op, DAG); | 
|  |  | 
|  | // Replace a double precision load with two i32 loads and a buildpair64. | 
|  | SDLoc DL(Op); | 
|  | SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  |  | 
|  | // i32 load from lower address. | 
|  | SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(), | 
|  | Nd.getAlignment(), Nd.getMemOperand()->getFlags()); | 
|  |  | 
|  | // i32 load from higher address. | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT)); | 
|  | SDValue Hi = DAG.getLoad( | 
|  | MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(), | 
|  | std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags()); | 
|  |  | 
|  | if (!Subtarget.isLittle()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi); | 
|  | SDValue Ops[2] = {BP, Hi.getValue(1)}; | 
|  | return DAG.getMergeValues(Ops, DL); | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { | 
|  | StoreSDNode &Nd = *cast<StoreSDNode>(Op); | 
|  |  | 
|  | if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) | 
|  | return MipsTargetLowering::lowerSTORE(Op, DAG); | 
|  |  | 
|  | // Replace a double precision store with two extractelement64s and i32 stores. | 
|  | SDLoc DL(Op); | 
|  | SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, | 
|  | Val, DAG.getConstant(0, DL, MVT::i32)); | 
|  | SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, | 
|  | Val, DAG.getConstant(1, DL, MVT::i32)); | 
|  |  | 
|  | if (!Subtarget.isLittle()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | // i32 store to lower address. | 
|  | Chain = | 
|  | DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(), | 
|  | Nd.getMemOperand()->getFlags(), Nd.getAAInfo()); | 
|  |  | 
|  | // i32 store to higher address. | 
|  | Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT)); | 
|  | return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(), | 
|  | std::min(Nd.getAlignment(), 4U), | 
|  | Nd.getMemOperand()->getFlags(), Nd.getAAInfo()); | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc, | 
|  | bool HasLo, bool HasHi, | 
|  | SelectionDAG &DAG) const { | 
|  | // MIPS32r6/MIPS64r6 removed accumulator based multiplies. | 
|  | assert(!Subtarget.hasMips32r6()); | 
|  |  | 
|  | EVT Ty = Op.getOperand(0).getValueType(); | 
|  | SDLoc DL(Op); | 
|  | SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | if (HasLo) | 
|  | Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult); | 
|  | if (HasHi) | 
|  | Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult); | 
|  |  | 
|  | if (!HasLo || !HasHi) | 
|  | return HasLo ? Lo : Hi; | 
|  |  | 
|  | SDValue Vals[] = { Lo, Hi }; | 
|  | return DAG.getMergeValues(Vals, DL); | 
|  | } | 
|  |  | 
|  | static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) { | 
|  | SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In, | 
|  | DAG.getConstant(1, DL, MVT::i32)); | 
|  | return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi); | 
|  | } | 
|  |  | 
|  | static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) { | 
|  | SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op); | 
|  | SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op); | 
|  | return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); | 
|  | } | 
|  |  | 
|  | // This function expands mips intrinsic nodes which have 64-bit input operands | 
|  | // or output values. | 
|  | // | 
|  | // out64 = intrinsic-node in64 | 
|  | // => | 
|  | // lo = copy (extract-element (in64, 0)) | 
|  | // hi = copy (extract-element (in64, 1)) | 
|  | // mips-specific-node | 
|  | // v0 = copy lo | 
|  | // v1 = copy hi | 
|  | // out64 = merge-values (v0, v1) | 
|  | // | 
|  | static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { | 
|  | SDLoc DL(Op); | 
|  | bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other; | 
|  | SmallVector<SDValue, 3> Ops; | 
|  | unsigned OpNo = 0; | 
|  |  | 
|  | // See if Op has a chain input. | 
|  | if (HasChainIn) | 
|  | Ops.push_back(Op->getOperand(OpNo++)); | 
|  |  | 
|  | // The next operand is the intrinsic opcode. | 
|  | assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant); | 
|  |  | 
|  | // See if the next operand has type i64. | 
|  | SDValue Opnd = Op->getOperand(++OpNo), In64; | 
|  |  | 
|  | if (Opnd.getValueType() == MVT::i64) | 
|  | In64 = initAccumulator(Opnd, DL, DAG); | 
|  | else | 
|  | Ops.push_back(Opnd); | 
|  |  | 
|  | // Push the remaining operands. | 
|  | for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo) | 
|  | Ops.push_back(Op->getOperand(OpNo)); | 
|  |  | 
|  | // Add In64 to the end of the list. | 
|  | if (In64.getNode()) | 
|  | Ops.push_back(In64); | 
|  |  | 
|  | // Scan output. | 
|  | SmallVector<EVT, 2> ResTys; | 
|  |  | 
|  | for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end(); | 
|  | I != E; ++I) | 
|  | ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I); | 
|  |  | 
|  | // Create node. | 
|  | SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops); | 
|  | SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val; | 
|  |  | 
|  | if (!HasChainIn) | 
|  | return Out; | 
|  |  | 
|  | assert(Val->getValueType(1) == MVT::Other); | 
|  | SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) }; | 
|  | return DAG.getMergeValues(Vals, DL); | 
|  | } | 
|  |  | 
|  | // Lower an MSA copy intrinsic into the specified SelectionDAG node | 
|  | static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { | 
|  | SDLoc DL(Op); | 
|  | SDValue Vec = Op->getOperand(1); | 
|  | SDValue Idx = Op->getOperand(2); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | EVT EltTy = Vec->getValueType(0).getVectorElementType(); | 
|  |  | 
|  | SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx, | 
|  | DAG.getValueType(EltTy)); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) { | 
|  | EVT ResVecTy = Op->getValueType(0); | 
|  | EVT ViaVecTy = ResVecTy; | 
|  | bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and | 
|  | // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating | 
|  | // lanes. | 
|  | SDValue LaneA = Op->getOperand(OpNr); | 
|  | SDValue LaneB; | 
|  |  | 
|  | if (ResVecTy == MVT::v2i64) { | 
|  | LaneB = DAG.getConstant(0, DL, MVT::i32); | 
|  | ViaVecTy = MVT::v4i32; | 
|  | if(BigEndian) | 
|  | std::swap(LaneA, LaneB); | 
|  | } else | 
|  | LaneB = LaneA; | 
|  |  | 
|  | SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, | 
|  | LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB }; | 
|  |  | 
|  | SDValue Result = DAG.getBuildVector( | 
|  | ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements())); | 
|  |  | 
|  | if (ViaVecTy != ResVecTy) { | 
|  | SDValue One = DAG.getConstant(1, DL, ViaVecTy); | 
|  | Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, | 
|  | DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, | 
|  | bool IsSigned = false) { | 
|  | return DAG.getConstant( | 
|  | APInt(Op->getValueType(0).getScalarType().getSizeInBits(), | 
|  | Op->getConstantOperandVal(ImmOp), IsSigned), | 
|  | SDLoc(Op), Op->getValueType(0)); | 
|  | } | 
|  |  | 
|  | static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue, | 
|  | bool BigEndian, SelectionDAG &DAG) { | 
|  | EVT ViaVecTy = VecTy; | 
|  | SDValue SplatValueA = SplatValue; | 
|  | SDValue SplatValueB = SplatValue; | 
|  | SDLoc DL(SplatValue); | 
|  |  | 
|  | if (VecTy == MVT::v2i64) { | 
|  | // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's. | 
|  | ViaVecTy = MVT::v4i32; | 
|  |  | 
|  | SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue); | 
|  | SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue, | 
|  | DAG.getConstant(32, DL, MVT::i32)); | 
|  | SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB); | 
|  | } | 
|  |  | 
|  | // We currently hold the parts in little endian order. Swap them if | 
|  | // necessary. | 
|  | if (BigEndian) | 
|  | std::swap(SplatValueA, SplatValueB); | 
|  |  | 
|  | SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB, | 
|  | SplatValueA, SplatValueB, SplatValueA, SplatValueB, | 
|  | SplatValueA, SplatValueB, SplatValueA, SplatValueB, | 
|  | SplatValueA, SplatValueB, SplatValueA, SplatValueB }; | 
|  |  | 
|  | SDValue Result = DAG.getBuildVector( | 
|  | ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements())); | 
|  |  | 
|  | if (VecTy != ViaVecTy) | 
|  | Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG, | 
|  | unsigned Opc, SDValue Imm, | 
|  | bool BigEndian) { | 
|  | EVT VecTy = Op->getValueType(0); | 
|  | SDValue Exp2Imm; | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it | 
|  | // here for now. | 
|  | if (VecTy == MVT::v2i64) { | 
|  | if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) { | 
|  | APInt BitImm = APInt(64, 1) << CImm->getAPIntValue(); | 
|  |  | 
|  | SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL, | 
|  | MVT::i32); | 
|  | SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32); | 
|  |  | 
|  | if (BigEndian) | 
|  | std::swap(BitImmLoOp, BitImmHiOp); | 
|  |  | 
|  | Exp2Imm = DAG.getNode( | 
|  | ISD::BITCAST, DL, MVT::v2i64, | 
|  | DAG.getBuildVector(MVT::v4i32, DL, | 
|  | {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp})); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Exp2Imm.getNode()) { | 
|  | // We couldnt constant fold, do a vector shift instead | 
|  |  | 
|  | // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since | 
|  | // only values 0-63 are valid. | 
|  | if (VecTy == MVT::v2i64) | 
|  | Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm); | 
|  |  | 
|  | Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG); | 
|  |  | 
|  | Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy), | 
|  | Exp2Imm); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm); | 
|  | } | 
|  |  | 
|  | static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | SDValue Vec = Op->getOperand(2); | 
|  | bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); | 
|  | MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32; | 
|  | SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1, | 
|  | DL, ResEltTy); | 
|  | SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec); | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) { | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | SDLoc DL(Op); | 
|  | SDValue One = DAG.getConstant(1, DL, ResTy); | 
|  | SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG)); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), | 
|  | DAG.getNOT(DL, Bit, ResTy)); | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) { | 
|  | SDLoc DL(Op); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1) | 
|  | << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue(); | 
|  | SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy); | 
|  |  | 
|  | return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask); | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue(); | 
|  | switch (Intrinsic) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case Intrinsic::mips_shilo: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::SHILO); | 
|  | case Intrinsic::mips_dpau_h_qbl: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL); | 
|  | case Intrinsic::mips_dpau_h_qbr: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR); | 
|  | case Intrinsic::mips_dpsu_h_qbl: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL); | 
|  | case Intrinsic::mips_dpsu_h_qbr: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR); | 
|  | case Intrinsic::mips_dpa_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH); | 
|  | case Intrinsic::mips_dps_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH); | 
|  | case Intrinsic::mips_dpax_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH); | 
|  | case Intrinsic::mips_dpsx_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH); | 
|  | case Intrinsic::mips_mulsa_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH); | 
|  | case Intrinsic::mips_mult: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::Mult); | 
|  | case Intrinsic::mips_multu: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::Multu); | 
|  | case Intrinsic::mips_madd: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MAdd); | 
|  | case Intrinsic::mips_maddu: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MAddu); | 
|  | case Intrinsic::mips_msub: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MSub); | 
|  | case Intrinsic::mips_msubu: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MSubu); | 
|  | case Intrinsic::mips_addv_b: | 
|  | case Intrinsic::mips_addv_h: | 
|  | case Intrinsic::mips_addv_w: | 
|  | case Intrinsic::mips_addv_d: | 
|  | return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_addvi_b: | 
|  | case Intrinsic::mips_addvi_h: | 
|  | case Intrinsic::mips_addvi_w: | 
|  | case Intrinsic::mips_addvi_d: | 
|  | return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_and_v: | 
|  | return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_andi_b: | 
|  | return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_bclr_b: | 
|  | case Intrinsic::mips_bclr_h: | 
|  | case Intrinsic::mips_bclr_w: | 
|  | case Intrinsic::mips_bclr_d: | 
|  | return lowerMSABitClear(Op, DAG); | 
|  | case Intrinsic::mips_bclri_b: | 
|  | case Intrinsic::mips_bclri_h: | 
|  | case Intrinsic::mips_bclri_w: | 
|  | case Intrinsic::mips_bclri_d: | 
|  | return lowerMSABitClearImm(Op, DAG); | 
|  | case Intrinsic::mips_binsli_b: | 
|  | case Intrinsic::mips_binsli_h: | 
|  | case Intrinsic::mips_binsli_w: | 
|  | case Intrinsic::mips_binsli_d: { | 
|  | // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear) | 
|  | EVT VecTy = Op->getValueType(0); | 
|  | EVT EltTy = VecTy.getVectorElementType(); | 
|  | if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits()) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(), | 
|  | Op->getConstantOperandVal(3) + 1); | 
|  | return DAG.getNode(ISD::VSELECT, DL, VecTy, | 
|  | DAG.getConstant(Mask, DL, VecTy, true), | 
|  | Op->getOperand(2), Op->getOperand(1)); | 
|  | } | 
|  | case Intrinsic::mips_binsri_b: | 
|  | case Intrinsic::mips_binsri_h: | 
|  | case Intrinsic::mips_binsri_w: | 
|  | case Intrinsic::mips_binsri_d: { | 
|  | // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear) | 
|  | EVT VecTy = Op->getValueType(0); | 
|  | EVT EltTy = VecTy.getVectorElementType(); | 
|  | if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits()) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(), | 
|  | Op->getConstantOperandVal(3) + 1); | 
|  | return DAG.getNode(ISD::VSELECT, DL, VecTy, | 
|  | DAG.getConstant(Mask, DL, VecTy, true), | 
|  | Op->getOperand(2), Op->getOperand(1)); | 
|  | } | 
|  | case Intrinsic::mips_bmnz_v: | 
|  | return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3), | 
|  | Op->getOperand(2), Op->getOperand(1)); | 
|  | case Intrinsic::mips_bmnzi_b: | 
|  | return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), | 
|  | lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_bmz_v: | 
|  | return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_bmzi_b: | 
|  | return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), | 
|  | lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_bneg_b: | 
|  | case Intrinsic::mips_bneg_h: | 
|  | case Intrinsic::mips_bneg_w: | 
|  | case Intrinsic::mips_bneg_d: { | 
|  | EVT VecTy = Op->getValueType(0); | 
|  | SDValue One = DAG.getConstant(1, DL, VecTy); | 
|  |  | 
|  | return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::SHL, DL, VecTy, One, | 
|  | truncateVecElts(Op, DAG))); | 
|  | } | 
|  | case Intrinsic::mips_bnegi_b: | 
|  | case Intrinsic::mips_bnegi_h: | 
|  | case Intrinsic::mips_bnegi_w: | 
|  | case Intrinsic::mips_bnegi_d: | 
|  | return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2), | 
|  | !Subtarget.isLittle()); | 
|  | case Intrinsic::mips_bnz_b: | 
|  | case Intrinsic::mips_bnz_h: | 
|  | case Intrinsic::mips_bnz_w: | 
|  | case Intrinsic::mips_bnz_d: | 
|  | return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_bnz_v: | 
|  | return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_bsel_v: | 
|  | // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) | 
|  | return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(3), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_bseli_b: | 
|  | // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) | 
|  | return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_bset_b: | 
|  | case Intrinsic::mips_bset_h: | 
|  | case Intrinsic::mips_bset_w: | 
|  | case Intrinsic::mips_bset_d: { | 
|  | EVT VecTy = Op->getValueType(0); | 
|  | SDValue One = DAG.getConstant(1, DL, VecTy); | 
|  |  | 
|  | return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::SHL, DL, VecTy, One, | 
|  | truncateVecElts(Op, DAG))); | 
|  | } | 
|  | case Intrinsic::mips_bseti_b: | 
|  | case Intrinsic::mips_bseti_h: | 
|  | case Intrinsic::mips_bseti_w: | 
|  | case Intrinsic::mips_bseti_d: | 
|  | return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2), | 
|  | !Subtarget.isLittle()); | 
|  | case Intrinsic::mips_bz_b: | 
|  | case Intrinsic::mips_bz_h: | 
|  | case Intrinsic::mips_bz_w: | 
|  | case Intrinsic::mips_bz_d: | 
|  | return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_bz_v: | 
|  | return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_ceq_b: | 
|  | case Intrinsic::mips_ceq_h: | 
|  | case Intrinsic::mips_ceq_w: | 
|  | case Intrinsic::mips_ceq_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETEQ); | 
|  | case Intrinsic::mips_ceqi_b: | 
|  | case Intrinsic::mips_ceqi_h: | 
|  | case Intrinsic::mips_ceqi_w: | 
|  | case Intrinsic::mips_ceqi_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ); | 
|  | case Intrinsic::mips_cle_s_b: | 
|  | case Intrinsic::mips_cle_s_h: | 
|  | case Intrinsic::mips_cle_s_w: | 
|  | case Intrinsic::mips_cle_s_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETLE); | 
|  | case Intrinsic::mips_clei_s_b: | 
|  | case Intrinsic::mips_clei_s_h: | 
|  | case Intrinsic::mips_clei_s_w: | 
|  | case Intrinsic::mips_clei_s_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE); | 
|  | case Intrinsic::mips_cle_u_b: | 
|  | case Intrinsic::mips_cle_u_h: | 
|  | case Intrinsic::mips_cle_u_w: | 
|  | case Intrinsic::mips_cle_u_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETULE); | 
|  | case Intrinsic::mips_clei_u_b: | 
|  | case Intrinsic::mips_clei_u_h: | 
|  | case Intrinsic::mips_clei_u_w: | 
|  | case Intrinsic::mips_clei_u_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG), ISD::SETULE); | 
|  | case Intrinsic::mips_clt_s_b: | 
|  | case Intrinsic::mips_clt_s_h: | 
|  | case Intrinsic::mips_clt_s_w: | 
|  | case Intrinsic::mips_clt_s_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETLT); | 
|  | case Intrinsic::mips_clti_s_b: | 
|  | case Intrinsic::mips_clti_s_h: | 
|  | case Intrinsic::mips_clti_s_w: | 
|  | case Intrinsic::mips_clti_s_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT); | 
|  | case Intrinsic::mips_clt_u_b: | 
|  | case Intrinsic::mips_clt_u_h: | 
|  | case Intrinsic::mips_clt_u_w: | 
|  | case Intrinsic::mips_clt_u_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETULT); | 
|  | case Intrinsic::mips_clti_u_b: | 
|  | case Intrinsic::mips_clti_u_h: | 
|  | case Intrinsic::mips_clti_u_w: | 
|  | case Intrinsic::mips_clti_u_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG), ISD::SETULT); | 
|  | case Intrinsic::mips_copy_s_b: | 
|  | case Intrinsic::mips_copy_s_h: | 
|  | case Intrinsic::mips_copy_s_w: | 
|  | return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT); | 
|  | case Intrinsic::mips_copy_s_d: | 
|  | if (Subtarget.hasMips64()) | 
|  | // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64. | 
|  | return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT); | 
|  | else { | 
|  | // Lower into the generic EXTRACT_VECTOR_ELT node and let the type | 
|  | // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), | 
|  | Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | } | 
|  | case Intrinsic::mips_copy_u_b: | 
|  | case Intrinsic::mips_copy_u_h: | 
|  | case Intrinsic::mips_copy_u_w: | 
|  | return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT); | 
|  | case Intrinsic::mips_copy_u_d: | 
|  | if (Subtarget.hasMips64()) | 
|  | // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64. | 
|  | return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT); | 
|  | else { | 
|  | // Lower into the generic EXTRACT_VECTOR_ELT node and let the type | 
|  | // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. | 
|  | // Note: When i64 is illegal, this results in copy_s.w instructions | 
|  | // instead of copy_u.w instructions. This makes no difference to the | 
|  | // behaviour since i64 is only illegal when the register file is 32-bit. | 
|  | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), | 
|  | Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | } | 
|  | case Intrinsic::mips_div_s_b: | 
|  | case Intrinsic::mips_div_s_h: | 
|  | case Intrinsic::mips_div_s_w: | 
|  | case Intrinsic::mips_div_s_d: | 
|  | return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_div_u_b: | 
|  | case Intrinsic::mips_div_u_h: | 
|  | case Intrinsic::mips_div_u_w: | 
|  | case Intrinsic::mips_div_u_d: | 
|  | return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_fadd_w: | 
|  | case Intrinsic::mips_fadd_d: | 
|  | // TODO: If intrinsics have fast-math-flags, propagate them. | 
|  | return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away | 
|  | case Intrinsic::mips_fceq_w: | 
|  | case Intrinsic::mips_fceq_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETOEQ); | 
|  | case Intrinsic::mips_fcle_w: | 
|  | case Intrinsic::mips_fcle_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETOLE); | 
|  | case Intrinsic::mips_fclt_w: | 
|  | case Intrinsic::mips_fclt_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETOLT); | 
|  | case Intrinsic::mips_fcne_w: | 
|  | case Intrinsic::mips_fcne_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETONE); | 
|  | case Intrinsic::mips_fcor_w: | 
|  | case Intrinsic::mips_fcor_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETO); | 
|  | case Intrinsic::mips_fcueq_w: | 
|  | case Intrinsic::mips_fcueq_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETUEQ); | 
|  | case Intrinsic::mips_fcule_w: | 
|  | case Intrinsic::mips_fcule_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETULE); | 
|  | case Intrinsic::mips_fcult_w: | 
|  | case Intrinsic::mips_fcult_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETULT); | 
|  | case Intrinsic::mips_fcun_w: | 
|  | case Intrinsic::mips_fcun_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETUO); | 
|  | case Intrinsic::mips_fcune_w: | 
|  | case Intrinsic::mips_fcune_d: | 
|  | return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2), ISD::SETUNE); | 
|  | case Intrinsic::mips_fdiv_w: | 
|  | case Intrinsic::mips_fdiv_d: | 
|  | // TODO: If intrinsics have fast-math-flags, propagate them. | 
|  | return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_ffint_u_w: | 
|  | case Intrinsic::mips_ffint_u_d: | 
|  | return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_ffint_s_w: | 
|  | case Intrinsic::mips_ffint_s_d: | 
|  | return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_fill_b: | 
|  | case Intrinsic::mips_fill_h: | 
|  | case Intrinsic::mips_fill_w: | 
|  | case Intrinsic::mips_fill_d: { | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(), | 
|  | Op->getOperand(1)); | 
|  |  | 
|  | // If ResTy is v2i64 then the type legalizer will break this node down into | 
|  | // an equivalent v4i32. | 
|  | return DAG.getBuildVector(ResTy, DL, Ops); | 
|  | } | 
|  | case Intrinsic::mips_fexp2_w: | 
|  | case Intrinsic::mips_fexp2_d: { | 
|  | // TODO: If intrinsics have fast-math-flags, propagate them. | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | return DAG.getNode( | 
|  | ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2))); | 
|  | } | 
|  | case Intrinsic::mips_flog2_w: | 
|  | case Intrinsic::mips_flog2_d: | 
|  | return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1)); | 
|  | case Intrinsic::mips_fmadd_w: | 
|  | case Intrinsic::mips_fmadd_d: | 
|  | return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); | 
|  | case Intrinsic::mips_fmul_w: | 
|  | case Intrinsic::mips_fmul_d: | 
|  | // TODO: If intrinsics have fast-math-flags, propagate them. | 
|  | return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_fmsub_w: | 
|  | case Intrinsic::mips_fmsub_d: { | 
|  | // TODO: If intrinsics have fast-math-flags, propagate them. | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy, | 
|  | Op->getOperand(2), Op->getOperand(3))); | 
|  | } | 
|  | case Intrinsic::mips_frint_w: | 
|  | case Intrinsic::mips_frint_d: | 
|  | return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1)); | 
|  | case Intrinsic::mips_fsqrt_w: | 
|  | case Intrinsic::mips_fsqrt_d: | 
|  | return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1)); | 
|  | case Intrinsic::mips_fsub_w: | 
|  | case Intrinsic::mips_fsub_d: | 
|  | // TODO: If intrinsics have fast-math-flags, propagate them. | 
|  | return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_ftrunc_u_w: | 
|  | case Intrinsic::mips_ftrunc_u_d: | 
|  | return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_ftrunc_s_w: | 
|  | case Intrinsic::mips_ftrunc_s_d: | 
|  | return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_ilvev_b: | 
|  | case Intrinsic::mips_ilvev_h: | 
|  | case Intrinsic::mips_ilvev_w: | 
|  | case Intrinsic::mips_ilvev_d: | 
|  | return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_ilvl_b: | 
|  | case Intrinsic::mips_ilvl_h: | 
|  | case Intrinsic::mips_ilvl_w: | 
|  | case Intrinsic::mips_ilvl_d: | 
|  | return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_ilvod_b: | 
|  | case Intrinsic::mips_ilvod_h: | 
|  | case Intrinsic::mips_ilvod_w: | 
|  | case Intrinsic::mips_ilvod_d: | 
|  | return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_ilvr_b: | 
|  | case Intrinsic::mips_ilvr_h: | 
|  | case Intrinsic::mips_ilvr_w: | 
|  | case Intrinsic::mips_ilvr_d: | 
|  | return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_insert_b: | 
|  | case Intrinsic::mips_insert_h: | 
|  | case Intrinsic::mips_insert_w: | 
|  | case Intrinsic::mips_insert_d: | 
|  | return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(3), Op->getOperand(2)); | 
|  | case Intrinsic::mips_insve_b: | 
|  | case Intrinsic::mips_insve_h: | 
|  | case Intrinsic::mips_insve_w: | 
|  | case Intrinsic::mips_insve_d: { | 
|  | // Report an error for out of range values. | 
|  | int64_t Max; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::mips_insve_b: Max = 15; break; | 
|  | case Intrinsic::mips_insve_h: Max = 7; break; | 
|  | case Intrinsic::mips_insve_w: Max = 3; break; | 
|  | case Intrinsic::mips_insve_d: Max = 1; break; | 
|  | default: llvm_unreachable("Unmatched intrinsic"); | 
|  | } | 
|  | int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); | 
|  | if (Value < 0 || Value > Max) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2), Op->getOperand(3), | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | } | 
|  | case Intrinsic::mips_ldi_b: | 
|  | case Intrinsic::mips_ldi_h: | 
|  | case Intrinsic::mips_ldi_w: | 
|  | case Intrinsic::mips_ldi_d: | 
|  | return lowerMSASplatImm(Op, 1, DAG, true); | 
|  | case Intrinsic::mips_lsa: | 
|  | case Intrinsic::mips_dlsa: { | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::SHL, SDLoc(Op), ResTy, | 
|  | Op->getOperand(2), Op->getOperand(3))); | 
|  | } | 
|  | case Intrinsic::mips_maddv_b: | 
|  | case Intrinsic::mips_maddv_h: | 
|  | case Intrinsic::mips_maddv_w: | 
|  | case Intrinsic::mips_maddv_d: { | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::MUL, SDLoc(Op), ResTy, | 
|  | Op->getOperand(2), Op->getOperand(3))); | 
|  | } | 
|  | case Intrinsic::mips_max_s_b: | 
|  | case Intrinsic::mips_max_s_h: | 
|  | case Intrinsic::mips_max_s_w: | 
|  | case Intrinsic::mips_max_s_d: | 
|  | return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_max_u_b: | 
|  | case Intrinsic::mips_max_u_h: | 
|  | case Intrinsic::mips_max_u_w: | 
|  | case Intrinsic::mips_max_u_d: | 
|  | return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_maxi_s_b: | 
|  | case Intrinsic::mips_maxi_s_h: | 
|  | case Intrinsic::mips_maxi_s_w: | 
|  | case Intrinsic::mips_maxi_s_d: | 
|  | return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true)); | 
|  | case Intrinsic::mips_maxi_u_b: | 
|  | case Intrinsic::mips_maxi_u_h: | 
|  | case Intrinsic::mips_maxi_u_w: | 
|  | case Intrinsic::mips_maxi_u_d: | 
|  | return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_min_s_b: | 
|  | case Intrinsic::mips_min_s_h: | 
|  | case Intrinsic::mips_min_s_w: | 
|  | case Intrinsic::mips_min_s_d: | 
|  | return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_min_u_b: | 
|  | case Intrinsic::mips_min_u_h: | 
|  | case Intrinsic::mips_min_u_w: | 
|  | case Intrinsic::mips_min_u_d: | 
|  | return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_mini_s_b: | 
|  | case Intrinsic::mips_mini_s_h: | 
|  | case Intrinsic::mips_mini_s_w: | 
|  | case Intrinsic::mips_mini_s_d: | 
|  | return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true)); | 
|  | case Intrinsic::mips_mini_u_b: | 
|  | case Intrinsic::mips_mini_u_h: | 
|  | case Intrinsic::mips_mini_u_w: | 
|  | case Intrinsic::mips_mini_u_d: | 
|  | return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_mod_s_b: | 
|  | case Intrinsic::mips_mod_s_h: | 
|  | case Intrinsic::mips_mod_s_w: | 
|  | case Intrinsic::mips_mod_s_d: | 
|  | return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_mod_u_b: | 
|  | case Intrinsic::mips_mod_u_h: | 
|  | case Intrinsic::mips_mod_u_w: | 
|  | case Intrinsic::mips_mod_u_d: | 
|  | return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_mulv_b: | 
|  | case Intrinsic::mips_mulv_h: | 
|  | case Intrinsic::mips_mulv_w: | 
|  | case Intrinsic::mips_mulv_d: | 
|  | return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_msubv_b: | 
|  | case Intrinsic::mips_msubv_h: | 
|  | case Intrinsic::mips_msubv_w: | 
|  | case Intrinsic::mips_msubv_d: { | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1), | 
|  | DAG.getNode(ISD::MUL, SDLoc(Op), ResTy, | 
|  | Op->getOperand(2), Op->getOperand(3))); | 
|  | } | 
|  | case Intrinsic::mips_nlzc_b: | 
|  | case Intrinsic::mips_nlzc_h: | 
|  | case Intrinsic::mips_nlzc_w: | 
|  | case Intrinsic::mips_nlzc_d: | 
|  | return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1)); | 
|  | case Intrinsic::mips_nor_v: { | 
|  | SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | return DAG.getNOT(DL, Res, Res->getValueType(0)); | 
|  | } | 
|  | case Intrinsic::mips_nori_b: { | 
|  | SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), | 
|  | lowerMSASplatImm(Op, 2, DAG)); | 
|  | return DAG.getNOT(DL, Res, Res->getValueType(0)); | 
|  | } | 
|  | case Intrinsic::mips_or_v: | 
|  | return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_ori_b: | 
|  | return DAG.getNode(ISD::OR, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_pckev_b: | 
|  | case Intrinsic::mips_pckev_h: | 
|  | case Intrinsic::mips_pckev_w: | 
|  | case Intrinsic::mips_pckev_d: | 
|  | return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_pckod_b: | 
|  | case Intrinsic::mips_pckod_h: | 
|  | case Intrinsic::mips_pckod_w: | 
|  | case Intrinsic::mips_pckod_d: | 
|  | return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2)); | 
|  | case Intrinsic::mips_pcnt_b: | 
|  | case Intrinsic::mips_pcnt_h: | 
|  | case Intrinsic::mips_pcnt_w: | 
|  | case Intrinsic::mips_pcnt_d: | 
|  | return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1)); | 
|  | case Intrinsic::mips_sat_s_b: | 
|  | case Intrinsic::mips_sat_s_h: | 
|  | case Intrinsic::mips_sat_s_w: | 
|  | case Intrinsic::mips_sat_s_d: | 
|  | case Intrinsic::mips_sat_u_b: | 
|  | case Intrinsic::mips_sat_u_h: | 
|  | case Intrinsic::mips_sat_u_w: | 
|  | case Intrinsic::mips_sat_u_d: { | 
|  | // Report an error for out of range values. | 
|  | int64_t Max; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::mips_sat_s_b: | 
|  | case Intrinsic::mips_sat_u_b: Max = 7;  break; | 
|  | case Intrinsic::mips_sat_s_h: | 
|  | case Intrinsic::mips_sat_u_h: Max = 15; break; | 
|  | case Intrinsic::mips_sat_s_w: | 
|  | case Intrinsic::mips_sat_u_w: Max = 31; break; | 
|  | case Intrinsic::mips_sat_s_d: | 
|  | case Intrinsic::mips_sat_u_d: Max = 63; break; | 
|  | default: llvm_unreachable("Unmatched intrinsic"); | 
|  | } | 
|  | int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); | 
|  | if (Value < 0 || Value > Max) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | return SDValue(); | 
|  | } | 
|  | case Intrinsic::mips_shf_b: | 
|  | case Intrinsic::mips_shf_h: | 
|  | case Intrinsic::mips_shf_w: { | 
|  | int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); | 
|  | if (Value < 0 || Value > 255) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0), | 
|  | Op->getOperand(2), Op->getOperand(1)); | 
|  | } | 
|  | case Intrinsic::mips_sldi_b: | 
|  | case Intrinsic::mips_sldi_h: | 
|  | case Intrinsic::mips_sldi_w: | 
|  | case Intrinsic::mips_sldi_d: { | 
|  | // Report an error for out of range values. | 
|  | int64_t Max; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::mips_sldi_b: Max = 15; break; | 
|  | case Intrinsic::mips_sldi_h: Max = 7; break; | 
|  | case Intrinsic::mips_sldi_w: Max = 3; break; | 
|  | case Intrinsic::mips_sldi_d: Max = 1; break; | 
|  | default: llvm_unreachable("Unmatched intrinsic"); | 
|  | } | 
|  | int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue(); | 
|  | if (Value < 0 || Value > Max) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | return SDValue(); | 
|  | } | 
|  | case Intrinsic::mips_sll_b: | 
|  | case Intrinsic::mips_sll_h: | 
|  | case Intrinsic::mips_sll_w: | 
|  | case Intrinsic::mips_sll_d: | 
|  | return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | truncateVecElts(Op, DAG)); | 
|  | case Intrinsic::mips_slli_b: | 
|  | case Intrinsic::mips_slli_h: | 
|  | case Intrinsic::mips_slli_w: | 
|  | case Intrinsic::mips_slli_d: | 
|  | return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_splat_b: | 
|  | case Intrinsic::mips_splat_h: | 
|  | case Intrinsic::mips_splat_w: | 
|  | case Intrinsic::mips_splat_d: | 
|  | // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle | 
|  | // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because | 
|  | // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32. | 
|  | // Instead we lower to MipsISD::VSHF and match from there. | 
|  | return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), | 
|  | lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_splati_b: | 
|  | case Intrinsic::mips_splati_h: | 
|  | case Intrinsic::mips_splati_w: | 
|  | case Intrinsic::mips_splati_d: | 
|  | return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), | 
|  | lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1), | 
|  | Op->getOperand(1)); | 
|  | case Intrinsic::mips_sra_b: | 
|  | case Intrinsic::mips_sra_h: | 
|  | case Intrinsic::mips_sra_w: | 
|  | case Intrinsic::mips_sra_d: | 
|  | return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | truncateVecElts(Op, DAG)); | 
|  | case Intrinsic::mips_srai_b: | 
|  | case Intrinsic::mips_srai_h: | 
|  | case Intrinsic::mips_srai_w: | 
|  | case Intrinsic::mips_srai_d: | 
|  | return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_srari_b: | 
|  | case Intrinsic::mips_srari_h: | 
|  | case Intrinsic::mips_srari_w: | 
|  | case Intrinsic::mips_srari_d: { | 
|  | // Report an error for out of range values. | 
|  | int64_t Max; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::mips_srari_b: Max = 7; break; | 
|  | case Intrinsic::mips_srari_h: Max = 15; break; | 
|  | case Intrinsic::mips_srari_w: Max = 31; break; | 
|  | case Intrinsic::mips_srari_d: Max = 63; break; | 
|  | default: llvm_unreachable("Unmatched intrinsic"); | 
|  | } | 
|  | int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); | 
|  | if (Value < 0 || Value > Max) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | return SDValue(); | 
|  | } | 
|  | case Intrinsic::mips_srl_b: | 
|  | case Intrinsic::mips_srl_h: | 
|  | case Intrinsic::mips_srl_w: | 
|  | case Intrinsic::mips_srl_d: | 
|  | return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | truncateVecElts(Op, DAG)); | 
|  | case Intrinsic::mips_srli_b: | 
|  | case Intrinsic::mips_srli_h: | 
|  | case Intrinsic::mips_srli_w: | 
|  | case Intrinsic::mips_srli_d: | 
|  | return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_srlri_b: | 
|  | case Intrinsic::mips_srlri_h: | 
|  | case Intrinsic::mips_srlri_w: | 
|  | case Intrinsic::mips_srlri_d: { | 
|  | // Report an error for out of range values. | 
|  | int64_t Max; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::mips_srlri_b: Max = 7; break; | 
|  | case Intrinsic::mips_srlri_h: Max = 15; break; | 
|  | case Intrinsic::mips_srlri_w: Max = 31; break; | 
|  | case Intrinsic::mips_srlri_d: Max = 63; break; | 
|  | default: llvm_unreachable("Unmatched intrinsic"); | 
|  | } | 
|  | int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); | 
|  | if (Value < 0 || Value > Max) | 
|  | report_fatal_error("Immediate out of range"); | 
|  | return SDValue(); | 
|  | } | 
|  | case Intrinsic::mips_subv_b: | 
|  | case Intrinsic::mips_subv_h: | 
|  | case Intrinsic::mips_subv_w: | 
|  | case Intrinsic::mips_subv_d: | 
|  | return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_subvi_b: | 
|  | case Intrinsic::mips_subvi_h: | 
|  | case Intrinsic::mips_subvi_w: | 
|  | case Intrinsic::mips_subvi_d: | 
|  | return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::mips_vshf_b: | 
|  | case Intrinsic::mips_vshf_h: | 
|  | case Intrinsic::mips_vshf_w: | 
|  | case Intrinsic::mips_vshf_d: | 
|  | return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); | 
|  | case Intrinsic::mips_xor_v: | 
|  | return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1), | 
|  | Op->getOperand(2)); | 
|  | case Intrinsic::mips_xori_b: | 
|  | return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), | 
|  | Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); | 
|  | case Intrinsic::thread_pointer: { | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | SDLoc DL(Op); | 
|  | SDValue ChainIn = Op->getOperand(0); | 
|  | SDValue Address = Op->getOperand(2); | 
|  | SDValue Offset  = Op->getOperand(3); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | EVT PtrTy = Address->getValueType(0); | 
|  |  | 
|  | // For N64 addresses have the underlying type MVT::i64. This intrinsic | 
|  | // however takes an i32 signed constant offset. The actual type of the | 
|  | // intrinsic is a scaled signed i10. | 
|  | if (Subtarget.isABI_N64()) | 
|  | Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset); | 
|  |  | 
|  | Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset); | 
|  | return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), | 
|  | /* Alignment = */ 16); | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue(); | 
|  | switch (Intr) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case Intrinsic::mips_extp: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::EXTP); | 
|  | case Intrinsic::mips_extpdp: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP); | 
|  | case Intrinsic::mips_extr_w: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W); | 
|  | case Intrinsic::mips_extr_r_w: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W); | 
|  | case Intrinsic::mips_extr_rs_w: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W); | 
|  | case Intrinsic::mips_extr_s_h: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H); | 
|  | case Intrinsic::mips_mthlip: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP); | 
|  | case Intrinsic::mips_mulsaq_s_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH); | 
|  | case Intrinsic::mips_maq_s_w_phl: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL); | 
|  | case Intrinsic::mips_maq_s_w_phr: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR); | 
|  | case Intrinsic::mips_maq_sa_w_phl: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL); | 
|  | case Intrinsic::mips_maq_sa_w_phr: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR); | 
|  | case Intrinsic::mips_dpaq_s_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH); | 
|  | case Intrinsic::mips_dpsq_s_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH); | 
|  | case Intrinsic::mips_dpaq_sa_l_w: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W); | 
|  | case Intrinsic::mips_dpsq_sa_l_w: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W); | 
|  | case Intrinsic::mips_dpaqx_s_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH); | 
|  | case Intrinsic::mips_dpaqx_sa_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH); | 
|  | case Intrinsic::mips_dpsqx_s_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH); | 
|  | case Intrinsic::mips_dpsqx_sa_w_ph: | 
|  | return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH); | 
|  | case Intrinsic::mips_ld_b: | 
|  | case Intrinsic::mips_ld_h: | 
|  | case Intrinsic::mips_ld_w: | 
|  | case Intrinsic::mips_ld_d: | 
|  | return lowerMSALoadIntr(Op, DAG, Intr, Subtarget); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, | 
|  | const MipsSubtarget &Subtarget) { | 
|  | SDLoc DL(Op); | 
|  | SDValue ChainIn = Op->getOperand(0); | 
|  | SDValue Value   = Op->getOperand(2); | 
|  | SDValue Address = Op->getOperand(3); | 
|  | SDValue Offset  = Op->getOperand(4); | 
|  | EVT PtrTy = Address->getValueType(0); | 
|  |  | 
|  | // For N64 addresses have the underlying type MVT::i64. This intrinsic | 
|  | // however takes an i32 signed constant offset. The actual type of the | 
|  | // intrinsic is a scaled signed i10. | 
|  | if (Subtarget.isABI_N64()) | 
|  | Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset); | 
|  |  | 
|  | Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset); | 
|  |  | 
|  | return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), | 
|  | /* Alignment = */ 16); | 
|  | } | 
|  |  | 
|  | SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue(); | 
|  | switch (Intr) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case Intrinsic::mips_st_b: | 
|  | case Intrinsic::mips_st_h: | 
|  | case Intrinsic::mips_st_w: | 
|  | case Intrinsic::mips_st_d: | 
|  | return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Check if the given BuildVectorSDNode is a splat. | 
|  | /// This method currently relies on DAG nodes being reused when equivalent, | 
|  | /// so it's possible for this to return false even when isConstantSplat returns | 
|  | /// true. | 
|  | static bool isSplatVector(const BuildVectorSDNode *N) { | 
|  | unsigned int nOps = N->getNumOperands(); | 
|  | assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector"); | 
|  |  | 
|  | SDValue Operand0 = N->getOperand(0); | 
|  |  | 
|  | for (unsigned int i = 1; i < nOps; ++i) { | 
|  | if (N->getOperand(i) != Operand0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT. | 
|  | // | 
|  | // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We | 
|  | // choose to sign-extend but we could have equally chosen zero-extend. The | 
|  | // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT | 
|  | // result into this node later (possibly changing it to a zero-extend in the | 
|  | // process). | 
|  | SDValue MipsSETargetLowering:: | 
|  | lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | SDValue Op0 = Op->getOperand(0); | 
|  | EVT VecTy = Op0->getValueType(0); | 
|  |  | 
|  | if (!VecTy.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (ResTy.isInteger()) { | 
|  | SDValue Op1 = Op->getOperand(1); | 
|  | EVT EltTy = VecTy.getVectorElementType(); | 
|  | return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1, | 
|  | DAG.getValueType(EltTy)); | 
|  | } | 
|  |  | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | static bool isConstantOrUndef(const SDValue Op) { | 
|  | if (Op->isUndef()) | 
|  | return true; | 
|  | if (isa<ConstantSDNode>(Op)) | 
|  | return true; | 
|  | if (isa<ConstantFPSDNode>(Op)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) { | 
|  | for (unsigned i = 0; i < Op->getNumOperands(); ++i) | 
|  | if (isConstantOrUndef(Op->getOperand(i))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the | 
|  | // backend. | 
|  | // | 
|  | // Lowers according to the following rules: | 
|  | // - Constant splats are legal as-is as long as the SplatBitSize is a power of | 
|  | //   2 less than or equal to 64 and the value fits into a signed 10-bit | 
|  | //   immediate | 
|  | // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize | 
|  | //   is a power of 2 less than or equal to 64 and the value does not fit into a | 
|  | //   signed 10-bit immediate | 
|  | // - Non-constant splats are legal as-is. | 
|  | // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT. | 
|  | // - All others are illegal and must be expanded. | 
|  | SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  | SDLoc DL(Op); | 
|  | APInt SplatValue, SplatUndef; | 
|  | unsigned SplatBitSize; | 
|  | bool HasAnyUndefs; | 
|  |  | 
|  | if (!Subtarget.hasMSA() || !ResTy.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | 
|  | HasAnyUndefs, 8, | 
|  | !Subtarget.isLittle()) && SplatBitSize <= 64) { | 
|  | // We can only cope with 8, 16, 32, or 64-bit elements | 
|  | if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 && | 
|  | SplatBitSize != 64) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the value isn't an integer type we will have to bitcast | 
|  | // from an integer type first. Also, if there are any undefs, we must | 
|  | // lower them to defined values first. | 
|  | if (ResTy.isInteger() && !HasAnyUndefs) | 
|  | return Op; | 
|  |  | 
|  | EVT ViaVecTy; | 
|  |  | 
|  | switch (SplatBitSize) { | 
|  | default: | 
|  | return SDValue(); | 
|  | case 8: | 
|  | ViaVecTy = MVT::v16i8; | 
|  | break; | 
|  | case 16: | 
|  | ViaVecTy = MVT::v8i16; | 
|  | break; | 
|  | case 32: | 
|  | ViaVecTy = MVT::v4i32; | 
|  | break; | 
|  | case 64: | 
|  | // There's no fill.d to fall back on for 64-bit values | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // SelectionDAG::getConstant will promote SplatValue appropriately. | 
|  | SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy); | 
|  |  | 
|  | // Bitcast to the type we originally wanted | 
|  | if (ViaVecTy != ResTy) | 
|  | Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result); | 
|  |  | 
|  | return Result; | 
|  | } else if (isSplatVector(Node)) | 
|  | return Op; | 
|  | else if (!isConstantOrUndefBUILD_VECTOR(Node)) { | 
|  | // Use INSERT_VECTOR_ELT operations rather than expand to stores. | 
|  | // The resulting code is the same length as the expansion, but it doesn't | 
|  | // use memory operations | 
|  | EVT ResTy = Node->getValueType(0); | 
|  |  | 
|  | assert(ResTy.isVector()); | 
|  |  | 
|  | unsigned NumElts = ResTy.getVectorNumElements(); | 
|  | SDValue Vector = DAG.getUNDEF(ResTy); | 
|  | for (unsigned i = 0; i < NumElts; ++i) { | 
|  | Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector, | 
|  | Node->getOperand(i), | 
|  | DAG.getConstant(i, DL, MVT::i32)); | 
|  | } | 
|  | return Vector; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into SHF (if possible). | 
|  | // | 
|  | // SHF splits the vector into blocks of four elements, then shuffles these | 
|  | // elements according to a <4 x i2> constant (encoded as an integer immediate). | 
|  | // | 
|  | // It is therefore possible to lower into SHF when the mask takes the form: | 
|  | //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...> | 
|  | // When undef's appear they are treated as if they were whatever value is | 
|  | // necessary in order to fit the above forms. | 
|  | // | 
|  | // For example: | 
|  | //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef, | 
|  | //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0, | 
|  | //                                 i32 7, i32 6, i32 5, i32 4> | 
|  | // is lowered to: | 
|  | //   (SHF_H $w0, $w1, 27) | 
|  | // where the 27 comes from: | 
|  | //   3 + (2 << 2) + (1 << 4) + (0 << 6) | 
|  | static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | int SHFIndices[4] = { -1, -1, -1, -1 }; | 
|  |  | 
|  | if (Indices.size() < 4) | 
|  | return SDValue(); | 
|  |  | 
|  | for (unsigned i = 0; i < 4; ++i) { | 
|  | for (unsigned j = i; j < Indices.size(); j += 4) { | 
|  | int Idx = Indices[j]; | 
|  |  | 
|  | // Convert from vector index to 4-element subvector index | 
|  | // If an index refers to an element outside of the subvector then give up | 
|  | if (Idx != -1) { | 
|  | Idx -= 4 * (j / 4); | 
|  | if (Idx < 0 || Idx >= 4) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | // If the mask has an undef, replace it with the current index. | 
|  | // Note that it might still be undef if the current index is also undef | 
|  | if (SHFIndices[i] == -1) | 
|  | SHFIndices[i] = Idx; | 
|  |  | 
|  | // Check that non-undef values are the same as in the mask. If they | 
|  | // aren't then give up | 
|  | if (!(Idx == -1 || Idx == SHFIndices[i])) | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the immediate. Replace any remaining undefs with zero | 
|  | APInt Imm(32, 0); | 
|  | for (int i = 3; i >= 0; --i) { | 
|  | int Idx = SHFIndices[i]; | 
|  |  | 
|  | if (Idx == -1) | 
|  | Idx = 0; | 
|  |  | 
|  | Imm <<= 2; | 
|  | Imm |= Idx & 0x3; | 
|  | } | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | return DAG.getNode(MipsISD::SHF, DL, ResTy, | 
|  | DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0)); | 
|  | } | 
|  |  | 
|  | /// Determine whether a range fits a regular pattern of values. | 
|  | /// This function accounts for the possibility of jumping over the End iterator. | 
|  | template <typename ValType> | 
|  | static bool | 
|  | fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin, | 
|  | unsigned CheckStride, | 
|  | typename SmallVectorImpl<ValType>::const_iterator End, | 
|  | ValType ExpectedIndex, unsigned ExpectedIndexStride) { | 
|  | auto &I = Begin; | 
|  |  | 
|  | while (I != End) { | 
|  | if (*I != -1 && *I != ExpectedIndex) | 
|  | return false; | 
|  | ExpectedIndex += ExpectedIndexStride; | 
|  |  | 
|  | // Incrementing past End is undefined behaviour so we must increment one | 
|  | // step at a time and check for End at each step. | 
|  | for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I) | 
|  | ; // Empty loop body. | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Determine whether VECTOR_SHUFFLE is a SPLATI. | 
|  | // | 
|  | // It is a SPLATI when the mask is: | 
|  | //   <x, x, x, ...> | 
|  | // where x is any valid index. | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above form. | 
|  | static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | int SplatIndex = -1; | 
|  | for (const auto &V : Indices) { | 
|  | if (V != -1) { | 
|  | SplatIndex = V; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into ILVEV (if possible). | 
|  | // | 
|  | // ILVEV interleaves the even elements from each vector. | 
|  | // | 
|  | // It is possible to lower into ILVEV when the mask consists of two of the | 
|  | // following forms interleaved: | 
|  | //   <0, 2, 4, ...> | 
|  | //   <n, n+2, n+4, ...> | 
|  | // where n is the number of elements in the vector. | 
|  | // For example: | 
|  | //   <0, 0, 2, 2, 4, 4, ...> | 
|  | //   <0, n, 2, n+2, 4, n+4, ...> | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above forms. | 
|  | static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | SDValue Wt; | 
|  | SDValue Ws; | 
|  | const auto &Begin = Indices.begin(); | 
|  | const auto &End = Indices.end(); | 
|  |  | 
|  | // Check even elements are taken from the even elements of one half or the | 
|  | // other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin, 2, End, 0, 2)) | 
|  | Wt = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2)) | 
|  | Wt = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Check odd elements are taken from the even elements of one half or the | 
|  | // other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2)) | 
|  | Ws = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2)) | 
|  | Ws = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into ILVOD (if possible). | 
|  | // | 
|  | // ILVOD interleaves the odd elements from each vector. | 
|  | // | 
|  | // It is possible to lower into ILVOD when the mask consists of two of the | 
|  | // following forms interleaved: | 
|  | //   <1, 3, 5, ...> | 
|  | //   <n+1, n+3, n+5, ...> | 
|  | // where n is the number of elements in the vector. | 
|  | // For example: | 
|  | //   <1, 1, 3, 3, 5, 5, ...> | 
|  | //   <1, n+1, 3, n+3, 5, n+5, ...> | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above forms. | 
|  | static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | SDValue Wt; | 
|  | SDValue Ws; | 
|  | const auto &Begin = Indices.begin(); | 
|  | const auto &End = Indices.end(); | 
|  |  | 
|  | // Check even elements are taken from the odd elements of one half or the | 
|  | // other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin, 2, End, 1, 2)) | 
|  | Wt = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2)) | 
|  | Wt = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Check odd elements are taken from the odd elements of one half or the | 
|  | // other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2)) | 
|  | Ws = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2)) | 
|  | Ws = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into ILVR (if possible). | 
|  | // | 
|  | // ILVR interleaves consecutive elements from the right (lowest-indexed) half of | 
|  | // each vector. | 
|  | // | 
|  | // It is possible to lower into ILVR when the mask consists of two of the | 
|  | // following forms interleaved: | 
|  | //   <0, 1, 2, ...> | 
|  | //   <n, n+1, n+2, ...> | 
|  | // where n is the number of elements in the vector. | 
|  | // For example: | 
|  | //   <0, 0, 1, 1, 2, 2, ...> | 
|  | //   <0, n, 1, n+1, 2, n+2, ...> | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above forms. | 
|  | static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | SDValue Wt; | 
|  | SDValue Ws; | 
|  | const auto &Begin = Indices.begin(); | 
|  | const auto &End = Indices.end(); | 
|  |  | 
|  | // Check even elements are taken from the right (lowest-indexed) elements of | 
|  | // one half or the other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin, 2, End, 0, 1)) | 
|  | Wt = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1)) | 
|  | Wt = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Check odd elements are taken from the right (lowest-indexed) elements of | 
|  | // one half or the other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1)) | 
|  | Ws = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1)) | 
|  | Ws = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into ILVL (if possible). | 
|  | // | 
|  | // ILVL interleaves consecutive elements from the left (highest-indexed) half | 
|  | // of each vector. | 
|  | // | 
|  | // It is possible to lower into ILVL when the mask consists of two of the | 
|  | // following forms interleaved: | 
|  | //   <x, x+1, x+2, ...> | 
|  | //   <n+x, n+x+1, n+x+2, ...> | 
|  | // where n is the number of elements in the vector and x is half n. | 
|  | // For example: | 
|  | //   <x, x, x+1, x+1, x+2, x+2, ...> | 
|  | //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...> | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above forms. | 
|  | static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | unsigned HalfSize = Indices.size() / 2; | 
|  | SDValue Wt; | 
|  | SDValue Ws; | 
|  | const auto &Begin = Indices.begin(); | 
|  | const auto &End = Indices.end(); | 
|  |  | 
|  | // Check even elements are taken from the left (highest-indexed) elements of | 
|  | // one half or the other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1)) | 
|  | Wt = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1)) | 
|  | Wt = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | // Check odd elements are taken from the left (highest-indexed) elements of | 
|  | // one half or the other and pick an operand accordingly. | 
|  | if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1)) | 
|  | Ws = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize, | 
|  | 1)) | 
|  | Ws = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into PCKEV (if possible). | 
|  | // | 
|  | // PCKEV copies the even elements of each vector into the result vector. | 
|  | // | 
|  | // It is possible to lower into PCKEV when the mask consists of two of the | 
|  | // following forms concatenated: | 
|  | //   <0, 2, 4, ...> | 
|  | //   <n, n+2, n+4, ...> | 
|  | // where n is the number of elements in the vector. | 
|  | // For example: | 
|  | //   <0, 2, 4, ..., 0, 2, 4, ...> | 
|  | //   <0, 2, 4, ..., n, n+2, n+4, ...> | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above forms. | 
|  | static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | SDValue Wt; | 
|  | SDValue Ws; | 
|  | const auto &Begin = Indices.begin(); | 
|  | const auto &Mid = Indices.begin() + Indices.size() / 2; | 
|  | const auto &End = Indices.end(); | 
|  |  | 
|  | if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2)) | 
|  | Wt = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2)) | 
|  | Wt = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | if (fitsRegularPattern<int>(Mid, 1, End, 0, 2)) | 
|  | Ws = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2)) | 
|  | Ws = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into PCKOD (if possible). | 
|  | // | 
|  | // PCKOD copies the odd elements of each vector into the result vector. | 
|  | // | 
|  | // It is possible to lower into PCKOD when the mask consists of two of the | 
|  | // following forms concatenated: | 
|  | //   <1, 3, 5, ...> | 
|  | //   <n+1, n+3, n+5, ...> | 
|  | // where n is the number of elements in the vector. | 
|  | // For example: | 
|  | //   <1, 3, 5, ..., 1, 3, 5, ...> | 
|  | //   <1, 3, 5, ..., n+1, n+3, n+5, ...> | 
|  | // | 
|  | // When undef's appear in the mask they are treated as if they were whatever | 
|  | // value is necessary in order to fit the above forms. | 
|  | static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | assert((Indices.size() % 2) == 0); | 
|  |  | 
|  | SDValue Wt; | 
|  | SDValue Ws; | 
|  | const auto &Begin = Indices.begin(); | 
|  | const auto &Mid = Indices.begin() + Indices.size() / 2; | 
|  | const auto &End = Indices.end(); | 
|  |  | 
|  | if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2)) | 
|  | Wt = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2)) | 
|  | Wt = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | if (fitsRegularPattern<int>(Mid, 1, End, 1, 2)) | 
|  | Ws = Op->getOperand(0); | 
|  | else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2)) | 
|  | Ws = Op->getOperand(1); | 
|  | else | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into VSHF. | 
|  | // | 
|  | // This mostly consists of converting the shuffle indices in Indices into a | 
|  | // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is | 
|  | // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example, | 
|  | // if the type is v8i16 and all the indices are less than 8 then the second | 
|  | // operand is unused and can be replaced with anything. We choose to replace it | 
|  | // with the used operand since this reduces the number of instructions overall. | 
|  | static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy, | 
|  | SmallVector<int, 16> Indices, | 
|  | SelectionDAG &DAG) { | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | SDValue Op0; | 
|  | SDValue Op1; | 
|  | EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger(); | 
|  | EVT MaskEltTy = MaskVecTy.getVectorElementType(); | 
|  | bool Using1stVec = false; | 
|  | bool Using2ndVec = false; | 
|  | SDLoc DL(Op); | 
|  | int ResTyNumElts = ResTy.getVectorNumElements(); | 
|  |  | 
|  | for (int i = 0; i < ResTyNumElts; ++i) { | 
|  | // Idx == -1 means UNDEF | 
|  | int Idx = Indices[i]; | 
|  |  | 
|  | if (0 <= Idx && Idx < ResTyNumElts) | 
|  | Using1stVec = true; | 
|  | if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2) | 
|  | Using2ndVec = true; | 
|  | } | 
|  |  | 
|  | for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end(); | 
|  | ++I) | 
|  | Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy)); | 
|  |  | 
|  | SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops); | 
|  |  | 
|  | if (Using1stVec && Using2ndVec) { | 
|  | Op0 = Op->getOperand(0); | 
|  | Op1 = Op->getOperand(1); | 
|  | } else if (Using1stVec) | 
|  | Op0 = Op1 = Op->getOperand(0); | 
|  | else if (Using2ndVec) | 
|  | Op0 = Op1 = Op->getOperand(1); | 
|  | else | 
|  | llvm_unreachable("shuffle vector mask references neither vector operand?"); | 
|  |  | 
|  | // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion. | 
|  | // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11> | 
|  | // VSHF concatenates the vectors in a bitwise fashion: | 
|  | // <0b00, 0b01> + <0b10, 0b11> -> | 
|  | // 0b0100       + 0b1110       -> 0b01001110 | 
|  | //                                <0b10, 0b11, 0b00, 0b01> | 
|  | // We must therefore swap the operands to get the correct result. | 
|  | return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0); | 
|  | } | 
|  |  | 
|  | // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the | 
|  | // indices in the shuffle. | 
|  | SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op); | 
|  | EVT ResTy = Op->getValueType(0); | 
|  |  | 
|  | if (!ResTy.is128BitVector()) | 
|  | return SDValue(); | 
|  |  | 
|  | int ResTyNumElts = ResTy.getVectorNumElements(); | 
|  | SmallVector<int, 16> Indices; | 
|  |  | 
|  | for (int i = 0; i < ResTyNumElts; ++i) | 
|  | Indices.push_back(Node->getMaskElt(i)); | 
|  |  | 
|  | // splati.[bhwd] is preferable to the others but is matched from | 
|  | // MipsISD::VSHF. | 
|  | if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG)) | 
|  | return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG); | 
|  | SDValue Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG))) | 
|  | return Result; | 
|  | return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | // $bb: | 
|  | //  bposge32_pseudo $vr0 | 
|  | //  => | 
|  | // $bb: | 
|  | //  bposge32 $tbb | 
|  | // $fbb: | 
|  | //  li $vr2, 0 | 
|  | //  b $sink | 
|  | // $tbb: | 
|  | //  li $vr1, 1 | 
|  | // $sink: | 
|  | //  $vr0 = phi($vr2, $fbb, $vr1, $tbb) | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | const TargetRegisterClass *RC = &Mips::GPR32RegClass; | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = std::next(MachineFunction::iterator(BB)); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, FBB); | 
|  | F->insert(It, TBB); | 
|  | F->insert(It, Sink); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to Sink. | 
|  | Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), | 
|  | BB->end()); | 
|  | Sink->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add successors. | 
|  | BB->addSuccessor(FBB); | 
|  | BB->addSuccessor(TBB); | 
|  | FBB->addSuccessor(Sink); | 
|  | TBB->addSuccessor(Sink); | 
|  |  | 
|  | // Insert the real bposge32 instruction to $BB. | 
|  | BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB); | 
|  | // Insert the real bposge32c instruction to $BB. | 
|  | BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB); | 
|  |  | 
|  | // Fill $FBB. | 
|  | unsigned VR2 = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2) | 
|  | .addReg(Mips::ZERO).addImm(0); | 
|  | BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); | 
|  |  | 
|  | // Fill $TBB. | 
|  | unsigned VR1 = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1) | 
|  | .addReg(Mips::ZERO).addImm(1); | 
|  |  | 
|  | // Insert phi function to $Sink. | 
|  | BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), | 
|  | MI.getOperand(0).getReg()) | 
|  | .addReg(VR2) | 
|  | .addMBB(FBB) | 
|  | .addReg(VR1) | 
|  | .addMBB(TBB); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return Sink; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo( | 
|  | MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const { | 
|  | // $bb: | 
|  | //  vany_nonzero $rd, $ws | 
|  | //  => | 
|  | // $bb: | 
|  | //  bnz.b $ws, $tbb | 
|  | //  b $fbb | 
|  | // $fbb: | 
|  | //  li $rd1, 0 | 
|  | //  b $sink | 
|  | // $tbb: | 
|  | //  li $rd2, 1 | 
|  | // $sink: | 
|  | //  $rd = phi($rd1, $fbb, $rd2, $tbb) | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | const TargetRegisterClass *RC = &Mips::GPR32RegClass; | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | MachineFunction::iterator It = std::next(MachineFunction::iterator(BB)); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB); | 
|  | F->insert(It, FBB); | 
|  | F->insert(It, TBB); | 
|  | F->insert(It, Sink); | 
|  |  | 
|  | // Transfer the remainder of BB and its successor edges to Sink. | 
|  | Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), | 
|  | BB->end()); | 
|  | Sink->transferSuccessorsAndUpdatePHIs(BB); | 
|  |  | 
|  | // Add successors. | 
|  | BB->addSuccessor(FBB); | 
|  | BB->addSuccessor(TBB); | 
|  | FBB->addSuccessor(Sink); | 
|  | TBB->addSuccessor(Sink); | 
|  |  | 
|  | // Insert the real bnz.b instruction to $BB. | 
|  | BuildMI(BB, DL, TII->get(BranchOp)) | 
|  | .addReg(MI.getOperand(1).getReg()) | 
|  | .addMBB(TBB); | 
|  |  | 
|  | // Fill $FBB. | 
|  | unsigned RD1 = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1) | 
|  | .addReg(Mips::ZERO).addImm(0); | 
|  | BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); | 
|  |  | 
|  | // Fill $TBB. | 
|  | unsigned RD2 = RegInfo.createVirtualRegister(RC); | 
|  | BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2) | 
|  | .addReg(Mips::ZERO).addImm(1); | 
|  |  | 
|  | // Insert phi function to $Sink. | 
|  | BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), | 
|  | MI.getOperand(0).getReg()) | 
|  | .addReg(RD1) | 
|  | .addMBB(FBB) | 
|  | .addReg(RD2) | 
|  | .addMBB(TBB); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return Sink; | 
|  | } | 
|  |  | 
|  | // Emit the COPY_FW pseudo instruction. | 
|  | // | 
|  | // copy_fw_pseudo $fd, $ws, n | 
|  | // => | 
|  | // copy_u_w $rt, $ws, $n | 
|  | // mtc1     $rt, $fd | 
|  | // | 
|  | // When n is zero, the equivalent operation can be performed with (potentially) | 
|  | // zero instructions due to register overlaps. This optimization is never valid | 
|  | // for lane 1 because it would require FR=0 mode which isn't supported by MSA. | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Fd = MI.getOperand(0).getReg(); | 
|  | unsigned Ws = MI.getOperand(1).getReg(); | 
|  | unsigned Lane = MI.getOperand(2).getImm(); | 
|  |  | 
|  | if (Lane == 0) { | 
|  | unsigned Wt = Ws; | 
|  | if (!Subtarget.useOddSPReg()) { | 
|  | // We must copy to an even-numbered MSA register so that the | 
|  | // single-precision sub-register is also guaranteed to be even-numbered. | 
|  | Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws); | 
|  | } | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo); | 
|  | } else { | 
|  | unsigned Wt = RegInfo.createVirtualRegister( | 
|  | Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass : | 
|  | &Mips::MSA128WEvensRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the COPY_FD pseudo instruction. | 
|  | // | 
|  | // copy_fd_pseudo $fd, $ws, n | 
|  | // => | 
|  | // splati.d $wt, $ws, $n | 
|  | // copy $fd, $wt:sub_64 | 
|  | // | 
|  | // When n is zero, the equivalent operation can be performed with (potentially) | 
|  | // zero instructions due to register overlaps. This optimization is always | 
|  | // valid because FR=1 mode which is the only supported mode in MSA. | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | assert(Subtarget.isFP64bit()); | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | unsigned Fd = MI.getOperand(0).getReg(); | 
|  | unsigned Ws = MI.getOperand(1).getReg(); | 
|  | unsigned Lane = MI.getOperand(2).getImm() * 2; | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | if (Lane == 0) | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64); | 
|  | else { | 
|  | unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the INSERT_FW pseudo instruction. | 
|  | // | 
|  | // insert_fw_pseudo $wd, $wd_in, $n, $fs | 
|  | // => | 
|  | // subreg_to_reg $wt:sub_lo, $fs | 
|  | // insve_w $wd[$n], $wd_in, $wt[0] | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  | unsigned Wd_in = MI.getOperand(1).getReg(); | 
|  | unsigned Lane = MI.getOperand(2).getImm(); | 
|  | unsigned Fs = MI.getOperand(3).getReg(); | 
|  | unsigned Wt = RegInfo.createVirtualRegister( | 
|  | Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass : | 
|  | &Mips::MSA128WEvensRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) | 
|  | .addImm(0) | 
|  | .addReg(Fs) | 
|  | .addImm(Mips::sub_lo); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd) | 
|  | .addReg(Wd_in) | 
|  | .addImm(Lane) | 
|  | .addReg(Wt) | 
|  | .addImm(0); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the INSERT_FD pseudo instruction. | 
|  | // | 
|  | // insert_fd_pseudo $wd, $fs, n | 
|  | // => | 
|  | // subreg_to_reg $wt:sub_64, $fs | 
|  | // insve_d $wd[$n], $wd_in, $wt[0] | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | assert(Subtarget.isFP64bit()); | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  | unsigned Wd_in = MI.getOperand(1).getReg(); | 
|  | unsigned Lane = MI.getOperand(2).getImm(); | 
|  | unsigned Fs = MI.getOperand(3).getReg(); | 
|  | unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) | 
|  | .addImm(0) | 
|  | .addReg(Fs) | 
|  | .addImm(Mips::sub_64); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd) | 
|  | .addReg(Wd_in) | 
|  | .addImm(Lane) | 
|  | .addReg(Wt) | 
|  | .addImm(0); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction. | 
|  | // | 
|  | // For integer: | 
|  | // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs) | 
|  | // => | 
|  | // (SLL $lanetmp1, $lane, <log2size) | 
|  | // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1) | 
|  | // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs) | 
|  | // (NEG $lanetmp2, $lanetmp1) | 
|  | // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2) | 
|  | // | 
|  | // For floating point: | 
|  | // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs) | 
|  | // => | 
|  | // (SUBREG_TO_REG $wt, $fs, <subreg>) | 
|  | // (SLL $lanetmp1, $lane, <log2size) | 
|  | // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1) | 
|  | // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0) | 
|  | // (NEG $lanetmp2, $lanetmp1) | 
|  | // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2) | 
|  | MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX( | 
|  | MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes, | 
|  | bool IsFP) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  | unsigned SrcVecReg = MI.getOperand(1).getReg(); | 
|  | unsigned LaneReg = MI.getOperand(2).getReg(); | 
|  | unsigned SrcValReg = MI.getOperand(3).getReg(); | 
|  |  | 
|  | const TargetRegisterClass *VecRC = nullptr; | 
|  | // FIXME: This should be true for N32 too. | 
|  | const TargetRegisterClass *GPRRC = | 
|  | Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; | 
|  | unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0; | 
|  | unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL; | 
|  | unsigned EltLog2Size; | 
|  | unsigned InsertOp = 0; | 
|  | unsigned InsveOp = 0; | 
|  | switch (EltSizeInBytes) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected size"); | 
|  | case 1: | 
|  | EltLog2Size = 0; | 
|  | InsertOp = Mips::INSERT_B; | 
|  | InsveOp = Mips::INSVE_B; | 
|  | VecRC = &Mips::MSA128BRegClass; | 
|  | break; | 
|  | case 2: | 
|  | EltLog2Size = 1; | 
|  | InsertOp = Mips::INSERT_H; | 
|  | InsveOp = Mips::INSVE_H; | 
|  | VecRC = &Mips::MSA128HRegClass; | 
|  | break; | 
|  | case 4: | 
|  | EltLog2Size = 2; | 
|  | InsertOp = Mips::INSERT_W; | 
|  | InsveOp = Mips::INSVE_W; | 
|  | VecRC = &Mips::MSA128WRegClass; | 
|  | break; | 
|  | case 8: | 
|  | EltLog2Size = 3; | 
|  | InsertOp = Mips::INSERT_D; | 
|  | InsveOp = Mips::INSVE_D; | 
|  | VecRC = &Mips::MSA128DRegClass; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (IsFP) { | 
|  | unsigned Wt = RegInfo.createVirtualRegister(VecRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) | 
|  | .addImm(0) | 
|  | .addReg(SrcValReg) | 
|  | .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo); | 
|  | SrcValReg = Wt; | 
|  | } | 
|  |  | 
|  | // Convert the lane index into a byte index | 
|  | if (EltSizeInBytes != 1) { | 
|  | unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1) | 
|  | .addReg(LaneReg) | 
|  | .addImm(EltLog2Size); | 
|  | LaneReg = LaneTmp1; | 
|  | } | 
|  |  | 
|  | // Rotate bytes around so that the desired lane is element zero | 
|  | unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1) | 
|  | .addReg(SrcVecReg) | 
|  | .addReg(SrcVecReg) | 
|  | .addReg(LaneReg, 0, SubRegIdx); | 
|  |  | 
|  | unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC); | 
|  | if (IsFP) { | 
|  | // Use insve.df to insert to element zero | 
|  | BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2) | 
|  | .addReg(WdTmp1) | 
|  | .addImm(0) | 
|  | .addReg(SrcValReg) | 
|  | .addImm(0); | 
|  | } else { | 
|  | // Use insert.df to insert to element zero | 
|  | BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2) | 
|  | .addReg(WdTmp1) | 
|  | .addReg(SrcValReg) | 
|  | .addImm(0); | 
|  | } | 
|  |  | 
|  | // Rotate elements the rest of the way for a full rotation. | 
|  | // sld.df inteprets $rt modulo the number of columns so we only need to negate | 
|  | // the lane index to do this. | 
|  | unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB), | 
|  | LaneTmp2) | 
|  | .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO) | 
|  | .addReg(LaneReg); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd) | 
|  | .addReg(WdTmp2) | 
|  | .addReg(WdTmp2) | 
|  | .addReg(LaneTmp2, 0, SubRegIdx); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the FILL_FW pseudo instruction. | 
|  | // | 
|  | // fill_fw_pseudo $wd, $fs | 
|  | // => | 
|  | // implicit_def $wt1 | 
|  | // insert_subreg $wt2:subreg_lo, $wt1, $fs | 
|  | // splati.w $wd, $wt2[0] | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitFILL_FW(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  | unsigned Fs = MI.getOperand(1).getReg(); | 
|  | unsigned Wt1 = RegInfo.createVirtualRegister( | 
|  | Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass | 
|  | : &Mips::MSA128WEvensRegClass); | 
|  | unsigned Wt2 = RegInfo.createVirtualRegister( | 
|  | Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass | 
|  | : &Mips::MSA128WEvensRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2) | 
|  | .addReg(Wt1) | 
|  | .addReg(Fs) | 
|  | .addImm(Mips::sub_lo); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the FILL_FD pseudo instruction. | 
|  | // | 
|  | // fill_fd_pseudo $wd, $fs | 
|  | // => | 
|  | // implicit_def $wt1 | 
|  | // insert_subreg $wt2:subreg_64, $wt1, $fs | 
|  | // splati.d $wd, $wt2[0] | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitFILL_FD(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | assert(Subtarget.isFP64bit()); | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  | unsigned Fs = MI.getOperand(1).getReg(); | 
|  | unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); | 
|  | unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2) | 
|  | .addReg(Wt1) | 
|  | .addReg(Fs) | 
|  | .addImm(Mips::sub_64); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA | 
|  | // register. | 
|  | // | 
|  | // STF16 MSA128F16:$wd, mem_simm10:$addr | 
|  | // => | 
|  | //  copy_u.h $rtemp,$wd[0] | 
|  | //  sh $rtemp, $addr | 
|  | // | 
|  | // Safety: We can't use st.h & co as they would over write the memory after | 
|  | // the destination. It would require half floats be allocated 16 bytes(!) of | 
|  | // space. | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Ws = MI.getOperand(0).getReg(); | 
|  | unsigned Rt = MI.getOperand(1).getReg(); | 
|  | const MachineMemOperand &MMO = **MI.memoperands_begin(); | 
|  | unsigned Imm = MMO.getOffset(); | 
|  |  | 
|  | // Caution: A load via the GOT can expand to a GPR32 operand, a load via | 
|  | //          spill and reload can expand as a GPR64 operand. Examine the | 
|  | //          operand in detail and default to ABI. | 
|  | const TargetRegisterClass *RC = | 
|  | MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg()) | 
|  | : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass | 
|  | : &Mips::GPR64RegClass); | 
|  | const bool UsingMips32 = RC == &Mips::GPR32RegClass; | 
|  | unsigned Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass); | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0); | 
|  | if(!UsingMips32) { | 
|  | unsigned Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp) | 
|  | .addImm(0) | 
|  | .addReg(Rs) | 
|  | .addImm(Mips::sub_32); | 
|  | Rs = Tmp; | 
|  | } | 
|  | BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64)) | 
|  | .addReg(Rs) | 
|  | .addReg(Rt) | 
|  | .addImm(Imm) | 
|  | .addMemOperand(BB->getParent()->getMachineMemOperand( | 
|  | &MMO, MMO.getOffset(), MMO.getSize())); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register. | 
|  | // | 
|  | // LD_F16 MSA128F16:$wd, mem_simm10:$addr | 
|  | // => | 
|  | //  lh $rtemp, $addr | 
|  | //  fill.h $wd, $rtemp | 
|  | // | 
|  | // Safety: We can't use ld.h & co as they over-read from the source. | 
|  | // Additionally, if the address is not modulo 16, 2 cases can occur: | 
|  | //  a) Segmentation fault as the load instruction reads from a memory page | 
|  | //     memory it's not supposed to. | 
|  | //  b) The load crosses an implementation specific boundary, requiring OS | 
|  | //     intervention. | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // Caution: A load via the GOT can expand to a GPR32 operand, a load via | 
|  | //          spill and reload can expand as a GPR64 operand. Examine the | 
|  | //          operand in detail and default to ABI. | 
|  | const TargetRegisterClass *RC = | 
|  | MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg()) | 
|  | : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass | 
|  | : &Mips::GPR64RegClass); | 
|  |  | 
|  | const bool UsingMips32 = RC == &Mips::GPR32RegClass; | 
|  | unsigned Rt = RegInfo.createVirtualRegister(RC); | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt); | 
|  | for (unsigned i = 1; i < MI.getNumOperands(); i++) | 
|  | MIB.add(MI.getOperand(i)); | 
|  |  | 
|  | if(!UsingMips32) { | 
|  | unsigned Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32); | 
|  | Rt = Tmp; | 
|  | } | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the FPROUND_PSEUDO instruction. | 
|  | // | 
|  | // Round an FGR64Opnd, FGR32Opnd to an f16. | 
|  | // | 
|  | // Safety: Cycle the operand through the GPRs so the result always ends up | 
|  | //         the correct MSA register. | 
|  | // | 
|  | // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs | 
|  | //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register | 
|  | //        (which they can be, as the MSA registers are defined to alias the | 
|  | //        FPU's 64 bit and 32 bit registers) the result can be accessed using | 
|  | //        the correct register class. That requires operands be tie-able across | 
|  | //        register classes which have a sub/super register class relationship. | 
|  | // | 
|  | // For FPG32Opnd: | 
|  | // | 
|  | // FPROUND MSA128F16:$wd, FGR32Opnd:$fs | 
|  | // => | 
|  | //  mfc1 $rtemp, $fs | 
|  | //  fill.w $rtemp, $wtemp | 
|  | //  fexdo.w $wd, $wtemp, $wtemp | 
|  | // | 
|  | // For FPG64Opnd on mips32r2+: | 
|  | // | 
|  | // FPROUND MSA128F16:$wd, FGR64Opnd:$fs | 
|  | // => | 
|  | //  mfc1 $rtemp, $fs | 
|  | //  fill.w $rtemp, $wtemp | 
|  | //  mfhc1 $rtemp2, $fs | 
|  | //  insert.w $wtemp[1], $rtemp2 | 
|  | //  insert.w $wtemp[3], $rtemp2 | 
|  | //  fexdo.w $wtemp2, $wtemp, $wtemp | 
|  | //  fexdo.h $wd, $temp2, $temp2 | 
|  | // | 
|  | // For FGR64Opnd on mips64r2+: | 
|  | // | 
|  | // FPROUND MSA128F16:$wd, FGR64Opnd:$fs | 
|  | // => | 
|  | //  dmfc1 $rtemp, $fs | 
|  | //  fill.d $rtemp, $wtemp | 
|  | //  fexdo.w $wtemp2, $wtemp, $wtemp | 
|  | //  fexdo.h $wd, $wtemp2, $wtemp2 | 
|  | // | 
|  | // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the | 
|  | //              undef bits are "just right" and the exception enable bits are | 
|  | //              set. By using fill.w to replicate $fs into all elements over | 
|  | //              insert.w for one element, we avoid that potiential case. If | 
|  | //              fexdo.[hw] causes an exception in, the exception is valid and it | 
|  | //              occurs for all elements. | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI, | 
|  | MachineBasicBlock *BB, | 
|  | bool IsFGR64) const { | 
|  |  | 
|  | // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous | 
|  | // here. It's technically doable to support MIPS32 here, but the ISA forbids | 
|  | // it. | 
|  | assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); | 
|  |  | 
|  | bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; | 
|  | bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Wd = MI.getOperand(0).getReg(); | 
|  | unsigned Fs = MI.getOperand(1).getReg(); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); | 
|  | const TargetRegisterClass *GPRRC = | 
|  | IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; | 
|  | unsigned MFC1Opc = IsFGR64onMips64 | 
|  | ? Mips::DMFC1 | 
|  | : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1); | 
|  | unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W; | 
|  |  | 
|  | // Perform the register class copy as mentioned above. | 
|  | unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs); | 
|  | BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp); | 
|  | unsigned WPHI = Wtemp; | 
|  |  | 
|  | if (IsFGR64onMips32) { | 
|  | unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs); | 
|  | unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); | 
|  | unsigned Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2) | 
|  | .addReg(Wtemp) | 
|  | .addReg(Rtemp2) | 
|  | .addImm(1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3) | 
|  | .addReg(Wtemp2) | 
|  | .addReg(Rtemp2) | 
|  | .addImm(3); | 
|  | WPHI = Wtemp3; | 
|  | } | 
|  |  | 
|  | if (IsFGR64) { | 
|  | unsigned Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2) | 
|  | .addReg(WPHI) | 
|  | .addReg(WPHI); | 
|  | WPHI = Wtemp2; | 
|  | } | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the FPEXTEND_PSEUDO instruction. | 
|  | // | 
|  | // Expand an f16 to either a FGR32Opnd or FGR64Opnd. | 
|  | // | 
|  | // Safety: Cycle the result through the GPRs so the result always ends up | 
|  | //         the correct floating point register. | 
|  | // | 
|  | // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd | 
|  | //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register | 
|  | //        (which they can be, as the MSA registers are defined to alias the | 
|  | //        FPU's 64 bit and 32 bit registers) the result can be accessed using | 
|  | //        the correct register class. That requires operands be tie-able across | 
|  | //        register classes which have a sub/super register class relationship. I | 
|  | //        haven't checked. | 
|  | // | 
|  | // For FGR32Opnd: | 
|  | // | 
|  | // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws | 
|  | // => | 
|  | //  fexupr.w $wtemp, $ws | 
|  | //  copy_s.w $rtemp, $ws[0] | 
|  | //  mtc1 $rtemp, $fd | 
|  | // | 
|  | // For FGR64Opnd on Mips64: | 
|  | // | 
|  | // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws | 
|  | // => | 
|  | //  fexupr.w $wtemp, $ws | 
|  | //  fexupr.d $wtemp2, $wtemp | 
|  | //  copy_s.d $rtemp, $wtemp2s[0] | 
|  | //  dmtc1 $rtemp, $fd | 
|  | // | 
|  | // For FGR64Opnd on Mips32: | 
|  | // | 
|  | // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws | 
|  | // => | 
|  | //  fexupr.w $wtemp, $ws | 
|  | //  fexupr.d $wtemp2, $wtemp | 
|  | //  copy_s.w $rtemp, $wtemp2[0] | 
|  | //  mtc1 $rtemp, $ftemp | 
|  | //  copy_s.w $rtemp2, $wtemp2[1] | 
|  | //  $fd = mthc1 $rtemp2, $ftemp | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI, | 
|  | MachineBasicBlock *BB, | 
|  | bool IsFGR64) const { | 
|  |  | 
|  | // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous | 
|  | // here. It's technically doable to support MIPS32 here, but the ISA forbids | 
|  | // it. | 
|  | assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); | 
|  |  | 
|  | bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; | 
|  | bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; | 
|  |  | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  | unsigned Fd = MI.getOperand(0).getReg(); | 
|  | unsigned Ws = MI.getOperand(1).getReg(); | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *GPRRC = | 
|  | IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; | 
|  | unsigned MTC1Opc = IsFGR64onMips64 | 
|  | ? Mips::DMTC1 | 
|  | : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1); | 
|  | unsigned COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W; | 
|  |  | 
|  | unsigned Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); | 
|  | unsigned WPHI = Wtemp; | 
|  |  | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws); | 
|  | if (IsFGR64) { | 
|  | WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp); | 
|  | } | 
|  |  | 
|  | // Perform the safety regclass copy mentioned above. | 
|  | unsigned Rtemp = RegInfo.createVirtualRegister(GPRRC); | 
|  | unsigned FPRPHI = IsFGR64onMips32 | 
|  | ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass) | 
|  | : Fd; | 
|  | BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0); | 
|  | BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp); | 
|  |  | 
|  | if (IsFGR64onMips32) { | 
|  | unsigned Rtemp2 = RegInfo.createVirtualRegister(GPRRC); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2) | 
|  | .addReg(WPHI) | 
|  | .addImm(1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd) | 
|  | .addReg(FPRPHI) | 
|  | .addReg(Rtemp2); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the FEXP2_W_1 pseudo instructions. | 
|  | // | 
|  | // fexp2_w_1_pseudo $wd, $wt | 
|  | // => | 
|  | // ldi.w $ws, 1 | 
|  | // fexp2.w $wd, $ws, $wt | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = &Mips::MSA128WRegClass; | 
|  | unsigned Ws1 = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Ws2 = RegInfo.createVirtualRegister(RC); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | // Splat 1.0 into a vector | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1); | 
|  |  | 
|  | // Emit 1.0 * fexp2(Wt) | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg()) | 
|  | .addReg(Ws2) | 
|  | .addReg(MI.getOperand(1).getReg()); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Emit the FEXP2_D_1 pseudo instructions. | 
|  | // | 
|  | // fexp2_d_1_pseudo $wd, $wt | 
|  | // => | 
|  | // ldi.d $ws, 1 | 
|  | // fexp2.d $wd, $ws, $wt | 
|  | MachineBasicBlock * | 
|  | MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI, | 
|  | MachineBasicBlock *BB) const { | 
|  | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  | MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = &Mips::MSA128DRegClass; | 
|  | unsigned Ws1 = RegInfo.createVirtualRegister(RC); | 
|  | unsigned Ws2 = RegInfo.createVirtualRegister(RC); | 
|  | DebugLoc DL = MI.getDebugLoc(); | 
|  |  | 
|  | // Splat 1.0 into a vector | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1); | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1); | 
|  |  | 
|  | // Emit 1.0 * fexp2(Wt) | 
|  | BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg()) | 
|  | .addReg(Ws2) | 
|  | .addReg(MI.getOperand(1).getReg()); | 
|  |  | 
|  | MI.eraseFromParent(); // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } |