|  | //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines vectorizer utilities. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/ADT/EquivalenceClasses.h" | 
|  | #include "llvm/Analysis/DemandedBits.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Value.h" | 
|  |  | 
|  | #define DEBUG_TYPE "vectorutils" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | /// Maximum factor for an interleaved memory access. | 
|  | static cl::opt<unsigned> MaxInterleaveGroupFactor( | 
|  | "max-interleave-group-factor", cl::Hidden, | 
|  | cl::desc("Maximum factor for an interleaved access group (default = 8)"), | 
|  | cl::init(8)); | 
|  |  | 
|  | /// Return true if all of the intrinsic's arguments and return type are scalars | 
|  | /// for the scalar form of the intrinsic and vectors for the vector form of the | 
|  | /// intrinsic. | 
|  | bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { | 
|  | switch (ID) { | 
|  | case Intrinsic::bswap: // Begin integer bit-manipulation. | 
|  | case Intrinsic::bitreverse: | 
|  | case Intrinsic::ctpop: | 
|  | case Intrinsic::ctlz: | 
|  | case Intrinsic::cttz: | 
|  | case Intrinsic::fshl: | 
|  | case Intrinsic::fshr: | 
|  | case Intrinsic::sadd_sat: | 
|  | case Intrinsic::ssub_sat: | 
|  | case Intrinsic::uadd_sat: | 
|  | case Intrinsic::usub_sat: | 
|  | case Intrinsic::smul_fix: | 
|  | case Intrinsic::umul_fix: | 
|  | case Intrinsic::sqrt: // Begin floating-point. | 
|  | case Intrinsic::sin: | 
|  | case Intrinsic::cos: | 
|  | case Intrinsic::exp: | 
|  | case Intrinsic::exp2: | 
|  | case Intrinsic::log: | 
|  | case Intrinsic::log10: | 
|  | case Intrinsic::log2: | 
|  | case Intrinsic::fabs: | 
|  | case Intrinsic::minnum: | 
|  | case Intrinsic::maxnum: | 
|  | case Intrinsic::minimum: | 
|  | case Intrinsic::maximum: | 
|  | case Intrinsic::copysign: | 
|  | case Intrinsic::floor: | 
|  | case Intrinsic::ceil: | 
|  | case Intrinsic::trunc: | 
|  | case Intrinsic::rint: | 
|  | case Intrinsic::nearbyint: | 
|  | case Intrinsic::round: | 
|  | case Intrinsic::pow: | 
|  | case Intrinsic::fma: | 
|  | case Intrinsic::fmuladd: | 
|  | case Intrinsic::powi: | 
|  | case Intrinsic::canonicalize: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Identifies if the intrinsic has a scalar operand. It check for | 
|  | /// ctlz,cttz and powi special intrinsics whose argument is scalar. | 
|  | bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, | 
|  | unsigned ScalarOpdIdx) { | 
|  | switch (ID) { | 
|  | case Intrinsic::ctlz: | 
|  | case Intrinsic::cttz: | 
|  | case Intrinsic::powi: | 
|  | return (ScalarOpdIdx == 1); | 
|  | case Intrinsic::smul_fix: | 
|  | case Intrinsic::umul_fix: | 
|  | return (ScalarOpdIdx == 2); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns intrinsic ID for call. | 
|  | /// For the input call instruction it finds mapping intrinsic and returns | 
|  | /// its ID, in case it does not found it return not_intrinsic. | 
|  | Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); | 
|  | if (ID == Intrinsic::not_intrinsic) | 
|  | return Intrinsic::not_intrinsic; | 
|  |  | 
|  | if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || | 
|  | ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || | 
|  | ID == Intrinsic::sideeffect) | 
|  | return ID; | 
|  | return Intrinsic::not_intrinsic; | 
|  | } | 
|  |  | 
|  | /// Find the operand of the GEP that should be checked for consecutive | 
|  | /// stores. This ignores trailing indices that have no effect on the final | 
|  | /// pointer. | 
|  | unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { | 
|  | const DataLayout &DL = Gep->getModule()->getDataLayout(); | 
|  | unsigned LastOperand = Gep->getNumOperands() - 1; | 
|  | unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); | 
|  |  | 
|  | // Walk backwards and try to peel off zeros. | 
|  | while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { | 
|  | // Find the type we're currently indexing into. | 
|  | gep_type_iterator GEPTI = gep_type_begin(Gep); | 
|  | std::advance(GEPTI, LastOperand - 2); | 
|  |  | 
|  | // If it's a type with the same allocation size as the result of the GEP we | 
|  | // can peel off the zero index. | 
|  | if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) | 
|  | break; | 
|  | --LastOperand; | 
|  | } | 
|  |  | 
|  | return LastOperand; | 
|  | } | 
|  |  | 
|  | /// If the argument is a GEP, then returns the operand identified by | 
|  | /// getGEPInductionOperand. However, if there is some other non-loop-invariant | 
|  | /// operand, it returns that instead. | 
|  | Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { | 
|  | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); | 
|  | if (!GEP) | 
|  | return Ptr; | 
|  |  | 
|  | unsigned InductionOperand = getGEPInductionOperand(GEP); | 
|  |  | 
|  | // Check that all of the gep indices are uniform except for our induction | 
|  | // operand. | 
|  | for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) | 
|  | if (i != InductionOperand && | 
|  | !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) | 
|  | return Ptr; | 
|  | return GEP->getOperand(InductionOperand); | 
|  | } | 
|  |  | 
|  | /// If a value has only one user that is a CastInst, return it. | 
|  | Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { | 
|  | Value *UniqueCast = nullptr; | 
|  | for (User *U : Ptr->users()) { | 
|  | CastInst *CI = dyn_cast<CastInst>(U); | 
|  | if (CI && CI->getType() == Ty) { | 
|  | if (!UniqueCast) | 
|  | UniqueCast = CI; | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | return UniqueCast; | 
|  | } | 
|  |  | 
|  | /// Get the stride of a pointer access in a loop. Looks for symbolic | 
|  | /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. | 
|  | Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { | 
|  | auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); | 
|  | if (!PtrTy || PtrTy->isAggregateType()) | 
|  | return nullptr; | 
|  |  | 
|  | // Try to remove a gep instruction to make the pointer (actually index at this | 
|  | // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the | 
|  | // pointer, otherwise, we are analyzing the index. | 
|  | Value *OrigPtr = Ptr; | 
|  |  | 
|  | // The size of the pointer access. | 
|  | int64_t PtrAccessSize = 1; | 
|  |  | 
|  | Ptr = stripGetElementPtr(Ptr, SE, Lp); | 
|  | const SCEV *V = SE->getSCEV(Ptr); | 
|  |  | 
|  | if (Ptr != OrigPtr) | 
|  | // Strip off casts. | 
|  | while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) | 
|  | V = C->getOperand(); | 
|  |  | 
|  | const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); | 
|  | if (!S) | 
|  | return nullptr; | 
|  |  | 
|  | V = S->getStepRecurrence(*SE); | 
|  | if (!V) | 
|  | return nullptr; | 
|  |  | 
|  | // Strip off the size of access multiplication if we are still analyzing the | 
|  | // pointer. | 
|  | if (OrigPtr == Ptr) { | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { | 
|  | if (M->getOperand(0)->getSCEVType() != scConstant) | 
|  | return nullptr; | 
|  |  | 
|  | const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); | 
|  |  | 
|  | // Huge step value - give up. | 
|  | if (APStepVal.getBitWidth() > 64) | 
|  | return nullptr; | 
|  |  | 
|  | int64_t StepVal = APStepVal.getSExtValue(); | 
|  | if (PtrAccessSize != StepVal) | 
|  | return nullptr; | 
|  | V = M->getOperand(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Strip off casts. | 
|  | Type *StripedOffRecurrenceCast = nullptr; | 
|  | if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { | 
|  | StripedOffRecurrenceCast = C->getType(); | 
|  | V = C->getOperand(); | 
|  | } | 
|  |  | 
|  | // Look for the loop invariant symbolic value. | 
|  | const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); | 
|  | if (!U) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Stride = U->getValue(); | 
|  | if (!Lp->isLoopInvariant(Stride)) | 
|  | return nullptr; | 
|  |  | 
|  | // If we have stripped off the recurrence cast we have to make sure that we | 
|  | // return the value that is used in this loop so that we can replace it later. | 
|  | if (StripedOffRecurrenceCast) | 
|  | Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); | 
|  |  | 
|  | return Stride; | 
|  | } | 
|  |  | 
|  | /// Given a vector and an element number, see if the scalar value is | 
|  | /// already around as a register, for example if it were inserted then extracted | 
|  | /// from the vector. | 
|  | Value *llvm::findScalarElement(Value *V, unsigned EltNo) { | 
|  | assert(V->getType()->isVectorTy() && "Not looking at a vector?"); | 
|  | VectorType *VTy = cast<VectorType>(V->getType()); | 
|  | unsigned Width = VTy->getNumElements(); | 
|  | if (EltNo >= Width)  // Out of range access. | 
|  | return UndefValue::get(VTy->getElementType()); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return C->getAggregateElement(EltNo); | 
|  |  | 
|  | if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { | 
|  | // If this is an insert to a variable element, we don't know what it is. | 
|  | if (!isa<ConstantInt>(III->getOperand(2))) | 
|  | return nullptr; | 
|  | unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); | 
|  |  | 
|  | // If this is an insert to the element we are looking for, return the | 
|  | // inserted value. | 
|  | if (EltNo == IIElt) | 
|  | return III->getOperand(1); | 
|  |  | 
|  | // Otherwise, the insertelement doesn't modify the value, recurse on its | 
|  | // vector input. | 
|  | return findScalarElement(III->getOperand(0), EltNo); | 
|  | } | 
|  |  | 
|  | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { | 
|  | unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); | 
|  | int InEl = SVI->getMaskValue(EltNo); | 
|  | if (InEl < 0) | 
|  | return UndefValue::get(VTy->getElementType()); | 
|  | if (InEl < (int)LHSWidth) | 
|  | return findScalarElement(SVI->getOperand(0), InEl); | 
|  | return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); | 
|  | } | 
|  |  | 
|  | // Extract a value from a vector add operation with a constant zero. | 
|  | // TODO: Use getBinOpIdentity() to generalize this. | 
|  | Value *Val; Constant *C; | 
|  | if (match(V, m_Add(m_Value(Val), m_Constant(C)))) | 
|  | if (Constant *Elt = C->getAggregateElement(EltNo)) | 
|  | if (Elt->isNullValue()) | 
|  | return findScalarElement(Val, EltNo); | 
|  |  | 
|  | // Otherwise, we don't know. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Get splat value if the input is a splat vector or return nullptr. | 
|  | /// This function is not fully general. It checks only 2 cases: | 
|  | /// the input value is (1) a splat constants vector or (2) a sequence | 
|  | /// of instructions that broadcast a single value into a vector. | 
|  | /// | 
|  | const llvm::Value *llvm::getSplatValue(const Value *V) { | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(V)) | 
|  | if (isa<VectorType>(V->getType())) | 
|  | return C->getSplatValue(); | 
|  |  | 
|  | auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); | 
|  | if (!ShuffleInst) | 
|  | return nullptr; | 
|  | // All-zero (or undef) shuffle mask elements. | 
|  | for (int MaskElt : ShuffleInst->getShuffleMask()) | 
|  | if (MaskElt != 0 && MaskElt != -1) | 
|  | return nullptr; | 
|  | // The first shuffle source is 'insertelement' with index 0. | 
|  | auto *InsertEltInst = | 
|  | dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); | 
|  | if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || | 
|  | !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) | 
|  | return nullptr; | 
|  |  | 
|  | return InsertEltInst->getOperand(1); | 
|  | } | 
|  |  | 
|  | MapVector<Instruction *, uint64_t> | 
|  | llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, | 
|  | const TargetTransformInfo *TTI) { | 
|  |  | 
|  | // DemandedBits will give us every value's live-out bits. But we want | 
|  | // to ensure no extra casts would need to be inserted, so every DAG | 
|  | // of connected values must have the same minimum bitwidth. | 
|  | EquivalenceClasses<Value *> ECs; | 
|  | SmallVector<Value *, 16> Worklist; | 
|  | SmallPtrSet<Value *, 4> Roots; | 
|  | SmallPtrSet<Value *, 16> Visited; | 
|  | DenseMap<Value *, uint64_t> DBits; | 
|  | SmallPtrSet<Instruction *, 4> InstructionSet; | 
|  | MapVector<Instruction *, uint64_t> MinBWs; | 
|  |  | 
|  | // Determine the roots. We work bottom-up, from truncs or icmps. | 
|  | bool SeenExtFromIllegalType = false; | 
|  | for (auto *BB : Blocks) | 
|  | for (auto &I : *BB) { | 
|  | InstructionSet.insert(&I); | 
|  |  | 
|  | if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && | 
|  | !TTI->isTypeLegal(I.getOperand(0)->getType())) | 
|  | SeenExtFromIllegalType = true; | 
|  |  | 
|  | // Only deal with non-vector integers up to 64-bits wide. | 
|  | if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && | 
|  | !I.getType()->isVectorTy() && | 
|  | I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { | 
|  | // Don't make work for ourselves. If we know the loaded type is legal, | 
|  | // don't add it to the worklist. | 
|  | if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) | 
|  | continue; | 
|  |  | 
|  | Worklist.push_back(&I); | 
|  | Roots.insert(&I); | 
|  | } | 
|  | } | 
|  | // Early exit. | 
|  | if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) | 
|  | return MinBWs; | 
|  |  | 
|  | // Now proceed breadth-first, unioning values together. | 
|  | while (!Worklist.empty()) { | 
|  | Value *Val = Worklist.pop_back_val(); | 
|  | Value *Leader = ECs.getOrInsertLeaderValue(Val); | 
|  |  | 
|  | if (Visited.count(Val)) | 
|  | continue; | 
|  | Visited.insert(Val); | 
|  |  | 
|  | // Non-instructions terminate a chain successfully. | 
|  | if (!isa<Instruction>(Val)) | 
|  | continue; | 
|  | Instruction *I = cast<Instruction>(Val); | 
|  |  | 
|  | // If we encounter a type that is larger than 64 bits, we can't represent | 
|  | // it so bail out. | 
|  | if (DB.getDemandedBits(I).getBitWidth() > 64) | 
|  | return MapVector<Instruction *, uint64_t>(); | 
|  |  | 
|  | uint64_t V = DB.getDemandedBits(I).getZExtValue(); | 
|  | DBits[Leader] |= V; | 
|  | DBits[I] = V; | 
|  |  | 
|  | // Casts, loads and instructions outside of our range terminate a chain | 
|  | // successfully. | 
|  | if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || | 
|  | !InstructionSet.count(I)) | 
|  | continue; | 
|  |  | 
|  | // Unsafe casts terminate a chain unsuccessfully. We can't do anything | 
|  | // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to | 
|  | // transform anything that relies on them. | 
|  | if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || | 
|  | !I->getType()->isIntegerTy()) { | 
|  | DBits[Leader] |= ~0ULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We don't modify the types of PHIs. Reductions will already have been | 
|  | // truncated if possible, and inductions' sizes will have been chosen by | 
|  | // indvars. | 
|  | if (isa<PHINode>(I)) | 
|  | continue; | 
|  |  | 
|  | if (DBits[Leader] == ~0ULL) | 
|  | // All bits demanded, no point continuing. | 
|  | continue; | 
|  |  | 
|  | for (Value *O : cast<User>(I)->operands()) { | 
|  | ECs.unionSets(Leader, O); | 
|  | Worklist.push_back(O); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we've discovered all values, walk them to see if there are | 
|  | // any users we didn't see. If there are, we can't optimize that | 
|  | // chain. | 
|  | for (auto &I : DBits) | 
|  | for (auto *U : I.first->users()) | 
|  | if (U->getType()->isIntegerTy() && DBits.count(U) == 0) | 
|  | DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; | 
|  |  | 
|  | for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { | 
|  | uint64_t LeaderDemandedBits = 0; | 
|  | for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) | 
|  | LeaderDemandedBits |= DBits[*MI]; | 
|  |  | 
|  | uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - | 
|  | llvm::countLeadingZeros(LeaderDemandedBits); | 
|  | // Round up to a power of 2 | 
|  | if (!isPowerOf2_64((uint64_t)MinBW)) | 
|  | MinBW = NextPowerOf2(MinBW); | 
|  |  | 
|  | // We don't modify the types of PHIs. Reductions will already have been | 
|  | // truncated if possible, and inductions' sizes will have been chosen by | 
|  | // indvars. | 
|  | // If we are required to shrink a PHI, abandon this entire equivalence class. | 
|  | bool Abort = false; | 
|  | for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) | 
|  | if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { | 
|  | Abort = true; | 
|  | break; | 
|  | } | 
|  | if (Abort) | 
|  | continue; | 
|  |  | 
|  | for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { | 
|  | if (!isa<Instruction>(*MI)) | 
|  | continue; | 
|  | Type *Ty = (*MI)->getType(); | 
|  | if (Roots.count(*MI)) | 
|  | Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); | 
|  | if (MinBW < Ty->getScalarSizeInBits()) | 
|  | MinBWs[cast<Instruction>(*MI)] = MinBW; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MinBWs; | 
|  | } | 
|  |  | 
|  | /// Add all access groups in @p AccGroups to @p List. | 
|  | template <typename ListT> | 
|  | static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { | 
|  | // Interpret an access group as a list containing itself. | 
|  | if (AccGroups->getNumOperands() == 0) { | 
|  | assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); | 
|  | List.insert(AccGroups); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (auto &AccGroupListOp : AccGroups->operands()) { | 
|  | auto *Item = cast<MDNode>(AccGroupListOp.get()); | 
|  | assert(isValidAsAccessGroup(Item) && "List item must be an access group"); | 
|  | List.insert(Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { | 
|  | if (!AccGroups1) | 
|  | return AccGroups2; | 
|  | if (!AccGroups2) | 
|  | return AccGroups1; | 
|  | if (AccGroups1 == AccGroups2) | 
|  | return AccGroups1; | 
|  |  | 
|  | SmallSetVector<Metadata *, 4> Union; | 
|  | addToAccessGroupList(Union, AccGroups1); | 
|  | addToAccessGroupList(Union, AccGroups2); | 
|  |  | 
|  | if (Union.size() == 0) | 
|  | return nullptr; | 
|  | if (Union.size() == 1) | 
|  | return cast<MDNode>(Union.front()); | 
|  |  | 
|  | LLVMContext &Ctx = AccGroups1->getContext(); | 
|  | return MDNode::get(Ctx, Union.getArrayRef()); | 
|  | } | 
|  |  | 
|  | MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, | 
|  | const Instruction *Inst2) { | 
|  | bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); | 
|  | bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); | 
|  |  | 
|  | if (!MayAccessMem1 && !MayAccessMem2) | 
|  | return nullptr; | 
|  | if (!MayAccessMem1) | 
|  | return Inst2->getMetadata(LLVMContext::MD_access_group); | 
|  | if (!MayAccessMem2) | 
|  | return Inst1->getMetadata(LLVMContext::MD_access_group); | 
|  |  | 
|  | MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); | 
|  | MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); | 
|  | if (!MD1 || !MD2) | 
|  | return nullptr; | 
|  | if (MD1 == MD2) | 
|  | return MD1; | 
|  |  | 
|  | // Use set for scalable 'contains' check. | 
|  | SmallPtrSet<Metadata *, 4> AccGroupSet2; | 
|  | addToAccessGroupList(AccGroupSet2, MD2); | 
|  |  | 
|  | SmallVector<Metadata *, 4> Intersection; | 
|  | if (MD1->getNumOperands() == 0) { | 
|  | assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); | 
|  | if (AccGroupSet2.count(MD1)) | 
|  | Intersection.push_back(MD1); | 
|  | } else { | 
|  | for (const MDOperand &Node : MD1->operands()) { | 
|  | auto *Item = cast<MDNode>(Node.get()); | 
|  | assert(isValidAsAccessGroup(Item) && "List item must be an access group"); | 
|  | if (AccGroupSet2.count(Item)) | 
|  | Intersection.push_back(Item); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Intersection.size() == 0) | 
|  | return nullptr; | 
|  | if (Intersection.size() == 1) | 
|  | return cast<MDNode>(Intersection.front()); | 
|  |  | 
|  | LLVMContext &Ctx = Inst1->getContext(); | 
|  | return MDNode::get(Ctx, Intersection); | 
|  | } | 
|  |  | 
|  | /// \returns \p I after propagating metadata from \p VL. | 
|  | Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { | 
|  | Instruction *I0 = cast<Instruction>(VL[0]); | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; | 
|  | I0->getAllMetadataOtherThanDebugLoc(Metadata); | 
|  |  | 
|  | for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, | 
|  | LLVMContext::MD_noalias, LLVMContext::MD_fpmath, | 
|  | LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, | 
|  | LLVMContext::MD_access_group}) { | 
|  | MDNode *MD = I0->getMetadata(Kind); | 
|  |  | 
|  | for (int J = 1, E = VL.size(); MD && J != E; ++J) { | 
|  | const Instruction *IJ = cast<Instruction>(VL[J]); | 
|  | MDNode *IMD = IJ->getMetadata(Kind); | 
|  | switch (Kind) { | 
|  | case LLVMContext::MD_tbaa: | 
|  | MD = MDNode::getMostGenericTBAA(MD, IMD); | 
|  | break; | 
|  | case LLVMContext::MD_alias_scope: | 
|  | MD = MDNode::getMostGenericAliasScope(MD, IMD); | 
|  | break; | 
|  | case LLVMContext::MD_fpmath: | 
|  | MD = MDNode::getMostGenericFPMath(MD, IMD); | 
|  | break; | 
|  | case LLVMContext::MD_noalias: | 
|  | case LLVMContext::MD_nontemporal: | 
|  | case LLVMContext::MD_invariant_load: | 
|  | MD = MDNode::intersect(MD, IMD); | 
|  | break; | 
|  | case LLVMContext::MD_access_group: | 
|  | MD = intersectAccessGroups(Inst, IJ); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unhandled metadata"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Inst->setMetadata(Kind, MD); | 
|  | } | 
|  |  | 
|  | return Inst; | 
|  | } | 
|  |  | 
|  | Constant * | 
|  | llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, | 
|  | const InterleaveGroup<Instruction> &Group) { | 
|  | // All 1's means mask is not needed. | 
|  | if (Group.getNumMembers() == Group.getFactor()) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO: support reversed access. | 
|  | assert(!Group.isReverse() && "Reversed group not supported."); | 
|  |  | 
|  | SmallVector<Constant *, 16> Mask; | 
|  | for (unsigned i = 0; i < VF; i++) | 
|  | for (unsigned j = 0; j < Group.getFactor(); ++j) { | 
|  | unsigned HasMember = Group.getMember(j) ? 1 : 0; | 
|  | Mask.push_back(Builder.getInt1(HasMember)); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Mask); | 
|  | } | 
|  |  | 
|  | Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, | 
|  | unsigned ReplicationFactor, unsigned VF) { | 
|  | SmallVector<Constant *, 16> MaskVec; | 
|  | for (unsigned i = 0; i < VF; i++) | 
|  | for (unsigned j = 0; j < ReplicationFactor; j++) | 
|  | MaskVec.push_back(Builder.getInt32(i)); | 
|  |  | 
|  | return ConstantVector::get(MaskVec); | 
|  | } | 
|  |  | 
|  | Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, | 
|  | unsigned NumVecs) { | 
|  | SmallVector<Constant *, 16> Mask; | 
|  | for (unsigned i = 0; i < VF; i++) | 
|  | for (unsigned j = 0; j < NumVecs; j++) | 
|  | Mask.push_back(Builder.getInt32(j * VF + i)); | 
|  |  | 
|  | return ConstantVector::get(Mask); | 
|  | } | 
|  |  | 
|  | Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, | 
|  | unsigned Stride, unsigned VF) { | 
|  | SmallVector<Constant *, 16> Mask; | 
|  | for (unsigned i = 0; i < VF; i++) | 
|  | Mask.push_back(Builder.getInt32(Start + i * Stride)); | 
|  |  | 
|  | return ConstantVector::get(Mask); | 
|  | } | 
|  |  | 
|  | Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, | 
|  | unsigned NumInts, unsigned NumUndefs) { | 
|  | SmallVector<Constant *, 16> Mask; | 
|  | for (unsigned i = 0; i < NumInts; i++) | 
|  | Mask.push_back(Builder.getInt32(Start + i)); | 
|  |  | 
|  | Constant *Undef = UndefValue::get(Builder.getInt32Ty()); | 
|  | for (unsigned i = 0; i < NumUndefs; i++) | 
|  | Mask.push_back(Undef); | 
|  |  | 
|  | return ConstantVector::get(Mask); | 
|  | } | 
|  |  | 
|  | /// A helper function for concatenating vectors. This function concatenates two | 
|  | /// vectors having the same element type. If the second vector has fewer | 
|  | /// elements than the first, it is padded with undefs. | 
|  | static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, | 
|  | Value *V2) { | 
|  | VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); | 
|  | VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); | 
|  | assert(VecTy1 && VecTy2 && | 
|  | VecTy1->getScalarType() == VecTy2->getScalarType() && | 
|  | "Expect two vectors with the same element type"); | 
|  |  | 
|  | unsigned NumElts1 = VecTy1->getNumElements(); | 
|  | unsigned NumElts2 = VecTy2->getNumElements(); | 
|  | assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); | 
|  |  | 
|  | if (NumElts1 > NumElts2) { | 
|  | // Extend with UNDEFs. | 
|  | Constant *ExtMask = | 
|  | createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); | 
|  | V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); | 
|  | } | 
|  |  | 
|  | Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); | 
|  | return Builder.CreateShuffleVector(V1, V2, Mask); | 
|  | } | 
|  |  | 
|  | Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { | 
|  | unsigned NumVecs = Vecs.size(); | 
|  | assert(NumVecs > 1 && "Should be at least two vectors"); | 
|  |  | 
|  | SmallVector<Value *, 8> ResList; | 
|  | ResList.append(Vecs.begin(), Vecs.end()); | 
|  | do { | 
|  | SmallVector<Value *, 8> TmpList; | 
|  | for (unsigned i = 0; i < NumVecs - 1; i += 2) { | 
|  | Value *V0 = ResList[i], *V1 = ResList[i + 1]; | 
|  | assert((V0->getType() == V1->getType() || i == NumVecs - 2) && | 
|  | "Only the last vector may have a different type"); | 
|  |  | 
|  | TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); | 
|  | } | 
|  |  | 
|  | // Push the last vector if the total number of vectors is odd. | 
|  | if (NumVecs % 2 != 0) | 
|  | TmpList.push_back(ResList[NumVecs - 1]); | 
|  |  | 
|  | ResList = TmpList; | 
|  | NumVecs = ResList.size(); | 
|  | } while (NumVecs > 1); | 
|  |  | 
|  | return ResList[0]; | 
|  | } | 
|  |  | 
|  | bool InterleavedAccessInfo::isStrided(int Stride) { | 
|  | unsigned Factor = std::abs(Stride); | 
|  | return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; | 
|  | } | 
|  |  | 
|  | void InterleavedAccessInfo::collectConstStrideAccesses( | 
|  | MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, | 
|  | const ValueToValueMap &Strides) { | 
|  | auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); | 
|  |  | 
|  | // Since it's desired that the load/store instructions be maintained in | 
|  | // "program order" for the interleaved access analysis, we have to visit the | 
|  | // blocks in the loop in reverse postorder (i.e., in a topological order). | 
|  | // Such an ordering will ensure that any load/store that may be executed | 
|  | // before a second load/store will precede the second load/store in | 
|  | // AccessStrideInfo. | 
|  | LoopBlocksDFS DFS(TheLoop); | 
|  | DFS.perform(LI); | 
|  | for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) | 
|  | for (auto &I : *BB) { | 
|  | auto *LI = dyn_cast<LoadInst>(&I); | 
|  | auto *SI = dyn_cast<StoreInst>(&I); | 
|  | if (!LI && !SI) | 
|  | continue; | 
|  |  | 
|  | Value *Ptr = getLoadStorePointerOperand(&I); | 
|  | // We don't check wrapping here because we don't know yet if Ptr will be | 
|  | // part of a full group or a group with gaps. Checking wrapping for all | 
|  | // pointers (even those that end up in groups with no gaps) will be overly | 
|  | // conservative. For full groups, wrapping should be ok since if we would | 
|  | // wrap around the address space we would do a memory access at nullptr | 
|  | // even without the transformation. The wrapping checks are therefore | 
|  | // deferred until after we've formed the interleaved groups. | 
|  | int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, | 
|  | /*Assume=*/true, /*ShouldCheckWrap=*/false); | 
|  |  | 
|  | const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); | 
|  | PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); | 
|  | uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); | 
|  |  | 
|  | // An alignment of 0 means target ABI alignment. | 
|  | unsigned Align = getLoadStoreAlignment(&I); | 
|  | if (!Align) | 
|  | Align = DL.getABITypeAlignment(PtrTy->getElementType()); | 
|  |  | 
|  | AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Analyze interleaved accesses and collect them into interleaved load and | 
|  | // store groups. | 
|  | // | 
|  | // When generating code for an interleaved load group, we effectively hoist all | 
|  | // loads in the group to the location of the first load in program order. When | 
|  | // generating code for an interleaved store group, we sink all stores to the | 
|  | // location of the last store. This code motion can change the order of load | 
|  | // and store instructions and may break dependences. | 
|  | // | 
|  | // The code generation strategy mentioned above ensures that we won't violate | 
|  | // any write-after-read (WAR) dependences. | 
|  | // | 
|  | // E.g., for the WAR dependence:  a = A[i];      // (1) | 
|  | //                                A[i] = b;      // (2) | 
|  | // | 
|  | // The store group of (2) is always inserted at or below (2), and the load | 
|  | // group of (1) is always inserted at or above (1). Thus, the instructions will | 
|  | // never be reordered. All other dependences are checked to ensure the | 
|  | // correctness of the instruction reordering. | 
|  | // | 
|  | // The algorithm visits all memory accesses in the loop in bottom-up program | 
|  | // order. Program order is established by traversing the blocks in the loop in | 
|  | // reverse postorder when collecting the accesses. | 
|  | // | 
|  | // We visit the memory accesses in bottom-up order because it can simplify the | 
|  | // construction of store groups in the presence of write-after-write (WAW) | 
|  | // dependences. | 
|  | // | 
|  | // E.g., for the WAW dependence:  A[i] = a;      // (1) | 
|  | //                                A[i] = b;      // (2) | 
|  | //                                A[i + 1] = c;  // (3) | 
|  | // | 
|  | // We will first create a store group with (3) and (2). (1) can't be added to | 
|  | // this group because it and (2) are dependent. However, (1) can be grouped | 
|  | // with other accesses that may precede it in program order. Note that a | 
|  | // bottom-up order does not imply that WAW dependences should not be checked. | 
|  | void InterleavedAccessInfo::analyzeInterleaving( | 
|  | bool EnablePredicatedInterleavedMemAccesses) { | 
|  | LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); | 
|  | const ValueToValueMap &Strides = LAI->getSymbolicStrides(); | 
|  |  | 
|  | // Holds all accesses with a constant stride. | 
|  | MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; | 
|  | collectConstStrideAccesses(AccessStrideInfo, Strides); | 
|  |  | 
|  | if (AccessStrideInfo.empty()) | 
|  | return; | 
|  |  | 
|  | // Collect the dependences in the loop. | 
|  | collectDependences(); | 
|  |  | 
|  | // Holds all interleaved store groups temporarily. | 
|  | SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; | 
|  | // Holds all interleaved load groups temporarily. | 
|  | SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; | 
|  |  | 
|  | // Search in bottom-up program order for pairs of accesses (A and B) that can | 
|  | // form interleaved load or store groups. In the algorithm below, access A | 
|  | // precedes access B in program order. We initialize a group for B in the | 
|  | // outer loop of the algorithm, and then in the inner loop, we attempt to | 
|  | // insert each A into B's group if: | 
|  | // | 
|  | //  1. A and B have the same stride, | 
|  | //  2. A and B have the same memory object size, and | 
|  | //  3. A belongs in B's group according to its distance from B. | 
|  | // | 
|  | // Special care is taken to ensure group formation will not break any | 
|  | // dependences. | 
|  | for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); | 
|  | BI != E; ++BI) { | 
|  | Instruction *B = BI->first; | 
|  | StrideDescriptor DesB = BI->second; | 
|  |  | 
|  | // Initialize a group for B if it has an allowable stride. Even if we don't | 
|  | // create a group for B, we continue with the bottom-up algorithm to ensure | 
|  | // we don't break any of B's dependences. | 
|  | InterleaveGroup<Instruction> *Group = nullptr; | 
|  | if (isStrided(DesB.Stride) && | 
|  | (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { | 
|  | Group = getInterleaveGroup(B); | 
|  | if (!Group) { | 
|  | LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B | 
|  | << '\n'); | 
|  | Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); | 
|  | } | 
|  | if (B->mayWriteToMemory()) | 
|  | StoreGroups.insert(Group); | 
|  | else | 
|  | LoadGroups.insert(Group); | 
|  | } | 
|  |  | 
|  | for (auto AI = std::next(BI); AI != E; ++AI) { | 
|  | Instruction *A = AI->first; | 
|  | StrideDescriptor DesA = AI->second; | 
|  |  | 
|  | // Our code motion strategy implies that we can't have dependences | 
|  | // between accesses in an interleaved group and other accesses located | 
|  | // between the first and last member of the group. Note that this also | 
|  | // means that a group can't have more than one member at a given offset. | 
|  | // The accesses in a group can have dependences with other accesses, but | 
|  | // we must ensure we don't extend the boundaries of the group such that | 
|  | // we encompass those dependent accesses. | 
|  | // | 
|  | // For example, assume we have the sequence of accesses shown below in a | 
|  | // stride-2 loop: | 
|  | // | 
|  | //  (1, 2) is a group | A[i]   = a;  // (1) | 
|  | //                    | A[i-1] = b;  // (2) | | 
|  | //                      A[i-3] = c;  // (3) | 
|  | //                      A[i]   = d;  // (4) | (2, 4) is not a group | 
|  | // | 
|  | // Because accesses (2) and (3) are dependent, we can group (2) with (1) | 
|  | // but not with (4). If we did, the dependent access (3) would be within | 
|  | // the boundaries of the (2, 4) group. | 
|  | if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { | 
|  | // If a dependence exists and A is already in a group, we know that A | 
|  | // must be a store since A precedes B and WAR dependences are allowed. | 
|  | // Thus, A would be sunk below B. We release A's group to prevent this | 
|  | // illegal code motion. A will then be free to form another group with | 
|  | // instructions that precede it. | 
|  | if (isInterleaved(A)) { | 
|  | InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); | 
|  | StoreGroups.remove(StoreGroup); | 
|  | releaseGroup(StoreGroup); | 
|  | } | 
|  |  | 
|  | // If a dependence exists and A is not already in a group (or it was | 
|  | // and we just released it), B might be hoisted above A (if B is a | 
|  | // load) or another store might be sunk below A (if B is a store). In | 
|  | // either case, we can't add additional instructions to B's group. B | 
|  | // will only form a group with instructions that it precedes. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // At this point, we've checked for illegal code motion. If either A or B | 
|  | // isn't strided, there's nothing left to do. | 
|  | if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) | 
|  | continue; | 
|  |  | 
|  | // Ignore A if it's already in a group or isn't the same kind of memory | 
|  | // operation as B. | 
|  | // Note that mayReadFromMemory() isn't mutually exclusive to | 
|  | // mayWriteToMemory in the case of atomic loads. We shouldn't see those | 
|  | // here, canVectorizeMemory() should have returned false - except for the | 
|  | // case we asked for optimization remarks. | 
|  | if (isInterleaved(A) || | 
|  | (A->mayReadFromMemory() != B->mayReadFromMemory()) || | 
|  | (A->mayWriteToMemory() != B->mayWriteToMemory())) | 
|  | continue; | 
|  |  | 
|  | // Check rules 1 and 2. Ignore A if its stride or size is different from | 
|  | // that of B. | 
|  | if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) | 
|  | continue; | 
|  |  | 
|  | // Ignore A if the memory object of A and B don't belong to the same | 
|  | // address space | 
|  | if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) | 
|  | continue; | 
|  |  | 
|  | // Calculate the distance from A to B. | 
|  | const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( | 
|  | PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); | 
|  | if (!DistToB) | 
|  | continue; | 
|  | int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); | 
|  |  | 
|  | // Check rule 3. Ignore A if its distance to B is not a multiple of the | 
|  | // size. | 
|  | if (DistanceToB % static_cast<int64_t>(DesB.Size)) | 
|  | continue; | 
|  |  | 
|  | // All members of a predicated interleave-group must have the same predicate, | 
|  | // and currently must reside in the same BB. | 
|  | BasicBlock *BlockA = A->getParent(); | 
|  | BasicBlock *BlockB = B->getParent(); | 
|  | if ((isPredicated(BlockA) || isPredicated(BlockB)) && | 
|  | (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) | 
|  | continue; | 
|  |  | 
|  | // The index of A is the index of B plus A's distance to B in multiples | 
|  | // of the size. | 
|  | int IndexA = | 
|  | Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); | 
|  |  | 
|  | // Try to insert A into B's group. | 
|  | if (Group->insertMember(A, IndexA, DesA.Align)) { | 
|  | LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' | 
|  | << "    into the interleave group with" << *B | 
|  | << '\n'); | 
|  | InterleaveGroupMap[A] = Group; | 
|  |  | 
|  | // Set the first load in program order as the insert position. | 
|  | if (A->mayReadFromMemory()) | 
|  | Group->setInsertPos(A); | 
|  | } | 
|  | } // Iteration over A accesses. | 
|  | }   // Iteration over B accesses. | 
|  |  | 
|  | // Remove interleaved store groups with gaps. | 
|  | for (auto *Group : StoreGroups) | 
|  | if (Group->getNumMembers() != Group->getFactor()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LV: Invalidate candidate interleaved store group due " | 
|  | "to gaps.\n"); | 
|  | releaseGroup(Group); | 
|  | } | 
|  | // Remove interleaved groups with gaps (currently only loads) whose memory | 
|  | // accesses may wrap around. We have to revisit the getPtrStride analysis, | 
|  | // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does | 
|  | // not check wrapping (see documentation there). | 
|  | // FORNOW we use Assume=false; | 
|  | // TODO: Change to Assume=true but making sure we don't exceed the threshold | 
|  | // of runtime SCEV assumptions checks (thereby potentially failing to | 
|  | // vectorize altogether). | 
|  | // Additional optional optimizations: | 
|  | // TODO: If we are peeling the loop and we know that the first pointer doesn't | 
|  | // wrap then we can deduce that all pointers in the group don't wrap. | 
|  | // This means that we can forcefully peel the loop in order to only have to | 
|  | // check the first pointer for no-wrap. When we'll change to use Assume=true | 
|  | // we'll only need at most one runtime check per interleaved group. | 
|  | for (auto *Group : LoadGroups) { | 
|  | // Case 1: A full group. Can Skip the checks; For full groups, if the wide | 
|  | // load would wrap around the address space we would do a memory access at | 
|  | // nullptr even without the transformation. | 
|  | if (Group->getNumMembers() == Group->getFactor()) | 
|  | continue; | 
|  |  | 
|  | // Case 2: If first and last members of the group don't wrap this implies | 
|  | // that all the pointers in the group don't wrap. | 
|  | // So we check only group member 0 (which is always guaranteed to exist), | 
|  | // and group member Factor - 1; If the latter doesn't exist we rely on | 
|  | // peeling (if it is a non-reversed accsess -- see Case 3). | 
|  | Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); | 
|  | if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, | 
|  | /*ShouldCheckWrap=*/true)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LV: Invalidate candidate interleaved group due to " | 
|  | "first group member potentially pointer-wrapping.\n"); | 
|  | releaseGroup(Group); | 
|  | continue; | 
|  | } | 
|  | Instruction *LastMember = Group->getMember(Group->getFactor() - 1); | 
|  | if (LastMember) { | 
|  | Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); | 
|  | if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, | 
|  | /*ShouldCheckWrap=*/true)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LV: Invalidate candidate interleaved group due to " | 
|  | "last group member potentially pointer-wrapping.\n"); | 
|  | releaseGroup(Group); | 
|  | } | 
|  | } else { | 
|  | // Case 3: A non-reversed interleaved load group with gaps: We need | 
|  | // to execute at least one scalar epilogue iteration. This will ensure | 
|  | // we don't speculatively access memory out-of-bounds. We only need | 
|  | // to look for a member at index factor - 1, since every group must have | 
|  | // a member at index zero. | 
|  | if (Group->isReverse()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LV: Invalidate candidate interleaved group due to " | 
|  | "a reverse access with gaps.\n"); | 
|  | releaseGroup(Group); | 
|  | continue; | 
|  | } | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); | 
|  | RequiresScalarEpilogue = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { | 
|  | // If no group had triggered the requirement to create an epilogue loop, | 
|  | // there is nothing to do. | 
|  | if (!requiresScalarEpilogue()) | 
|  | return; | 
|  |  | 
|  | // Avoid releasing a Group twice. | 
|  | SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; | 
|  | for (auto &I : InterleaveGroupMap) { | 
|  | InterleaveGroup<Instruction> *Group = I.second; | 
|  | if (Group->requiresScalarEpilogue()) | 
|  | DelSet.insert(Group); | 
|  | } | 
|  | for (auto *Ptr : DelSet) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "LV: Invalidate candidate interleaved group due to gaps that " | 
|  | "require a scalar epilogue (not allowed under optsize) and cannot " | 
|  | "be masked (not enabled). \n"); | 
|  | releaseGroup(Ptr); | 
|  | } | 
|  |  | 
|  | RequiresScalarEpilogue = false; | 
|  | } | 
|  |  | 
|  | template <typename InstT> | 
|  | void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { | 
|  | llvm_unreachable("addMetadata can only be used for Instruction"); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | template <> | 
|  | void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { | 
|  | SmallVector<Value *, 4> VL; | 
|  | std::transform(Members.begin(), Members.end(), std::back_inserter(VL), | 
|  | [](std::pair<int, Instruction *> p) { return p.second; }); | 
|  | propagateMetadata(NewInst, VL); | 
|  | } | 
|  | } |