|  | //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements a top-down list scheduler, using standard algorithms. | 
|  | // The basic approach uses a priority queue of available nodes to schedule. | 
|  | // One at a time, nodes are taken from the priority queue (thus in priority | 
|  | // order), checked for legality to schedule, and emitted if legal. | 
|  | // | 
|  | // Nodes may not be legal to schedule either due to structural hazards (e.g. | 
|  | // pipeline or resource constraints) or because an input to the instruction has | 
|  | // not completed execution. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "post-RA-sched" | 
|  | #include "AntiDepBreaker.h" | 
|  | #include "AggressiveAntiDepBreaker.h" | 
|  | #include "CriticalAntiDepBreaker.h" | 
|  | #include "ExactHazardRecognizer.h" | 
|  | #include "SimpleHazardRecognizer.h" | 
|  | #include "ScheduleDAGInstrs.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/LatencyPriorityQueue.h" | 
|  | #include "llvm/CodeGen/SchedulerRegistry.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtarget.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumNoops, "Number of noops inserted"); | 
|  | STATISTIC(NumStalls, "Number of pipeline stalls"); | 
|  | STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); | 
|  |  | 
|  | // Post-RA scheduling is enabled with | 
|  | // TargetSubtarget.enablePostRAScheduler(). This flag can be used to | 
|  | // override the target. | 
|  | static cl::opt<bool> | 
|  | EnablePostRAScheduler("post-RA-scheduler", | 
|  | cl::desc("Enable scheduling after register allocation"), | 
|  | cl::init(false), cl::Hidden); | 
|  | static cl::opt<std::string> | 
|  | EnableAntiDepBreaking("break-anti-dependencies", | 
|  | cl::desc("Break post-RA scheduling anti-dependencies: " | 
|  | "\"critical\", \"all\", or \"none\""), | 
|  | cl::init("none"), cl::Hidden); | 
|  | static cl::opt<bool> | 
|  | EnablePostRAHazardAvoidance("avoid-hazards", | 
|  | cl::desc("Enable exact hazard avoidance"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod | 
|  | static cl::opt<int> | 
|  | DebugDiv("postra-sched-debugdiv", | 
|  | cl::desc("Debug control MBBs that are scheduled"), | 
|  | cl::init(0), cl::Hidden); | 
|  | static cl::opt<int> | 
|  | DebugMod("postra-sched-debugmod", | 
|  | cl::desc("Debug control MBBs that are scheduled"), | 
|  | cl::init(0), cl::Hidden); | 
|  |  | 
|  | AntiDepBreaker::~AntiDepBreaker() { } | 
|  |  | 
|  | namespace { | 
|  | class PostRAScheduler : public MachineFunctionPass { | 
|  | AliasAnalysis *AA; | 
|  | CodeGenOpt::Level OptLevel; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | PostRAScheduler(CodeGenOpt::Level ol) : | 
|  | MachineFunctionPass(&ID), OptLevel(ol) {} | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | const char *getPassName() const { | 
|  | return "Post RA top-down list latency scheduler"; | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &Fn); | 
|  | }; | 
|  | char PostRAScheduler::ID = 0; | 
|  |  | 
|  | class SchedulePostRATDList : public ScheduleDAGInstrs { | 
|  | /// AvailableQueue - The priority queue to use for the available SUnits. | 
|  | /// | 
|  | LatencyPriorityQueue AvailableQueue; | 
|  |  | 
|  | /// PendingQueue - This contains all of the instructions whose operands have | 
|  | /// been issued, but their results are not ready yet (due to the latency of | 
|  | /// the operation).  Once the operands becomes available, the instruction is | 
|  | /// added to the AvailableQueue. | 
|  | std::vector<SUnit*> PendingQueue; | 
|  |  | 
|  | /// Topo - A topological ordering for SUnits. | 
|  | ScheduleDAGTopologicalSort Topo; | 
|  |  | 
|  | /// HazardRec - The hazard recognizer to use. | 
|  | ScheduleHazardRecognizer *HazardRec; | 
|  |  | 
|  | /// AntiDepBreak - Anti-dependence breaking object, or NULL if none | 
|  | AntiDepBreaker *AntiDepBreak; | 
|  |  | 
|  | /// AA - AliasAnalysis for making memory reference queries. | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | /// KillIndices - The index of the most recent kill (proceding bottom-up), | 
|  | /// or ~0u if the register is not live. | 
|  | unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister]; | 
|  |  | 
|  | public: | 
|  | SchedulePostRATDList(MachineFunction &MF, | 
|  | const MachineLoopInfo &MLI, | 
|  | const MachineDominatorTree &MDT, | 
|  | ScheduleHazardRecognizer *HR, | 
|  | AntiDepBreaker *ADB, | 
|  | AliasAnalysis *aa) | 
|  | : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), | 
|  | HazardRec(HR), AntiDepBreak(ADB), AA(aa) {} | 
|  |  | 
|  | ~SchedulePostRATDList() { | 
|  | } | 
|  |  | 
|  | /// StartBlock - Initialize register live-range state for scheduling in | 
|  | /// this block. | 
|  | /// | 
|  | void StartBlock(MachineBasicBlock *BB); | 
|  |  | 
|  | /// Schedule - Schedule the instruction range using list scheduling. | 
|  | /// | 
|  | void Schedule(); | 
|  |  | 
|  | /// Observe - Update liveness information to account for the current | 
|  | /// instruction, which will not be scheduled. | 
|  | /// | 
|  | void Observe(MachineInstr *MI, unsigned Count); | 
|  |  | 
|  | /// FinishBlock - Clean up register live-range state. | 
|  | /// | 
|  | void FinishBlock(); | 
|  |  | 
|  | /// FixupKills - Fix register kill flags that have been made | 
|  | /// invalid due to scheduling | 
|  | /// | 
|  | void FixupKills(MachineBasicBlock *MBB); | 
|  |  | 
|  | private: | 
|  | void ReleaseSucc(SUnit *SU, SDep *SuccEdge); | 
|  | void ReleaseSuccessors(SUnit *SU); | 
|  | void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); | 
|  | void ListScheduleTopDown(); | 
|  | void StartBlockForKills(MachineBasicBlock *BB); | 
|  |  | 
|  | // ToggleKillFlag - Toggle a register operand kill flag. Other | 
|  | // adjustments may be made to the instruction if necessary. Return | 
|  | // true if the operand has been deleted, false if not. | 
|  | bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// isSchedulingBoundary - Test if the given instruction should be | 
|  | /// considered a scheduling boundary. This primarily includes labels | 
|  | /// and terminators. | 
|  | /// | 
|  | static bool isSchedulingBoundary(const MachineInstr *MI, | 
|  | const MachineFunction &MF) { | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI->getDesc().isTerminator() || MI->isLabel()) | 
|  | return true; | 
|  |  | 
|  | // Don't attempt to schedule around any instruction that modifies | 
|  | // a stack-oriented pointer, as it's unlikely to be profitable. This | 
|  | // saves compile time, because it doesn't require every single | 
|  | // stack slot reference to depend on the instruction that does the | 
|  | // modification. | 
|  | const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); | 
|  | if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  |  | 
|  | // Check for explicit enable/disable of post-ra scheduling. | 
|  | TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE; | 
|  | SmallVector<TargetRegisterClass*, 4> CriticalPathRCs; | 
|  | if (EnablePostRAScheduler.getPosition() > 0) { | 
|  | if (!EnablePostRAScheduler) | 
|  | return false; | 
|  | } else { | 
|  | // Check that post-RA scheduling is enabled for this target. | 
|  | const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>(); | 
|  | if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for antidep breaking override... | 
|  | if (EnableAntiDepBreaking.getPosition() > 0) { | 
|  | AntiDepMode = (EnableAntiDepBreaking == "all") ? TargetSubtarget::ANTIDEP_ALL : | 
|  | (EnableAntiDepBreaking == "critical") ? TargetSubtarget::ANTIDEP_CRITICAL : | 
|  | TargetSubtarget::ANTIDEP_NONE; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "PostRAScheduler\n"); | 
|  |  | 
|  | const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); | 
|  | const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); | 
|  | const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData(); | 
|  | ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ? | 
|  | (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) : | 
|  | (ScheduleHazardRecognizer *)new SimpleHazardRecognizer(); | 
|  | AntiDepBreaker *ADB = | 
|  | ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ? | 
|  | (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn, CriticalPathRCs) : | 
|  | ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ? | 
|  | (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL)); | 
|  |  | 
|  | SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA); | 
|  |  | 
|  | // Loop over all of the basic blocks | 
|  | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); | 
|  | MBB != MBBe; ++MBB) { | 
|  | #ifndef NDEBUG | 
|  | // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod | 
|  | if (DebugDiv > 0) { | 
|  | static int bbcnt = 0; | 
|  | if (bbcnt++ % DebugDiv != DebugMod) | 
|  | continue; | 
|  | dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() << | 
|  | ":BB#" << MBB->getNumber() << " ***\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Initialize register live-range state for scheduling in this block. | 
|  | Scheduler.StartBlock(MBB); | 
|  |  | 
|  | // Schedule each sequence of instructions not interrupted by a label | 
|  | // or anything else that effectively needs to shut down scheduling. | 
|  | MachineBasicBlock::iterator Current = MBB->end(); | 
|  | unsigned Count = MBB->size(), CurrentCount = Count; | 
|  | for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) { | 
|  | MachineInstr *MI = prior(I); | 
|  | if (isSchedulingBoundary(MI, Fn)) { | 
|  | Scheduler.Run(MBB, I, Current, CurrentCount); | 
|  | Scheduler.EmitSchedule(0); | 
|  | Current = MI; | 
|  | CurrentCount = Count - 1; | 
|  | Scheduler.Observe(MI, CurrentCount); | 
|  | } | 
|  | I = MI; | 
|  | --Count; | 
|  | } | 
|  | assert(Count == 0 && "Instruction count mismatch!"); | 
|  | assert((MBB->begin() == Current || CurrentCount != 0) && | 
|  | "Instruction count mismatch!"); | 
|  | Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount); | 
|  | Scheduler.EmitSchedule(0); | 
|  |  | 
|  | // Clean up register live-range state. | 
|  | Scheduler.FinishBlock(); | 
|  |  | 
|  | // Update register kills | 
|  | Scheduler.FixupKills(MBB); | 
|  | } | 
|  |  | 
|  | delete HR; | 
|  | delete ADB; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// StartBlock - Initialize register live-range state for scheduling in | 
|  | /// this block. | 
|  | /// | 
|  | void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) { | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::StartBlock(BB); | 
|  |  | 
|  | // Reset the hazard recognizer and anti-dep breaker. | 
|  | HazardRec->Reset(); | 
|  | if (AntiDepBreak != NULL) | 
|  | AntiDepBreak->StartBlock(BB); | 
|  | } | 
|  |  | 
|  | /// Schedule - Schedule the instruction range using list scheduling. | 
|  | /// | 
|  | void SchedulePostRATDList::Schedule() { | 
|  | // Build the scheduling graph. | 
|  | BuildSchedGraph(AA); | 
|  |  | 
|  | if (AntiDepBreak != NULL) { | 
|  | unsigned Broken = | 
|  | AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos, | 
|  | InsertPosIndex); | 
|  |  | 
|  | if (Broken != 0) { | 
|  | // We made changes. Update the dependency graph. | 
|  | // Theoretically we could update the graph in place: | 
|  | // When a live range is changed to use a different register, remove | 
|  | // the def's anti-dependence *and* output-dependence edges due to | 
|  | // that register, and add new anti-dependence and output-dependence | 
|  | // edges based on the next live range of the register. | 
|  | SUnits.clear(); | 
|  | Sequence.clear(); | 
|  | EntrySU = SUnit(); | 
|  | ExitSU = SUnit(); | 
|  | BuildSchedGraph(AA); | 
|  |  | 
|  | NumFixedAnti += Broken; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "********** List Scheduling **********\n"); | 
|  | DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) | 
|  | SUnits[su].dumpAll(this)); | 
|  |  | 
|  | AvailableQueue.initNodes(SUnits); | 
|  | ListScheduleTopDown(); | 
|  | AvailableQueue.releaseState(); | 
|  | } | 
|  |  | 
|  | /// Observe - Update liveness information to account for the current | 
|  | /// instruction, which will not be scheduled. | 
|  | /// | 
|  | void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { | 
|  | if (AntiDepBreak != NULL) | 
|  | AntiDepBreak->Observe(MI, Count, InsertPosIndex); | 
|  | } | 
|  |  | 
|  | /// FinishBlock - Clean up register live-range state. | 
|  | /// | 
|  | void SchedulePostRATDList::FinishBlock() { | 
|  | if (AntiDepBreak != NULL) | 
|  | AntiDepBreak->FinishBlock(); | 
|  |  | 
|  | // Call the superclass. | 
|  | ScheduleDAGInstrs::FinishBlock(); | 
|  | } | 
|  |  | 
|  | /// StartBlockForKills - Initialize register live-range state for updating kills | 
|  | /// | 
|  | void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) { | 
|  | // Initialize the indices to indicate that no registers are live. | 
|  | for (unsigned i = 0; i < TRI->getNumRegs(); ++i) | 
|  | KillIndices[i] = ~0u; | 
|  |  | 
|  | // Determine the live-out physregs for this block. | 
|  | if (!BB->empty() && BB->back().getDesc().isReturn()) { | 
|  | // In a return block, examine the function live-out regs. | 
|  | for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), | 
|  | E = MRI.liveout_end(); I != E; ++I) { | 
|  | unsigned Reg = *I; | 
|  | KillIndices[Reg] = BB->size(); | 
|  | // Repeat, for all subregs. | 
|  | for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
|  | *Subreg; ++Subreg) { | 
|  | KillIndices[*Subreg] = BB->size(); | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | // In a non-return block, examine the live-in regs of all successors. | 
|  | for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), | 
|  | SE = BB->succ_end(); SI != SE; ++SI) { | 
|  | for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), | 
|  | E = (*SI)->livein_end(); I != E; ++I) { | 
|  | unsigned Reg = *I; | 
|  | KillIndices[Reg] = BB->size(); | 
|  | // Repeat, for all subregs. | 
|  | for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
|  | *Subreg; ++Subreg) { | 
|  | KillIndices[*Subreg] = BB->size(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI, | 
|  | MachineOperand &MO) { | 
|  | // Setting kill flag... | 
|  | if (!MO.isKill()) { | 
|  | MO.setIsKill(true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If MO itself is live, clear the kill flag... | 
|  | if (KillIndices[MO.getReg()] != ~0u) { | 
|  | MO.setIsKill(false); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If any subreg of MO is live, then create an imp-def for that | 
|  | // subreg and keep MO marked as killed. | 
|  | MO.setIsKill(false); | 
|  | bool AllDead = true; | 
|  | const unsigned SuperReg = MO.getReg(); | 
|  | for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg); | 
|  | *Subreg; ++Subreg) { | 
|  | if (KillIndices[*Subreg] != ~0u) { | 
|  | MI->addOperand(MachineOperand::CreateReg(*Subreg, | 
|  | true  /*IsDef*/, | 
|  | true  /*IsImp*/, | 
|  | false /*IsKill*/, | 
|  | false /*IsDead*/)); | 
|  | AllDead = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if(AllDead) | 
|  | MO.setIsKill(true); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// FixupKills - Fix the register kill flags, they may have been made | 
|  | /// incorrect by instruction reordering. | 
|  | /// | 
|  | void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) { | 
|  | DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); | 
|  |  | 
|  | std::set<unsigned> killedRegs; | 
|  | BitVector ReservedRegs = TRI->getReservedRegs(MF); | 
|  |  | 
|  | StartBlockForKills(MBB); | 
|  |  | 
|  | // Examine block from end to start... | 
|  | unsigned Count = MBB->size(); | 
|  | for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); | 
|  | I != E; --Count) { | 
|  | MachineInstr *MI = --I; | 
|  | if (MI->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | // Update liveness.  Registers that are defed but not used in this | 
|  | // instruction are now dead. Mark register and all subregs as they | 
|  | // are completely defined. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  | if (!MO.isDef()) continue; | 
|  | // Ignore two-addr defs. | 
|  | if (MI->isRegTiedToUseOperand(i)) continue; | 
|  |  | 
|  | KillIndices[Reg] = ~0u; | 
|  |  | 
|  | // Repeat for all subregs. | 
|  | for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
|  | *Subreg; ++Subreg) { | 
|  | KillIndices[*Subreg] = ~0u; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Examine all used registers and set/clear kill flag. When a | 
|  | // register is used multiple times we only set the kill flag on | 
|  | // the first use. | 
|  | killedRegs.clear(); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if ((Reg == 0) || ReservedRegs.test(Reg)) continue; | 
|  |  | 
|  | bool kill = false; | 
|  | if (killedRegs.find(Reg) == killedRegs.end()) { | 
|  | kill = true; | 
|  | // A register is not killed if any subregs are live... | 
|  | for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
|  | *Subreg; ++Subreg) { | 
|  | if (KillIndices[*Subreg] != ~0u) { | 
|  | kill = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If subreg is not live, then register is killed if it became | 
|  | // live in this instruction | 
|  | if (kill) | 
|  | kill = (KillIndices[Reg] == ~0u); | 
|  | } | 
|  |  | 
|  | if (MO.isKill() != kill) { | 
|  | DEBUG(dbgs() << "Fixing " << MO << " in "); | 
|  | // Warning: ToggleKillFlag may invalidate MO. | 
|  | ToggleKillFlag(MI, MO); | 
|  | DEBUG(MI->dump()); | 
|  | } | 
|  |  | 
|  | killedRegs.insert(Reg); | 
|  | } | 
|  |  | 
|  | // Mark any used register (that is not using undef) and subregs as | 
|  | // now live... | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if ((Reg == 0) || ReservedRegs.test(Reg)) continue; | 
|  |  | 
|  | KillIndices[Reg] = Count; | 
|  |  | 
|  | for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
|  | *Subreg; ++Subreg) { | 
|  | KillIndices[*Subreg] = Count; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Top-Down Scheduling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to | 
|  | /// the PendingQueue if the count reaches zero. Also update its cycle bound. | 
|  | void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { | 
|  | SUnit *SuccSU = SuccEdge->getSUnit(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (SuccSU->NumPredsLeft == 0) { | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | SuccSU->dump(this); | 
|  | dbgs() << " has been released too many times!\n"; | 
|  | llvm_unreachable(0); | 
|  | } | 
|  | #endif | 
|  | --SuccSU->NumPredsLeft; | 
|  |  | 
|  | // Compute how many cycles it will be before this actually becomes | 
|  | // available.  This is the max of the start time of all predecessors plus | 
|  | // their latencies. | 
|  | SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); | 
|  |  | 
|  | // If all the node's predecessors are scheduled, this node is ready | 
|  | // to be scheduled. Ignore the special ExitSU node. | 
|  | if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) | 
|  | PendingQueue.push_back(SuccSU); | 
|  | } | 
|  |  | 
|  | /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. | 
|  | void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { | 
|  | for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); | 
|  | I != E; ++I) { | 
|  | ReleaseSucc(SU, &*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending | 
|  | /// count of its successors. If a successor pending count is zero, add it to | 
|  | /// the Available queue. | 
|  | void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { | 
|  | DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); | 
|  | DEBUG(SU->dump(this)); | 
|  |  | 
|  | Sequence.push_back(SU); | 
|  | assert(CurCycle >= SU->getDepth() && | 
|  | "Node scheduled above its depth!"); | 
|  | SU->setDepthToAtLeast(CurCycle); | 
|  |  | 
|  | ReleaseSuccessors(SU); | 
|  | SU->isScheduled = true; | 
|  | AvailableQueue.ScheduledNode(SU); | 
|  | } | 
|  |  | 
|  | /// ListScheduleTopDown - The main loop of list scheduling for top-down | 
|  | /// schedulers. | 
|  | void SchedulePostRATDList::ListScheduleTopDown() { | 
|  | unsigned CurCycle = 0; | 
|  |  | 
|  | // We're scheduling top-down but we're visiting the regions in | 
|  | // bottom-up order, so we don't know the hazards at the start of a | 
|  | // region. So assume no hazards (this should usually be ok as most | 
|  | // blocks are a single region). | 
|  | HazardRec->Reset(); | 
|  |  | 
|  | // Release any successors of the special Entry node. | 
|  | ReleaseSuccessors(&EntrySU); | 
|  |  | 
|  | // Add all leaves to Available queue. | 
|  | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | // It is available if it has no predecessors. | 
|  | bool available = SUnits[i].Preds.empty(); | 
|  | if (available) { | 
|  | AvailableQueue.push(&SUnits[i]); | 
|  | SUnits[i].isAvailable = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In any cycle where we can't schedule any instructions, we must | 
|  | // stall or emit a noop, depending on the target. | 
|  | bool CycleHasInsts = false; | 
|  |  | 
|  | // While Available queue is not empty, grab the node with the highest | 
|  | // priority. If it is not ready put it back.  Schedule the node. | 
|  | std::vector<SUnit*> NotReady; | 
|  | Sequence.reserve(SUnits.size()); | 
|  | while (!AvailableQueue.empty() || !PendingQueue.empty()) { | 
|  | // Check to see if any of the pending instructions are ready to issue.  If | 
|  | // so, add them to the available queue. | 
|  | unsigned MinDepth = ~0u; | 
|  | for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { | 
|  | if (PendingQueue[i]->getDepth() <= CurCycle) { | 
|  | AvailableQueue.push(PendingQueue[i]); | 
|  | PendingQueue[i]->isAvailable = true; | 
|  | PendingQueue[i] = PendingQueue.back(); | 
|  | PendingQueue.pop_back(); | 
|  | --i; --e; | 
|  | } else if (PendingQueue[i]->getDepth() < MinDepth) | 
|  | MinDepth = PendingQueue[i]->getDepth(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\n*** Examining Available\n"; | 
|  | LatencyPriorityQueue q = AvailableQueue; | 
|  | while (!q.empty()) { | 
|  | SUnit *su = q.pop(); | 
|  | dbgs() << "Height " << su->getHeight() << ": "; | 
|  | su->dump(this); | 
|  | }); | 
|  |  | 
|  | SUnit *FoundSUnit = 0; | 
|  | bool HasNoopHazards = false; | 
|  | while (!AvailableQueue.empty()) { | 
|  | SUnit *CurSUnit = AvailableQueue.pop(); | 
|  |  | 
|  | ScheduleHazardRecognizer::HazardType HT = | 
|  | HazardRec->getHazardType(CurSUnit); | 
|  | if (HT == ScheduleHazardRecognizer::NoHazard) { | 
|  | FoundSUnit = CurSUnit; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Remember if this is a noop hazard. | 
|  | HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; | 
|  |  | 
|  | NotReady.push_back(CurSUnit); | 
|  | } | 
|  |  | 
|  | // Add the nodes that aren't ready back onto the available list. | 
|  | if (!NotReady.empty()) { | 
|  | AvailableQueue.push_all(NotReady); | 
|  | NotReady.clear(); | 
|  | } | 
|  |  | 
|  | // If we found a node to schedule... | 
|  | if (FoundSUnit) { | 
|  | // ... schedule the node... | 
|  | ScheduleNodeTopDown(FoundSUnit, CurCycle); | 
|  | HazardRec->EmitInstruction(FoundSUnit); | 
|  | CycleHasInsts = true; | 
|  |  | 
|  | // If we are using the target-specific hazards, then don't | 
|  | // advance the cycle time just because we schedule a node. If | 
|  | // the target allows it we can schedule multiple nodes in the | 
|  | // same cycle. | 
|  | if (!EnablePostRAHazardAvoidance) { | 
|  | if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops! | 
|  | ++CurCycle; | 
|  | } | 
|  | } else { | 
|  | if (CycleHasInsts) { | 
|  | DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); | 
|  | HazardRec->AdvanceCycle(); | 
|  | } else if (!HasNoopHazards) { | 
|  | // Otherwise, we have a pipeline stall, but no other problem, | 
|  | // just advance the current cycle and try again. | 
|  | DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); | 
|  | HazardRec->AdvanceCycle(); | 
|  | ++NumStalls; | 
|  | } else { | 
|  | // Otherwise, we have no instructions to issue and we have instructions | 
|  | // that will fault if we don't do this right.  This is the case for | 
|  | // processors without pipeline interlocks and other cases. | 
|  | DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); | 
|  | HazardRec->EmitNoop(); | 
|  | Sequence.push_back(0);   // NULL here means noop | 
|  | ++NumNoops; | 
|  | } | 
|  |  | 
|  | ++CurCycle; | 
|  | CycleHasInsts = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | VerifySchedule(/*isBottomUp=*/false); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Public Constructor Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) { | 
|  | return new PostRAScheduler(OptLevel); | 
|  | } |