|  | //===- LiveInterval.cpp - Live Interval Representation --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the LiveRange and LiveInterval classes.  Given some | 
|  | // numbering of each the machine instructions an interval [i, j) is said to be a | 
|  | // live range for register v if there is no instruction with number j' >= j | 
|  | // such that v is live at j' and there is no instruction with number i' < i such | 
|  | // that v is live at i'. In this implementation ranges can have holes, | 
|  | // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each | 
|  | // individual segment is represented as an instance of LiveRange::Segment, | 
|  | // and the whole range is represented as an instance of LiveRange. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/LiveInterval.h" | 
|  | #include "LiveRangeUtils.h" | 
|  | #include "RegisterCoalescer.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Implementation of various methods necessary for calculation of live ranges. | 
|  | // The implementation of the methods abstracts from the concrete type of the | 
|  | // segment collection. | 
|  | // | 
|  | // Implementation of the class follows the Template design pattern. The base | 
|  | // class contains generic algorithms that call collection-specific methods, | 
|  | // which are provided in concrete subclasses. In order to avoid virtual calls | 
|  | // these methods are provided by means of C++ template instantiation. | 
|  | // The base class calls the methods of the subclass through method impl(), | 
|  | // which casts 'this' pointer to the type of the subclass. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | template <typename ImplT, typename IteratorT, typename CollectionT> | 
|  | class CalcLiveRangeUtilBase { | 
|  | protected: | 
|  | LiveRange *LR; | 
|  |  | 
|  | protected: | 
|  | CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} | 
|  |  | 
|  | public: | 
|  | using Segment = LiveRange::Segment; | 
|  | using iterator = IteratorT; | 
|  |  | 
|  | /// A counterpart of LiveRange::createDeadDef: Make sure the range has a | 
|  | /// value defined at @p Def. | 
|  | /// If @p ForVNI is null, and there is no value defined at @p Def, a new | 
|  | /// value will be allocated using @p VNInfoAllocator. | 
|  | /// If @p ForVNI is null, the return value is the value defined at @p Def, | 
|  | /// either a pre-existing one, or the one newly created. | 
|  | /// If @p ForVNI is not null, then @p Def should be the location where | 
|  | /// @p ForVNI is defined. If the range does not have a value defined at | 
|  | /// @p Def, the value @p ForVNI will be used instead of allocating a new | 
|  | /// one. If the range already has a value defined at @p Def, it must be | 
|  | /// same as @p ForVNI. In either case, @p ForVNI will be the return value. | 
|  | VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator, | 
|  | VNInfo *ForVNI) { | 
|  | assert(!Def.isDead() && "Cannot define a value at the dead slot"); | 
|  | assert((!ForVNI || ForVNI->def == Def) && | 
|  | "If ForVNI is specified, it must match Def"); | 
|  | iterator I = impl().find(Def); | 
|  | if (I == segments().end()) { | 
|  | VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); | 
|  | impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); | 
|  | return VNI; | 
|  | } | 
|  |  | 
|  | Segment *S = segmentAt(I); | 
|  | if (SlotIndex::isSameInstr(Def, S->start)) { | 
|  | assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch"); | 
|  | assert(S->valno->def == S->start && "Inconsistent existing value def"); | 
|  |  | 
|  | // It is possible to have both normal and early-clobber defs of the same | 
|  | // register on an instruction. It doesn't make a lot of sense, but it is | 
|  | // possible to specify in inline assembly. | 
|  | // | 
|  | // Just convert everything to early-clobber. | 
|  | Def = std::min(Def, S->start); | 
|  | if (Def != S->start) | 
|  | S->start = S->valno->def = Def; | 
|  | return S->valno; | 
|  | } | 
|  | assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); | 
|  | VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); | 
|  | segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); | 
|  | return VNI; | 
|  | } | 
|  |  | 
|  | VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { | 
|  | if (segments().empty()) | 
|  | return nullptr; | 
|  | iterator I = | 
|  | impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); | 
|  | if (I == segments().begin()) | 
|  | return nullptr; | 
|  | --I; | 
|  | if (I->end <= StartIdx) | 
|  | return nullptr; | 
|  | if (I->end < Use) | 
|  | extendSegmentEndTo(I, Use); | 
|  | return I->valno; | 
|  | } | 
|  |  | 
|  | std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, | 
|  | SlotIndex StartIdx, SlotIndex Use) { | 
|  | if (segments().empty()) | 
|  | return std::make_pair(nullptr, false); | 
|  | SlotIndex BeforeUse = Use.getPrevSlot(); | 
|  | iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr)); | 
|  | if (I == segments().begin()) | 
|  | return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); | 
|  | --I; | 
|  | if (I->end <= StartIdx) | 
|  | return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); | 
|  | if (I->end < Use) { | 
|  | if (LR->isUndefIn(Undefs, I->end, BeforeUse)) | 
|  | return std::make_pair(nullptr, true); | 
|  | extendSegmentEndTo(I, Use); | 
|  | } | 
|  | return std::make_pair(I->valno, false); | 
|  | } | 
|  |  | 
|  | /// This method is used when we want to extend the segment specified | 
|  | /// by I to end at the specified endpoint. To do this, we should | 
|  | /// merge and eliminate all segments that this will overlap | 
|  | /// with. The iterator is not invalidated. | 
|  | void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { | 
|  | assert(I != segments().end() && "Not a valid segment!"); | 
|  | Segment *S = segmentAt(I); | 
|  | VNInfo *ValNo = I->valno; | 
|  |  | 
|  | // Search for the first segment that we can't merge with. | 
|  | iterator MergeTo = std::next(I); | 
|  | for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) | 
|  | assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); | 
|  |  | 
|  | // If NewEnd was in the middle of a segment, make sure to get its endpoint. | 
|  | S->end = std::max(NewEnd, std::prev(MergeTo)->end); | 
|  |  | 
|  | // If the newly formed segment now touches the segment after it and if they | 
|  | // have the same value number, merge the two segments into one segment. | 
|  | if (MergeTo != segments().end() && MergeTo->start <= I->end && | 
|  | MergeTo->valno == ValNo) { | 
|  | S->end = MergeTo->end; | 
|  | ++MergeTo; | 
|  | } | 
|  |  | 
|  | // Erase any dead segments. | 
|  | segments().erase(std::next(I), MergeTo); | 
|  | } | 
|  |  | 
|  | /// This method is used when we want to extend the segment specified | 
|  | /// by I to start at the specified endpoint.  To do this, we should | 
|  | /// merge and eliminate all segments that this will overlap with. | 
|  | iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { | 
|  | assert(I != segments().end() && "Not a valid segment!"); | 
|  | Segment *S = segmentAt(I); | 
|  | VNInfo *ValNo = I->valno; | 
|  |  | 
|  | // Search for the first segment that we can't merge with. | 
|  | iterator MergeTo = I; | 
|  | do { | 
|  | if (MergeTo == segments().begin()) { | 
|  | S->start = NewStart; | 
|  | segments().erase(MergeTo, I); | 
|  | return I; | 
|  | } | 
|  | assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); | 
|  | --MergeTo; | 
|  | } while (NewStart <= MergeTo->start); | 
|  |  | 
|  | // If we start in the middle of another segment, just delete a range and | 
|  | // extend that segment. | 
|  | if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { | 
|  | segmentAt(MergeTo)->end = S->end; | 
|  | } else { | 
|  | // Otherwise, extend the segment right after. | 
|  | ++MergeTo; | 
|  | Segment *MergeToSeg = segmentAt(MergeTo); | 
|  | MergeToSeg->start = NewStart; | 
|  | MergeToSeg->end = S->end; | 
|  | } | 
|  |  | 
|  | segments().erase(std::next(MergeTo), std::next(I)); | 
|  | return MergeTo; | 
|  | } | 
|  |  | 
|  | iterator addSegment(Segment S) { | 
|  | SlotIndex Start = S.start, End = S.end; | 
|  | iterator I = impl().findInsertPos(S); | 
|  |  | 
|  | // If the inserted segment starts in the middle or right at the end of | 
|  | // another segment, just extend that segment to contain the segment of S. | 
|  | if (I != segments().begin()) { | 
|  | iterator B = std::prev(I); | 
|  | if (S.valno == B->valno) { | 
|  | if (B->start <= Start && B->end >= Start) { | 
|  | extendSegmentEndTo(B, End); | 
|  | return B; | 
|  | } | 
|  | } else { | 
|  | // Check to make sure that we are not overlapping two live segments with | 
|  | // different valno's. | 
|  | assert(B->end <= Start && | 
|  | "Cannot overlap two segments with differing ValID's" | 
|  | " (did you def the same reg twice in a MachineInstr?)"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, if this segment ends in the middle of, or right next | 
|  | // to, another segment, merge it into that segment. | 
|  | if (I != segments().end()) { | 
|  | if (S.valno == I->valno) { | 
|  | if (I->start <= End) { | 
|  | I = extendSegmentStartTo(I, Start); | 
|  |  | 
|  | // If S is a complete superset of a segment, we may need to grow its | 
|  | // endpoint as well. | 
|  | if (End > I->end) | 
|  | extendSegmentEndTo(I, End); | 
|  | return I; | 
|  | } | 
|  | } else { | 
|  | // Check to make sure that we are not overlapping two live segments with | 
|  | // different valno's. | 
|  | assert(I->start >= End && | 
|  | "Cannot overlap two segments with differing ValID's"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, this is just a new segment that doesn't interact with | 
|  | // anything. | 
|  | // Insert it. | 
|  | return segments().insert(I, S); | 
|  | } | 
|  |  | 
|  | private: | 
|  | ImplT &impl() { return *static_cast<ImplT *>(this); } | 
|  |  | 
|  | CollectionT &segments() { return impl().segmentsColl(); } | 
|  |  | 
|  | Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //   Instantiation of the methods for calculation of live ranges | 
|  | //   based on a segment vector. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | class CalcLiveRangeUtilVector; | 
|  | using CalcLiveRangeUtilVectorBase = | 
|  | CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, | 
|  | LiveRange::Segments>; | 
|  |  | 
|  | class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { | 
|  | public: | 
|  | CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} | 
|  |  | 
|  | private: | 
|  | friend CalcLiveRangeUtilVectorBase; | 
|  |  | 
|  | LiveRange::Segments &segmentsColl() { return LR->segments; } | 
|  |  | 
|  | void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } | 
|  |  | 
|  | iterator find(SlotIndex Pos) { return LR->find(Pos); } | 
|  |  | 
|  | iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //   Instantiation of the methods for calculation of live ranges | 
|  | //   based on a segment set. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | class CalcLiveRangeUtilSet; | 
|  | using CalcLiveRangeUtilSetBase = | 
|  | CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, | 
|  | LiveRange::SegmentSet>; | 
|  |  | 
|  | class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { | 
|  | public: | 
|  | CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} | 
|  |  | 
|  | private: | 
|  | friend CalcLiveRangeUtilSetBase; | 
|  |  | 
|  | LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } | 
|  |  | 
|  | void insertAtEnd(const Segment &S) { | 
|  | LR->segmentSet->insert(LR->segmentSet->end(), S); | 
|  | } | 
|  |  | 
|  | iterator find(SlotIndex Pos) { | 
|  | iterator I = | 
|  | LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); | 
|  | if (I == LR->segmentSet->begin()) | 
|  | return I; | 
|  | iterator PrevI = std::prev(I); | 
|  | if (Pos < (*PrevI).end) | 
|  | return PrevI; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | iterator findInsertPos(Segment S) { | 
|  | iterator I = LR->segmentSet->upper_bound(S); | 
|  | if (I != LR->segmentSet->end() && !(S.start < *I)) | 
|  | ++I; | 
|  | return I; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //   LiveRange methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LiveRange::iterator LiveRange::find(SlotIndex Pos) { | 
|  | // This algorithm is basically std::upper_bound. | 
|  | // Unfortunately, std::upper_bound cannot be used with mixed types until we | 
|  | // adopt C++0x. Many libraries can do it, but not all. | 
|  | if (empty() || Pos >= endIndex()) | 
|  | return end(); | 
|  | iterator I = begin(); | 
|  | size_t Len = size(); | 
|  | do { | 
|  | size_t Mid = Len >> 1; | 
|  | if (Pos < I[Mid].end) { | 
|  | Len = Mid; | 
|  | } else { | 
|  | I += Mid + 1; | 
|  | Len -= Mid + 1; | 
|  | } | 
|  | } while (Len); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) { | 
|  | // Use the segment set, if it is available. | 
|  | if (segmentSet != nullptr) | 
|  | return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr); | 
|  | // Otherwise use the segment vector. | 
|  | return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr); | 
|  | } | 
|  |  | 
|  | VNInfo *LiveRange::createDeadDef(VNInfo *VNI) { | 
|  | // Use the segment set, if it is available. | 
|  | if (segmentSet != nullptr) | 
|  | return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI); | 
|  | // Otherwise use the segment vector. | 
|  | return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI); | 
|  | } | 
|  |  | 
|  | // overlaps - Return true if the intersection of the two live ranges is | 
|  | // not empty. | 
|  | // | 
|  | // An example for overlaps(): | 
|  | // | 
|  | // 0: A = ... | 
|  | // 4: B = ... | 
|  | // 8: C = A + B ;; last use of A | 
|  | // | 
|  | // The live ranges should look like: | 
|  | // | 
|  | // A = [3, 11) | 
|  | // B = [7, x) | 
|  | // C = [11, y) | 
|  | // | 
|  | // A->overlaps(C) should return false since we want to be able to join | 
|  | // A and C. | 
|  | // | 
|  | bool LiveRange::overlapsFrom(const LiveRange& other, | 
|  | const_iterator StartPos) const { | 
|  | assert(!empty() && "empty range"); | 
|  | const_iterator i = begin(); | 
|  | const_iterator ie = end(); | 
|  | const_iterator j = StartPos; | 
|  | const_iterator je = other.end(); | 
|  |  | 
|  | assert((StartPos->start <= i->start || StartPos == other.begin()) && | 
|  | StartPos != other.end() && "Bogus start position hint!"); | 
|  |  | 
|  | if (i->start < j->start) { | 
|  | i = std::upper_bound(i, ie, j->start); | 
|  | if (i != begin()) --i; | 
|  | } else if (j->start < i->start) { | 
|  | ++StartPos; | 
|  | if (StartPos != other.end() && StartPos->start <= i->start) { | 
|  | assert(StartPos < other.end() && i < end()); | 
|  | j = std::upper_bound(j, je, i->start); | 
|  | if (j != other.begin()) --j; | 
|  | } | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (j == je) return false; | 
|  |  | 
|  | while (i != ie) { | 
|  | if (i->start > j->start) { | 
|  | std::swap(i, j); | 
|  | std::swap(ie, je); | 
|  | } | 
|  |  | 
|  | if (i->end > j->start) | 
|  | return true; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, | 
|  | const SlotIndexes &Indexes) const { | 
|  | assert(!empty() && "empty range"); | 
|  | if (Other.empty()) | 
|  | return false; | 
|  |  | 
|  | // Use binary searches to find initial positions. | 
|  | const_iterator I = find(Other.beginIndex()); | 
|  | const_iterator IE = end(); | 
|  | if (I == IE) | 
|  | return false; | 
|  | const_iterator J = Other.find(I->start); | 
|  | const_iterator JE = Other.end(); | 
|  | if (J == JE) | 
|  | return false; | 
|  |  | 
|  | while (true) { | 
|  | // J has just been advanced to satisfy: | 
|  | assert(J->end >= I->start); | 
|  | // Check for an overlap. | 
|  | if (J->start < I->end) { | 
|  | // I and J are overlapping. Find the later start. | 
|  | SlotIndex Def = std::max(I->start, J->start); | 
|  | // Allow the overlap if Def is a coalescable copy. | 
|  | if (Def.isBlock() || | 
|  | !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) | 
|  | return true; | 
|  | } | 
|  | // Advance the iterator that ends first to check for more overlaps. | 
|  | if (J->end > I->end) { | 
|  | std::swap(I, J); | 
|  | std::swap(IE, JE); | 
|  | } | 
|  | // Advance J until J->end >= I->start. | 
|  | do | 
|  | if (++J == JE) | 
|  | return false; | 
|  | while (J->end < I->start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// overlaps - Return true if the live range overlaps an interval specified | 
|  | /// by [Start, End). | 
|  | bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { | 
|  | assert(Start < End && "Invalid range"); | 
|  | const_iterator I = std::lower_bound(begin(), end(), End); | 
|  | return I != begin() && (--I)->end > Start; | 
|  | } | 
|  |  | 
|  | bool LiveRange::covers(const LiveRange &Other) const { | 
|  | if (empty()) | 
|  | return Other.empty(); | 
|  |  | 
|  | const_iterator I = begin(); | 
|  | for (const Segment &O : Other.segments) { | 
|  | I = advanceTo(I, O.start); | 
|  | if (I == end() || I->start > O.start) | 
|  | return false; | 
|  |  | 
|  | // Check adjacent live segments and see if we can get behind O.end. | 
|  | while (I->end < O.end) { | 
|  | const_iterator Last = I; | 
|  | // Get next segment and abort if it was not adjacent. | 
|  | ++I; | 
|  | if (I == end() || Last->end != I->start) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ValNo is dead, remove it.  If it is the largest value number, just nuke it | 
|  | /// (and any other deleted values neighboring it), otherwise mark it as ~1U so | 
|  | /// it can be nuked later. | 
|  | void LiveRange::markValNoForDeletion(VNInfo *ValNo) { | 
|  | if (ValNo->id == getNumValNums()-1) { | 
|  | do { | 
|  | valnos.pop_back(); | 
|  | } while (!valnos.empty() && valnos.back()->isUnused()); | 
|  | } else { | 
|  | ValNo->markUnused(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RenumberValues - Renumber all values in order of appearance and delete the | 
|  | /// remaining unused values. | 
|  | void LiveRange::RenumberValues() { | 
|  | SmallPtrSet<VNInfo*, 8> Seen; | 
|  | valnos.clear(); | 
|  | for (const Segment &S : segments) { | 
|  | VNInfo *VNI = S.valno; | 
|  | if (!Seen.insert(VNI).second) | 
|  | continue; | 
|  | assert(!VNI->isUnused() && "Unused valno used by live segment"); | 
|  | VNI->id = (unsigned)valnos.size(); | 
|  | valnos.push_back(VNI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveRange::addSegmentToSet(Segment S) { | 
|  | CalcLiveRangeUtilSet(this).addSegment(S); | 
|  | } | 
|  |  | 
|  | LiveRange::iterator LiveRange::addSegment(Segment S) { | 
|  | // Use the segment set, if it is available. | 
|  | if (segmentSet != nullptr) { | 
|  | addSegmentToSet(S); | 
|  | return end(); | 
|  | } | 
|  | // Otherwise use the segment vector. | 
|  | return CalcLiveRangeUtilVector(this).addSegment(S); | 
|  | } | 
|  |  | 
|  | void LiveRange::append(const Segment S) { | 
|  | // Check that the segment belongs to the back of the list. | 
|  | assert(segments.empty() || segments.back().end <= S.start); | 
|  | segments.push_back(S); | 
|  | } | 
|  |  | 
|  | std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs, | 
|  | SlotIndex StartIdx, SlotIndex Kill) { | 
|  | // Use the segment set, if it is available. | 
|  | if (segmentSet != nullptr) | 
|  | return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill); | 
|  | // Otherwise use the segment vector. | 
|  | return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill); | 
|  | } | 
|  |  | 
|  | VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { | 
|  | // Use the segment set, if it is available. | 
|  | if (segmentSet != nullptr) | 
|  | return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); | 
|  | // Otherwise use the segment vector. | 
|  | return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); | 
|  | } | 
|  |  | 
|  | /// Remove the specified segment from this range.  Note that the segment must | 
|  | /// be in a single Segment in its entirety. | 
|  | void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, | 
|  | bool RemoveDeadValNo) { | 
|  | // Find the Segment containing this span. | 
|  | iterator I = find(Start); | 
|  | assert(I != end() && "Segment is not in range!"); | 
|  | assert(I->containsInterval(Start, End) | 
|  | && "Segment is not entirely in range!"); | 
|  |  | 
|  | // If the span we are removing is at the start of the Segment, adjust it. | 
|  | VNInfo *ValNo = I->valno; | 
|  | if (I->start == Start) { | 
|  | if (I->end == End) { | 
|  | if (RemoveDeadValNo) { | 
|  | // Check if val# is dead. | 
|  | bool isDead = true; | 
|  | for (const_iterator II = begin(), EE = end(); II != EE; ++II) | 
|  | if (II != I && II->valno == ValNo) { | 
|  | isDead = false; | 
|  | break; | 
|  | } | 
|  | if (isDead) { | 
|  | // Now that ValNo is dead, remove it. | 
|  | markValNoForDeletion(ValNo); | 
|  | } | 
|  | } | 
|  |  | 
|  | segments.erase(I);  // Removed the whole Segment. | 
|  | } else | 
|  | I->start = End; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise if the span we are removing is at the end of the Segment, | 
|  | // adjust the other way. | 
|  | if (I->end == End) { | 
|  | I->end = Start; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we are splitting the Segment into two pieces. | 
|  | SlotIndex OldEnd = I->end; | 
|  | I->end = Start;   // Trim the old segment. | 
|  |  | 
|  | // Insert the new one. | 
|  | segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); | 
|  | } | 
|  |  | 
|  | /// removeValNo - Remove all the segments defined by the specified value#. | 
|  | /// Also remove the value# from value# list. | 
|  | void LiveRange::removeValNo(VNInfo *ValNo) { | 
|  | if (empty()) return; | 
|  | segments.erase(remove_if(*this, [ValNo](const Segment &S) { | 
|  | return S.valno == ValNo; | 
|  | }), end()); | 
|  | // Now that ValNo is dead, remove it. | 
|  | markValNoForDeletion(ValNo); | 
|  | } | 
|  |  | 
|  | void LiveRange::join(LiveRange &Other, | 
|  | const int *LHSValNoAssignments, | 
|  | const int *RHSValNoAssignments, | 
|  | SmallVectorImpl<VNInfo *> &NewVNInfo) { | 
|  | verify(); | 
|  |  | 
|  | // Determine if any of our values are mapped.  This is uncommon, so we want | 
|  | // to avoid the range scan if not. | 
|  | bool MustMapCurValNos = false; | 
|  | unsigned NumVals = getNumValNums(); | 
|  | unsigned NumNewVals = NewVNInfo.size(); | 
|  | for (unsigned i = 0; i != NumVals; ++i) { | 
|  | unsigned LHSValID = LHSValNoAssignments[i]; | 
|  | if (i != LHSValID || | 
|  | (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { | 
|  | MustMapCurValNos = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have to apply a mapping to our base range assignment, rewrite it now. | 
|  | if (MustMapCurValNos && !empty()) { | 
|  | // Map the first live range. | 
|  |  | 
|  | iterator OutIt = begin(); | 
|  | OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; | 
|  | for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { | 
|  | VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; | 
|  | assert(nextValNo && "Huh?"); | 
|  |  | 
|  | // If this live range has the same value # as its immediate predecessor, | 
|  | // and if they are neighbors, remove one Segment.  This happens when we | 
|  | // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. | 
|  | if (OutIt->valno == nextValNo && OutIt->end == I->start) { | 
|  | OutIt->end = I->end; | 
|  | } else { | 
|  | // Didn't merge. Move OutIt to the next segment, | 
|  | ++OutIt; | 
|  | OutIt->valno = nextValNo; | 
|  | if (OutIt != I) { | 
|  | OutIt->start = I->start; | 
|  | OutIt->end = I->end; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we merge some segments, chop off the end. | 
|  | ++OutIt; | 
|  | segments.erase(OutIt, end()); | 
|  | } | 
|  |  | 
|  | // Rewrite Other values before changing the VNInfo ids. | 
|  | // This can leave Other in an invalid state because we're not coalescing | 
|  | // touching segments that now have identical values. That's OK since Other is | 
|  | // not supposed to be valid after calling join(); | 
|  | for (Segment &S : Other.segments) | 
|  | S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; | 
|  |  | 
|  | // Update val# info. Renumber them and make sure they all belong to this | 
|  | // LiveRange now. Also remove dead val#'s. | 
|  | unsigned NumValNos = 0; | 
|  | for (unsigned i = 0; i < NumNewVals; ++i) { | 
|  | VNInfo *VNI = NewVNInfo[i]; | 
|  | if (VNI) { | 
|  | if (NumValNos >= NumVals) | 
|  | valnos.push_back(VNI); | 
|  | else | 
|  | valnos[NumValNos] = VNI; | 
|  | VNI->id = NumValNos++;  // Renumber val#. | 
|  | } | 
|  | } | 
|  | if (NumNewVals < NumVals) | 
|  | valnos.resize(NumNewVals);  // shrinkify | 
|  |  | 
|  | // Okay, now insert the RHS live segments into the LHS. | 
|  | LiveRangeUpdater Updater(this); | 
|  | for (Segment &S : Other.segments) | 
|  | Updater.add(S); | 
|  | } | 
|  |  | 
|  | /// Merge all of the segments in RHS into this live range as the specified | 
|  | /// value number.  The segments in RHS are allowed to overlap with segments in | 
|  | /// the current range, but only if the overlapping segments have the | 
|  | /// specified value number. | 
|  | void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, | 
|  | VNInfo *LHSValNo) { | 
|  | LiveRangeUpdater Updater(this); | 
|  | for (const Segment &S : RHS.segments) | 
|  | Updater.add(S.start, S.end, LHSValNo); | 
|  | } | 
|  |  | 
|  | /// MergeValueInAsValue - Merge all of the live segments of a specific val# | 
|  | /// in RHS into this live range as the specified value number. | 
|  | /// The segments in RHS are allowed to overlap with segments in the | 
|  | /// current range, it will replace the value numbers of the overlaped | 
|  | /// segments with the specified value number. | 
|  | void LiveRange::MergeValueInAsValue(const LiveRange &RHS, | 
|  | const VNInfo *RHSValNo, | 
|  | VNInfo *LHSValNo) { | 
|  | LiveRangeUpdater Updater(this); | 
|  | for (const Segment &S : RHS.segments) | 
|  | if (S.valno == RHSValNo) | 
|  | Updater.add(S.start, S.end, LHSValNo); | 
|  | } | 
|  |  | 
|  | /// MergeValueNumberInto - This method is called when two value nubmers | 
|  | /// are found to be equivalent.  This eliminates V1, replacing all | 
|  | /// segments with the V1 value number with the V2 value number.  This can | 
|  | /// cause merging of V1/V2 values numbers and compaction of the value space. | 
|  | VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { | 
|  | assert(V1 != V2 && "Identical value#'s are always equivalent!"); | 
|  |  | 
|  | // This code actually merges the (numerically) larger value number into the | 
|  | // smaller value number, which is likely to allow us to compactify the value | 
|  | // space.  The only thing we have to be careful of is to preserve the | 
|  | // instruction that defines the result value. | 
|  |  | 
|  | // Make sure V2 is smaller than V1. | 
|  | if (V1->id < V2->id) { | 
|  | V1->copyFrom(*V2); | 
|  | std::swap(V1, V2); | 
|  | } | 
|  |  | 
|  | // Merge V1 segments into V2. | 
|  | for (iterator I = begin(); I != end(); ) { | 
|  | iterator S = I++; | 
|  | if (S->valno != V1) continue;  // Not a V1 Segment. | 
|  |  | 
|  | // Okay, we found a V1 live range.  If it had a previous, touching, V2 live | 
|  | // range, extend it. | 
|  | if (S != begin()) { | 
|  | iterator Prev = S-1; | 
|  | if (Prev->valno == V2 && Prev->end == S->start) { | 
|  | Prev->end = S->end; | 
|  |  | 
|  | // Erase this live-range. | 
|  | segments.erase(S); | 
|  | I = Prev+1; | 
|  | S = Prev; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, now we have a V1 or V2 live range that is maximally merged forward. | 
|  | // Ensure that it is a V2 live-range. | 
|  | S->valno = V2; | 
|  |  | 
|  | // If we can merge it into later V2 segments, do so now.  We ignore any | 
|  | // following V1 segments, as they will be merged in subsequent iterations | 
|  | // of the loop. | 
|  | if (I != end()) { | 
|  | if (I->start == S->end && I->valno == V2) { | 
|  | S->end = I->end; | 
|  | segments.erase(I); | 
|  | I = S+1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that V1 is dead, remove it. | 
|  | markValNoForDeletion(V1); | 
|  |  | 
|  | return V2; | 
|  | } | 
|  |  | 
|  | void LiveRange::flushSegmentSet() { | 
|  | assert(segmentSet != nullptr && "segment set must have been created"); | 
|  | assert( | 
|  | segments.empty() && | 
|  | "segment set can be used only initially before switching to the array"); | 
|  | segments.append(segmentSet->begin(), segmentSet->end()); | 
|  | segmentSet = nullptr; | 
|  | verify(); | 
|  | } | 
|  |  | 
|  | bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { | 
|  | ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); | 
|  | ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); | 
|  |  | 
|  | // If there are no regmask slots, we have nothing to search. | 
|  | if (SlotI == SlotE) | 
|  | return false; | 
|  |  | 
|  | // Start our search at the first segment that ends after the first slot. | 
|  | const_iterator SegmentI = find(*SlotI); | 
|  | const_iterator SegmentE = end(); | 
|  |  | 
|  | // If there are no segments that end after the first slot, we're done. | 
|  | if (SegmentI == SegmentE) | 
|  | return false; | 
|  |  | 
|  | // Look for each slot in the live range. | 
|  | for ( ; SlotI != SlotE; ++SlotI) { | 
|  | // Go to the next segment that ends after the current slot. | 
|  | // The slot may be within a hole in the range. | 
|  | SegmentI = advanceTo(SegmentI, *SlotI); | 
|  | if (SegmentI == SegmentE) | 
|  | return false; | 
|  |  | 
|  | // If this segment contains the slot, we're done. | 
|  | if (SegmentI->contains(*SlotI)) | 
|  | return true; | 
|  | // Otherwise, look for the next slot. | 
|  | } | 
|  |  | 
|  | // We didn't find a segment containing any of the slots. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LiveInterval::freeSubRange(SubRange *S) { | 
|  | S->~SubRange(); | 
|  | // Memory was allocated with BumpPtr allocator and is not freed here. | 
|  | } | 
|  |  | 
|  | void LiveInterval::removeEmptySubRanges() { | 
|  | SubRange **NextPtr = &SubRanges; | 
|  | SubRange *I = *NextPtr; | 
|  | while (I != nullptr) { | 
|  | if (!I->empty()) { | 
|  | NextPtr = &I->Next; | 
|  | I = *NextPtr; | 
|  | continue; | 
|  | } | 
|  | // Skip empty subranges until we find the first nonempty one. | 
|  | do { | 
|  | SubRange *Next = I->Next; | 
|  | freeSubRange(I); | 
|  | I = Next; | 
|  | } while (I != nullptr && I->empty()); | 
|  | *NextPtr = I; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveInterval::clearSubRanges() { | 
|  | for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { | 
|  | Next = I->Next; | 
|  | freeSubRange(I); | 
|  | } | 
|  | SubRanges = nullptr; | 
|  | } | 
|  |  | 
|  | /// For each VNI in \p SR, check whether or not that value defines part | 
|  | /// of the mask describe by \p LaneMask and if not, remove that value | 
|  | /// from \p SR. | 
|  | static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR, | 
|  | LaneBitmask LaneMask, | 
|  | const SlotIndexes &Indexes, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | // Phys reg should not be tracked at subreg level. | 
|  | // Same for noreg (Reg == 0). | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Reg) || !Reg) | 
|  | return; | 
|  | // Remove the values that don't define those lanes. | 
|  | SmallVector<VNInfo *, 8> ToBeRemoved; | 
|  | for (VNInfo *VNI : SR.valnos) { | 
|  | if (VNI->isUnused()) | 
|  | continue; | 
|  | // PHI definitions don't have MI attached, so there is nothing | 
|  | // we can use to strip the VNI. | 
|  | if (VNI->isPHIDef()) | 
|  | continue; | 
|  | const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def); | 
|  | assert(MI && "Cannot find the definition of a value"); | 
|  | bool hasDef = false; | 
|  | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { | 
|  | if (!MOI->isReg() || !MOI->isDef()) | 
|  | continue; | 
|  | if (MOI->getReg() != Reg) | 
|  | continue; | 
|  | if ((TRI.getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) | 
|  | continue; | 
|  | hasDef = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!hasDef) | 
|  | ToBeRemoved.push_back(VNI); | 
|  | } | 
|  | for (VNInfo *VNI : ToBeRemoved) | 
|  | SR.removeValNo(VNI); | 
|  |  | 
|  | assert(!SR.empty() && "At least one value should be defined by this mask"); | 
|  | } | 
|  |  | 
|  | void LiveInterval::refineSubRanges( | 
|  | BumpPtrAllocator &Allocator, LaneBitmask LaneMask, | 
|  | std::function<void(LiveInterval::SubRange &)> Apply, | 
|  | const SlotIndexes &Indexes, const TargetRegisterInfo &TRI) { | 
|  | LaneBitmask ToApply = LaneMask; | 
|  | for (SubRange &SR : subranges()) { | 
|  | LaneBitmask SRMask = SR.LaneMask; | 
|  | LaneBitmask Matching = SRMask & LaneMask; | 
|  | if (Matching.none()) | 
|  | continue; | 
|  |  | 
|  | SubRange *MatchingRange; | 
|  | if (SRMask == Matching) { | 
|  | // The subrange fits (it does not cover bits outside \p LaneMask). | 
|  | MatchingRange = &SR; | 
|  | } else { | 
|  | // We have to split the subrange into a matching and non-matching part. | 
|  | // Reduce lanemask of existing lane to non-matching part. | 
|  | SR.LaneMask = SRMask & ~Matching; | 
|  | // Create a new subrange for the matching part | 
|  | MatchingRange = createSubRangeFrom(Allocator, Matching, SR); | 
|  | // Now that the subrange is split in half, make sure we | 
|  | // only keep in the subranges the VNIs that touch the related half. | 
|  | stripValuesNotDefiningMask(reg, *MatchingRange, Matching, Indexes, TRI); | 
|  | stripValuesNotDefiningMask(reg, SR, SR.LaneMask, Indexes, TRI); | 
|  | } | 
|  | Apply(*MatchingRange); | 
|  | ToApply &= ~Matching; | 
|  | } | 
|  | // Create a new subrange if there are uncovered bits left. | 
|  | if (ToApply.any()) { | 
|  | SubRange *NewRange = createSubRange(Allocator, ToApply); | 
|  | Apply(*NewRange); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LiveInterval::getSize() const { | 
|  | unsigned Sum = 0; | 
|  | for (const Segment &S : segments) | 
|  | Sum += S.start.distance(S.end); | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  | void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, | 
|  | LaneBitmask LaneMask, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const SlotIndexes &Indexes) const { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(reg)); | 
|  | LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg); | 
|  | assert((VRegMask & LaneMask).any()); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | for (const MachineOperand &MO : MRI.def_operands(reg)) { | 
|  | if (!MO.isUndef()) | 
|  | continue; | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | assert(SubReg != 0 && "Undef should only be set on subreg defs"); | 
|  | LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg); | 
|  | LaneBitmask UndefMask = VRegMask & ~DefMask; | 
|  | if ((UndefMask & LaneMask).any()) { | 
|  | const MachineInstr &MI = *MO.getParent(); | 
|  | bool EarlyClobber = MO.isEarlyClobber(); | 
|  | SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber); | 
|  | Undefs.push_back(Pos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) { | 
|  | return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')'; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { | 
|  | dbgs() << *this << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void LiveRange::print(raw_ostream &OS) const { | 
|  | if (empty()) | 
|  | OS << "EMPTY"; | 
|  | else { | 
|  | for (const Segment &S : segments) { | 
|  | OS << S; | 
|  | assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print value number info. | 
|  | if (getNumValNums()) { | 
|  | OS << "  "; | 
|  | unsigned vnum = 0; | 
|  | for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; | 
|  | ++i, ++vnum) { | 
|  | const VNInfo *vni = *i; | 
|  | if (vnum) OS << ' '; | 
|  | OS << vnum << '@'; | 
|  | if (vni->isUnused()) { | 
|  | OS << 'x'; | 
|  | } else { | 
|  | OS << vni->def; | 
|  | if (vni->isPHIDef()) | 
|  | OS << "-phi"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveInterval::SubRange::print(raw_ostream &OS) const { | 
|  | OS << " L" << PrintLaneMask(LaneMask) << ' ' | 
|  | << static_cast<const LiveRange&>(*this); | 
|  | } | 
|  |  | 
|  | void LiveInterval::print(raw_ostream &OS) const { | 
|  | OS << printReg(reg) << ' '; | 
|  | super::print(OS); | 
|  | // Print subranges | 
|  | for (const SubRange &SR : subranges()) | 
|  | OS << SR; | 
|  | OS << " weight:" << weight; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void LiveRange::dump() const { | 
|  | dbgs() << *this << '\n'; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const { | 
|  | dbgs() << *this << '\n'; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LiveInterval::dump() const { | 
|  | dbgs() << *this << '\n'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | void LiveRange::verify() const { | 
|  | for (const_iterator I = begin(), E = end(); I != E; ++I) { | 
|  | assert(I->start.isValid()); | 
|  | assert(I->end.isValid()); | 
|  | assert(I->start < I->end); | 
|  | assert(I->valno != nullptr); | 
|  | assert(I->valno->id < valnos.size()); | 
|  | assert(I->valno == valnos[I->valno->id]); | 
|  | if (std::next(I) != E) { | 
|  | assert(I->end <= std::next(I)->start); | 
|  | if (I->end == std::next(I)->start) | 
|  | assert(I->valno != std::next(I)->valno); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LiveInterval::verify(const MachineRegisterInfo *MRI) const { | 
|  | super::verify(); | 
|  |  | 
|  | // Make sure SubRanges are fine and LaneMasks are disjunct. | 
|  | LaneBitmask Mask; | 
|  | LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) | 
|  | : LaneBitmask::getAll(); | 
|  | for (const SubRange &SR : subranges()) { | 
|  | // Subrange lanemask should be disjunct to any previous subrange masks. | 
|  | assert((Mask & SR.LaneMask).none()); | 
|  | Mask |= SR.LaneMask; | 
|  |  | 
|  | // subrange mask should not contained in maximum lane mask for the vreg. | 
|  | assert((Mask & ~MaxMask).none()); | 
|  | // empty subranges must be removed. | 
|  | assert(!SR.empty()); | 
|  |  | 
|  | SR.verify(); | 
|  | // Main liverange should cover subrange. | 
|  | assert(covers(SR)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           LiveRangeUpdater class | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The LiveRangeUpdater class always maintains these invariants: | 
|  | // | 
|  | // - When LastStart is invalid, Spills is empty and the iterators are invalid. | 
|  | //   This is the initial state, and the state created by flush(). | 
|  | //   In this state, isDirty() returns false. | 
|  | // | 
|  | // Otherwise, segments are kept in three separate areas: | 
|  | // | 
|  | // 1. [begin; WriteI) at the front of LR. | 
|  | // 2. [ReadI; end) at the back of LR. | 
|  | // 3. Spills. | 
|  | // | 
|  | // - LR.begin() <= WriteI <= ReadI <= LR.end(). | 
|  | // - Segments in all three areas are fully ordered and coalesced. | 
|  | // - Segments in area 1 precede and can't coalesce with segments in area 2. | 
|  | // - Segments in Spills precede and can't coalesce with segments in area 2. | 
|  | // - No coalescing is possible between segments in Spills and segments in area | 
|  | //   1, and there are no overlapping segments. | 
|  | // | 
|  | // The segments in Spills are not ordered with respect to the segments in area | 
|  | // 1. They need to be merged. | 
|  | // | 
|  | // When they exist, Spills.back().start <= LastStart, | 
|  | //                 and WriteI[-1].start <= LastStart. | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | void LiveRangeUpdater::print(raw_ostream &OS) const { | 
|  | if (!isDirty()) { | 
|  | if (LR) | 
|  | OS << "Clean updater: " << *LR << '\n'; | 
|  | else | 
|  | OS << "Null updater.\n"; | 
|  | return; | 
|  | } | 
|  | assert(LR && "Can't have null LR in dirty updater."); | 
|  | OS << " updater with gap = " << (ReadI - WriteI) | 
|  | << ", last start = " << LastStart | 
|  | << ":\n  Area 1:"; | 
|  | for (const auto &S : make_range(LR->begin(), WriteI)) | 
|  | OS << ' ' << S; | 
|  | OS << "\n  Spills:"; | 
|  | for (unsigned I = 0, E = Spills.size(); I != E; ++I) | 
|  | OS << ' ' << Spills[I]; | 
|  | OS << "\n  Area 2:"; | 
|  | for (const auto &S : make_range(ReadI, LR->end())) | 
|  | OS << ' ' << S; | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { | 
|  | print(errs()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Determine if A and B should be coalesced. | 
|  | static inline bool coalescable(const LiveRange::Segment &A, | 
|  | const LiveRange::Segment &B) { | 
|  | assert(A.start <= B.start && "Unordered live segments."); | 
|  | if (A.end == B.start) | 
|  | return A.valno == B.valno; | 
|  | if (A.end < B.start) | 
|  | return false; | 
|  | assert(A.valno == B.valno && "Cannot overlap different values"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void LiveRangeUpdater::add(LiveRange::Segment Seg) { | 
|  | assert(LR && "Cannot add to a null destination"); | 
|  |  | 
|  | // Fall back to the regular add method if the live range | 
|  | // is using the segment set instead of the segment vector. | 
|  | if (LR->segmentSet != nullptr) { | 
|  | LR->addSegmentToSet(Seg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Flush the state if Start moves backwards. | 
|  | if (!LastStart.isValid() || LastStart > Seg.start) { | 
|  | if (isDirty()) | 
|  | flush(); | 
|  | // This brings us to an uninitialized state. Reinitialize. | 
|  | assert(Spills.empty() && "Leftover spilled segments"); | 
|  | WriteI = ReadI = LR->begin(); | 
|  | } | 
|  |  | 
|  | // Remember start for next time. | 
|  | LastStart = Seg.start; | 
|  |  | 
|  | // Advance ReadI until it ends after Seg.start. | 
|  | LiveRange::iterator E = LR->end(); | 
|  | if (ReadI != E && ReadI->end <= Seg.start) { | 
|  | // First try to close the gap between WriteI and ReadI with spills. | 
|  | if (ReadI != WriteI) | 
|  | mergeSpills(); | 
|  | // Then advance ReadI. | 
|  | if (ReadI == WriteI) | 
|  | ReadI = WriteI = LR->find(Seg.start); | 
|  | else | 
|  | while (ReadI != E && ReadI->end <= Seg.start) | 
|  | *WriteI++ = *ReadI++; | 
|  | } | 
|  |  | 
|  | assert(ReadI == E || ReadI->end > Seg.start); | 
|  |  | 
|  | // Check if the ReadI segment begins early. | 
|  | if (ReadI != E && ReadI->start <= Seg.start) { | 
|  | assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); | 
|  | // Bail if Seg is completely contained in ReadI. | 
|  | if (ReadI->end >= Seg.end) | 
|  | return; | 
|  | // Coalesce into Seg. | 
|  | Seg.start = ReadI->start; | 
|  | ++ReadI; | 
|  | } | 
|  |  | 
|  | // Coalesce as much as possible from ReadI into Seg. | 
|  | while (ReadI != E && coalescable(Seg, *ReadI)) { | 
|  | Seg.end = std::max(Seg.end, ReadI->end); | 
|  | ++ReadI; | 
|  | } | 
|  |  | 
|  | // Try coalescing Spills.back() into Seg. | 
|  | if (!Spills.empty() && coalescable(Spills.back(), Seg)) { | 
|  | Seg.start = Spills.back().start; | 
|  | Seg.end = std::max(Spills.back().end, Seg.end); | 
|  | Spills.pop_back(); | 
|  | } | 
|  |  | 
|  | // Try coalescing Seg into WriteI[-1]. | 
|  | if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { | 
|  | WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Seg doesn't coalesce with anything, and needs to be inserted somewhere. | 
|  | if (WriteI != ReadI) { | 
|  | *WriteI++ = Seg; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Finally, append to LR or Spills. | 
|  | if (WriteI == E) { | 
|  | LR->segments.push_back(Seg); | 
|  | WriteI = ReadI = LR->end(); | 
|  | } else | 
|  | Spills.push_back(Seg); | 
|  | } | 
|  |  | 
|  | // Merge as many spilled segments as possible into the gap between WriteI | 
|  | // and ReadI. Advance WriteI to reflect the inserted instructions. | 
|  | void LiveRangeUpdater::mergeSpills() { | 
|  | // Perform a backwards merge of Spills and [SpillI;WriteI). | 
|  | size_t GapSize = ReadI - WriteI; | 
|  | size_t NumMoved = std::min(Spills.size(), GapSize); | 
|  | LiveRange::iterator Src = WriteI; | 
|  | LiveRange::iterator Dst = Src + NumMoved; | 
|  | LiveRange::iterator SpillSrc = Spills.end(); | 
|  | LiveRange::iterator B = LR->begin(); | 
|  |  | 
|  | // This is the new WriteI position after merging spills. | 
|  | WriteI = Dst; | 
|  |  | 
|  | // Now merge Src and Spills backwards. | 
|  | while (Src != Dst) { | 
|  | if (Src != B && Src[-1].start > SpillSrc[-1].start) | 
|  | *--Dst = *--Src; | 
|  | else | 
|  | *--Dst = *--SpillSrc; | 
|  | } | 
|  | assert(NumMoved == size_t(Spills.end() - SpillSrc)); | 
|  | Spills.erase(SpillSrc, Spills.end()); | 
|  | } | 
|  |  | 
|  | void LiveRangeUpdater::flush() { | 
|  | if (!isDirty()) | 
|  | return; | 
|  | // Clear the dirty state. | 
|  | LastStart = SlotIndex(); | 
|  |  | 
|  | assert(LR && "Cannot add to a null destination"); | 
|  |  | 
|  | // Nothing to merge? | 
|  | if (Spills.empty()) { | 
|  | LR->segments.erase(WriteI, ReadI); | 
|  | LR->verify(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Resize the WriteI - ReadI gap to match Spills. | 
|  | size_t GapSize = ReadI - WriteI; | 
|  | if (GapSize < Spills.size()) { | 
|  | // The gap is too small. Make some room. | 
|  | size_t WritePos = WriteI - LR->begin(); | 
|  | LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); | 
|  | // This also invalidated ReadI, but it is recomputed below. | 
|  | WriteI = LR->begin() + WritePos; | 
|  | } else { | 
|  | // Shrink the gap if necessary. | 
|  | LR->segments.erase(WriteI + Spills.size(), ReadI); | 
|  | } | 
|  | ReadI = WriteI + Spills.size(); | 
|  | mergeSpills(); | 
|  | LR->verify(); | 
|  | } | 
|  |  | 
|  | unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { | 
|  | // Create initial equivalence classes. | 
|  | EqClass.clear(); | 
|  | EqClass.grow(LR.getNumValNums()); | 
|  |  | 
|  | const VNInfo *used = nullptr, *unused = nullptr; | 
|  |  | 
|  | // Determine connections. | 
|  | for (const VNInfo *VNI : LR.valnos) { | 
|  | // Group all unused values into one class. | 
|  | if (VNI->isUnused()) { | 
|  | if (unused) | 
|  | EqClass.join(unused->id, VNI->id); | 
|  | unused = VNI; | 
|  | continue; | 
|  | } | 
|  | used = VNI; | 
|  | if (VNI->isPHIDef()) { | 
|  | const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); | 
|  | assert(MBB && "Phi-def has no defining MBB"); | 
|  | // Connect to values live out of predecessors. | 
|  | for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), | 
|  | PE = MBB->pred_end(); PI != PE; ++PI) | 
|  | if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI))) | 
|  | EqClass.join(VNI->id, PVNI->id); | 
|  | } else { | 
|  | // Normal value defined by an instruction. Check for two-addr redef. | 
|  | // FIXME: This could be coincidental. Should we really check for a tied | 
|  | // operand constraint? | 
|  | // Note that VNI->def may be a use slot for an early clobber def. | 
|  | if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) | 
|  | EqClass.join(VNI->id, UVNI->id); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lump all the unused values in with the last used value. | 
|  | if (used && unused) | 
|  | EqClass.join(used->id, unused->id); | 
|  |  | 
|  | EqClass.compress(); | 
|  | return EqClass.getNumClasses(); | 
|  | } | 
|  |  | 
|  | void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], | 
|  | MachineRegisterInfo &MRI) { | 
|  | // Rewrite instructions. | 
|  | for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), | 
|  | RE = MRI.reg_end(); RI != RE;) { | 
|  | MachineOperand &MO = *RI; | 
|  | MachineInstr *MI = RI->getParent(); | 
|  | ++RI; | 
|  | const VNInfo *VNI; | 
|  | if (MI->isDebugValue()) { | 
|  | // DBG_VALUE instructions don't have slot indexes, so get the index of | 
|  | // the instruction before them. The value is defined there too. | 
|  | SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); | 
|  | VNI = LI.Query(Idx).valueOut(); | 
|  | } else { | 
|  | SlotIndex Idx = LIS.getInstructionIndex(*MI); | 
|  | LiveQueryResult LRQ = LI.Query(Idx); | 
|  | VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); | 
|  | } | 
|  | // In the case of an <undef> use that isn't tied to any def, VNI will be | 
|  | // NULL. If the use is tied to a def, VNI will be the defined value. | 
|  | if (!VNI) | 
|  | continue; | 
|  | if (unsigned EqClass = getEqClass(VNI)) | 
|  | MO.setReg(LIV[EqClass-1]->reg); | 
|  | } | 
|  |  | 
|  | // Distribute subregister liveranges. | 
|  | if (LI.hasSubRanges()) { | 
|  | unsigned NumComponents = EqClass.getNumClasses(); | 
|  | SmallVector<unsigned, 8> VNIMapping; | 
|  | SmallVector<LiveInterval::SubRange*, 8> SubRanges; | 
|  | BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); | 
|  | for (LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | // Create new subranges in the split intervals and construct a mapping | 
|  | // for the VNInfos in the subrange. | 
|  | unsigned NumValNos = SR.valnos.size(); | 
|  | VNIMapping.clear(); | 
|  | VNIMapping.reserve(NumValNos); | 
|  | SubRanges.clear(); | 
|  | SubRanges.resize(NumComponents-1, nullptr); | 
|  | for (unsigned I = 0; I < NumValNos; ++I) { | 
|  | const VNInfo &VNI = *SR.valnos[I]; | 
|  | unsigned ComponentNum; | 
|  | if (VNI.isUnused()) { | 
|  | ComponentNum = 0; | 
|  | } else { | 
|  | const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); | 
|  | assert(MainRangeVNI != nullptr | 
|  | && "SubRange def must have corresponding main range def"); | 
|  | ComponentNum = getEqClass(MainRangeVNI); | 
|  | if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { | 
|  | SubRanges[ComponentNum-1] | 
|  | = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); | 
|  | } | 
|  | } | 
|  | VNIMapping.push_back(ComponentNum); | 
|  | } | 
|  | DistributeRange(SR, SubRanges.data(), VNIMapping); | 
|  | } | 
|  | LI.removeEmptySubRanges(); | 
|  | } | 
|  |  | 
|  | // Distribute main liverange. | 
|  | DistributeRange(LI, LIV, EqClass); | 
|  | } |