|  | //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file This implements the ScheduleDAGInstrs class, which implements | 
|  | /// re-scheduling of MachineInstrs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
|  | #include "llvm/ADT/IntEqClasses.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/SparseSet.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/LivePhysRegs.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBundle.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/RegisterPressure.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/ScheduleDFS.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "machine-scheduler" | 
|  |  | 
|  | static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, | 
|  | cl::ZeroOrMore, cl::init(false), | 
|  | cl::desc("Enable use of AA during MI DAG construction")); | 
|  |  | 
|  | static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, | 
|  | cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); | 
|  |  | 
|  | // Note: the two options below might be used in tuning compile time vs | 
|  | // output quality. Setting HugeRegion so large that it will never be | 
|  | // reached means best-effort, but may be slow. | 
|  |  | 
|  | // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) | 
|  | // together hold this many SUs, a reduction of maps will be done. | 
|  | static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, | 
|  | cl::init(1000), cl::desc("The limit to use while constructing the DAG " | 
|  | "prior to scheduling, at which point a trade-off " | 
|  | "is made to avoid excessive compile time.")); | 
|  |  | 
|  | static cl::opt<unsigned> ReductionSize( | 
|  | "dag-maps-reduction-size", cl::Hidden, | 
|  | cl::desc("A huge scheduling region will have maps reduced by this many " | 
|  | "nodes at a time. Defaults to HugeRegion / 2.")); | 
|  |  | 
|  | static unsigned getReductionSize() { | 
|  | // Always reduce a huge region with half of the elements, except | 
|  | // when user sets this number explicitly. | 
|  | if (ReductionSize.getNumOccurrences() == 0) | 
|  | return HugeRegion / 2; | 
|  | return ReductionSize; | 
|  | } | 
|  |  | 
|  | static void dumpSUList(ScheduleDAGInstrs::SUList &L) { | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | dbgs() << "{ "; | 
|  | for (const SUnit *su : L) { | 
|  | dbgs() << "SU(" << su->NodeNum << ")"; | 
|  | if (su != L.back()) | 
|  | dbgs() << ", "; | 
|  | } | 
|  | dbgs() << "}\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, | 
|  | const MachineLoopInfo *mli, | 
|  | bool RemoveKillFlags) | 
|  | : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), | 
|  | RemoveKillFlags(RemoveKillFlags), | 
|  | UnknownValue(UndefValue::get( | 
|  | Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { | 
|  | DbgValues.clear(); | 
|  |  | 
|  | const TargetSubtargetInfo &ST = mf.getSubtarget(); | 
|  | SchedModel.init(&ST); | 
|  | } | 
|  |  | 
|  | /// If this machine instr has memory reference information and it can be | 
|  | /// tracked to a normal reference to a known object, return the Value | 
|  | /// for that object. This function returns false the memory location is | 
|  | /// unknown or may alias anything. | 
|  | static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, | 
|  | const MachineFrameInfo &MFI, | 
|  | UnderlyingObjectsVector &Objects, | 
|  | const DataLayout &DL) { | 
|  | auto allMMOsOkay = [&]() { | 
|  | for (const MachineMemOperand *MMO : MI->memoperands()) { | 
|  | // TODO: Figure out whether isAtomic is really necessary (see D57601). | 
|  | if (MMO->isVolatile() || MMO->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { | 
|  | // Function that contain tail calls don't have unique PseudoSourceValue | 
|  | // objects. Two PseudoSourceValues might refer to the same or | 
|  | // overlapping locations. The client code calling this function assumes | 
|  | // this is not the case. So return a conservative answer of no known | 
|  | // object. | 
|  | if (MFI.hasTailCall()) | 
|  | return false; | 
|  |  | 
|  | // For now, ignore PseudoSourceValues which may alias LLVM IR values | 
|  | // because the code that uses this function has no way to cope with | 
|  | // such aliases. | 
|  | if (PSV->isAliased(&MFI)) | 
|  | return false; | 
|  |  | 
|  | bool MayAlias = PSV->mayAlias(&MFI); | 
|  | Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); | 
|  | } else if (const Value *V = MMO->getValue()) { | 
|  | SmallVector<Value *, 4> Objs; | 
|  | if (!getUnderlyingObjectsForCodeGen(V, Objs, DL)) | 
|  | return false; | 
|  |  | 
|  | for (Value *V : Objs) { | 
|  | assert(isIdentifiedObject(V)); | 
|  | Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); | 
|  | } | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!allMMOsOkay()) { | 
|  | Objects.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { | 
|  | BB = bb; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::finishBlock() { | 
|  | // Subclasses should no longer refer to the old block. | 
|  | BB = nullptr; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, | 
|  | MachineBasicBlock::iterator begin, | 
|  | MachineBasicBlock::iterator end, | 
|  | unsigned regioninstrs) { | 
|  | assert(bb == BB && "startBlock should set BB"); | 
|  | RegionBegin = begin; | 
|  | RegionEnd = end; | 
|  | NumRegionInstrs = regioninstrs; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::exitRegion() { | 
|  | // Nothing to do. | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::addSchedBarrierDeps() { | 
|  | MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; | 
|  | ExitSU.setInstr(ExitMI); | 
|  | // Add dependencies on the defs and uses of the instruction. | 
|  | if (ExitMI) { | 
|  | for (const MachineOperand &MO : ExitMI->operands()) { | 
|  | if (!MO.isReg() || MO.isDef()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); | 
|  | } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { | 
|  | addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { | 
|  | // For others, e.g. fallthrough, conditional branch, assume the exit | 
|  | // uses all the registers that are livein to the successor blocks. | 
|  | for (const MachineBasicBlock *Succ : BB->successors()) { | 
|  | for (const auto &LI : Succ->liveins()) { | 
|  | if (!Uses.contains(LI.PhysReg)) | 
|  | Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// MO is an operand of SU's instruction that defines a physical register. Adds | 
|  | /// data dependencies from SU to any uses of the physical register. | 
|  | void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { | 
|  | const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); | 
|  | assert(MO.isDef() && "expect physreg def"); | 
|  |  | 
|  | // Ask the target if address-backscheduling is desirable, and if so how much. | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget(); | 
|  |  | 
|  | // Only use any non-zero latency for real defs/uses, in contrast to | 
|  | // "fake" operands added by regalloc. | 
|  | const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); | 
|  | bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && | 
|  | !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); | 
|  | for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); | 
|  | Alias.isValid(); ++Alias) { | 
|  | if (!Uses.contains(*Alias)) | 
|  | continue; | 
|  | for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { | 
|  | SUnit *UseSU = I->SU; | 
|  | if (UseSU == SU) | 
|  | continue; | 
|  |  | 
|  | // Adjust the dependence latency using operand def/use information, | 
|  | // then allow the target to perform its own adjustments. | 
|  | int UseOp = I->OpIdx; | 
|  | MachineInstr *RegUse = nullptr; | 
|  | SDep Dep; | 
|  | if (UseOp < 0) | 
|  | Dep = SDep(SU, SDep::Artificial); | 
|  | else { | 
|  | // Set the hasPhysRegDefs only for physreg defs that have a use within | 
|  | // the scheduling region. | 
|  | SU->hasPhysRegDefs = true; | 
|  | Dep = SDep(SU, SDep::Data, *Alias); | 
|  | RegUse = UseSU->getInstr(); | 
|  | } | 
|  | const MCInstrDesc *UseMIDesc = | 
|  | (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); | 
|  | bool ImplicitPseudoUse = | 
|  | (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && | 
|  | !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); | 
|  | if (!ImplicitPseudoDef && !ImplicitPseudoUse) { | 
|  | Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, | 
|  | RegUse, UseOp)); | 
|  | ST.adjustSchedDependency(SU, UseSU, Dep); | 
|  | } else | 
|  | Dep.setLatency(0); | 
|  |  | 
|  | UseSU->addPred(Dep); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Adds register dependencies (data, anti, and output) from this SUnit | 
|  | /// to following instructions in the same scheduling region that depend the | 
|  | /// physical register referenced at OperIdx. | 
|  | void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | MachineOperand &MO = MI->getOperand(OperIdx); | 
|  | unsigned Reg = MO.getReg(); | 
|  | // We do not need to track any dependencies for constant registers. | 
|  | if (MRI.isConstantPhysReg(Reg)) | 
|  | return; | 
|  |  | 
|  | // Optionally add output and anti dependencies. For anti | 
|  | // dependencies we use a latency of 0 because for a multi-issue | 
|  | // target we want to allow the defining instruction to issue | 
|  | // in the same cycle as the using instruction. | 
|  | // TODO: Using a latency of 1 here for output dependencies assumes | 
|  | //       there's no cost for reusing registers. | 
|  | SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; | 
|  | for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { | 
|  | if (!Defs.contains(*Alias)) | 
|  | continue; | 
|  | for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { | 
|  | SUnit *DefSU = I->SU; | 
|  | if (DefSU == &ExitSU) | 
|  | continue; | 
|  | if (DefSU != SU && | 
|  | (Kind != SDep::Output || !MO.isDead() || | 
|  | !DefSU->getInstr()->registerDefIsDead(*Alias))) { | 
|  | if (Kind == SDep::Anti) | 
|  | DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); | 
|  | else { | 
|  | SDep Dep(SU, Kind, /*Reg=*/*Alias); | 
|  | Dep.setLatency( | 
|  | SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); | 
|  | DefSU->addPred(Dep); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MO.isDef()) { | 
|  | SU->hasPhysRegUses = true; | 
|  | // Either insert a new Reg2SUnits entry with an empty SUnits list, or | 
|  | // retrieve the existing SUnits list for this register's uses. | 
|  | // Push this SUnit on the use list. | 
|  | Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); | 
|  | if (RemoveKillFlags) | 
|  | MO.setIsKill(false); | 
|  | } else { | 
|  | addPhysRegDataDeps(SU, OperIdx); | 
|  |  | 
|  | // Clear previous uses and defs of this register and its subergisters. | 
|  | for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { | 
|  | if (Uses.contains(*SubReg)) | 
|  | Uses.eraseAll(*SubReg); | 
|  | if (!MO.isDead()) | 
|  | Defs.eraseAll(*SubReg); | 
|  | } | 
|  | if (MO.isDead() && SU->isCall) { | 
|  | // Calls will not be reordered because of chain dependencies (see | 
|  | // below). Since call operands are dead, calls may continue to be added | 
|  | // to the DefList making dependence checking quadratic in the size of | 
|  | // the block. Instead, we leave only one call at the back of the | 
|  | // DefList. | 
|  | Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); | 
|  | Reg2SUnitsMap::iterator B = P.first; | 
|  | Reg2SUnitsMap::iterator I = P.second; | 
|  | for (bool isBegin = I == B; !isBegin; /* empty */) { | 
|  | isBegin = (--I) == B; | 
|  | if (!I->SU->isCall) | 
|  | break; | 
|  | I = Defs.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Defs are pushed in the order they are visited and never reordered. | 
|  | Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const | 
|  | { | 
|  | unsigned Reg = MO.getReg(); | 
|  | // No point in tracking lanemasks if we don't have interesting subregisters. | 
|  | const TargetRegisterClass &RC = *MRI.getRegClass(Reg); | 
|  | if (!RC.HasDisjunctSubRegs) | 
|  | return LaneBitmask::getAll(); | 
|  |  | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | if (SubReg == 0) | 
|  | return RC.getLaneMask(); | 
|  | return TRI->getSubRegIndexLaneMask(SubReg); | 
|  | } | 
|  |  | 
|  | /// Adds register output and data dependencies from this SUnit to instructions | 
|  | /// that occur later in the same scheduling region if they read from or write to | 
|  | /// the virtual register defined at OperIdx. | 
|  | /// | 
|  | /// TODO: Hoist loop induction variable increments. This has to be | 
|  | /// reevaluated. Generally, IV scheduling should be done before coalescing. | 
|  | void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { | 
|  | MachineInstr *MI = SU->getInstr(); | 
|  | MachineOperand &MO = MI->getOperand(OperIdx); | 
|  | unsigned Reg = MO.getReg(); | 
|  |  | 
|  | LaneBitmask DefLaneMask; | 
|  | LaneBitmask KillLaneMask; | 
|  | if (TrackLaneMasks) { | 
|  | bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); | 
|  | DefLaneMask = getLaneMaskForMO(MO); | 
|  | // If we have a <read-undef> flag, none of the lane values comes from an | 
|  | // earlier instruction. | 
|  | KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; | 
|  |  | 
|  | // Clear undef flag, we'll re-add it later once we know which subregister | 
|  | // Def is first. | 
|  | MO.setIsUndef(false); | 
|  | } else { | 
|  | DefLaneMask = LaneBitmask::getAll(); | 
|  | KillLaneMask = LaneBitmask::getAll(); | 
|  | } | 
|  |  | 
|  | if (MO.isDead()) { | 
|  | assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() && | 
|  | "Dead defs should have no uses"); | 
|  | } else { | 
|  | // Add data dependence to all uses we found so far. | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget(); | 
|  | for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), | 
|  | E = CurrentVRegUses.end(); I != E; /*empty*/) { | 
|  | LaneBitmask LaneMask = I->LaneMask; | 
|  | // Ignore uses of other lanes. | 
|  | if ((LaneMask & KillLaneMask).none()) { | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((LaneMask & DefLaneMask).any()) { | 
|  | SUnit *UseSU = I->SU; | 
|  | MachineInstr *Use = UseSU->getInstr(); | 
|  | SDep Dep(SU, SDep::Data, Reg); | 
|  | Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, | 
|  | I->OperandIndex)); | 
|  | ST.adjustSchedDependency(SU, UseSU, Dep); | 
|  | UseSU->addPred(Dep); | 
|  | } | 
|  |  | 
|  | LaneMask &= ~KillLaneMask; | 
|  | // If we found a Def for all lanes of this use, remove it from the list. | 
|  | if (LaneMask.any()) { | 
|  | I->LaneMask = LaneMask; | 
|  | ++I; | 
|  | } else | 
|  | I = CurrentVRegUses.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shortcut: Singly defined vregs do not have output/anti dependencies. | 
|  | if (MRI.hasOneDef(Reg)) | 
|  | return; | 
|  |  | 
|  | // Add output dependence to the next nearest defs of this vreg. | 
|  | // | 
|  | // Unless this definition is dead, the output dependence should be | 
|  | // transitively redundant with antidependencies from this definition's | 
|  | // uses. We're conservative for now until we have a way to guarantee the uses | 
|  | // are not eliminated sometime during scheduling. The output dependence edge | 
|  | // is also useful if output latency exceeds def-use latency. | 
|  | LaneBitmask LaneMask = DefLaneMask; | 
|  | for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), | 
|  | CurrentVRegDefs.end())) { | 
|  | // Ignore defs for other lanes. | 
|  | if ((V2SU.LaneMask & LaneMask).none()) | 
|  | continue; | 
|  | // Add an output dependence. | 
|  | SUnit *DefSU = V2SU.SU; | 
|  | // Ignore additional defs of the same lanes in one instruction. This can | 
|  | // happen because lanemasks are shared for targets with too many | 
|  | // subregisters. We also use some representration tricks/hacks where we | 
|  | // add super-register defs/uses, to imply that although we only access parts | 
|  | // of the reg we care about the full one. | 
|  | if (DefSU == SU) | 
|  | continue; | 
|  | SDep Dep(SU, SDep::Output, Reg); | 
|  | Dep.setLatency( | 
|  | SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); | 
|  | DefSU->addPred(Dep); | 
|  |  | 
|  | // Update current definition. This can get tricky if the def was about a | 
|  | // bigger lanemask before. We then have to shrink it and create a new | 
|  | // VReg2SUnit for the non-overlapping part. | 
|  | LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; | 
|  | LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; | 
|  | V2SU.SU = SU; | 
|  | V2SU.LaneMask = OverlapMask; | 
|  | if (NonOverlapMask.any()) | 
|  | CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); | 
|  | } | 
|  | // If there was no CurrentVRegDefs entry for some lanes yet, create one. | 
|  | if (LaneMask.any()) | 
|  | CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); | 
|  | } | 
|  |  | 
|  | /// Adds a register data dependency if the instruction that defines the | 
|  | /// virtual register used at OperIdx is mapped to an SUnit. Add a register | 
|  | /// antidependency from this SUnit to instructions that occur later in the same | 
|  | /// scheduling region if they write the virtual register. | 
|  | /// | 
|  | /// TODO: Handle ExitSU "uses" properly. | 
|  | void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { | 
|  | const MachineInstr *MI = SU->getInstr(); | 
|  | const MachineOperand &MO = MI->getOperand(OperIdx); | 
|  | unsigned Reg = MO.getReg(); | 
|  |  | 
|  | // Remember the use. Data dependencies will be added when we find the def. | 
|  | LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) | 
|  | : LaneBitmask::getAll(); | 
|  | CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); | 
|  |  | 
|  | // Add antidependences to the following defs of the vreg. | 
|  | for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), | 
|  | CurrentVRegDefs.end())) { | 
|  | // Ignore defs for unrelated lanes. | 
|  | LaneBitmask PrevDefLaneMask = V2SU.LaneMask; | 
|  | if ((PrevDefLaneMask & LaneMask).none()) | 
|  | continue; | 
|  | if (V2SU.SU == SU) | 
|  | continue; | 
|  |  | 
|  | V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if MI is an instruction we are unable to reason about | 
|  | /// (like a call or something with unmodeled side effects). | 
|  | static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { | 
|  | return MI->isCall() || MI->hasUnmodeledSideEffects() || | 
|  | (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, | 
|  | unsigned Latency) { | 
|  | if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { | 
|  | SDep Dep(SUa, SDep::MayAliasMem); | 
|  | Dep.setLatency(Latency); | 
|  | SUb->addPred(Dep); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Creates an SUnit for each real instruction, numbered in top-down | 
|  | /// topological order. The instruction order A < B, implies that no edge exists | 
|  | /// from B to A. | 
|  | /// | 
|  | /// Map each real instruction to its SUnit. | 
|  | /// | 
|  | /// After initSUnits, the SUnits vector cannot be resized and the scheduler may | 
|  | /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs | 
|  | /// instead of pointers. | 
|  | /// | 
|  | /// MachineScheduler relies on initSUnits numbering the nodes by their order in | 
|  | /// the original instruction list. | 
|  | void ScheduleDAGInstrs::initSUnits() { | 
|  | // We'll be allocating one SUnit for each real instruction in the region, | 
|  | // which is contained within a basic block. | 
|  | SUnits.reserve(NumRegionInstrs); | 
|  |  | 
|  | for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | SUnit *SU = newSUnit(&MI); | 
|  | MISUnitMap[&MI] = SU; | 
|  |  | 
|  | SU->isCall = MI.isCall(); | 
|  | SU->isCommutable = MI.isCommutable(); | 
|  |  | 
|  | // Assign the Latency field of SU using target-provided information. | 
|  | SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); | 
|  |  | 
|  | // If this SUnit uses a reserved or unbuffered resource, mark it as such. | 
|  | // | 
|  | // Reserved resources block an instruction from issuing and stall the | 
|  | // entire pipeline. These are identified by BufferSize=0. | 
|  | // | 
|  | // Unbuffered resources prevent execution of subsequent instructions that | 
|  | // require the same resources. This is used for in-order execution pipelines | 
|  | // within an out-of-order core. These are identified by BufferSize=1. | 
|  | if (SchedModel.hasInstrSchedModel()) { | 
|  | const MCSchedClassDesc *SC = getSchedClass(SU); | 
|  | for (const MCWriteProcResEntry &PRE : | 
|  | make_range(SchedModel.getWriteProcResBegin(SC), | 
|  | SchedModel.getWriteProcResEnd(SC))) { | 
|  | switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { | 
|  | case 0: | 
|  | SU->hasReservedResource = true; | 
|  | break; | 
|  | case 1: | 
|  | SU->isUnbuffered = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { | 
|  | /// Current total number of SUs in map. | 
|  | unsigned NumNodes = 0; | 
|  |  | 
|  | /// 1 for loads, 0 for stores. (see comment in SUList) | 
|  | unsigned TrueMemOrderLatency; | 
|  |  | 
|  | public: | 
|  | Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} | 
|  |  | 
|  | /// To keep NumNodes up to date, insert() is used instead of | 
|  | /// this operator w/ push_back(). | 
|  | ValueType &operator[](const SUList &Key) { | 
|  | llvm_unreachable("Don't use. Use insert() instead."); }; | 
|  |  | 
|  | /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling | 
|  | /// reduce(). | 
|  | void inline insert(SUnit *SU, ValueType V) { | 
|  | MapVector::operator[](V).push_back(SU); | 
|  | NumNodes++; | 
|  | } | 
|  |  | 
|  | /// Clears the list of SUs mapped to V. | 
|  | void inline clearList(ValueType V) { | 
|  | iterator Itr = find(V); | 
|  | if (Itr != end()) { | 
|  | assert(NumNodes >= Itr->second.size()); | 
|  | NumNodes -= Itr->second.size(); | 
|  |  | 
|  | Itr->second.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Clears map from all contents. | 
|  | void clear() { | 
|  | MapVector<ValueType, SUList>::clear(); | 
|  | NumNodes = 0; | 
|  | } | 
|  |  | 
|  | unsigned inline size() const { return NumNodes; } | 
|  |  | 
|  | /// Counts the number of SUs in this map after a reduction. | 
|  | void reComputeSize() { | 
|  | NumNodes = 0; | 
|  | for (auto &I : *this) | 
|  | NumNodes += I.second.size(); | 
|  | } | 
|  |  | 
|  | unsigned inline getTrueMemOrderLatency() const { | 
|  | return TrueMemOrderLatency; | 
|  | } | 
|  |  | 
|  | void dump(); | 
|  | }; | 
|  |  | 
|  | void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, | 
|  | Value2SUsMap &Val2SUsMap) { | 
|  | for (auto &I : Val2SUsMap) | 
|  | addChainDependencies(SU, I.second, | 
|  | Val2SUsMap.getTrueMemOrderLatency()); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, | 
|  | Value2SUsMap &Val2SUsMap, | 
|  | ValueType V) { | 
|  | Value2SUsMap::iterator Itr = Val2SUsMap.find(V); | 
|  | if (Itr != Val2SUsMap.end()) | 
|  | addChainDependencies(SU, Itr->second, | 
|  | Val2SUsMap.getTrueMemOrderLatency()); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { | 
|  | assert(BarrierChain != nullptr); | 
|  |  | 
|  | for (auto &I : map) { | 
|  | SUList &sus = I.second; | 
|  | for (auto *SU : sus) | 
|  | SU->addPredBarrier(BarrierChain); | 
|  | } | 
|  | map.clear(); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { | 
|  | assert(BarrierChain != nullptr); | 
|  |  | 
|  | // Go through all lists of SUs. | 
|  | for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { | 
|  | Value2SUsMap::iterator CurrItr = I++; | 
|  | SUList &sus = CurrItr->second; | 
|  | SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); | 
|  | for (; SUItr != SUEE; ++SUItr) { | 
|  | // Stop on BarrierChain or any instruction above it. | 
|  | if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) | 
|  | break; | 
|  |  | 
|  | (*SUItr)->addPredBarrier(BarrierChain); | 
|  | } | 
|  |  | 
|  | // Remove also the BarrierChain from list if present. | 
|  | if (SUItr != SUEE && *SUItr == BarrierChain) | 
|  | SUItr++; | 
|  |  | 
|  | // Remove all SUs that are now successors of BarrierChain. | 
|  | if (SUItr != sus.begin()) | 
|  | sus.erase(sus.begin(), SUItr); | 
|  | } | 
|  |  | 
|  | // Remove all entries with empty su lists. | 
|  | map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { | 
|  | return (mapEntry.second.empty()); }); | 
|  |  | 
|  | // Recompute the size of the map (NumNodes). | 
|  | map.reComputeSize(); | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, | 
|  | RegPressureTracker *RPTracker, | 
|  | PressureDiffs *PDiffs, | 
|  | LiveIntervals *LIS, | 
|  | bool TrackLaneMasks) { | 
|  | const TargetSubtargetInfo &ST = MF.getSubtarget(); | 
|  | bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI | 
|  | : ST.useAA(); | 
|  | AAForDep = UseAA ? AA : nullptr; | 
|  |  | 
|  | BarrierChain = nullptr; | 
|  | SUnit *FPBarrierChain = nullptr; | 
|  |  | 
|  | this->TrackLaneMasks = TrackLaneMasks; | 
|  | MISUnitMap.clear(); | 
|  | ScheduleDAG::clearDAG(); | 
|  |  | 
|  | // Create an SUnit for each real instruction. | 
|  | initSUnits(); | 
|  |  | 
|  | if (PDiffs) | 
|  | PDiffs->init(SUnits.size()); | 
|  |  | 
|  | // We build scheduling units by walking a block's instruction list | 
|  | // from bottom to top. | 
|  |  | 
|  | // Each MIs' memory operand(s) is analyzed to a list of underlying | 
|  | // objects. The SU is then inserted in the SUList(s) mapped from the | 
|  | // Value(s). Each Value thus gets mapped to lists of SUs depending | 
|  | // on it, stores and loads kept separately. Two SUs are trivially | 
|  | // non-aliasing if they both depend on only identified Values and do | 
|  | // not share any common Value. | 
|  | Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); | 
|  |  | 
|  | // Certain memory accesses are known to not alias any SU in Stores | 
|  | // or Loads, and have therefore their own 'NonAlias' | 
|  | // domain. E.g. spill / reload instructions never alias LLVM I/R | 
|  | // Values. It would be nice to assume that this type of memory | 
|  | // accesses always have a proper memory operand modelling, and are | 
|  | // therefore never unanalyzable, but this is conservatively not | 
|  | // done. | 
|  | Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); | 
|  |  | 
|  | // Remove any stale debug info; sometimes BuildSchedGraph is called again | 
|  | // without emitting the info from the previous call. | 
|  | DbgValues.clear(); | 
|  | FirstDbgValue = nullptr; | 
|  |  | 
|  | assert(Defs.empty() && Uses.empty() && | 
|  | "Only BuildGraph should update Defs/Uses"); | 
|  | Defs.setUniverse(TRI->getNumRegs()); | 
|  | Uses.setUniverse(TRI->getNumRegs()); | 
|  |  | 
|  | assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); | 
|  | assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); | 
|  | unsigned NumVirtRegs = MRI.getNumVirtRegs(); | 
|  | CurrentVRegDefs.setUniverse(NumVirtRegs); | 
|  | CurrentVRegUses.setUniverse(NumVirtRegs); | 
|  |  | 
|  | // Model data dependencies between instructions being scheduled and the | 
|  | // ExitSU. | 
|  | addSchedBarrierDeps(); | 
|  |  | 
|  | // Walk the list of instructions, from bottom moving up. | 
|  | MachineInstr *DbgMI = nullptr; | 
|  | for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; | 
|  | MII != MIE; --MII) { | 
|  | MachineInstr &MI = *std::prev(MII); | 
|  | if (DbgMI) { | 
|  | DbgValues.push_back(std::make_pair(DbgMI, &MI)); | 
|  | DbgMI = nullptr; | 
|  | } | 
|  |  | 
|  | if (MI.isDebugValue()) { | 
|  | DbgMI = &MI; | 
|  | continue; | 
|  | } | 
|  | if (MI.isDebugLabel()) | 
|  | continue; | 
|  |  | 
|  | SUnit *SU = MISUnitMap[&MI]; | 
|  | assert(SU && "No SUnit mapped to this MI"); | 
|  |  | 
|  | if (RPTracker) { | 
|  | RegisterOperands RegOpers; | 
|  | RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); | 
|  | if (TrackLaneMasks) { | 
|  | SlotIndex SlotIdx = LIS->getInstructionIndex(MI); | 
|  | RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); | 
|  | } | 
|  | if (PDiffs != nullptr) | 
|  | PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); | 
|  |  | 
|  | if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) | 
|  | RPTracker->recedeSkipDebugValues(); | 
|  | assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); | 
|  | RPTracker->recede(RegOpers); | 
|  | } | 
|  |  | 
|  | assert( | 
|  | (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && | 
|  | "Cannot schedule terminators or labels!"); | 
|  |  | 
|  | // Add register-based dependencies (data, anti, and output). | 
|  | // For some instructions (calls, returns, inline-asm, etc.) there can | 
|  | // be explicit uses and implicit defs, in which case the use will appear | 
|  | // on the operand list before the def. Do two passes over the operand | 
|  | // list to make sure that defs are processed before any uses. | 
|  | bool HasVRegDef = false; | 
|  | for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { | 
|  | const MachineOperand &MO = MI.getOperand(j); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | addPhysRegDeps(SU, j); | 
|  | } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | HasVRegDef = true; | 
|  | addVRegDefDeps(SU, j); | 
|  | } | 
|  | } | 
|  | // Now process all uses. | 
|  | for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { | 
|  | const MachineOperand &MO = MI.getOperand(j); | 
|  | // Only look at use operands. | 
|  | // We do not need to check for MO.readsReg() here because subsequent | 
|  | // subregister defs will get output dependence edges and need no | 
|  | // additional use dependencies. | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | addPhysRegDeps(SU, j); | 
|  | } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) { | 
|  | addVRegUseDeps(SU, j); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we haven't seen any uses in this scheduling region, create a | 
|  | // dependence edge to ExitSU to model the live-out latency. This is required | 
|  | // for vreg defs with no in-region use, and prefetches with no vreg def. | 
|  | // | 
|  | // FIXME: NumDataSuccs would be more precise than NumSuccs here. This | 
|  | // check currently relies on being called before adding chain deps. | 
|  | if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { | 
|  | SDep Dep(SU, SDep::Artificial); | 
|  | Dep.setLatency(SU->Latency - 1); | 
|  | ExitSU.addPred(Dep); | 
|  | } | 
|  |  | 
|  | // Add memory dependencies (Note: isStoreToStackSlot and | 
|  | // isLoadFromStackSLot are not usable after stack slots are lowered to | 
|  | // actual addresses). | 
|  |  | 
|  | // This is a barrier event that acts as a pivotal node in the DAG. | 
|  | if (isGlobalMemoryObject(AA, &MI)) { | 
|  |  | 
|  | // Become the barrier chain. | 
|  | if (BarrierChain) | 
|  | BarrierChain->addPredBarrier(SU); | 
|  | BarrierChain = SU; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" | 
|  | << BarrierChain->NodeNum << ").\n";); | 
|  |  | 
|  | // Add dependencies against everything below it and clear maps. | 
|  | addBarrierChain(Stores); | 
|  | addBarrierChain(Loads); | 
|  | addBarrierChain(NonAliasStores); | 
|  | addBarrierChain(NonAliasLoads); | 
|  |  | 
|  | // Add dependency against previous FP barrier and reset FP barrier. | 
|  | if (FPBarrierChain) | 
|  | FPBarrierChain->addPredBarrier(BarrierChain); | 
|  | FPBarrierChain = BarrierChain; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Instructions that may raise FP exceptions depend on each other. | 
|  | if (MI.mayRaiseFPException()) { | 
|  | if (FPBarrierChain) | 
|  | FPBarrierChain->addPredBarrier(SU); | 
|  | FPBarrierChain = SU; | 
|  | } | 
|  |  | 
|  | // If it's not a store or a variant load, we're done. | 
|  | if (!MI.mayStore() && | 
|  | !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) | 
|  | continue; | 
|  |  | 
|  | // Always add dependecy edge to BarrierChain if present. | 
|  | if (BarrierChain) | 
|  | BarrierChain->addPredBarrier(SU); | 
|  |  | 
|  | // Find the underlying objects for MI. The Objs vector is either | 
|  | // empty, or filled with the Values of memory locations which this | 
|  | // SU depends on. | 
|  | UnderlyingObjectsVector Objs; | 
|  | bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, | 
|  | MF.getDataLayout()); | 
|  |  | 
|  | if (MI.mayStore()) { | 
|  | if (!ObjsFound) { | 
|  | // An unknown store depends on all stores and loads. | 
|  | addChainDependencies(SU, Stores); | 
|  | addChainDependencies(SU, NonAliasStores); | 
|  | addChainDependencies(SU, Loads); | 
|  | addChainDependencies(SU, NonAliasLoads); | 
|  |  | 
|  | // Map this store to 'UnknownValue'. | 
|  | Stores.insert(SU, UnknownValue); | 
|  | } else { | 
|  | // Add precise dependencies against all previously seen memory | 
|  | // accesses mapped to the same Value(s). | 
|  | for (const UnderlyingObject &UnderlObj : Objs) { | 
|  | ValueType V = UnderlObj.getValue(); | 
|  | bool ThisMayAlias = UnderlObj.mayAlias(); | 
|  |  | 
|  | // Add dependencies to previous stores and loads mapped to V. | 
|  | addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); | 
|  | addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); | 
|  | } | 
|  | // Update the store map after all chains have been added to avoid adding | 
|  | // self-loop edge if multiple underlying objects are present. | 
|  | for (const UnderlyingObject &UnderlObj : Objs) { | 
|  | ValueType V = UnderlObj.getValue(); | 
|  | bool ThisMayAlias = UnderlObj.mayAlias(); | 
|  |  | 
|  | // Map this store to V. | 
|  | (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); | 
|  | } | 
|  | // The store may have dependencies to unanalyzable loads and | 
|  | // stores. | 
|  | addChainDependencies(SU, Loads, UnknownValue); | 
|  | addChainDependencies(SU, Stores, UnknownValue); | 
|  | } | 
|  | } else { // SU is a load. | 
|  | if (!ObjsFound) { | 
|  | // An unknown load depends on all stores. | 
|  | addChainDependencies(SU, Stores); | 
|  | addChainDependencies(SU, NonAliasStores); | 
|  |  | 
|  | Loads.insert(SU, UnknownValue); | 
|  | } else { | 
|  | for (const UnderlyingObject &UnderlObj : Objs) { | 
|  | ValueType V = UnderlObj.getValue(); | 
|  | bool ThisMayAlias = UnderlObj.mayAlias(); | 
|  |  | 
|  | // Add precise dependencies against all previously seen stores | 
|  | // mapping to the same Value(s). | 
|  | addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); | 
|  |  | 
|  | // Map this load to V. | 
|  | (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); | 
|  | } | 
|  | // The load may have dependencies to unanalyzable stores. | 
|  | addChainDependencies(SU, Stores, UnknownValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reduce maps if they grow huge. | 
|  | if (Stores.size() + Loads.size() >= HugeRegion) { | 
|  | LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); | 
|  | reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); | 
|  | } | 
|  | if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); | 
|  | reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DbgMI) | 
|  | FirstDbgValue = DbgMI; | 
|  |  | 
|  | Defs.clear(); | 
|  | Uses.clear(); | 
|  | CurrentVRegDefs.clear(); | 
|  | CurrentVRegUses.clear(); | 
|  |  | 
|  | Topo.MarkDirty(); | 
|  | } | 
|  |  | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { | 
|  | PSV->printCustom(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::Value2SUsMap::dump() { | 
|  | for (auto &Itr : *this) { | 
|  | if (Itr.first.is<const Value*>()) { | 
|  | const Value *V = Itr.first.get<const Value*>(); | 
|  | if (isa<UndefValue>(V)) | 
|  | dbgs() << "Unknown"; | 
|  | else | 
|  | V->printAsOperand(dbgs()); | 
|  | } | 
|  | else if (Itr.first.is<const PseudoSourceValue*>()) | 
|  | dbgs() <<  Itr.first.get<const PseudoSourceValue*>(); | 
|  | else | 
|  | llvm_unreachable("Unknown Value type."); | 
|  |  | 
|  | dbgs() << " : "; | 
|  | dumpSUList(Itr.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, | 
|  | Value2SUsMap &loads, unsigned N) { | 
|  | LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); | 
|  | dbgs() << "Loading SUnits:\n"; loads.dump()); | 
|  |  | 
|  | // Insert all SU's NodeNums into a vector and sort it. | 
|  | std::vector<unsigned> NodeNums; | 
|  | NodeNums.reserve(stores.size() + loads.size()); | 
|  | for (auto &I : stores) | 
|  | for (auto *SU : I.second) | 
|  | NodeNums.push_back(SU->NodeNum); | 
|  | for (auto &I : loads) | 
|  | for (auto *SU : I.second) | 
|  | NodeNums.push_back(SU->NodeNum); | 
|  | llvm::sort(NodeNums); | 
|  |  | 
|  | // The N last elements in NodeNums will be removed, and the SU with | 
|  | // the lowest NodeNum of them will become the new BarrierChain to | 
|  | // let the not yet seen SUs have a dependency to the removed SUs. | 
|  | assert(N <= NodeNums.size()); | 
|  | SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; | 
|  | if (BarrierChain) { | 
|  | // The aliasing and non-aliasing maps reduce independently of each | 
|  | // other, but share a common BarrierChain. Check if the | 
|  | // newBarrierChain is above the former one. If it is not, it may | 
|  | // introduce a loop to use newBarrierChain, so keep the old one. | 
|  | if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { | 
|  | BarrierChain->addPredBarrier(newBarrierChain); | 
|  | BarrierChain = newBarrierChain; | 
|  | LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" | 
|  | << BarrierChain->NodeNum << ").\n";); | 
|  | } | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" | 
|  | << BarrierChain->NodeNum << ").\n";); | 
|  | } | 
|  | else | 
|  | BarrierChain = newBarrierChain; | 
|  |  | 
|  | insertBarrierChain(stores); | 
|  | insertBarrierChain(loads); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); | 
|  | dbgs() << "Loading SUnits:\n"; loads.dump()); | 
|  | } | 
|  |  | 
|  | static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, | 
|  | MachineInstr &MI, bool addToLiveRegs) { | 
|  | for (MachineOperand &MO : MI.operands()) { | 
|  | if (!MO.isReg() || !MO.readsReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  |  | 
|  | // Things that are available after the instruction are killed by it. | 
|  | bool IsKill = LiveRegs.available(MRI, Reg); | 
|  | MO.setIsKill(IsKill); | 
|  | if (addToLiveRegs) | 
|  | LiveRegs.addReg(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { | 
|  | LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); | 
|  |  | 
|  | LiveRegs.init(*TRI); | 
|  | LiveRegs.addLiveOuts(MBB); | 
|  |  | 
|  | // Examine block from end to start... | 
|  | for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | // Update liveness.  Registers that are defed but not used in this | 
|  | // instruction are now dead. Mark register and all subregs as they | 
|  | // are completely defined. | 
|  | for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { | 
|  | const MachineOperand &MO = *O; | 
|  | if (MO.isReg()) { | 
|  | if (!MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | LiveRegs.removeReg(Reg); | 
|  | } else if (MO.isRegMask()) { | 
|  | LiveRegs.removeRegsInMask(MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is a bundle header fix it up first. | 
|  | if (!MI.isBundled()) { | 
|  | toggleKills(MRI, LiveRegs, MI, true); | 
|  | } else { | 
|  | MachineBasicBlock::instr_iterator First = MI.getIterator(); | 
|  | if (MI.isBundle()) { | 
|  | toggleKills(MRI, LiveRegs, MI, false); | 
|  | ++First; | 
|  | } | 
|  | // Some targets make the (questionable) assumtion that the instructions | 
|  | // inside the bundle are ordered and consequently only the last use of | 
|  | // a register inside the bundle can kill it. | 
|  | MachineBasicBlock::instr_iterator I = std::next(First); | 
|  | while (I->isBundledWithSucc()) | 
|  | ++I; | 
|  | do { | 
|  | if (!I->isDebugInstr()) | 
|  | toggleKills(MRI, LiveRegs, *I, true); | 
|  | --I; | 
|  | } while(I != First); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | dumpNodeName(SU); | 
|  | dbgs() << ": "; | 
|  | SU.getInstr()->dump(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void ScheduleDAGInstrs::dump() const { | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | if (EntrySU.getInstr() != nullptr) | 
|  | dumpNodeAll(EntrySU); | 
|  | for (const SUnit &SU : SUnits) | 
|  | dumpNodeAll(SU); | 
|  | if (ExitSU.getInstr() != nullptr) | 
|  | dumpNodeAll(ExitSU); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { | 
|  | std::string s; | 
|  | raw_string_ostream oss(s); | 
|  | if (SU == &EntrySU) | 
|  | oss << "<entry>"; | 
|  | else if (SU == &ExitSU) | 
|  | oss << "<exit>"; | 
|  | else | 
|  | SU->getInstr()->print(oss, /*SkipOpers=*/true); | 
|  | return oss.str(); | 
|  | } | 
|  |  | 
|  | /// Return the basic block label. It is not necessarilly unique because a block | 
|  | /// contains multiple scheduling regions. But it is fine for visualization. | 
|  | std::string ScheduleDAGInstrs::getDAGName() const { | 
|  | return "dag." + BB->getFullName(); | 
|  | } | 
|  |  | 
|  | bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { | 
|  | return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); | 
|  | } | 
|  |  | 
|  | bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { | 
|  | if (SuccSU != &ExitSU) { | 
|  | // Do not use WillCreateCycle, it assumes SD scheduling. | 
|  | // If Pred is reachable from Succ, then the edge creates a cycle. | 
|  | if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) | 
|  | return false; | 
|  | Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); | 
|  | } | 
|  | SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); | 
|  | // Return true regardless of whether a new edge needed to be inserted. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SchedDFSResult Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// Internal state used to compute SchedDFSResult. | 
|  | class SchedDFSImpl { | 
|  | SchedDFSResult &R; | 
|  |  | 
|  | /// Join DAG nodes into equivalence classes by their subtree. | 
|  | IntEqClasses SubtreeClasses; | 
|  | /// List PredSU, SuccSU pairs that represent data edges between subtrees. | 
|  | std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; | 
|  |  | 
|  | struct RootData { | 
|  | unsigned NodeID; | 
|  | unsigned ParentNodeID;  ///< Parent node (member of the parent subtree). | 
|  | unsigned SubInstrCount = 0; ///< Instr count in this tree only, not | 
|  | /// children. | 
|  |  | 
|  | RootData(unsigned id): NodeID(id), | 
|  | ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} | 
|  |  | 
|  | unsigned getSparseSetIndex() const { return NodeID; } | 
|  | }; | 
|  |  | 
|  | SparseSet<RootData> RootSet; | 
|  |  | 
|  | public: | 
|  | SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { | 
|  | RootSet.setUniverse(R.DFSNodeData.size()); | 
|  | } | 
|  |  | 
|  | /// Returns true if this node been visited by the DFS traversal. | 
|  | /// | 
|  | /// During visitPostorderNode the Node's SubtreeID is assigned to the Node | 
|  | /// ID. Later, SubtreeID is updated but remains valid. | 
|  | bool isVisited(const SUnit *SU) const { | 
|  | return R.DFSNodeData[SU->NodeNum].SubtreeID | 
|  | != SchedDFSResult::InvalidSubtreeID; | 
|  | } | 
|  |  | 
|  | /// Initializes this node's instruction count. We don't need to flag the node | 
|  | /// visited until visitPostorder because the DAG cannot have cycles. | 
|  | void visitPreorder(const SUnit *SU) { | 
|  | R.DFSNodeData[SU->NodeNum].InstrCount = | 
|  | SU->getInstr()->isTransient() ? 0 : 1; | 
|  | } | 
|  |  | 
|  | /// Called once for each node after all predecessors are visited. Revisit this | 
|  | /// node's predecessors and potentially join them now that we know the ILP of | 
|  | /// the other predecessors. | 
|  | void visitPostorderNode(const SUnit *SU) { | 
|  | // Mark this node as the root of a subtree. It may be joined with its | 
|  | // successors later. | 
|  | R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; | 
|  | RootData RData(SU->NodeNum); | 
|  | RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; | 
|  |  | 
|  | // If any predecessors are still in their own subtree, they either cannot be | 
|  | // joined or are large enough to remain separate. If this parent node's | 
|  | // total instruction count is not greater than a child subtree by at least | 
|  | // the subtree limit, then try to join it now since splitting subtrees is | 
|  | // only useful if multiple high-pressure paths are possible. | 
|  | unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; | 
|  | for (const SDep &PredDep : SU->Preds) { | 
|  | if (PredDep.getKind() != SDep::Data) | 
|  | continue; | 
|  | unsigned PredNum = PredDep.getSUnit()->NodeNum; | 
|  | if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) | 
|  | joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); | 
|  |  | 
|  | // Either link or merge the TreeData entry from the child to the parent. | 
|  | if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { | 
|  | // If the predecessor's parent is invalid, this is a tree edge and the | 
|  | // current node is the parent. | 
|  | if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) | 
|  | RootSet[PredNum].ParentNodeID = SU->NodeNum; | 
|  | } | 
|  | else if (RootSet.count(PredNum)) { | 
|  | // The predecessor is not a root, but is still in the root set. This | 
|  | // must be the new parent that it was just joined to. Note that | 
|  | // RootSet[PredNum].ParentNodeID may either be invalid or may still be | 
|  | // set to the original parent. | 
|  | RData.SubInstrCount += RootSet[PredNum].SubInstrCount; | 
|  | RootSet.erase(PredNum); | 
|  | } | 
|  | } | 
|  | RootSet[SU->NodeNum] = RData; | 
|  | } | 
|  |  | 
|  | /// Called once for each tree edge after calling visitPostOrderNode on | 
|  | /// the predecessor. Increment the parent node's instruction count and | 
|  | /// preemptively join this subtree to its parent's if it is small enough. | 
|  | void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { | 
|  | R.DFSNodeData[Succ->NodeNum].InstrCount | 
|  | += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; | 
|  | joinPredSubtree(PredDep, Succ); | 
|  | } | 
|  |  | 
|  | /// Adds a connection for cross edges. | 
|  | void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { | 
|  | ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); | 
|  | } | 
|  |  | 
|  | /// Sets each node's subtree ID to the representative ID and record | 
|  | /// connections between trees. | 
|  | void finalize() { | 
|  | SubtreeClasses.compress(); | 
|  | R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); | 
|  | assert(SubtreeClasses.getNumClasses() == RootSet.size() | 
|  | && "number of roots should match trees"); | 
|  | for (const RootData &Root : RootSet) { | 
|  | unsigned TreeID = SubtreeClasses[Root.NodeID]; | 
|  | if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) | 
|  | R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; | 
|  | R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; | 
|  | // Note that SubInstrCount may be greater than InstrCount if we joined | 
|  | // subtrees across a cross edge. InstrCount will be attributed to the | 
|  | // original parent, while SubInstrCount will be attributed to the joined | 
|  | // parent. | 
|  | } | 
|  | R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); | 
|  | R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); | 
|  | LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); | 
|  | for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { | 
|  | R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; | 
|  | LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree " | 
|  | << R.DFSNodeData[Idx].SubtreeID << '\n'); | 
|  | } | 
|  | for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { | 
|  | unsigned PredTree = SubtreeClasses[P.first->NodeNum]; | 
|  | unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; | 
|  | if (PredTree == SuccTree) | 
|  | continue; | 
|  | unsigned Depth = P.first->getDepth(); | 
|  | addConnection(PredTree, SuccTree, Depth); | 
|  | addConnection(SuccTree, PredTree, Depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | /// Joins the predecessor subtree with the successor that is its DFS parent. | 
|  | /// Applies some heuristics before joining. | 
|  | bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, | 
|  | bool CheckLimit = true) { | 
|  | assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); | 
|  |  | 
|  | // Check if the predecessor is already joined. | 
|  | const SUnit *PredSU = PredDep.getSUnit(); | 
|  | unsigned PredNum = PredSU->NodeNum; | 
|  | if (R.DFSNodeData[PredNum].SubtreeID != PredNum) | 
|  | return false; | 
|  |  | 
|  | // Four is the magic number of successors before a node is considered a | 
|  | // pinch point. | 
|  | unsigned NumDataSucs = 0; | 
|  | for (const SDep &SuccDep : PredSU->Succs) { | 
|  | if (SuccDep.getKind() == SDep::Data) { | 
|  | if (++NumDataSucs >= 4) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) | 
|  | return false; | 
|  | R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; | 
|  | SubtreeClasses.join(Succ->NodeNum, PredNum); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Called by finalize() to record a connection between trees. | 
|  | void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { | 
|  | if (!Depth) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | SmallVectorImpl<SchedDFSResult::Connection> &Connections = | 
|  | R.SubtreeConnections[FromTree]; | 
|  | for (SchedDFSResult::Connection &C : Connections) { | 
|  | if (C.TreeID == ToTree) { | 
|  | C.Level = std::max(C.Level, Depth); | 
|  | return; | 
|  | } | 
|  | } | 
|  | Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); | 
|  | FromTree = R.DFSTreeData[FromTree].ParentTreeID; | 
|  | } while (FromTree != SchedDFSResult::InvalidSubtreeID); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Manage the stack used by a reverse depth-first search over the DAG. | 
|  | class SchedDAGReverseDFS { | 
|  | std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; | 
|  |  | 
|  | public: | 
|  | bool isComplete() const { return DFSStack.empty(); } | 
|  |  | 
|  | void follow(const SUnit *SU) { | 
|  | DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); | 
|  | } | 
|  | void advance() { ++DFSStack.back().second; } | 
|  |  | 
|  | const SDep *backtrack() { | 
|  | DFSStack.pop_back(); | 
|  | return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); | 
|  | } | 
|  |  | 
|  | const SUnit *getCurr() const { return DFSStack.back().first; } | 
|  |  | 
|  | SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } | 
|  |  | 
|  | SUnit::const_pred_iterator getPredEnd() const { | 
|  | return getCurr()->Preds.end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static bool hasDataSucc(const SUnit *SU) { | 
|  | for (const SDep &SuccDep : SU->Succs) { | 
|  | if (SuccDep.getKind() == SDep::Data && | 
|  | !SuccDep.getSUnit()->isBoundaryNode()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first | 
|  | /// search from this root. | 
|  | void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { | 
|  | if (!IsBottomUp) | 
|  | llvm_unreachable("Top-down ILP metric is unimplemented"); | 
|  |  | 
|  | SchedDFSImpl Impl(*this); | 
|  | for (const SUnit &SU : SUnits) { | 
|  | if (Impl.isVisited(&SU) || hasDataSucc(&SU)) | 
|  | continue; | 
|  |  | 
|  | SchedDAGReverseDFS DFS; | 
|  | Impl.visitPreorder(&SU); | 
|  | DFS.follow(&SU); | 
|  | while (true) { | 
|  | // Traverse the leftmost path as far as possible. | 
|  | while (DFS.getPred() != DFS.getPredEnd()) { | 
|  | const SDep &PredDep = *DFS.getPred(); | 
|  | DFS.advance(); | 
|  | // Ignore non-data edges. | 
|  | if (PredDep.getKind() != SDep::Data | 
|  | || PredDep.getSUnit()->isBoundaryNode()) { | 
|  | continue; | 
|  | } | 
|  | // An already visited edge is a cross edge, assuming an acyclic DAG. | 
|  | if (Impl.isVisited(PredDep.getSUnit())) { | 
|  | Impl.visitCrossEdge(PredDep, DFS.getCurr()); | 
|  | continue; | 
|  | } | 
|  | Impl.visitPreorder(PredDep.getSUnit()); | 
|  | DFS.follow(PredDep.getSUnit()); | 
|  | } | 
|  | // Visit the top of the stack in postorder and backtrack. | 
|  | const SUnit *Child = DFS.getCurr(); | 
|  | const SDep *PredDep = DFS.backtrack(); | 
|  | Impl.visitPostorderNode(Child); | 
|  | if (PredDep) | 
|  | Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); | 
|  | if (DFS.isComplete()) | 
|  | break; | 
|  | } | 
|  | } | 
|  | Impl.finalize(); | 
|  | } | 
|  |  | 
|  | /// The root of the given SubtreeID was just scheduled. For all subtrees | 
|  | /// connected to this tree, record the depth of the connection so that the | 
|  | /// nearest connected subtrees can be prioritized. | 
|  | void SchedDFSResult::scheduleTree(unsigned SubtreeID) { | 
|  | for (const Connection &C : SubtreeConnections[SubtreeID]) { | 
|  | SubtreeConnectLevels[C.TreeID] = | 
|  | std::max(SubtreeConnectLevels[C.TreeID], C.Level); | 
|  | LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @" | 
|  | << SubtreeConnectLevels[C.TreeID] << '\n'); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { | 
|  | OS << InstrCount << " / " << Length << " = "; | 
|  | if (!Length) | 
|  | OS << "BADILP"; | 
|  | else | 
|  | OS << format("%g", ((double)InstrCount / Length)); | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void ILPValue::dump() const { | 
|  | dbgs() << *this << '\n'; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | LLVM_DUMP_METHOD | 
|  | raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { | 
|  | Val.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif |