|  | //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for expressions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Sema.h" | 
|  | #include "Lookup.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/LiteralSupport.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Parse/DeclSpec.h" | 
|  | #include "clang/Parse/Designator.h" | 
|  | #include "clang/Parse/Scope.h" | 
|  | #include "clang/Parse/Template.h" | 
|  | using namespace clang; | 
|  |  | 
|  |  | 
|  | /// \brief Determine whether the use of this declaration is valid, and | 
|  | /// emit any corresponding diagnostics. | 
|  | /// | 
|  | /// This routine diagnoses various problems with referencing | 
|  | /// declarations that can occur when using a declaration. For example, | 
|  | /// it might warn if a deprecated or unavailable declaration is being | 
|  | /// used, or produce an error (and return true) if a C++0x deleted | 
|  | /// function is being used. | 
|  | /// | 
|  | /// If IgnoreDeprecated is set to true, this should not want about deprecated | 
|  | /// decls. | 
|  | /// | 
|  | /// \returns true if there was an error (this declaration cannot be | 
|  | /// referenced), false otherwise. | 
|  | /// | 
|  | bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) { | 
|  | // See if the decl is deprecated. | 
|  | if (D->getAttr<DeprecatedAttr>()) { | 
|  | EmitDeprecationWarning(D, Loc); | 
|  | } | 
|  |  | 
|  | // See if the decl is unavailable | 
|  | if (D->getAttr<UnavailableAttr>()) { | 
|  | Diag(Loc, diag::warn_unavailable) << D->getDeclName(); | 
|  | Diag(D->getLocation(), diag::note_unavailable_here) << 0; | 
|  | } | 
|  |  | 
|  | // See if this is a deleted function. | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->isDeleted()) { | 
|  | Diag(Loc, diag::err_deleted_function_use); | 
|  | Diag(D->getLocation(), diag::note_unavailable_here) << true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// DiagnoseSentinelCalls - This routine checks on method dispatch calls | 
|  | /// (and other functions in future), which have been declared with sentinel | 
|  | /// attribute. It warns if call does not have the sentinel argument. | 
|  | /// | 
|  | void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, | 
|  | Expr **Args, unsigned NumArgs) { | 
|  | const SentinelAttr *attr = D->getAttr<SentinelAttr>(); | 
|  | if (!attr) | 
|  | return; | 
|  | int sentinelPos = attr->getSentinel(); | 
|  | int nullPos = attr->getNullPos(); | 
|  |  | 
|  | // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common | 
|  | // base class. Then we won't be needing two versions of the same code. | 
|  | unsigned int i = 0; | 
|  | bool warnNotEnoughArgs = false; | 
|  | int isMethod = 0; | 
|  | if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
|  | // skip over named parameters. | 
|  | ObjCMethodDecl::param_iterator P, E = MD->param_end(); | 
|  | for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) { | 
|  | if (nullPos) | 
|  | --nullPos; | 
|  | else | 
|  | ++i; | 
|  | } | 
|  | warnNotEnoughArgs = (P != E || i >= NumArgs); | 
|  | isMethod = 1; | 
|  | } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // skip over named parameters. | 
|  | ObjCMethodDecl::param_iterator P, E = FD->param_end(); | 
|  | for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) { | 
|  | if (nullPos) | 
|  | --nullPos; | 
|  | else | 
|  | ++i; | 
|  | } | 
|  | warnNotEnoughArgs = (P != E || i >= NumArgs); | 
|  | } else if (VarDecl *V = dyn_cast<VarDecl>(D)) { | 
|  | // block or function pointer call. | 
|  | QualType Ty = V->getType(); | 
|  | if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { | 
|  | const FunctionType *FT = Ty->isFunctionPointerType() | 
|  | ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>() | 
|  | : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); | 
|  | if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) { | 
|  | unsigned NumArgsInProto = Proto->getNumArgs(); | 
|  | unsigned k; | 
|  | for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) { | 
|  | if (nullPos) | 
|  | --nullPos; | 
|  | else | 
|  | ++i; | 
|  | } | 
|  | warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs); | 
|  | } | 
|  | if (Ty->isBlockPointerType()) | 
|  | isMethod = 2; | 
|  | } else | 
|  | return; | 
|  | } else | 
|  | return; | 
|  |  | 
|  | if (warnNotEnoughArgs) { | 
|  | Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); | 
|  | Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; | 
|  | return; | 
|  | } | 
|  | int sentinel = i; | 
|  | while (sentinelPos > 0 && i < NumArgs-1) { | 
|  | --sentinelPos; | 
|  | ++i; | 
|  | } | 
|  | if (sentinelPos > 0) { | 
|  | Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); | 
|  | Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; | 
|  | return; | 
|  | } | 
|  | while (i < NumArgs-1) { | 
|  | ++i; | 
|  | ++sentinel; | 
|  | } | 
|  | Expr *sentinelExpr = Args[sentinel]; | 
|  | if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() || | 
|  | !sentinelExpr->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull))) { | 
|  | Diag(Loc, diag::warn_missing_sentinel) << isMethod; | 
|  | Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | SourceRange Sema::getExprRange(ExprTy *E) const { | 
|  | Expr *Ex = (Expr *)E; | 
|  | return Ex? Ex->getSourceRange() : SourceRange(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Standard Promotions and Conversions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). | 
|  | void Sema::DefaultFunctionArrayConversion(Expr *&E) { | 
|  | QualType Ty = E->getType(); | 
|  | assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); | 
|  |  | 
|  | if (Ty->isFunctionType()) | 
|  | ImpCastExprToType(E, Context.getPointerType(Ty), | 
|  | CastExpr::CK_FunctionToPointerDecay); | 
|  | else if (Ty->isArrayType()) { | 
|  | // In C90 mode, arrays only promote to pointers if the array expression is | 
|  | // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has | 
|  | // type 'array of type' is converted to an expression that has type 'pointer | 
|  | // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression | 
|  | // that has type 'array of type' ...".  The relevant change is "an lvalue" | 
|  | // (C90) to "an expression" (C99). | 
|  | // | 
|  | // C++ 4.2p1: | 
|  | // An lvalue or rvalue of type "array of N T" or "array of unknown bound of | 
|  | // T" can be converted to an rvalue of type "pointer to T". | 
|  | // | 
|  | if (getLangOptions().C99 || getLangOptions().CPlusPlus || | 
|  | E->isLvalue(Context) == Expr::LV_Valid) | 
|  | ImpCastExprToType(E, Context.getArrayDecayedType(Ty), | 
|  | CastExpr::CK_ArrayToPointerDecay); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// UsualUnaryConversions - Performs various conversions that are common to most | 
|  | /// operators (C99 6.3). The conversions of array and function types are | 
|  | /// sometimes surpressed. For example, the array->pointer conversion doesn't | 
|  | /// apply if the array is an argument to the sizeof or address (&) operators. | 
|  | /// In these instances, this routine should *not* be called. | 
|  | Expr *Sema::UsualUnaryConversions(Expr *&Expr) { | 
|  | QualType Ty = Expr->getType(); | 
|  | assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); | 
|  |  | 
|  | // C99 6.3.1.1p2: | 
|  | // | 
|  | //   The following may be used in an expression wherever an int or | 
|  | //   unsigned int may be used: | 
|  | //     - an object or expression with an integer type whose integer | 
|  | //       conversion rank is less than or equal to the rank of int | 
|  | //       and unsigned int. | 
|  | //     - A bit-field of type _Bool, int, signed int, or unsigned int. | 
|  | // | 
|  | //   If an int can represent all values of the original type, the | 
|  | //   value is converted to an int; otherwise, it is converted to an | 
|  | //   unsigned int. These are called the integer promotions. All | 
|  | //   other types are unchanged by the integer promotions. | 
|  | QualType PTy = Context.isPromotableBitField(Expr); | 
|  | if (!PTy.isNull()) { | 
|  | ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast); | 
|  | return Expr; | 
|  | } | 
|  | if (Ty->isPromotableIntegerType()) { | 
|  | QualType PT = Context.getPromotedIntegerType(Ty); | 
|  | ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast); | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | DefaultFunctionArrayConversion(Expr); | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that | 
|  | /// do not have a prototype. Arguments that have type float are promoted to | 
|  | /// double. All other argument types are converted by UsualUnaryConversions(). | 
|  | void Sema::DefaultArgumentPromotion(Expr *&Expr) { | 
|  | QualType Ty = Expr->getType(); | 
|  | assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); | 
|  |  | 
|  | // If this is a 'float' (CVR qualified or typedef) promote to double. | 
|  | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) | 
|  | if (BT->getKind() == BuiltinType::Float) | 
|  | return ImpCastExprToType(Expr, Context.DoubleTy, | 
|  | CastExpr::CK_FloatingCast); | 
|  |  | 
|  | UsualUnaryConversions(Expr); | 
|  | } | 
|  |  | 
|  | /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but | 
|  | /// will warn if the resulting type is not a POD type, and rejects ObjC | 
|  | /// interfaces passed by value.  This returns true if the argument type is | 
|  | /// completely illegal. | 
|  | bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) { | 
|  | DefaultArgumentPromotion(Expr); | 
|  |  | 
|  | if (Expr->getType()->isObjCInterfaceType()) { | 
|  | Diag(Expr->getLocStart(), | 
|  | diag::err_cannot_pass_objc_interface_to_vararg) | 
|  | << Expr->getType() << CT; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!Expr->getType()->isPODType()) | 
|  | Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg) | 
|  | << Expr->getType() << CT; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// UsualArithmeticConversions - Performs various conversions that are common to | 
|  | /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this | 
|  | /// routine returns the first non-arithmetic type found. The client is | 
|  | /// responsible for emitting appropriate error diagnostics. | 
|  | /// FIXME: verify the conversion rules for "complex int" are consistent with | 
|  | /// GCC. | 
|  | QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, | 
|  | bool isCompAssign) { | 
|  | if (!isCompAssign) | 
|  | UsualUnaryConversions(lhsExpr); | 
|  |  | 
|  | UsualUnaryConversions(rhsExpr); | 
|  |  | 
|  | // For conversion purposes, we ignore any qualifiers. | 
|  | // For example, "const float" and "float" are equivalent. | 
|  | QualType lhs = | 
|  | Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); | 
|  | QualType rhs = | 
|  | Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); | 
|  |  | 
|  | // If both types are identical, no conversion is needed. | 
|  | if (lhs == rhs) | 
|  | return lhs; | 
|  |  | 
|  | // If either side is a non-arithmetic type (e.g. a pointer), we are done. | 
|  | // The caller can deal with this (e.g. pointer + int). | 
|  | if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) | 
|  | return lhs; | 
|  |  | 
|  | // Perform bitfield promotions. | 
|  | QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr); | 
|  | if (!LHSBitfieldPromoteTy.isNull()) | 
|  | lhs = LHSBitfieldPromoteTy; | 
|  | QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr); | 
|  | if (!RHSBitfieldPromoteTy.isNull()) | 
|  | rhs = RHSBitfieldPromoteTy; | 
|  |  | 
|  | QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs); | 
|  | if (!isCompAssign) | 
|  | ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown); | 
|  | ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown); | 
|  | return destType; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Semantic Analysis for various Expression Types | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | /// ActOnStringLiteral - The specified tokens were lexed as pasted string | 
|  | /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string | 
|  | /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from | 
|  | /// multiple tokens.  However, the common case is that StringToks points to one | 
|  | /// string. | 
|  | /// | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { | 
|  | assert(NumStringToks && "Must have at least one string!"); | 
|  |  | 
|  | StringLiteralParser Literal(StringToks, NumStringToks, PP); | 
|  | if (Literal.hadError) | 
|  | return ExprError(); | 
|  |  | 
|  | llvm::SmallVector<SourceLocation, 4> StringTokLocs; | 
|  | for (unsigned i = 0; i != NumStringToks; ++i) | 
|  | StringTokLocs.push_back(StringToks[i].getLocation()); | 
|  |  | 
|  | QualType StrTy = Context.CharTy; | 
|  | if (Literal.AnyWide) StrTy = Context.getWCharType(); | 
|  | if (Literal.Pascal) StrTy = Context.UnsignedCharTy; | 
|  |  | 
|  | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). | 
|  | if (getLangOptions().CPlusPlus) | 
|  | StrTy.addConst(); | 
|  |  | 
|  | // Get an array type for the string, according to C99 6.4.5.  This includes | 
|  | // the nul terminator character as well as the string length for pascal | 
|  | // strings. | 
|  | StrTy = Context.getConstantArrayType(StrTy, | 
|  | llvm::APInt(32, Literal.GetNumStringChars()+1), | 
|  | ArrayType::Normal, 0); | 
|  |  | 
|  | // Pass &StringTokLocs[0], StringTokLocs.size() to factory! | 
|  | return Owned(StringLiteral::Create(Context, Literal.GetString(), | 
|  | Literal.GetStringLength(), | 
|  | Literal.AnyWide, StrTy, | 
|  | &StringTokLocs[0], | 
|  | StringTokLocs.size())); | 
|  | } | 
|  |  | 
|  | /// ShouldSnapshotBlockValueReference - Return true if a reference inside of | 
|  | /// CurBlock to VD should cause it to be snapshotted (as we do for auto | 
|  | /// variables defined outside the block) or false if this is not needed (e.g. | 
|  | /// for values inside the block or for globals). | 
|  | /// | 
|  | /// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records | 
|  | /// up-to-date. | 
|  | /// | 
|  | static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock, | 
|  | ValueDecl *VD) { | 
|  | // If the value is defined inside the block, we couldn't snapshot it even if | 
|  | // we wanted to. | 
|  | if (CurBlock->TheDecl == VD->getDeclContext()) | 
|  | return false; | 
|  |  | 
|  | // If this is an enum constant or function, it is constant, don't snapshot. | 
|  | if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD)) | 
|  | return false; | 
|  |  | 
|  | // If this is a reference to an extern, static, or global variable, no need to | 
|  | // snapshot it. | 
|  | // FIXME: What about 'const' variables in C++? | 
|  | if (const VarDecl *Var = dyn_cast<VarDecl>(VD)) | 
|  | if (!Var->hasLocalStorage()) | 
|  | return false; | 
|  |  | 
|  | // Blocks that have these can't be constant. | 
|  | CurBlock->hasBlockDeclRefExprs = true; | 
|  |  | 
|  | // If we have nested blocks, the decl may be declared in an outer block (in | 
|  | // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may | 
|  | // be defined outside all of the current blocks (in which case the blocks do | 
|  | // all get the bit).  Walk the nesting chain. | 
|  | for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock; | 
|  | NextBlock = NextBlock->PrevBlockInfo) { | 
|  | // If we found the defining block for the variable, don't mark the block as | 
|  | // having a reference outside it. | 
|  | if (NextBlock->TheDecl == VD->getDeclContext()) | 
|  | break; | 
|  |  | 
|  | // Otherwise, the DeclRef from the inner block causes the outer one to need | 
|  | // a snapshot as well. | 
|  | NextBlock->hasBlockDeclRefExprs = true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// BuildDeclRefExpr - Build a DeclRefExpr. | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, | 
|  | bool TypeDependent, bool ValueDependent, | 
|  | const CXXScopeSpec *SS) { | 
|  | assert(!isa<OverloadedFunctionDecl>(D)); | 
|  |  | 
|  | if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) { | 
|  | Diag(Loc, | 
|  | diag::err_auto_variable_cannot_appear_in_own_initializer) | 
|  | << D->getDeclName(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { | 
|  | if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) { | 
|  | if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) { | 
|  | Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function) | 
|  | << D->getIdentifier() << FD->getDeclName(); | 
|  | Diag(D->getLocation(), diag::note_local_variable_declared_here) | 
|  | << D->getIdentifier(); | 
|  | return ExprError(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MarkDeclarationReferenced(Loc, D); | 
|  |  | 
|  | return Owned(DeclRefExpr::Create(Context, | 
|  | SS? (NestedNameSpecifier *)SS->getScopeRep() : 0, | 
|  | SS? SS->getRange() : SourceRange(), | 
|  | D, Loc, | 
|  | Ty, TypeDependent, ValueDependent)); | 
|  | } | 
|  |  | 
|  | /// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or | 
|  | /// variable corresponding to the anonymous union or struct whose type | 
|  | /// is Record. | 
|  | static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context, | 
|  | RecordDecl *Record) { | 
|  | assert(Record->isAnonymousStructOrUnion() && | 
|  | "Record must be an anonymous struct or union!"); | 
|  |  | 
|  | // FIXME: Once Decls are directly linked together, this will be an O(1) | 
|  | // operation rather than a slow walk through DeclContext's vector (which | 
|  | // itself will be eliminated). DeclGroups might make this even better. | 
|  | DeclContext *Ctx = Record->getDeclContext(); | 
|  | for (DeclContext::decl_iterator D = Ctx->decls_begin(), | 
|  | DEnd = Ctx->decls_end(); | 
|  | D != DEnd; ++D) { | 
|  | if (*D == Record) { | 
|  | // The object for the anonymous struct/union directly | 
|  | // follows its type in the list of declarations. | 
|  | ++D; | 
|  | assert(D != DEnd && "Missing object for anonymous record"); | 
|  | assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed"); | 
|  | return *D; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(false && "Missing object for anonymous record"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// \brief Given a field that represents a member of an anonymous | 
|  | /// struct/union, build the path from that field's context to the | 
|  | /// actual member. | 
|  | /// | 
|  | /// Construct the sequence of field member references we'll have to | 
|  | /// perform to get to the field in the anonymous union/struct. The | 
|  | /// list of members is built from the field outward, so traverse it | 
|  | /// backwards to go from an object in the current context to the field | 
|  | /// we found. | 
|  | /// | 
|  | /// \returns The variable from which the field access should begin, | 
|  | /// for an anonymous struct/union that is not a member of another | 
|  | /// class. Otherwise, returns NULL. | 
|  | VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field, | 
|  | llvm::SmallVectorImpl<FieldDecl *> &Path) { | 
|  | assert(Field->getDeclContext()->isRecord() && | 
|  | cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion() | 
|  | && "Field must be stored inside an anonymous struct or union"); | 
|  |  | 
|  | Path.push_back(Field); | 
|  | VarDecl *BaseObject = 0; | 
|  | DeclContext *Ctx = Field->getDeclContext(); | 
|  | do { | 
|  | RecordDecl *Record = cast<RecordDecl>(Ctx); | 
|  | Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record); | 
|  | if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject)) | 
|  | Path.push_back(AnonField); | 
|  | else { | 
|  | BaseObject = cast<VarDecl>(AnonObject); | 
|  | break; | 
|  | } | 
|  | Ctx = Ctx->getParent(); | 
|  | } while (Ctx->isRecord() && | 
|  | cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()); | 
|  |  | 
|  | return BaseObject; | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc, | 
|  | FieldDecl *Field, | 
|  | Expr *BaseObjectExpr, | 
|  | SourceLocation OpLoc) { | 
|  | llvm::SmallVector<FieldDecl *, 4> AnonFields; | 
|  | VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field, | 
|  | AnonFields); | 
|  |  | 
|  | // Build the expression that refers to the base object, from | 
|  | // which we will build a sequence of member references to each | 
|  | // of the anonymous union objects and, eventually, the field we | 
|  | // found via name lookup. | 
|  | bool BaseObjectIsPointer = false; | 
|  | Qualifiers BaseQuals; | 
|  | if (BaseObject) { | 
|  | // BaseObject is an anonymous struct/union variable (and is, | 
|  | // therefore, not part of another non-anonymous record). | 
|  | if (BaseObjectExpr) BaseObjectExpr->Destroy(Context); | 
|  | MarkDeclarationReferenced(Loc, BaseObject); | 
|  | BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(), | 
|  | SourceLocation()); | 
|  | BaseQuals | 
|  | = Context.getCanonicalType(BaseObject->getType()).getQualifiers(); | 
|  | } else if (BaseObjectExpr) { | 
|  | // The caller provided the base object expression. Determine | 
|  | // whether its a pointer and whether it adds any qualifiers to the | 
|  | // anonymous struct/union fields we're looking into. | 
|  | QualType ObjectType = BaseObjectExpr->getType(); | 
|  | if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) { | 
|  | BaseObjectIsPointer = true; | 
|  | ObjectType = ObjectPtr->getPointeeType(); | 
|  | } | 
|  | BaseQuals | 
|  | = Context.getCanonicalType(ObjectType).getQualifiers(); | 
|  | } else { | 
|  | // We've found a member of an anonymous struct/union that is | 
|  | // inside a non-anonymous struct/union, so in a well-formed | 
|  | // program our base object expression is "this". | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { | 
|  | if (!MD->isStatic()) { | 
|  | QualType AnonFieldType | 
|  | = Context.getTagDeclType( | 
|  | cast<RecordDecl>(AnonFields.back()->getDeclContext())); | 
|  | QualType ThisType = Context.getTagDeclType(MD->getParent()); | 
|  | if ((Context.getCanonicalType(AnonFieldType) | 
|  | == Context.getCanonicalType(ThisType)) || | 
|  | IsDerivedFrom(ThisType, AnonFieldType)) { | 
|  | // Our base object expression is "this". | 
|  | BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(), | 
|  | MD->getThisType(Context)); | 
|  | BaseObjectIsPointer = true; | 
|  | } | 
|  | } else { | 
|  | return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method) | 
|  | << Field->getDeclName()); | 
|  | } | 
|  | BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); | 
|  | } | 
|  |  | 
|  | if (!BaseObjectExpr) | 
|  | return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use) | 
|  | << Field->getDeclName()); | 
|  | } | 
|  |  | 
|  | // Build the implicit member references to the field of the | 
|  | // anonymous struct/union. | 
|  | Expr *Result = BaseObjectExpr; | 
|  | Qualifiers ResultQuals = BaseQuals; | 
|  | for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator | 
|  | FI = AnonFields.rbegin(), FIEnd = AnonFields.rend(); | 
|  | FI != FIEnd; ++FI) { | 
|  | QualType MemberType = (*FI)->getType(); | 
|  | Qualifiers MemberTypeQuals = | 
|  | Context.getCanonicalType(MemberType).getQualifiers(); | 
|  |  | 
|  | // CVR attributes from the base are picked up by members, | 
|  | // except that 'mutable' members don't pick up 'const'. | 
|  | if ((*FI)->isMutable()) | 
|  | ResultQuals.removeConst(); | 
|  |  | 
|  | // GC attributes are never picked up by members. | 
|  | ResultQuals.removeObjCGCAttr(); | 
|  |  | 
|  | // TR 18037 does not allow fields to be declared with address spaces. | 
|  | assert(!MemberTypeQuals.hasAddressSpace()); | 
|  |  | 
|  | Qualifiers NewQuals = ResultQuals + MemberTypeQuals; | 
|  | if (NewQuals != MemberTypeQuals) | 
|  | MemberType = Context.getQualifiedType(MemberType, NewQuals); | 
|  |  | 
|  | MarkDeclarationReferenced(Loc, *FI); | 
|  | // FIXME: Might this end up being a qualified name? | 
|  | Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI, | 
|  | OpLoc, MemberType); | 
|  | BaseObjectIsPointer = false; | 
|  | ResultQuals = NewQuals; | 
|  | } | 
|  |  | 
|  | return Owned(Result); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S, | 
|  | const CXXScopeSpec &SS, | 
|  | UnqualifiedId &Name, | 
|  | bool HasTrailingLParen, | 
|  | bool IsAddressOfOperand) { | 
|  | if (Name.getKind() == UnqualifiedId::IK_TemplateId) { | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(*this, | 
|  | Name.TemplateId->getTemplateArgs(), | 
|  | Name.TemplateId->NumArgs); | 
|  | return ActOnTemplateIdExpr(SS, | 
|  | TemplateTy::make(Name.TemplateId->Template), | 
|  | Name.TemplateId->TemplateNameLoc, | 
|  | Name.TemplateId->LAngleLoc, | 
|  | TemplateArgsPtr, | 
|  | Name.TemplateId->RAngleLoc); | 
|  | } | 
|  |  | 
|  | // FIXME: We lose a bunch of source information by doing this. Later, | 
|  | // we'll want to merge ActOnDeclarationNameExpr's logic into | 
|  | // ActOnIdExpression. | 
|  | return ActOnDeclarationNameExpr(S, | 
|  | Name.StartLocation, | 
|  | GetNameFromUnqualifiedId(Name), | 
|  | HasTrailingLParen, | 
|  | &SS, | 
|  | IsAddressOfOperand); | 
|  | } | 
|  |  | 
|  | /// ActOnDeclarationNameExpr - The parser has read some kind of name | 
|  | /// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine | 
|  | /// performs lookup on that name and returns an expression that refers | 
|  | /// to that name. This routine isn't directly called from the parser, | 
|  | /// because the parser doesn't know about DeclarationName. Rather, | 
|  | /// this routine is called by ActOnIdExpression, which contains a | 
|  | /// parsed UnqualifiedId. | 
|  | /// | 
|  | /// HasTrailingLParen indicates whether this identifier is used in a | 
|  | /// function call context.  LookupCtx is only used for a C++ | 
|  | /// qualified-id (foo::bar) to indicate the class or namespace that | 
|  | /// the identifier must be a member of. | 
|  | /// | 
|  | /// isAddressOfOperand means that this expression is the direct operand | 
|  | /// of an address-of operator. This matters because this is the only | 
|  | /// situation where a qualified name referencing a non-static member may | 
|  | /// appear outside a member function of this class. | 
|  | Sema::OwningExprResult | 
|  | Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, | 
|  | DeclarationName Name, bool HasTrailingLParen, | 
|  | const CXXScopeSpec *SS, | 
|  | bool isAddressOfOperand) { | 
|  | // Could be enum-constant, value decl, instance variable, etc. | 
|  | if (SS && SS->isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // C++ [temp.dep.expr]p3: | 
|  | //   An id-expression is type-dependent if it contains: | 
|  | //     -- a nested-name-specifier that contains a class-name that | 
|  | //        names a dependent type. | 
|  | // FIXME: Member of the current instantiation. | 
|  | if (SS && isDependentScopeSpecifier(*SS)) { | 
|  | return Owned(new (Context) DependentScopeDeclRefExpr(Name, Context.DependentTy, | 
|  | Loc, SS->getRange(), | 
|  | static_cast<NestedNameSpecifier *>(SS->getScopeRep()), | 
|  | isAddressOfOperand)); | 
|  | } | 
|  |  | 
|  | LookupResult Lookup(*this, Name, Loc, LookupOrdinaryName); | 
|  | LookupParsedName(Lookup, S, SS, true); | 
|  |  | 
|  | if (Lookup.isAmbiguous()) | 
|  | return ExprError(); | 
|  |  | 
|  | // If this reference is in an Objective-C method, then ivar lookup happens as | 
|  | // well. | 
|  | IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
|  | if (II && getCurMethodDecl()) { | 
|  | // There are two cases to handle here.  1) scoped lookup could have failed, | 
|  | // in which case we should look for an ivar.  2) scoped lookup could have | 
|  | // found a decl, but that decl is outside the current instance method (i.e. | 
|  | // a global variable).  In these two cases, we do a lookup for an ivar with | 
|  | // this name, if the lookup sucedes, we replace it our current decl. | 
|  |  | 
|  | // FIXME:  we should change lookup to do this. | 
|  |  | 
|  | // If we're in a class method, we don't normally want to look for | 
|  | // ivars.  But if we don't find anything else, and there's an | 
|  | // ivar, that's an error. | 
|  | bool IsClassMethod = getCurMethodDecl()->isClassMethod(); | 
|  |  | 
|  | bool LookForIvars; | 
|  | if (Lookup.empty()) | 
|  | LookForIvars = true; | 
|  | else if (IsClassMethod) | 
|  | LookForIvars = false; | 
|  | else | 
|  | LookForIvars = (Lookup.isSingleResult() && | 
|  | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); | 
|  |  | 
|  | if (LookForIvars) { | 
|  | ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); | 
|  | ObjCInterfaceDecl *ClassDeclared; | 
|  | if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { | 
|  | // Diagnose using an ivar in a class method. | 
|  | if (IsClassMethod) | 
|  | return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) | 
|  | << IV->getDeclName()); | 
|  |  | 
|  | // If we're referencing an invalid decl, just return this as a silent | 
|  | // error node.  The error diagnostic was already emitted on the decl. | 
|  | if (IV->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Check if referencing a field with __attribute__((deprecated)). | 
|  | if (DiagnoseUseOfDecl(IV, Loc)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Diagnose the use of an ivar outside of the declaring class. | 
|  | if (IV->getAccessControl() == ObjCIvarDecl::Private && | 
|  | ClassDeclared != IFace) | 
|  | Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); | 
|  |  | 
|  | // FIXME: This should use a new expr for a direct reference, don't | 
|  | // turn this into Self->ivar, just return a BareIVarExpr or something. | 
|  | IdentifierInfo &II = Context.Idents.get("self"); | 
|  | UnqualifiedId SelfName; | 
|  | SelfName.setIdentifier(&II, SourceLocation()); | 
|  | CXXScopeSpec SelfScopeSpec; | 
|  | OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, | 
|  | SelfName, false, false); | 
|  | MarkDeclarationReferenced(Loc, IV); | 
|  | return Owned(new (Context) | 
|  | ObjCIvarRefExpr(IV, IV->getType(), Loc, | 
|  | SelfExpr.takeAs<Expr>(), true, true)); | 
|  | } | 
|  | } else if (getCurMethodDecl()->isInstanceMethod()) { | 
|  | // We should warn if a local variable hides an ivar. | 
|  | ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); | 
|  | ObjCInterfaceDecl *ClassDeclared; | 
|  | if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { | 
|  | if (IV->getAccessControl() != ObjCIvarDecl::Private || | 
|  | IFace == ClassDeclared) | 
|  | Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); | 
|  | } | 
|  | } | 
|  | // Needed to implement property "super.method" notation. | 
|  | if (Lookup.empty() && II->isStr("super")) { | 
|  | QualType T; | 
|  |  | 
|  | if (getCurMethodDecl()->isInstanceMethod()) | 
|  | T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType( | 
|  | getCurMethodDecl()->getClassInterface())); | 
|  | else | 
|  | T = Context.getObjCClassType(); | 
|  | return Owned(new (Context) ObjCSuperExpr(Loc, T)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine whether this name might be a candidate for | 
|  | // argument-dependent lookup. | 
|  | bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) && | 
|  | HasTrailingLParen; | 
|  |  | 
|  | if (Lookup.empty() && !ADL) { | 
|  | // Otherwise, this could be an implicitly declared function reference (legal | 
|  | // in C90, extension in C99). | 
|  | if (HasTrailingLParen && II && | 
|  | !getLangOptions().CPlusPlus) { // Not in C++. | 
|  | NamedDecl *D = ImplicitlyDefineFunction(Loc, *II, S); | 
|  | if (D) Lookup.addDecl(D); | 
|  | } else { | 
|  | // If this name wasn't predeclared and if this is not a function call, | 
|  | // diagnose the problem. | 
|  | if (SS && !SS->isEmpty()) | 
|  | return ExprError(Diag(Loc, diag::err_no_member) | 
|  | << Name << computeDeclContext(*SS, false) | 
|  | << SS->getRange()); | 
|  | else if (Name.getNameKind() == DeclarationName::CXXOperatorName || | 
|  | Name.getNameKind() == DeclarationName::CXXConversionFunctionName) | 
|  | return ExprError(Diag(Loc, diag::err_undeclared_use) | 
|  | << Name.getAsString()); | 
|  | else | 
|  | return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VarDecl *Var = Lookup.getAsSingle<VarDecl>()) { | 
|  | // Warn about constructs like: | 
|  | //   if (void *X = foo()) { ... } else { X }. | 
|  | // In the else block, the pointer is always false. | 
|  |  | 
|  | // FIXME: In a template instantiation, we don't have scope | 
|  | // information to check this property. | 
|  | if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) { | 
|  | Scope *CheckS = S; | 
|  | while (CheckS && CheckS->getControlParent()) { | 
|  | if (CheckS->isWithinElse() && | 
|  | CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) { | 
|  | ExprError(Diag(Loc, diag::warn_value_always_zero) | 
|  | << Var->getDeclName() | 
|  | << (Var->getType()->isPointerType()? 2 : | 
|  | Var->getType()->isBooleanType()? 1 : 0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Move to the parent of this scope. | 
|  | CheckS = CheckS->getParent(); | 
|  | } | 
|  | } | 
|  | } else if (FunctionDecl *Func = Lookup.getAsSingle<FunctionDecl>()) { | 
|  | if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) { | 
|  | // C99 DR 316 says that, if a function type comes from a | 
|  | // function definition (without a prototype), that type is only | 
|  | // used for checking compatibility. Therefore, when referencing | 
|  | // the function, we pretend that we don't have the full function | 
|  | // type. | 
|  | if (DiagnoseUseOfDecl(Func, Loc)) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType T = Func->getType(); | 
|  | QualType NoProtoType = T; | 
|  | if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>()) | 
|  | NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType()); | 
|  | return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BuildDeclarationNameExpr(SS, Lookup, HasTrailingLParen, | 
|  | isAddressOfOperand); | 
|  | } | 
|  |  | 
|  | /// \brief Cast member's object to its own class if necessary. | 
|  | bool | 
|  | Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) { | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(Member)) | 
|  | if (CXXRecordDecl *RD = | 
|  | dyn_cast<CXXRecordDecl>(FD->getDeclContext())) { | 
|  | QualType DestType = | 
|  | Context.getCanonicalType(Context.getTypeDeclType(RD)); | 
|  | if (DestType->isDependentType() || From->getType()->isDependentType()) | 
|  | return false; | 
|  | QualType FromRecordType = From->getType(); | 
|  | QualType DestRecordType = DestType; | 
|  | if (FromRecordType->getAs<PointerType>()) { | 
|  | DestType = Context.getPointerType(DestType); | 
|  | FromRecordType = FromRecordType->getPointeeType(); | 
|  | } | 
|  | if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) && | 
|  | CheckDerivedToBaseConversion(FromRecordType, | 
|  | DestRecordType, | 
|  | From->getSourceRange().getBegin(), | 
|  | From->getSourceRange())) | 
|  | return true; | 
|  | ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, | 
|  | /*isLvalue=*/true); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Build a MemberExpr AST node. | 
|  | static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow, | 
|  | const CXXScopeSpec *SS, NamedDecl *Member, | 
|  | SourceLocation Loc, QualType Ty) { | 
|  | if (SS && SS->isSet()) | 
|  | return MemberExpr::Create(C, Base, isArrow, | 
|  | (NestedNameSpecifier *)SS->getScopeRep(), | 
|  | SS->getRange(), Member, Loc, | 
|  | // FIXME: Explicit template argument lists | 
|  | false, SourceLocation(), 0, 0, SourceLocation(), | 
|  | Ty); | 
|  |  | 
|  | return new (C) MemberExpr(Base, isArrow, Member, Loc, Ty); | 
|  | } | 
|  |  | 
|  | /// Builds an implicit member access expression from the given | 
|  | /// unqualified lookup set, which is known to contain only class | 
|  | /// members. | 
|  | Sema::OwningExprResult BuildImplicitMemberExpr(Sema &S, LookupResult &R, | 
|  | const CXXScopeSpec *SS) { | 
|  | NamedDecl *D = R.getAsSingleDecl(S.Context); | 
|  | SourceLocation Loc = R.getNameLoc(); | 
|  |  | 
|  | // We may have found a field within an anonymous union or struct | 
|  | // (C++ [class.union]). | 
|  | // FIXME: This needs to happen post-isImplicitMemberReference? | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) | 
|  | if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) | 
|  | return S.BuildAnonymousStructUnionMemberReference(Loc, FD); | 
|  |  | 
|  | QualType ThisType; | 
|  | QualType MemberType; | 
|  | if (S.isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) { | 
|  | Expr *This = new (S.Context) CXXThisExpr(SourceLocation(), ThisType); | 
|  | S.MarkDeclarationReferenced(Loc, D); | 
|  | if (S.PerformObjectMemberConversion(This, D)) | 
|  | return S.ExprError(); | 
|  |  | 
|  | bool ShouldCheckUse = true; | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
|  | // Don't diagnose the use of a virtual member function unless it's | 
|  | // explicitly qualified. | 
|  | if (MD->isVirtual() && (!SS || !SS->isSet())) | 
|  | ShouldCheckUse = false; | 
|  | } | 
|  |  | 
|  | if (ShouldCheckUse && S.DiagnoseUseOfDecl(D, Loc)) | 
|  | return S.ExprError(); | 
|  | return S.Owned(BuildMemberExpr(S.Context, This, true, SS, D, | 
|  | Loc, MemberType)); | 
|  | } | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (!Method->isStatic()) { | 
|  | S.Diag(Loc, diag::err_member_call_without_object); | 
|  | return S.ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<FieldDecl>(D)) { | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) { | 
|  | if (MD->isStatic()) { | 
|  | // "invalid use of member 'x' in static member function" | 
|  | S.Diag(Loc,diag::err_invalid_member_use_in_static_method) | 
|  | << D->getDeclName(); | 
|  | return S.ExprError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Any other ways we could have found the field in a well-formed | 
|  | // program would have been turned into implicit member expressions | 
|  | // above. | 
|  | S.Diag(Loc, diag::err_invalid_non_static_member_use) | 
|  | << D->getDeclName(); | 
|  | return S.ExprError(); | 
|  | } | 
|  |  | 
|  | return S.BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getLookupName(), | 
|  | /*ADL*/ false, R.isOverloadedResult(), | 
|  | R.begin(), R.end() - R.begin()); | 
|  | } | 
|  |  | 
|  | static bool UseArgumentDependentLookup(Sema &SemaRef, | 
|  | const CXXScopeSpec *SS, | 
|  | bool HasTrailingLParen, | 
|  | const LookupResult &R) { | 
|  | // Only when used directly as the postfix-expression of a call. | 
|  | if (!HasTrailingLParen) | 
|  | return false; | 
|  |  | 
|  | // Never if a scope specifier was provided. | 
|  | if (SS && SS->isSet()) | 
|  | return false; | 
|  |  | 
|  | // Only in C++ or ObjC++. | 
|  | if (!SemaRef.getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | // Turn off ADL when we find certain kinds of declarations during | 
|  | // normal lookup: | 
|  | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
|  | NamedDecl *D = *I; | 
|  |  | 
|  | // C++0x [basic.lookup.argdep]p3: | 
|  | //     -- a declaration of a class member | 
|  | // Since using decls preserve this property, we check this on the | 
|  | // original decl. | 
|  | if (D->getDeclContext()->isRecord()) | 
|  | return false; | 
|  |  | 
|  | // C++0x [basic.lookup.argdep]p3: | 
|  | //     -- a block-scope function declaration that is not a | 
|  | //        using-declaration | 
|  | // NOTE: we also trigger this for function templates (in fact, we | 
|  | // don't check the decl type at all, since all other decl types | 
|  | // turn off ADL anyway). | 
|  | if (isa<UsingShadowDecl>(D)) | 
|  | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
|  | else if (D->getDeclContext()->isFunctionOrMethod()) | 
|  | return false; | 
|  |  | 
|  | // C++0x [basic.lookup.argdep]p3: | 
|  | //     -- a declaration that is neither a function or a function | 
|  | //        template | 
|  | // And also for builtin functions. | 
|  | if (isa<FunctionDecl>(D)) { | 
|  | FunctionDecl *FDecl = cast<FunctionDecl>(D); | 
|  |  | 
|  | // But also builtin functions. | 
|  | if (FDecl->getBuiltinID() && FDecl->isImplicit()) | 
|  | return false; | 
|  | } else if (!isa<FunctionTemplateDecl>(D)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Complete semantic analysis for a reference to the given | 
|  | /// lookup results. | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildDeclarationNameExpr(const CXXScopeSpec *SS, | 
|  | LookupResult &R, | 
|  | bool HasTrailingLParen, | 
|  | bool isAddressOfOperand) { | 
|  | assert(!R.isAmbiguous() && "results are ambiguous"); | 
|  |  | 
|  | // &SomeClass::foo is an abstract member reference, regardless of | 
|  | // the nature of foo, but &SomeClass::foo(...) is not. | 
|  | bool isAbstractMemberPointer = | 
|  | (isAddressOfOperand && !HasTrailingLParen && SS && !SS->isEmpty()); | 
|  |  | 
|  | // If we're *not* an abstract member reference, and any of the | 
|  | // results are class members (i.e. they're all class members), then | 
|  | // we make an implicit member reference instead. | 
|  | if (!isAbstractMemberPointer && !R.empty() && | 
|  | isa<CXXRecordDecl>((*R.begin())->getDeclContext())) { | 
|  | return BuildImplicitMemberExpr(*this, R, SS); | 
|  | } | 
|  |  | 
|  | assert(R.getResultKind() != LookupResult::FoundUnresolvedValue && | 
|  | "found UnresolvedUsingValueDecl in non-class scope"); | 
|  |  | 
|  | bool ADL = UseArgumentDependentLookup(*this, SS, HasTrailingLParen, R); | 
|  |  | 
|  | return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getLookupName(), | 
|  | ADL, R.isOverloadedResult(), | 
|  | R.begin(), R.end() - R.begin()); | 
|  | } | 
|  |  | 
|  | /// Diagnoses obvious problems with the use of the given declaration | 
|  | /// as an expression.  This is only actually called for lookups that | 
|  | /// were not overloaded, and it doesn't promise that the declaration | 
|  | /// will in fact be used. | 
|  | static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { | 
|  | if (isa<TypedefDecl>(D)) { | 
|  | S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isa<ObjCInterfaceDecl>(D)) { | 
|  | S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isa<NamespaceDecl>(D)) { | 
|  | S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildDeclarationNameExpr(const CXXScopeSpec *SS, | 
|  | SourceLocation Loc, | 
|  | DeclarationName Name, | 
|  | bool NeedsADL, | 
|  | bool IsOverloaded, | 
|  | NamedDecl * const *Decls, | 
|  | unsigned NumDecls) { | 
|  | if (!NeedsADL && !IsOverloaded) | 
|  | return BuildDeclarationNameExpr(SS, Loc, Decls[0]->getUnderlyingDecl()); | 
|  |  | 
|  | // We only need to check the declaration if there's exactly one | 
|  | // result, because in the overloaded case the results can only be | 
|  | // functions and function templates. | 
|  | if (!IsOverloaded && NumDecls == 1 && | 
|  | CheckDeclInExpr(*this, Loc, Decls[0]->getUnderlyingDecl())) | 
|  | return ExprError(); | 
|  |  | 
|  | UnresolvedLookupExpr *ULE | 
|  | = UnresolvedLookupExpr::Create(Context, | 
|  | SS ? (NestedNameSpecifier *)SS->getScopeRep() : 0, | 
|  | SS ? SS->getRange() : SourceRange(), | 
|  | Name, Loc, NeedsADL, IsOverloaded); | 
|  | for (unsigned I = 0; I != NumDecls; ++I) | 
|  | ULE->addDecl(Decls[I]); | 
|  |  | 
|  | return Owned(ULE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Complete semantic analysis for a reference to the given declaration. | 
|  | Sema::OwningExprResult | 
|  | Sema::BuildDeclarationNameExpr(const CXXScopeSpec *SS, | 
|  | SourceLocation Loc, NamedDecl *D) { | 
|  | assert(D && "Cannot refer to a NULL declaration"); | 
|  | assert(!isa<FunctionTemplateDecl>(D) && | 
|  | "Cannot refer unambiguously to a function template"); | 
|  | DeclarationName Name = D->getDeclName(); | 
|  |  | 
|  | if (CheckDeclInExpr(*this, Loc, D)) | 
|  | return ExprError(); | 
|  |  | 
|  | ValueDecl *VD = cast<ValueDecl>(D); | 
|  |  | 
|  | // Check whether this declaration can be used. Note that we suppress | 
|  | // this check when we're going to perform argument-dependent lookup | 
|  | // on this function name, because this might not be the function | 
|  | // that overload resolution actually selects. | 
|  | if (DiagnoseUseOfDecl(VD, Loc)) | 
|  | return ExprError(); | 
|  |  | 
|  | // Only create DeclRefExpr's for valid Decl's. | 
|  | if (VD->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | // If the identifier reference is inside a block, and it refers to a value | 
|  | // that is outside the block, create a BlockDeclRefExpr instead of a | 
|  | // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when | 
|  | // the block is formed. | 
|  | // | 
|  | // We do not do this for things like enum constants, global variables, etc, | 
|  | // as they do not get snapshotted. | 
|  | // | 
|  | if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) { | 
|  | MarkDeclarationReferenced(Loc, VD); | 
|  | QualType ExprTy = VD->getType().getNonReferenceType(); | 
|  | // The BlocksAttr indicates the variable is bound by-reference. | 
|  | if (VD->getAttr<BlocksAttr>()) | 
|  | return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true)); | 
|  | // This is to record that a 'const' was actually synthesize and added. | 
|  | bool constAdded = !ExprTy.isConstQualified(); | 
|  | // Variable will be bound by-copy, make it const within the closure. | 
|  |  | 
|  | ExprTy.addConst(); | 
|  | return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false, | 
|  | constAdded)); | 
|  | } | 
|  | // If this reference is not in a block or if the referenced variable is | 
|  | // within the block, create a normal DeclRefExpr. | 
|  |  | 
|  | bool TypeDependent = false; | 
|  | bool ValueDependent = false; | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // C++ [temp.dep.expr]p3: | 
|  | //   An id-expression is type-dependent if it contains: | 
|  | //     - an identifier that was declared with a dependent type, | 
|  | if (VD->getType()->isDependentType()) | 
|  | TypeDependent = true; | 
|  | //     - FIXME: a template-id that is dependent, | 
|  | //     - a conversion-function-id that specifies a dependent type, | 
|  | else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | 
|  | Name.getCXXNameType()->isDependentType()) | 
|  | TypeDependent = true; | 
|  | //     - a nested-name-specifier that contains a class-name that | 
|  | //       names a dependent type. | 
|  | else { | 
|  | for (DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) { | 
|  | // FIXME: could stop early at namespace scope. | 
|  | if (DC->isRecord()) { | 
|  | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | 
|  | if (Context.getTypeDeclType(Record)->isDependentType()) { | 
|  | TypeDependent = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [temp.dep.constexpr]p2: | 
|  | // | 
|  | //   An identifier is value-dependent if it is: | 
|  | //     - a name declared with a dependent type, | 
|  | if (TypeDependent) | 
|  | ValueDependent = true; | 
|  | //     - the name of a non-type template parameter, | 
|  | else if (isa<NonTypeTemplateParmDecl>(VD)) | 
|  | ValueDependent = true; | 
|  | //    - a constant with integral or enumeration type and is | 
|  | //      initialized with an expression that is value-dependent | 
|  | else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) { | 
|  | if (Context.getCanonicalType(Dcl->getType()).getCVRQualifiers() | 
|  | == Qualifiers::Const && | 
|  | Dcl->getInit()) { | 
|  | ValueDependent = Dcl->getInit()->isValueDependent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, | 
|  | TypeDependent, ValueDependent, SS); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, | 
|  | tok::TokenKind Kind) { | 
|  | PredefinedExpr::IdentType IT; | 
|  |  | 
|  | switch (Kind) { | 
|  | default: assert(0 && "Unknown simple primary expr!"); | 
|  | case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] | 
|  | case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; | 
|  | case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; | 
|  | } | 
|  |  | 
|  | // Pre-defined identifiers are of type char[x], where x is the length of the | 
|  | // string. | 
|  |  | 
|  | Decl *currentDecl = getCurFunctionOrMethodDecl(); | 
|  | if (!currentDecl) { | 
|  | Diag(Loc, diag::ext_predef_outside_function); | 
|  | currentDecl = Context.getTranslationUnitDecl(); | 
|  | } | 
|  |  | 
|  | QualType ResTy; | 
|  | if (cast<DeclContext>(currentDecl)->isDependentContext()) { | 
|  | ResTy = Context.DependentTy; | 
|  | } else { | 
|  | unsigned Length = | 
|  | PredefinedExpr::ComputeName(Context, IT, currentDecl).length(); | 
|  |  | 
|  | llvm::APInt LengthI(32, Length + 1); | 
|  | ResTy = Context.CharTy.withConst(); | 
|  | ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); | 
|  | } | 
|  | return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) { | 
|  | llvm::SmallString<16> CharBuffer; | 
|  | CharBuffer.resize(Tok.getLength()); | 
|  | const char *ThisTokBegin = &CharBuffer[0]; | 
|  | unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); | 
|  |  | 
|  | CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, | 
|  | Tok.getLocation(), PP); | 
|  | if (Literal.hadError()) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; | 
|  |  | 
|  | return Owned(new (Context) CharacterLiteral(Literal.getValue(), | 
|  | Literal.isWide(), | 
|  | type, Tok.getLocation())); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) { | 
|  | // Fast path for a single digit (which is quite common).  A single digit | 
|  | // cannot have a trigraph, escaped newline, radix prefix, or type suffix. | 
|  | if (Tok.getLength() == 1) { | 
|  | const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); | 
|  | unsigned IntSize = Context.Target.getIntWidth(); | 
|  | return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'), | 
|  | Context.IntTy, Tok.getLocation())); | 
|  | } | 
|  |  | 
|  | llvm::SmallString<512> IntegerBuffer; | 
|  | // Add padding so that NumericLiteralParser can overread by one character. | 
|  | IntegerBuffer.resize(Tok.getLength()+1); | 
|  | const char *ThisTokBegin = &IntegerBuffer[0]; | 
|  |  | 
|  | // Get the spelling of the token, which eliminates trigraphs, etc. | 
|  | unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); | 
|  |  | 
|  | NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, | 
|  | Tok.getLocation(), PP); | 
|  | if (Literal.hadError) | 
|  | return ExprError(); | 
|  |  | 
|  | Expr *Res; | 
|  |  | 
|  | if (Literal.isFloatingLiteral()) { | 
|  | QualType Ty; | 
|  | if (Literal.isFloat) | 
|  | Ty = Context.FloatTy; | 
|  | else if (!Literal.isLong) | 
|  | Ty = Context.DoubleTy; | 
|  | else | 
|  | Ty = Context.LongDoubleTy; | 
|  |  | 
|  | const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); | 
|  |  | 
|  | // isExact will be set by GetFloatValue(). | 
|  | bool isExact = false; | 
|  | llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact); | 
|  | Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation()); | 
|  |  | 
|  | } else if (!Literal.isIntegerLiteral()) { | 
|  | return ExprError(); | 
|  | } else { | 
|  | QualType Ty; | 
|  |  | 
|  | // long long is a C99 feature. | 
|  | if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && | 
|  | Literal.isLongLong) | 
|  | Diag(Tok.getLocation(), diag::ext_longlong); | 
|  |  | 
|  | // Get the value in the widest-possible width. | 
|  | llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); | 
|  |  | 
|  | if (Literal.GetIntegerValue(ResultVal)) { | 
|  | // If this value didn't fit into uintmax_t, warn and force to ull. | 
|  | Diag(Tok.getLocation(), diag::warn_integer_too_large); | 
|  | Ty = Context.UnsignedLongLongTy; | 
|  | assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && | 
|  | "long long is not intmax_t?"); | 
|  | } else { | 
|  | // If this value fits into a ULL, try to figure out what else it fits into | 
|  | // according to the rules of C99 6.4.4.1p5. | 
|  |  | 
|  | // Octal, Hexadecimal, and integers with a U suffix are allowed to | 
|  | // be an unsigned int. | 
|  | bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; | 
|  |  | 
|  | // Check from smallest to largest, picking the smallest type we can. | 
|  | unsigned Width = 0; | 
|  | if (!Literal.isLong && !Literal.isLongLong) { | 
|  | // Are int/unsigned possibilities? | 
|  | unsigned IntSize = Context.Target.getIntWidth(); | 
|  |  | 
|  | // Does it fit in a unsigned int? | 
|  | if (ResultVal.isIntN(IntSize)) { | 
|  | // Does it fit in a signed int? | 
|  | if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) | 
|  | Ty = Context.IntTy; | 
|  | else if (AllowUnsigned) | 
|  | Ty = Context.UnsignedIntTy; | 
|  | Width = IntSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Are long/unsigned long possibilities? | 
|  | if (Ty.isNull() && !Literal.isLongLong) { | 
|  | unsigned LongSize = Context.Target.getLongWidth(); | 
|  |  | 
|  | // Does it fit in a unsigned long? | 
|  | if (ResultVal.isIntN(LongSize)) { | 
|  | // Does it fit in a signed long? | 
|  | if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) | 
|  | Ty = Context.LongTy; | 
|  | else if (AllowUnsigned) | 
|  | Ty = Context.UnsignedLongTy; | 
|  | Width = LongSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, check long long if needed. | 
|  | if (Ty.isNull()) { | 
|  | unsigned LongLongSize = Context.Target.getLongLongWidth(); | 
|  |  | 
|  | // Does it fit in a unsigned long long? | 
|  | if (ResultVal.isIntN(LongLongSize)) { | 
|  | // Does it fit in a signed long long? | 
|  | if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) | 
|  | Ty = Context.LongLongTy; | 
|  | else if (AllowUnsigned) | 
|  | Ty = Context.UnsignedLongLongTy; | 
|  | Width = LongLongSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we still couldn't decide a type, we probably have something that | 
|  | // does not fit in a signed long long, but has no U suffix. | 
|  | if (Ty.isNull()) { | 
|  | Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); | 
|  | Ty = Context.UnsignedLongLongTy; | 
|  | Width = Context.Target.getLongLongWidth(); | 
|  | } | 
|  |  | 
|  | if (ResultVal.getBitWidth() != Width) | 
|  | ResultVal.trunc(Width); | 
|  | } | 
|  | Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation()); | 
|  | } | 
|  |  | 
|  | // If this is an imaginary literal, create the ImaginaryLiteral wrapper. | 
|  | if (Literal.isImaginary) | 
|  | Res = new (Context) ImaginaryLiteral(Res, | 
|  | Context.getComplexType(Res->getType())); | 
|  |  | 
|  | return Owned(Res); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L, | 
|  | SourceLocation R, ExprArg Val) { | 
|  | Expr *E = Val.takeAs<Expr>(); | 
|  | assert((E != 0) && "ActOnParenExpr() missing expr"); | 
|  | return Owned(new (Context) ParenExpr(L, R, E)); | 
|  | } | 
|  |  | 
|  | /// The UsualUnaryConversions() function is *not* called by this routine. | 
|  | /// See C99 6.3.2.1p[2-4] for more details. | 
|  | bool Sema::CheckSizeOfAlignOfOperand(QualType exprType, | 
|  | SourceLocation OpLoc, | 
|  | const SourceRange &ExprRange, | 
|  | bool isSizeof) { | 
|  | if (exprType->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // C99 6.5.3.4p1: | 
|  | if (exprType->isFunctionType()) { | 
|  | // alignof(function) is allowed as an extension. | 
|  | if (isSizeof) | 
|  | Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allow sizeof(void)/alignof(void) as an extension. | 
|  | if (exprType->isVoidType()) { | 
|  | Diag(OpLoc, diag::ext_sizeof_void_type) | 
|  | << (isSizeof ? "sizeof" : "__alignof") << ExprRange; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RequireCompleteType(OpLoc, exprType, | 
|  | isSizeof ? diag::err_sizeof_incomplete_type : | 
|  | PDiag(diag::err_alignof_incomplete_type) | 
|  | << ExprRange)) | 
|  | return true; | 
|  |  | 
|  | // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode. | 
|  | if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) { | 
|  | Diag(OpLoc, diag::err_sizeof_nonfragile_interface) | 
|  | << exprType << isSizeof << ExprRange; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, | 
|  | const SourceRange &ExprRange) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | // alignof decl is always ok. | 
|  | if (isa<DeclRefExpr>(E)) | 
|  | return false; | 
|  |  | 
|  | // Cannot know anything else if the expression is dependent. | 
|  | if (E->isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | if (E->getBitField()) { | 
|  | Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Alignment of a field access is always okay, so long as it isn't a | 
|  | // bit-field. | 
|  | if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) | 
|  | if (isa<FieldDecl>(ME->getMemberDecl())) | 
|  | return false; | 
|  |  | 
|  | return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false); | 
|  | } | 
|  |  | 
|  | /// \brief Build a sizeof or alignof expression given a type operand. | 
|  | Action::OwningExprResult | 
|  | Sema::CreateSizeOfAlignOfExpr(DeclaratorInfo *DInfo, | 
|  | SourceLocation OpLoc, | 
|  | bool isSizeOf, SourceRange R) { | 
|  | if (!DInfo) | 
|  | return ExprError(); | 
|  |  | 
|  | QualType T = DInfo->getType(); | 
|  |  | 
|  | if (!T->isDependentType() && | 
|  | CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf)) | 
|  | return ExprError(); | 
|  |  | 
|  | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | 
|  | return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, DInfo, | 
|  | Context.getSizeType(), OpLoc, | 
|  | R.getEnd())); | 
|  | } | 
|  |  | 
|  | /// \brief Build a sizeof or alignof expression given an expression | 
|  | /// operand. | 
|  | Action::OwningExprResult | 
|  | Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc, | 
|  | bool isSizeOf, SourceRange R) { | 
|  | // Verify that the operand is valid. | 
|  | bool isInvalid = false; | 
|  | if (E->isTypeDependent()) { | 
|  | // Delay type-checking for type-dependent expressions. | 
|  | } else if (!isSizeOf) { | 
|  | isInvalid = CheckAlignOfExpr(E, OpLoc, R); | 
|  | } else if (E->getBitField()) {  // C99 6.5.3.4p1. | 
|  | Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0; | 
|  | isInvalid = true; | 
|  | } else { | 
|  | isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true); | 
|  | } | 
|  |  | 
|  | if (isInvalid) | 
|  | return ExprError(); | 
|  |  | 
|  | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | 
|  | return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E, | 
|  | Context.getSizeType(), OpLoc, | 
|  | R.getEnd())); | 
|  | } | 
|  |  | 
|  | /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and | 
|  | /// the same for @c alignof and @c __alignof | 
|  | /// Note that the ArgRange is invalid if isType is false. | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, | 
|  | void *TyOrEx, const SourceRange &ArgRange) { | 
|  | // If error parsing type, ignore. | 
|  | if (TyOrEx == 0) return ExprError(); | 
|  |  | 
|  | if (isType) { | 
|  | DeclaratorInfo *DInfo; | 
|  | (void) GetTypeFromParser(TyOrEx, &DInfo); | 
|  | return CreateSizeOfAlignOfExpr(DInfo, OpLoc, isSizeof, ArgRange); | 
|  | } | 
|  |  | 
|  | Expr *ArgEx = (Expr *)TyOrEx; | 
|  | Action::OwningExprResult Result | 
|  | = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange()); | 
|  |  | 
|  | if (Result.isInvalid()) | 
|  | DeleteExpr(ArgEx); | 
|  |  | 
|  | return move(Result); | 
|  | } | 
|  |  | 
|  | QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) { | 
|  | if (V->isTypeDependent()) | 
|  | return Context.DependentTy; | 
|  |  | 
|  | // These operators return the element type of a complex type. | 
|  | if (const ComplexType *CT = V->getType()->getAs<ComplexType>()) | 
|  | return CT->getElementType(); | 
|  |  | 
|  | // Otherwise they pass through real integer and floating point types here. | 
|  | if (V->getType()->isArithmeticType()) | 
|  | return V->getType(); | 
|  |  | 
|  | // Reject anything else. | 
|  | Diag(Loc, diag::err_realimag_invalid_type) << V->getType() | 
|  | << (isReal ? "__real" : "__imag"); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, | 
|  | tok::TokenKind Kind, ExprArg Input) { | 
|  | UnaryOperator::Opcode Opc; | 
|  | switch (Kind) { | 
|  | default: assert(0 && "Unknown unary op!"); | 
|  | case tok::plusplus:   Opc = UnaryOperator::PostInc; break; | 
|  | case tok::minusminus: Opc = UnaryOperator::PostDec; break; | 
|  | } | 
|  |  | 
|  | return BuildUnaryOp(S, OpLoc, Opc, move(Input)); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc, | 
|  | ExprArg Idx, SourceLocation RLoc) { | 
|  | // Since this might be a postfix expression, get rid of ParenListExprs. | 
|  | Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); | 
|  |  | 
|  | Expr *LHSExp = static_cast<Expr*>(Base.get()), | 
|  | *RHSExp = static_cast<Expr*>(Idx.get()); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && | 
|  | (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { | 
|  | Base.release(); | 
|  | Idx.release(); | 
|  | return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, | 
|  | Context.DependentTy, RLoc)); | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && | 
|  | (LHSExp->getType()->isRecordType() || | 
|  | LHSExp->getType()->isEnumeralType() || | 
|  | RHSExp->getType()->isRecordType() || | 
|  | RHSExp->getType()->isEnumeralType())) { | 
|  | return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx)); | 
|  | } | 
|  |  | 
|  | return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); | 
|  | } | 
|  |  | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc, | 
|  | ExprArg Idx, SourceLocation RLoc) { | 
|  | Expr *LHSExp = static_cast<Expr*>(Base.get()); | 
|  | Expr *RHSExp = static_cast<Expr*>(Idx.get()); | 
|  |  | 
|  | // Perform default conversions. | 
|  | DefaultFunctionArrayConversion(LHSExp); | 
|  | DefaultFunctionArrayConversion(RHSExp); | 
|  |  | 
|  | QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); | 
|  |  | 
|  | // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent | 
|  | // to the expression *((e1)+(e2)). This means the array "Base" may actually be | 
|  | // in the subscript position. As a result, we need to derive the array base | 
|  | // and index from the expression types. | 
|  | Expr *BaseExpr, *IndexExpr; | 
|  | QualType ResultType; | 
|  | if (LHSTy->isDependentType() || RHSTy->isDependentType()) { | 
|  | BaseExpr = LHSExp; | 
|  | IndexExpr = RHSExp; | 
|  | ResultType = Context.DependentTy; | 
|  | } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { | 
|  | BaseExpr = LHSExp; | 
|  | IndexExpr = RHSExp; | 
|  | ResultType = PTy->getPointeeType(); | 
|  | } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { | 
|  | // Handle the uncommon case of "123[Ptr]". | 
|  | BaseExpr = RHSExp; | 
|  | IndexExpr = LHSExp; | 
|  | ResultType = PTy->getPointeeType(); | 
|  | } else if (const ObjCObjectPointerType *PTy = | 
|  | LHSTy->getAs<ObjCObjectPointerType>()) { | 
|  | BaseExpr = LHSExp; | 
|  | IndexExpr = RHSExp; | 
|  | ResultType = PTy->getPointeeType(); | 
|  | } else if (const ObjCObjectPointerType *PTy = | 
|  | RHSTy->getAs<ObjCObjectPointerType>()) { | 
|  | // Handle the uncommon case of "123[Ptr]". | 
|  | BaseExpr = RHSExp; | 
|  | IndexExpr = LHSExp; | 
|  | ResultType = PTy->getPointeeType(); | 
|  | } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { | 
|  | BaseExpr = LHSExp;    // vectors: V[123] | 
|  | IndexExpr = RHSExp; | 
|  |  | 
|  | // FIXME: need to deal with const... | 
|  | ResultType = VTy->getElementType(); | 
|  | } else if (LHSTy->isArrayType()) { | 
|  | // If we see an array that wasn't promoted by | 
|  | // DefaultFunctionArrayConversion, it must be an array that | 
|  | // wasn't promoted because of the C90 rule that doesn't | 
|  | // allow promoting non-lvalue arrays.  Warn, then | 
|  | // force the promotion here. | 
|  | Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << | 
|  | LHSExp->getSourceRange(); | 
|  | ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), | 
|  | CastExpr::CK_ArrayToPointerDecay); | 
|  | LHSTy = LHSExp->getType(); | 
|  |  | 
|  | BaseExpr = LHSExp; | 
|  | IndexExpr = RHSExp; | 
|  | ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); | 
|  | } else if (RHSTy->isArrayType()) { | 
|  | // Same as previous, except for 123[f().a] case | 
|  | Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << | 
|  | RHSExp->getSourceRange(); | 
|  | ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), | 
|  | CastExpr::CK_ArrayToPointerDecay); | 
|  | RHSTy = RHSExp->getType(); | 
|  |  | 
|  | BaseExpr = RHSExp; | 
|  | IndexExpr = LHSExp; | 
|  | ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); | 
|  | } else { | 
|  | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) | 
|  | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); | 
|  | } | 
|  | // C99 6.5.2.1p1 | 
|  | if (!(IndexExpr->getType()->isIntegerType() && | 
|  | IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent()) | 
|  | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) | 
|  | << IndexExpr->getSourceRange()); | 
|  |  | 
|  | if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | 
|  | IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | 
|  | && !IndexExpr->isTypeDependent()) | 
|  | Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); | 
|  |  | 
|  | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | 
|  | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | 
|  | // type. Note that Functions are not objects, and that (in C99 parlance) | 
|  | // incomplete types are not object types. | 
|  | if (ResultType->isFunctionType()) { | 
|  | Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) | 
|  | << ResultType << BaseExpr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (!ResultType->isDependentType() && | 
|  | RequireCompleteType(LLoc, ResultType, | 
|  | PDiag(diag::err_subscript_incomplete_type) | 
|  | << BaseExpr->getSourceRange())) | 
|  | return ExprError(); | 
|  |  | 
|  | // Diagnose bad cases where we step over interface counts. | 
|  | if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { | 
|  | Diag(LLoc, diag::err_subscript_nonfragile_interface) | 
|  | << ResultType << BaseExpr->getSourceRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | Base.release(); | 
|  | Idx.release(); | 
|  | return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, | 
|  | ResultType, RLoc)); | 
|  | } | 
|  |  | 
|  | QualType Sema:: | 
|  | CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, | 
|  | const IdentifierInfo *CompName, | 
|  | SourceLocation CompLoc) { | 
|  | // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, | 
|  | // see FIXME there. | 
|  | // | 
|  | // FIXME: This logic can be greatly simplified by splitting it along | 
|  | // halving/not halving and reworking the component checking. | 
|  | const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); | 
|  |  | 
|  | // The vector accessor can't exceed the number of elements. | 
|  | const char *compStr = CompName->getNameStart(); | 
|  |  | 
|  | // This flag determines whether or not the component is one of the four | 
|  | // special names that indicate a subset of exactly half the elements are | 
|  | // to be selected. | 
|  | bool HalvingSwizzle = false; | 
|  |  | 
|  | // This flag determines whether or not CompName has an 's' char prefix, | 
|  | // indicating that it is a string of hex values to be used as vector indices. | 
|  | bool HexSwizzle = *compStr == 's' || *compStr == 'S'; | 
|  |  | 
|  | // Check that we've found one of the special components, or that the component | 
|  | // names must come from the same set. | 
|  | if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || | 
|  | !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { | 
|  | HalvingSwizzle = true; | 
|  | } else if (vecType->getPointAccessorIdx(*compStr) != -1) { | 
|  | do | 
|  | compStr++; | 
|  | while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); | 
|  | } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) { | 
|  | do | 
|  | compStr++; | 
|  | while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1); | 
|  | } | 
|  |  | 
|  | if (!HalvingSwizzle && *compStr) { | 
|  | // We didn't get to the end of the string. This means the component names | 
|  | // didn't come from the same set *or* we encountered an illegal name. | 
|  | Diag(OpLoc, diag::err_ext_vector_component_name_illegal) | 
|  | << std::string(compStr,compStr+1) << SourceRange(CompLoc); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Ensure no component accessor exceeds the width of the vector type it | 
|  | // operates on. | 
|  | if (!HalvingSwizzle) { | 
|  | compStr = CompName->getNameStart(); | 
|  |  | 
|  | if (HexSwizzle) | 
|  | compStr++; | 
|  |  | 
|  | while (*compStr) { | 
|  | if (!vecType->isAccessorWithinNumElements(*compStr++)) { | 
|  | Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) | 
|  | << baseType << SourceRange(CompLoc); | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a halving swizzle, verify that the base type has an even | 
|  | // number of elements. | 
|  | if (HalvingSwizzle && (vecType->getNumElements() & 1U)) { | 
|  | Diag(OpLoc, diag::err_ext_vector_component_requires_even) | 
|  | << baseType << SourceRange(CompLoc); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // The component accessor looks fine - now we need to compute the actual type. | 
|  | // The vector type is implied by the component accessor. For example, | 
|  | // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. | 
|  | // vec4.s0 is a float, vec4.s23 is a vec3, etc. | 
|  | // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. | 
|  | unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2 | 
|  | : CompName->getLength(); | 
|  | if (HexSwizzle) | 
|  | CompSize--; | 
|  |  | 
|  | if (CompSize == 1) | 
|  | return vecType->getElementType(); | 
|  |  | 
|  | QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize); | 
|  | // Now look up the TypeDefDecl from the vector type. Without this, | 
|  | // diagostics look bad. We want extended vector types to appear built-in. | 
|  | for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) { | 
|  | if (ExtVectorDecls[i]->getUnderlyingType() == VT) | 
|  | return Context.getTypedefType(ExtVectorDecls[i]); | 
|  | } | 
|  | return VT; // should never get here (a typedef type should always be found). | 
|  | } | 
|  |  | 
|  | static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, | 
|  | IdentifierInfo *Member, | 
|  | const Selector &Sel, | 
|  | ASTContext &Context) { | 
|  |  | 
|  | if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member)) | 
|  | return PD; | 
|  | if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) | 
|  | return OMD; | 
|  |  | 
|  | for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(), | 
|  | E = PDecl->protocol_end(); I != E; ++I) { | 
|  | if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel, | 
|  | Context)) | 
|  | return D; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy, | 
|  | IdentifierInfo *Member, | 
|  | const Selector &Sel, | 
|  | ASTContext &Context) { | 
|  | // Check protocols on qualified interfaces. | 
|  | Decl *GDecl = 0; | 
|  | for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), | 
|  | E = QIdTy->qual_end(); I != E; ++I) { | 
|  | if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { | 
|  | GDecl = PD; | 
|  | break; | 
|  | } | 
|  | // Also must look for a getter name which uses property syntax. | 
|  | if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) { | 
|  | GDecl = OMD; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!GDecl) { | 
|  | for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(), | 
|  | E = QIdTy->qual_end(); I != E; ++I) { | 
|  | // Search in the protocol-qualifier list of current protocol. | 
|  | GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context); | 
|  | if (GDecl) | 
|  | return GDecl; | 
|  | } | 
|  | } | 
|  | return GDecl; | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, SourceLocation MemberLoc, | 
|  | DeclarationName MemberName, | 
|  | bool HasExplicitTemplateArgs, | 
|  | SourceLocation LAngleLoc, | 
|  | const TemplateArgumentLoc *ExplicitTemplateArgs, | 
|  | unsigned NumExplicitTemplateArgs, | 
|  | SourceLocation RAngleLoc, | 
|  | DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS, | 
|  | NamedDecl *FirstQualifierInScope) { | 
|  | if (SS && SS->isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Since this might be a postfix expression, get rid of ParenListExprs. | 
|  | Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); | 
|  |  | 
|  | Expr *BaseExpr = Base.takeAs<Expr>(); | 
|  | assert(BaseExpr && "no base expression"); | 
|  |  | 
|  | // Perform default conversions. | 
|  | DefaultFunctionArrayConversion(BaseExpr); | 
|  |  | 
|  | QualType BaseType = BaseExpr->getType(); | 
|  |  | 
|  | // If the user is trying to apply -> or . to a function pointer | 
|  | // type, it's probably because the forgot parentheses to call that | 
|  | // function. Suggest the addition of those parentheses, build the | 
|  | // call, and continue on. | 
|  | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | 
|  | if (const FunctionProtoType *Fun | 
|  | = Ptr->getPointeeType()->getAs<FunctionProtoType>()) { | 
|  | QualType ResultTy = Fun->getResultType(); | 
|  | if (Fun->getNumArgs() == 0 && | 
|  | ((OpKind == tok::period && ResultTy->isRecordType()) || | 
|  | (OpKind == tok::arrow && ResultTy->isPointerType() && | 
|  | ResultTy->getAs<PointerType>()->getPointeeType() | 
|  | ->isRecordType()))) { | 
|  | SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd()); | 
|  | Diag(Loc, diag::err_member_reference_needs_call) | 
|  | << QualType(Fun, 0) | 
|  | << CodeModificationHint::CreateInsertion(Loc, "()"); | 
|  |  | 
|  | OwningExprResult NewBase | 
|  | = ActOnCallExpr(S, ExprArg(*this, BaseExpr), Loc, | 
|  | MultiExprArg(*this, 0, 0), 0, Loc); | 
|  | if (NewBase.isInvalid()) | 
|  | return move(NewBase); | 
|  |  | 
|  | BaseExpr = NewBase.takeAs<Expr>(); | 
|  | DefaultFunctionArrayConversion(BaseExpr); | 
|  | BaseType = BaseExpr->getType(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is an Objective-C pseudo-builtin and a definition is provided then | 
|  | // use that. | 
|  | if (BaseType->isObjCIdType()) { | 
|  | // We have an 'id' type. Rather than fall through, we check if this | 
|  | // is a reference to 'isa'. | 
|  | if (BaseType != Context.ObjCIdRedefinitionType) { | 
|  | BaseType = Context.ObjCIdRedefinitionType; | 
|  | ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast); | 
|  | } | 
|  | } | 
|  | assert(!BaseType.isNull() && "no type for member expression"); | 
|  |  | 
|  | // Handle properties on ObjC 'Class' types. | 
|  | if (OpKind == tok::period && BaseType->isObjCClassType()) { | 
|  | // Also must look for a getter name which uses property syntax. | 
|  | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
|  | Selector Sel = PP.getSelectorTable().getNullarySelector(Member); | 
|  | if (ObjCMethodDecl *MD = getCurMethodDecl()) { | 
|  | ObjCInterfaceDecl *IFace = MD->getClassInterface(); | 
|  | ObjCMethodDecl *Getter; | 
|  | // FIXME: need to also look locally in the implementation. | 
|  | if ((Getter = IFace->lookupClassMethod(Sel))) { | 
|  | // Check the use of this method. | 
|  | if (DiagnoseUseOfDecl(Getter, MemberLoc)) | 
|  | return ExprError(); | 
|  | } | 
|  | // If we found a getter then this may be a valid dot-reference, we | 
|  | // will look for the matching setter, in case it is needed. | 
|  | Selector SetterSel = | 
|  | SelectorTable::constructSetterName(PP.getIdentifierTable(), | 
|  | PP.getSelectorTable(), Member); | 
|  | ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); | 
|  | if (!Setter) { | 
|  | // If this reference is in an @implementation, also check for 'private' | 
|  | // methods. | 
|  | Setter = IFace->lookupPrivateInstanceMethod(SetterSel); | 
|  | } | 
|  | // Look through local category implementations associated with the class. | 
|  | if (!Setter) | 
|  | Setter = IFace->getCategoryClassMethod(SetterSel); | 
|  |  | 
|  | if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (Getter || Setter) { | 
|  | QualType PType; | 
|  |  | 
|  | if (Getter) | 
|  | PType = Getter->getResultType(); | 
|  | else | 
|  | // Get the expression type from Setter's incoming parameter. | 
|  | PType = (*(Setter->param_end() -1))->getType(); | 
|  | // FIXME: we must check that the setter has property type. | 
|  | return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, | 
|  | PType, | 
|  | Setter, MemberLoc, BaseExpr)); | 
|  | } | 
|  | return ExprError(Diag(MemberLoc, diag::err_property_not_found) | 
|  | << MemberName << BaseType); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BaseType->isObjCClassType() && | 
|  | BaseType != Context.ObjCClassRedefinitionType) { | 
|  | BaseType = Context.ObjCClassRedefinitionType; | 
|  | ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast); | 
|  | } | 
|  |  | 
|  | // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr | 
|  | // must have pointer type, and the accessed type is the pointee. | 
|  | if (OpKind == tok::arrow) { | 
|  | if (BaseType->isDependentType()) { | 
|  | NestedNameSpecifier *Qualifier = 0; | 
|  | if (SS) { | 
|  | Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); | 
|  | if (!FirstQualifierInScope) | 
|  | FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier); | 
|  | } | 
|  |  | 
|  | return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, true, | 
|  | OpLoc, Qualifier, | 
|  | SS? SS->getRange() : SourceRange(), | 
|  | FirstQualifierInScope, | 
|  | MemberName, | 
|  | MemberLoc, | 
|  | HasExplicitTemplateArgs, | 
|  | LAngleLoc, | 
|  | ExplicitTemplateArgs, | 
|  | NumExplicitTemplateArgs, | 
|  | RAngleLoc)); | 
|  | } | 
|  | else if (const PointerType *PT = BaseType->getAs<PointerType>()) | 
|  | BaseType = PT->getPointeeType(); | 
|  | else if (BaseType->isObjCObjectPointerType()) | 
|  | ; | 
|  | else | 
|  | return ExprError(Diag(MemberLoc, | 
|  | diag::err_typecheck_member_reference_arrow) | 
|  | << BaseType << BaseExpr->getSourceRange()); | 
|  | } else if (BaseType->isDependentType()) { | 
|  | // Require that the base type isn't a pointer type | 
|  | // (so we'll report an error for) | 
|  | // T* t; | 
|  | // t.f; | 
|  | // | 
|  | // In Obj-C++, however, the above expression is valid, since it could be | 
|  | // accessing the 'f' property if T is an Obj-C interface. The extra check | 
|  | // allows this, while still reporting an error if T is a struct pointer. | 
|  | const PointerType *PT = BaseType->getAs<PointerType>(); | 
|  |  | 
|  | if (!PT || (getLangOptions().ObjC1 && | 
|  | !PT->getPointeeType()->isRecordType())) { | 
|  | NestedNameSpecifier *Qualifier = 0; | 
|  | if (SS) { | 
|  | Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); | 
|  | if (!FirstQualifierInScope) | 
|  | FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier); | 
|  | } | 
|  |  | 
|  | return Owned(CXXDependentScopeMemberExpr::Create(Context, | 
|  | BaseExpr, false, | 
|  | OpLoc, | 
|  | Qualifier, | 
|  | SS? SS->getRange() : SourceRange(), | 
|  | FirstQualifierInScope, | 
|  | MemberName, | 
|  | MemberLoc, | 
|  | HasExplicitTemplateArgs, | 
|  | LAngleLoc, | 
|  | ExplicitTemplateArgs, | 
|  | NumExplicitTemplateArgs, | 
|  | RAngleLoc)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle field access to simple records.  This also handles access to fields | 
|  | // of the ObjC 'id' struct. | 
|  | if (const RecordType *RTy = BaseType->getAs<RecordType>()) { | 
|  | RecordDecl *RDecl = RTy->getDecl(); | 
|  | if (RequireCompleteType(OpLoc, BaseType, | 
|  | PDiag(diag::err_typecheck_incomplete_tag) | 
|  | << BaseExpr->getSourceRange())) | 
|  | return ExprError(); | 
|  |  | 
|  | DeclContext *DC = RDecl; | 
|  | if (SS && SS->isSet()) { | 
|  | // If the member name was a qualified-id, look into the | 
|  | // nested-name-specifier. | 
|  | DC = computeDeclContext(*SS, false); | 
|  |  | 
|  | if (!isa<TypeDecl>(DC)) { | 
|  | Diag(MemberLoc, diag::err_qualified_member_nonclass) | 
|  | << DC << SS->getRange(); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | // FIXME: If DC is not computable, we should build a | 
|  | // CXXDependentScopeMemberExpr. | 
|  | assert(DC && "Cannot handle non-computable dependent contexts in lookup"); | 
|  | } | 
|  |  | 
|  | // The record definition is complete, now make sure the member is valid. | 
|  | LookupResult Result(*this, MemberName, MemberLoc, LookupMemberName); | 
|  | LookupQualifiedName(Result, DC); | 
|  |  | 
|  | if (Result.empty()) | 
|  | return ExprError(Diag(MemberLoc, diag::err_no_member) | 
|  | << MemberName << DC << BaseExpr->getSourceRange()); | 
|  | if (Result.isAmbiguous()) | 
|  | return ExprError(); | 
|  |  | 
|  | NamedDecl *MemberDecl = Result.getAsSingleDecl(Context); | 
|  |  | 
|  | if (SS && SS->isSet()) { | 
|  | TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext()); | 
|  | QualType BaseTypeCanon | 
|  | = Context.getCanonicalType(BaseType).getUnqualifiedType(); | 
|  | QualType MemberTypeCanon | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(TyD)); | 
|  |  | 
|  | if (BaseTypeCanon != MemberTypeCanon && | 
|  | !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon)) | 
|  | return ExprError(Diag(SS->getBeginLoc(), | 
|  | diag::err_not_direct_base_or_virtual) | 
|  | << MemberTypeCanon << BaseTypeCanon); | 
|  | } | 
|  |  | 
|  | // If the decl being referenced had an error, return an error for this | 
|  | // sub-expr without emitting another error, in order to avoid cascading | 
|  | // error cases. | 
|  | if (MemberDecl->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | bool ShouldCheckUse = true; | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) { | 
|  | // Don't diagnose the use of a virtual member function unless it's | 
|  | // explicitly qualified. | 
|  | if (MD->isVirtual() && (!SS || !SS->isSet())) | 
|  | ShouldCheckUse = false; | 
|  | } | 
|  |  | 
|  | // Check the use of this field | 
|  | if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) { | 
|  | // We may have found a field within an anonymous union or struct | 
|  | // (C++ [class.union]). | 
|  | if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) | 
|  | return BuildAnonymousStructUnionMemberReference(MemberLoc, FD, | 
|  | BaseExpr, OpLoc); | 
|  |  | 
|  | // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] | 
|  | QualType MemberType = FD->getType(); | 
|  | if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) | 
|  | MemberType = Ref->getPointeeType(); | 
|  | else { | 
|  | Qualifiers BaseQuals = BaseType.getQualifiers(); | 
|  | BaseQuals.removeObjCGCAttr(); | 
|  | if (FD->isMutable()) BaseQuals.removeConst(); | 
|  |  | 
|  | Qualifiers MemberQuals | 
|  | = Context.getCanonicalType(MemberType).getQualifiers(); | 
|  |  | 
|  | Qualifiers Combined = BaseQuals + MemberQuals; | 
|  | if (Combined != MemberQuals) | 
|  | MemberType = Context.getQualifiedType(MemberType, Combined); | 
|  | } | 
|  |  | 
|  | MarkDeclarationReferenced(MemberLoc, FD); | 
|  | if (PerformObjectMemberConversion(BaseExpr, FD)) | 
|  | return ExprError(); | 
|  | return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS, | 
|  | FD, MemberLoc, MemberType)); | 
|  | } | 
|  |  | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { | 
|  | MarkDeclarationReferenced(MemberLoc, MemberDecl); | 
|  | return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS, | 
|  | Var, MemberLoc, | 
|  | Var->getType().getNonReferenceType())); | 
|  | } | 
|  | if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) { | 
|  | MarkDeclarationReferenced(MemberLoc, MemberDecl); | 
|  | return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS, | 
|  | MemberFn, MemberLoc, | 
|  | MemberFn->getType())); | 
|  | } | 
|  | if (FunctionTemplateDecl *FunTmpl | 
|  | = dyn_cast<FunctionTemplateDecl>(MemberDecl)) { | 
|  | MarkDeclarationReferenced(MemberLoc, MemberDecl); | 
|  |  | 
|  | if (HasExplicitTemplateArgs) | 
|  | return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow, | 
|  | (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0), | 
|  | SS? SS->getRange() : SourceRange(), | 
|  | FunTmpl, MemberLoc, true, | 
|  | LAngleLoc, ExplicitTemplateArgs, | 
|  | NumExplicitTemplateArgs, RAngleLoc, | 
|  | Context.OverloadTy)); | 
|  |  | 
|  | return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS, | 
|  | FunTmpl, MemberLoc, | 
|  | Context.OverloadTy)); | 
|  | } | 
|  | if (OverloadedFunctionDecl *Ovl | 
|  | = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) { | 
|  | if (HasExplicitTemplateArgs) | 
|  | return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow, | 
|  | (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0), | 
|  | SS? SS->getRange() : SourceRange(), | 
|  | Ovl, MemberLoc, true, | 
|  | LAngleLoc, ExplicitTemplateArgs, | 
|  | NumExplicitTemplateArgs, RAngleLoc, | 
|  | Context.OverloadTy)); | 
|  |  | 
|  | return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS, | 
|  | Ovl, MemberLoc, Context.OverloadTy)); | 
|  | } | 
|  | if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { | 
|  | MarkDeclarationReferenced(MemberLoc, MemberDecl); | 
|  | return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS, | 
|  | Enum, MemberLoc, Enum->getType())); | 
|  | } | 
|  | if (isa<TypeDecl>(MemberDecl)) | 
|  | return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type) | 
|  | << MemberName << int(OpKind == tok::arrow)); | 
|  |  | 
|  | // We found a declaration kind that we didn't expect. This is a | 
|  | // generic error message that tells the user that she can't refer | 
|  | // to this member with '.' or '->'. | 
|  | return ExprError(Diag(MemberLoc, | 
|  | diag::err_typecheck_member_reference_unknown) | 
|  | << MemberName << int(OpKind == tok::arrow)); | 
|  | } | 
|  |  | 
|  | // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring | 
|  | // into a record type was handled above, any destructor we see here is a | 
|  | // pseudo-destructor. | 
|  | if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) { | 
|  | // C++ [expr.pseudo]p2: | 
|  | //   The left hand side of the dot operator shall be of scalar type. The | 
|  | //   left hand side of the arrow operator shall be of pointer to scalar | 
|  | //   type. | 
|  | if (!BaseType->isScalarType()) | 
|  | return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) | 
|  | << BaseType << BaseExpr->getSourceRange()); | 
|  |  | 
|  | //   [...] The type designated by the pseudo-destructor-name shall be the | 
|  | //   same as the object type. | 
|  | if (!MemberName.getCXXNameType()->isDependentType() && | 
|  | !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType())) | 
|  | return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch) | 
|  | << BaseType << MemberName.getCXXNameType() | 
|  | << BaseExpr->getSourceRange() << SourceRange(MemberLoc)); | 
|  |  | 
|  | //   [...] Furthermore, the two type-names in a pseudo-destructor-name of | 
|  | //   the form | 
|  | // | 
|  | //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name | 
|  | // | 
|  | //   shall designate the same scalar type. | 
|  | // | 
|  | // FIXME: DPG can't see any way to trigger this particular clause, so it | 
|  | // isn't checked here. | 
|  |  | 
|  | // FIXME: We've lost the precise spelling of the type by going through | 
|  | // DeclarationName. Can we do better? | 
|  | return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr, | 
|  | OpKind == tok::arrow, | 
|  | OpLoc, | 
|  | (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0), | 
|  | SS? SS->getRange() : SourceRange(), | 
|  | MemberName.getCXXNameType(), | 
|  | MemberLoc)); | 
|  | } | 
|  |  | 
|  | // Handle access to Objective-C instance variables, such as "Obj->ivar" and | 
|  | // (*Obj).ivar. | 
|  | if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) || | 
|  | (OpKind == tok::period && BaseType->isObjCInterfaceType())) { | 
|  | const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCInterfaceType *IFaceT = | 
|  | OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>(); | 
|  | if (IFaceT) { | 
|  | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
|  |  | 
|  | ObjCInterfaceDecl *IDecl = IFaceT->getDecl(); | 
|  | ObjCInterfaceDecl *ClassDeclared; | 
|  | ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); | 
|  |  | 
|  | if (IV) { | 
|  | // If the decl being referenced had an error, return an error for this | 
|  | // sub-expr without emitting another error, in order to avoid cascading | 
|  | // error cases. | 
|  | if (IV->isInvalidDecl()) | 
|  | return ExprError(); | 
|  |  | 
|  | // Check whether we can reference this field. | 
|  | if (DiagnoseUseOfDecl(IV, MemberLoc)) | 
|  | return ExprError(); | 
|  | if (IV->getAccessControl() != ObjCIvarDecl::Public && | 
|  | IV->getAccessControl() != ObjCIvarDecl::Package) { | 
|  | ObjCInterfaceDecl *ClassOfMethodDecl = 0; | 
|  | if (ObjCMethodDecl *MD = getCurMethodDecl()) | 
|  | ClassOfMethodDecl =  MD->getClassInterface(); | 
|  | else if (ObjCImpDecl && getCurFunctionDecl()) { | 
|  | // Case of a c-function declared inside an objc implementation. | 
|  | // FIXME: For a c-style function nested inside an objc implementation | 
|  | // class, there is no implementation context available, so we pass | 
|  | // down the context as argument to this routine. Ideally, this context | 
|  | // need be passed down in the AST node and somehow calculated from the | 
|  | // AST for a function decl. | 
|  | Decl *ImplDecl = ObjCImpDecl.getAs<Decl>(); | 
|  | if (ObjCImplementationDecl *IMPD = | 
|  | dyn_cast<ObjCImplementationDecl>(ImplDecl)) | 
|  | ClassOfMethodDecl = IMPD->getClassInterface(); | 
|  | else if (ObjCCategoryImplDecl* CatImplClass = | 
|  | dyn_cast<ObjCCategoryImplDecl>(ImplDecl)) | 
|  | ClassOfMethodDecl = CatImplClass->getClassInterface(); | 
|  | } | 
|  |  | 
|  | if (IV->getAccessControl() == ObjCIvarDecl::Private) { | 
|  | if (ClassDeclared != IDecl || | 
|  | ClassOfMethodDecl != ClassDeclared) | 
|  | Diag(MemberLoc, diag::error_private_ivar_access) | 
|  | << IV->getDeclName(); | 
|  | } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) | 
|  | // @protected | 
|  | Diag(MemberLoc, diag::error_protected_ivar_access) | 
|  | << IV->getDeclName(); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(), | 
|  | MemberLoc, BaseExpr, | 
|  | OpKind == tok::arrow)); | 
|  | } | 
|  | return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) | 
|  | << IDecl->getDeclName() << MemberName | 
|  | << BaseExpr->getSourceRange()); | 
|  | } | 
|  | } | 
|  | // Handle properties on 'id' and qualified "id". | 
|  | if (OpKind == tok::period && (BaseType->isObjCIdType() || | 
|  | BaseType->isObjCQualifiedIdType())) { | 
|  | const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>(); | 
|  | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
|  |  | 
|  | // Check protocols on qualified interfaces. | 
|  | Selector Sel = PP.getSelectorTable().getNullarySelector(Member); | 
|  | if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) { | 
|  | if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { | 
|  | // Check the use of this declaration | 
|  | if (DiagnoseUseOfDecl(PD, MemberLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), | 
|  | MemberLoc, BaseExpr)); | 
|  | } | 
|  | if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { | 
|  | // Check the use of this method. | 
|  | if (DiagnoseUseOfDecl(OMD, MemberLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel, | 
|  | OMD->getResultType(), | 
|  | OMD, OpLoc, MemberLoc, | 
|  | NULL, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ExprError(Diag(MemberLoc, diag::err_property_not_found) | 
|  | << MemberName << BaseType); | 
|  | } | 
|  | // Handle Objective-C property access, which is "Obj.property" where Obj is a | 
|  | // pointer to a (potentially qualified) interface type. | 
|  | const ObjCObjectPointerType *OPT; | 
|  | if (OpKind == tok::period && | 
|  | (OPT = BaseType->getAsObjCInterfacePointerType())) { | 
|  | const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); | 
|  | ObjCInterfaceDecl *IFace = IFaceT->getDecl(); | 
|  | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
|  |  | 
|  | // Search for a declared property first. | 
|  | if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { | 
|  | // Check whether we can reference this property. | 
|  | if (DiagnoseUseOfDecl(PD, MemberLoc)) | 
|  | return ExprError(); | 
|  | QualType ResTy = PD->getType(); | 
|  | Selector Sel = PP.getSelectorTable().getNullarySelector(Member); | 
|  | ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); | 
|  | if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc)) | 
|  | ResTy = Getter->getResultType(); | 
|  | return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy, | 
|  | MemberLoc, BaseExpr)); | 
|  | } | 
|  | // Check protocols on qualified interfaces. | 
|  | for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), | 
|  | E = OPT->qual_end(); I != E; ++I) | 
|  | if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { | 
|  | // Check whether we can reference this property. | 
|  | if (DiagnoseUseOfDecl(PD, MemberLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), | 
|  | MemberLoc, BaseExpr)); | 
|  | } | 
|  | // If that failed, look for an "implicit" property by seeing if the nullary | 
|  | // selector is implemented. | 
|  |  | 
|  | // FIXME: The logic for looking up nullary and unary selectors should be | 
|  | // shared with the code in ActOnInstanceMessage. | 
|  |  | 
|  | Selector Sel = PP.getSelectorTable().getNullarySelector(Member); | 
|  | ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); | 
|  |  | 
|  | // If this reference is in an @implementation, check for 'private' methods. | 
|  | if (!Getter) | 
|  | Getter = IFace->lookupPrivateInstanceMethod(Sel); | 
|  |  | 
|  | // Look through local category implementations associated with the class. | 
|  | if (!Getter) | 
|  | Getter = IFace->getCategoryInstanceMethod(Sel); | 
|  | if (Getter) { | 
|  | // Check if we can reference this property. | 
|  | if (DiagnoseUseOfDecl(Getter, MemberLoc)) | 
|  | return ExprError(); | 
|  | } | 
|  | // If we found a getter then this may be a valid dot-reference, we | 
|  | // will look for the matching setter, in case it is needed. | 
|  | Selector SetterSel = | 
|  | SelectorTable::constructSetterName(PP.getIdentifierTable(), | 
|  | PP.getSelectorTable(), Member); | 
|  | ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); | 
|  | if (!Setter) { | 
|  | // If this reference is in an @implementation, also check for 'private' | 
|  | // methods. | 
|  | Setter = IFace->lookupPrivateInstanceMethod(SetterSel); | 
|  | } | 
|  | // Look through local category implementations associated with the class. | 
|  | if (!Setter) | 
|  | Setter = IFace->getCategoryInstanceMethod(SetterSel); | 
|  |  | 
|  | if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (Getter || Setter) { | 
|  | QualType PType; | 
|  |  | 
|  | if (Getter) | 
|  | PType = Getter->getResultType(); | 
|  | else | 
|  | // Get the expression type from Setter's incoming parameter. | 
|  | PType = (*(Setter->param_end() -1))->getType(); | 
|  | // FIXME: we must check that the setter has property type. | 
|  | return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType, | 
|  | Setter, MemberLoc, BaseExpr)); | 
|  | } | 
|  | return ExprError(Diag(MemberLoc, diag::err_property_not_found) | 
|  | << MemberName << BaseType); | 
|  | } | 
|  |  | 
|  | // Handle the following exceptional case (*Obj).isa. | 
|  | if (OpKind == tok::period && | 
|  | BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) && | 
|  | MemberName.getAsIdentifierInfo()->isStr("isa")) | 
|  | return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc, | 
|  | Context.getObjCIdType())); | 
|  |  | 
|  | // Handle 'field access' to vectors, such as 'V.xx'. | 
|  | if (BaseType->isExtVectorType()) { | 
|  | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | 
|  | QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc); | 
|  | if (ret.isNull()) | 
|  | return ExprError(); | 
|  | return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member, | 
|  | MemberLoc)); | 
|  | } | 
|  |  | 
|  | Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union) | 
|  | << BaseType << BaseExpr->getSourceRange(); | 
|  |  | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg Base, | 
|  | SourceLocation OpLoc, | 
|  | tok::TokenKind OpKind, | 
|  | const CXXScopeSpec &SS, | 
|  | UnqualifiedId &Member, | 
|  | DeclPtrTy ObjCImpDecl, | 
|  | bool HasTrailingLParen) { | 
|  | if (Member.getKind() == UnqualifiedId::IK_TemplateId) { | 
|  | TemplateName Template | 
|  | = TemplateName::getFromVoidPointer(Member.TemplateId->Template); | 
|  |  | 
|  | // FIXME: We're going to end up looking up the template based on its name, | 
|  | // twice! | 
|  | DeclarationName Name; | 
|  | if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl()) | 
|  | Name = ActualTemplate->getDeclName(); | 
|  | else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl()) | 
|  | Name = Ovl->getDeclName(); | 
|  | else { | 
|  | DependentTemplateName *DTN = Template.getAsDependentTemplateName(); | 
|  | if (DTN->isIdentifier()) | 
|  | Name = DTN->getIdentifier(); | 
|  | else | 
|  | Name = Context.DeclarationNames.getCXXOperatorName(DTN->getOperator()); | 
|  | } | 
|  |  | 
|  | // Translate the parser's template argument list in our AST format. | 
|  | ASTTemplateArgsPtr TemplateArgsPtr(*this, | 
|  | Member.TemplateId->getTemplateArgs(), | 
|  | Member.TemplateId->NumArgs); | 
|  |  | 
|  | llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; | 
|  | translateTemplateArguments(TemplateArgsPtr, | 
|  | TemplateArgs); | 
|  | TemplateArgsPtr.release(); | 
|  |  | 
|  | // Do we have the save the actual template name? We might need it... | 
|  | return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, | 
|  | Member.TemplateId->TemplateNameLoc, | 
|  | Name, true, Member.TemplateId->LAngleLoc, | 
|  | TemplateArgs.data(), TemplateArgs.size(), | 
|  | Member.TemplateId->RAngleLoc, DeclPtrTy(), | 
|  | &SS); | 
|  | } | 
|  |  | 
|  | // FIXME: We lose a lot of source information by mapping directly to the | 
|  | // DeclarationName. | 
|  | OwningExprResult Result | 
|  | = BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, | 
|  | Member.getSourceRange().getBegin(), | 
|  | GetNameFromUnqualifiedId(Member), | 
|  | ObjCImpDecl, &SS); | 
|  |  | 
|  | if (Result.isInvalid() || HasTrailingLParen || | 
|  | Member.getKind() != UnqualifiedId::IK_DestructorName) | 
|  | return move(Result); | 
|  |  | 
|  | // The only way a reference to a destructor can be used is to | 
|  | // immediately call them. Since the next token is not a '(', produce a | 
|  | // diagnostic and build the call now. | 
|  | Expr *E = (Expr *)Result.get(); | 
|  | SourceLocation ExpectedLParenLoc | 
|  | = PP.getLocForEndOfToken(Member.getSourceRange().getEnd()); | 
|  | Diag(E->getLocStart(), diag::err_dtor_expr_without_call) | 
|  | << isa<CXXPseudoDestructorExpr>(E) | 
|  | << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()"); | 
|  |  | 
|  | return ActOnCallExpr(0, move(Result), ExpectedLParenLoc, | 
|  | MultiExprArg(*this, 0, 0), 0, ExpectedLParenLoc); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, | 
|  | FunctionDecl *FD, | 
|  | ParmVarDecl *Param) { | 
|  | if (Param->hasUnparsedDefaultArg()) { | 
|  | Diag (CallLoc, | 
|  | diag::err_use_of_default_argument_to_function_declared_later) << | 
|  | FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); | 
|  | Diag(UnparsedDefaultArgLocs[Param], | 
|  | diag::note_default_argument_declared_here); | 
|  | } else { | 
|  | if (Param->hasUninstantiatedDefaultArg()) { | 
|  | Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); | 
|  |  | 
|  | // Instantiate the expression. | 
|  | MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD); | 
|  |  | 
|  | InstantiatingTemplate Inst(*this, CallLoc, Param, | 
|  | ArgList.getInnermost().getFlatArgumentList(), | 
|  | ArgList.getInnermost().flat_size()); | 
|  |  | 
|  | OwningExprResult Result = SubstExpr(UninstExpr, ArgList); | 
|  | if (Result.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | if (SetParamDefaultArgument(Param, move(Result), | 
|  | /*FIXME:EqualLoc*/ | 
|  | UninstExpr->getSourceRange().getBegin())) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | Expr *DefaultExpr = Param->getDefaultArg(); | 
|  |  | 
|  | // If the default expression creates temporaries, we need to | 
|  | // push them to the current stack of expression temporaries so they'll | 
|  | // be properly destroyed. | 
|  | if (CXXExprWithTemporaries *E | 
|  | = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) { | 
|  | assert(!E->shouldDestroyTemporaries() && | 
|  | "Can't destroy temporaries in a default argument expr!"); | 
|  | for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I) | 
|  | ExprTemporaries.push_back(E->getTemporary(I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We already type-checked the argument, so we know it works. | 
|  | return Owned(CXXDefaultArgExpr::Create(Context, Param)); | 
|  | } | 
|  |  | 
|  | /// ConvertArgumentsForCall - Converts the arguments specified in | 
|  | /// Args/NumArgs to the parameter types of the function FDecl with | 
|  | /// function prototype Proto. Call is the call expression itself, and | 
|  | /// Fn is the function expression. For a C++ member function, this | 
|  | /// routine does not attempt to convert the object argument. Returns | 
|  | /// true if the call is ill-formed. | 
|  | bool | 
|  | Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, | 
|  | FunctionDecl *FDecl, | 
|  | const FunctionProtoType *Proto, | 
|  | Expr **Args, unsigned NumArgs, | 
|  | SourceLocation RParenLoc) { | 
|  | // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by | 
|  | // assignment, to the types of the corresponding parameter, ... | 
|  | unsigned NumArgsInProto = Proto->getNumArgs(); | 
|  | unsigned NumArgsToCheck = NumArgs; | 
|  | bool Invalid = false; | 
|  |  | 
|  | // If too few arguments are available (and we don't have default | 
|  | // arguments for the remaining parameters), don't make the call. | 
|  | if (NumArgs < NumArgsInProto) { | 
|  | if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) | 
|  | return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) | 
|  | << Fn->getType()->isBlockPointerType() << Fn->getSourceRange(); | 
|  | // Use default arguments for missing arguments | 
|  | NumArgsToCheck = NumArgsInProto; | 
|  | Call->setNumArgs(Context, NumArgsInProto); | 
|  | } | 
|  |  | 
|  | // If too many are passed and not variadic, error on the extras and drop | 
|  | // them. | 
|  | if (NumArgs > NumArgsInProto) { | 
|  | if (!Proto->isVariadic()) { | 
|  | Diag(Args[NumArgsInProto]->getLocStart(), | 
|  | diag::err_typecheck_call_too_many_args) | 
|  | << Fn->getType()->isBlockPointerType() << Fn->getSourceRange() | 
|  | << SourceRange(Args[NumArgsInProto]->getLocStart(), | 
|  | Args[NumArgs-1]->getLocEnd()); | 
|  | // This deletes the extra arguments. | 
|  | Call->setNumArgs(Context, NumArgsInProto); | 
|  | Invalid = true; | 
|  | } | 
|  | NumArgsToCheck = NumArgsInProto; | 
|  | } | 
|  |  | 
|  | // Continue to check argument types (even if we have too few/many args). | 
|  | for (unsigned i = 0; i != NumArgsToCheck; i++) { | 
|  | QualType ProtoArgType = Proto->getArgType(i); | 
|  |  | 
|  | Expr *Arg; | 
|  | if (i < NumArgs) { | 
|  | Arg = Args[i]; | 
|  |  | 
|  | if (RequireCompleteType(Arg->getSourceRange().getBegin(), | 
|  | ProtoArgType, | 
|  | PDiag(diag::err_call_incomplete_argument) | 
|  | << Arg->getSourceRange())) | 
|  | return true; | 
|  |  | 
|  | // Pass the argument. | 
|  | if (PerformCopyInitialization(Arg, ProtoArgType, "passing")) | 
|  | return true; | 
|  |  | 
|  | if (!ProtoArgType->isReferenceType()) | 
|  | Arg = MaybeBindToTemporary(Arg).takeAs<Expr>(); | 
|  | } else { | 
|  | ParmVarDecl *Param = FDecl->getParamDecl(i); | 
|  |  | 
|  | OwningExprResult ArgExpr = | 
|  | BuildCXXDefaultArgExpr(Call->getSourceRange().getBegin(), | 
|  | FDecl, Param); | 
|  | if (ArgExpr.isInvalid()) | 
|  | return true; | 
|  |  | 
|  | Arg = ArgExpr.takeAs<Expr>(); | 
|  | } | 
|  |  | 
|  | Call->setArg(i, Arg); | 
|  | } | 
|  |  | 
|  | // If this is a variadic call, handle args passed through "...". | 
|  | if (Proto->isVariadic()) { | 
|  | VariadicCallType CallType = VariadicFunction; | 
|  | if (Fn->getType()->isBlockPointerType()) | 
|  | CallType = VariadicBlock; // Block | 
|  | else if (isa<MemberExpr>(Fn)) | 
|  | CallType = VariadicMethod; | 
|  |  | 
|  | // Promote the arguments (C99 6.5.2.2p7). | 
|  | for (unsigned i = NumArgsInProto; i < NumArgs; i++) { | 
|  | Expr *Arg = Args[i]; | 
|  | Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType); | 
|  | Call->setArg(i, Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// \brief "Deconstruct" the function argument of a call expression to find | 
|  | /// the underlying declaration (if any), the name of the called function, | 
|  | /// whether argument-dependent lookup is available, whether it has explicit | 
|  | /// template arguments, etc. | 
|  | void Sema::DeconstructCallFunction(Expr *FnExpr, | 
|  | llvm::SmallVectorImpl<NamedDecl*> &Fns, | 
|  | DeclarationName &Name, | 
|  | NestedNameSpecifier *&Qualifier, | 
|  | SourceRange &QualifierRange, | 
|  | bool &ArgumentDependentLookup, | 
|  | bool &Overloaded, | 
|  | bool &HasExplicitTemplateArguments, | 
|  | const TemplateArgumentLoc *&ExplicitTemplateArgs, | 
|  | unsigned &NumExplicitTemplateArgs) { | 
|  | // Set defaults for all of the output parameters. | 
|  | Name = DeclarationName(); | 
|  | Qualifier = 0; | 
|  | QualifierRange = SourceRange(); | 
|  | ArgumentDependentLookup = getLangOptions().CPlusPlus; | 
|  | Overloaded = false; | 
|  | HasExplicitTemplateArguments = false; | 
|  |  | 
|  | // Most of the explicit tracking of ArgumentDependentLookup in this | 
|  | // function can disappear when we handle unresolved | 
|  | // TemplateIdRefExprs properly. | 
|  |  | 
|  | // If we're directly calling a function, get the appropriate declaration. | 
|  | // Also, in C++, keep track of whether we should perform argument-dependent | 
|  | // lookup and whether there were any explicitly-specified template arguments. | 
|  | while (true) { | 
|  | if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr)) | 
|  | FnExpr = IcExpr->getSubExpr(); | 
|  | else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) { | 
|  | // Parentheses around a function disable ADL | 
|  | // (C++0x [basic.lookup.argdep]p1). | 
|  | ArgumentDependentLookup = false; | 
|  | FnExpr = PExpr->getSubExpr(); | 
|  | } else if (isa<UnaryOperator>(FnExpr) && | 
|  | cast<UnaryOperator>(FnExpr)->getOpcode() | 
|  | == UnaryOperator::AddrOf) { | 
|  | FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr(); | 
|  | } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) { | 
|  | Fns.push_back(cast<NamedDecl>(DRExpr->getDecl())); | 
|  | ArgumentDependentLookup = false; | 
|  | if ((Qualifier = DRExpr->getQualifier())) | 
|  | QualifierRange = DRExpr->getQualifierRange(); | 
|  | break; | 
|  | } else if (UnresolvedLookupExpr *UnresLookup | 
|  | = dyn_cast<UnresolvedLookupExpr>(FnExpr)) { | 
|  | Name = UnresLookup->getName(); | 
|  | Fns.append(UnresLookup->decls_begin(), UnresLookup->decls_end()); | 
|  | ArgumentDependentLookup = UnresLookup->requiresADL(); | 
|  | Overloaded = UnresLookup->isOverloaded(); | 
|  | if ((Qualifier = UnresLookup->getQualifier())) | 
|  | QualifierRange = UnresLookup->getQualifierRange(); | 
|  | break; | 
|  | } else if (TemplateIdRefExpr *TemplateIdRef | 
|  | = dyn_cast<TemplateIdRefExpr>(FnExpr)) { | 
|  | if (NamedDecl *Function | 
|  | = TemplateIdRef->getTemplateName().getAsTemplateDecl()) { | 
|  | Name = Function->getDeclName(); | 
|  | Fns.push_back(Function); | 
|  | } | 
|  | else { | 
|  | OverloadedFunctionDecl *Overload | 
|  | = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl(); | 
|  | Name = Overload->getDeclName(); | 
|  | Fns.append(Overload->function_begin(), Overload->function_end()); | 
|  | } | 
|  | Overloaded = true; | 
|  | HasExplicitTemplateArguments = true; | 
|  | ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs(); | 
|  | NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs(); | 
|  |  | 
|  | // C++ [temp.arg.explicit]p6: | 
|  | //   [Note: For simple function names, argument dependent lookup (3.4.2) | 
|  | //   applies even when the function name is not visible within the | 
|  | //   scope of the call. This is because the call still has the syntactic | 
|  | //   form of a function call (3.4.1). But when a function template with | 
|  | //   explicit template arguments is used, the call does not have the | 
|  | //   correct syntactic form unless there is a function template with | 
|  | //   that name visible at the point of the call. If no such name is | 
|  | //   visible, the call is not syntactically well-formed and | 
|  | //   argument-dependent lookup does not apply. If some such name is | 
|  | //   visible, argument dependent lookup applies and additional function | 
|  | //   templates may be found in other namespaces. | 
|  | // | 
|  | // The summary of this paragraph is that, if we get to this point and the | 
|  | // template-id was not a qualified name, then argument-dependent lookup | 
|  | // is still possible. | 
|  | if ((Qualifier = TemplateIdRef->getQualifier())) { | 
|  | ArgumentDependentLookup = false; | 
|  | QualifierRange = TemplateIdRef->getQualifierRange(); | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | // Any kind of name that does not refer to a declaration (or | 
|  | // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3). | 
|  | ArgumentDependentLookup = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. | 
|  | /// This provides the location of the left/right parens and a list of comma | 
|  | /// locations. | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc, | 
|  | MultiExprArg args, | 
|  | SourceLocation *CommaLocs, SourceLocation RParenLoc) { | 
|  | unsigned NumArgs = args.size(); | 
|  |  | 
|  | // Since this might be a postfix expression, get rid of ParenListExprs. | 
|  | fn = MaybeConvertParenListExprToParenExpr(S, move(fn)); | 
|  |  | 
|  | Expr *Fn = fn.takeAs<Expr>(); | 
|  | Expr **Args = reinterpret_cast<Expr**>(args.release()); | 
|  | assert(Fn && "no function call expression"); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // If this is a pseudo-destructor expression, build the call immediately. | 
|  | if (isa<CXXPseudoDestructorExpr>(Fn)) { | 
|  | if (NumArgs > 0) { | 
|  | // Pseudo-destructor calls should not have any arguments. | 
|  | Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) | 
|  | << CodeModificationHint::CreateRemoval( | 
|  | SourceRange(Args[0]->getLocStart(), | 
|  | Args[NumArgs-1]->getLocEnd())); | 
|  |  | 
|  | for (unsigned I = 0; I != NumArgs; ++I) | 
|  | Args[I]->Destroy(Context); | 
|  |  | 
|  | NumArgs = 0; | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy, | 
|  | RParenLoc)); | 
|  | } | 
|  |  | 
|  | // Determine whether this is a dependent call inside a C++ template, | 
|  | // in which case we won't do any semantic analysis now. | 
|  | // FIXME: Will need to cache the results of name lookup (including ADL) in | 
|  | // Fn. | 
|  | bool Dependent = false; | 
|  | if (Fn->isTypeDependent()) | 
|  | Dependent = true; | 
|  | else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) | 
|  | Dependent = true; | 
|  |  | 
|  | if (Dependent) | 
|  | return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, | 
|  | Context.DependentTy, RParenLoc)); | 
|  |  | 
|  | // Determine whether this is a call to an object (C++ [over.call.object]). | 
|  | if (Fn->getType()->isRecordType()) | 
|  | return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, | 
|  | CommaLocs, RParenLoc)); | 
|  |  | 
|  | // Determine whether this is a call to a member function. | 
|  | if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) { | 
|  | NamedDecl *MemDecl = MemExpr->getMemberDecl(); | 
|  | if (isa<OverloadedFunctionDecl>(MemDecl) || | 
|  | isa<CXXMethodDecl>(MemDecl) || | 
|  | (isa<FunctionTemplateDecl>(MemDecl) && | 
|  | isa<CXXMethodDecl>( | 
|  | cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl()))) | 
|  | return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, | 
|  | CommaLocs, RParenLoc)); | 
|  | } | 
|  |  | 
|  | // Determine whether this is a call to a pointer-to-member function. | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) { | 
|  | if (BO->getOpcode() == BinaryOperator::PtrMemD || | 
|  | BO->getOpcode() == BinaryOperator::PtrMemI) { | 
|  | if (const FunctionProtoType *FPT = | 
|  | dyn_cast<FunctionProtoType>(BO->getType())) { | 
|  | QualType ResultTy = FPT->getResultType().getNonReferenceType(); | 
|  |  | 
|  | ExprOwningPtr<CXXMemberCallExpr> | 
|  | TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args, | 
|  | NumArgs, ResultTy, | 
|  | RParenLoc)); | 
|  |  | 
|  | if (CheckCallReturnType(FPT->getResultType(), | 
|  | BO->getRHS()->getSourceRange().getBegin(), | 
|  | TheCall.get(), 0)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs, | 
|  | RParenLoc)) | 
|  | return ExprError(); | 
|  |  | 
|  | return Owned(MaybeBindToTemporary(TheCall.release()).release()); | 
|  | } | 
|  | return ExprError(Diag(Fn->getLocStart(), | 
|  | diag::err_typecheck_call_not_function) | 
|  | << Fn->getType() << Fn->getSourceRange()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're directly calling a function, get the appropriate declaration. | 
|  | // Also, in C++, keep track of whether we should perform argument-dependent | 
|  | // lookup and whether there were any explicitly-specified template arguments. | 
|  | llvm::SmallVector<NamedDecl*,8> Fns; | 
|  | DeclarationName UnqualifiedName; | 
|  | bool Overloaded; | 
|  | bool ADL; | 
|  | bool HasExplicitTemplateArgs = 0; | 
|  | const TemplateArgumentLoc *ExplicitTemplateArgs = 0; | 
|  | unsigned NumExplicitTemplateArgs = 0; | 
|  | NestedNameSpecifier *Qualifier = 0; | 
|  | SourceRange QualifierRange; | 
|  | DeconstructCallFunction(Fn, Fns, UnqualifiedName, Qualifier, QualifierRange, | 
|  | ADL, Overloaded, HasExplicitTemplateArgs, | 
|  | ExplicitTemplateArgs, NumExplicitTemplateArgs); | 
|  |  | 
|  | NamedDecl *NDecl;    // the specific declaration we're calling, if applicable | 
|  | FunctionDecl *FDecl; // same, if it's known to be a function | 
|  |  | 
|  | if (Overloaded || ADL) { | 
|  | #ifndef NDEBUG | 
|  | if (ADL) { | 
|  | // To do ADL, we must have found an unqualified name. | 
|  | assert(UnqualifiedName && "found no unqualified name for ADL"); | 
|  |  | 
|  | // We don't perform ADL for implicit declarations of builtins. | 
|  | // Verify that this was correctly set up. | 
|  | if (Fns.size() == 1 && (FDecl = dyn_cast<FunctionDecl>(Fns[0])) && | 
|  | FDecl->getBuiltinID() && FDecl->isImplicit()) | 
|  | assert(0 && "performing ADL for builtin"); | 
|  |  | 
|  | // We don't perform ADL in C. | 
|  | assert(getLangOptions().CPlusPlus && "ADL enabled in C"); | 
|  | } | 
|  |  | 
|  | if (Overloaded) { | 
|  | // To be overloaded, we must either have multiple functions or | 
|  | // at least one function template (which is effectively an | 
|  | // infinite set of functions). | 
|  | assert((Fns.size() > 1 || | 
|  | (Fns.size() == 1 && | 
|  | isa<FunctionTemplateDecl>(Fns[0]->getUnderlyingDecl()))) | 
|  | && "unrecognized overload situation"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | FDecl = ResolveOverloadedCallFn(Fn, Fns, UnqualifiedName, | 
|  | HasExplicitTemplateArgs, | 
|  | ExplicitTemplateArgs, | 
|  | NumExplicitTemplateArgs, | 
|  | LParenLoc, Args, NumArgs, CommaLocs, | 
|  | RParenLoc, ADL); | 
|  | if (!FDecl) | 
|  | return ExprError(); | 
|  |  | 
|  | Fn = FixOverloadedFunctionReference(Fn, FDecl); | 
|  |  | 
|  | NDecl = FDecl; | 
|  | } else { | 
|  | assert(Fns.size() <= 1 && "overloaded without Overloaded flag"); | 
|  | if (Fns.empty()) | 
|  | NDecl = FDecl = 0; | 
|  | else { | 
|  | NDecl = Fns[0]; | 
|  | FDecl = dyn_cast<FunctionDecl>(NDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Promote the function operand. | 
|  | UsualUnaryConversions(Fn); | 
|  |  | 
|  | // Make the call expr early, before semantic checks.  This guarantees cleanup | 
|  | // of arguments and function on error. | 
|  | ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn, | 
|  | Args, NumArgs, | 
|  | Context.BoolTy, | 
|  | RParenLoc)); | 
|  |  | 
|  | const FunctionType *FuncT; | 
|  | if (!Fn->getType()->isBlockPointerType()) { | 
|  | // C99 6.5.2.2p1 - "The expression that denotes the called function shall | 
|  | // have type pointer to function". | 
|  | const PointerType *PT = Fn->getType()->getAs<PointerType>(); | 
|  | if (PT == 0) | 
|  | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | 
|  | << Fn->getType() << Fn->getSourceRange()); | 
|  | FuncT = PT->getPointeeType()->getAs<FunctionType>(); | 
|  | } else { // This is a block call. | 
|  | FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()-> | 
|  | getAs<FunctionType>(); | 
|  | } | 
|  | if (FuncT == 0) | 
|  | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | 
|  | << Fn->getType() << Fn->getSourceRange()); | 
|  |  | 
|  | // Check for a valid return type | 
|  | if (CheckCallReturnType(FuncT->getResultType(), | 
|  | Fn->getSourceRange().getBegin(), TheCall.get(), | 
|  | FDecl)) | 
|  | return ExprError(); | 
|  |  | 
|  | // We know the result type of the call, set it. | 
|  | TheCall->setType(FuncT->getResultType().getNonReferenceType()); | 
|  |  | 
|  | if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) { | 
|  | if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs, | 
|  | RParenLoc)) | 
|  | return ExprError(); | 
|  | } else { | 
|  | assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); | 
|  |  | 
|  | if (FDecl) { | 
|  | // Check if we have too few/too many template arguments, based | 
|  | // on our knowledge of the function definition. | 
|  | const FunctionDecl *Def = 0; | 
|  | if (FDecl->getBody(Def) && NumArgs != Def->param_size()) { | 
|  | const FunctionProtoType *Proto = | 
|  | Def->getType()->getAs<FunctionProtoType>(); | 
|  | if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) { | 
|  | Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) | 
|  | << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Promote the arguments (C99 6.5.2.2p6). | 
|  | for (unsigned i = 0; i != NumArgs; i++) { | 
|  | Expr *Arg = Args[i]; | 
|  | DefaultArgumentPromotion(Arg); | 
|  | if (RequireCompleteType(Arg->getSourceRange().getBegin(), | 
|  | Arg->getType(), | 
|  | PDiag(diag::err_call_incomplete_argument) | 
|  | << Arg->getSourceRange())) | 
|  | return ExprError(); | 
|  | TheCall->setArg(i, Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | 
|  | if (!Method->isStatic()) | 
|  | return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) | 
|  | << Fn->getSourceRange()); | 
|  |  | 
|  | // Check for sentinels | 
|  | if (NDecl) | 
|  | DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); | 
|  |  | 
|  | // Do special checking on direct calls to functions. | 
|  | if (FDecl) { | 
|  | if (CheckFunctionCall(FDecl, TheCall.get())) | 
|  | return ExprError(); | 
|  |  | 
|  | if (unsigned BuiltinID = FDecl->getBuiltinID()) | 
|  | return CheckBuiltinFunctionCall(BuiltinID, TheCall.take()); | 
|  | } else if (NDecl) { | 
|  | if (CheckBlockCall(NDecl, TheCall.get())) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | return MaybeBindToTemporary(TheCall.take()); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, | 
|  | SourceLocation RParenLoc, ExprArg InitExpr) { | 
|  | assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); | 
|  | //FIXME: Preserve type source info. | 
|  | QualType literalType = GetTypeFromParser(Ty); | 
|  | // FIXME: put back this assert when initializers are worked out. | 
|  | //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); | 
|  | Expr *literalExpr = static_cast<Expr*>(InitExpr.get()); | 
|  |  | 
|  | if (literalType->isArrayType()) { | 
|  | if (literalType->isVariableArrayType()) | 
|  | return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) | 
|  | << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); | 
|  | } else if (!literalType->isDependentType() && | 
|  | RequireCompleteType(LParenLoc, literalType, | 
|  | PDiag(diag::err_typecheck_decl_incomplete_type) | 
|  | << SourceRange(LParenLoc, | 
|  | literalExpr->getSourceRange().getEnd()))) | 
|  | return ExprError(); | 
|  |  | 
|  | if (CheckInitializerTypes(literalExpr, literalType, LParenLoc, | 
|  | DeclarationName(), /*FIXME:DirectInit=*/false)) | 
|  | return ExprError(); | 
|  |  | 
|  | bool isFileScope = getCurFunctionOrMethodDecl() == 0; | 
|  | if (isFileScope) { // 6.5.2.5p3 | 
|  | if (CheckForConstantInitializer(literalExpr, literalType)) | 
|  | return ExprError(); | 
|  | } | 
|  | InitExpr.release(); | 
|  | return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType, | 
|  | literalExpr, isFileScope)); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, | 
|  | SourceLocation RBraceLoc) { | 
|  | unsigned NumInit = initlist.size(); | 
|  | Expr **InitList = reinterpret_cast<Expr**>(initlist.release()); | 
|  |  | 
|  | // Semantic analysis for initializers is done by ActOnDeclarator() and | 
|  | // CheckInitializer() - it requires knowledge of the object being intialized. | 
|  |  | 
|  | InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit, | 
|  | RBraceLoc); | 
|  | E->setType(Context.VoidTy); // FIXME: just a place holder for now. | 
|  | return Owned(E); | 
|  | } | 
|  |  | 
|  | static CastExpr::CastKind getScalarCastKind(ASTContext &Context, | 
|  | QualType SrcTy, QualType DestTy) { | 
|  | if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) | 
|  | return CastExpr::CK_NoOp; | 
|  |  | 
|  | if (SrcTy->hasPointerRepresentation()) { | 
|  | if (DestTy->hasPointerRepresentation()) | 
|  | return CastExpr::CK_BitCast; | 
|  | if (DestTy->isIntegerType()) | 
|  | return CastExpr::CK_PointerToIntegral; | 
|  | } | 
|  |  | 
|  | if (SrcTy->isIntegerType()) { | 
|  | if (DestTy->isIntegerType()) | 
|  | return CastExpr::CK_IntegralCast; | 
|  | if (DestTy->hasPointerRepresentation()) | 
|  | return CastExpr::CK_IntegralToPointer; | 
|  | if (DestTy->isRealFloatingType()) | 
|  | return CastExpr::CK_IntegralToFloating; | 
|  | } | 
|  |  | 
|  | if (SrcTy->isRealFloatingType()) { | 
|  | if (DestTy->isRealFloatingType()) | 
|  | return CastExpr::CK_FloatingCast; | 
|  | if (DestTy->isIntegerType()) | 
|  | return CastExpr::CK_FloatingToIntegral; | 
|  | } | 
|  |  | 
|  | // FIXME: Assert here. | 
|  | // assert(false && "Unhandled cast combination!"); | 
|  | return CastExpr::CK_Unknown; | 
|  | } | 
|  |  | 
|  | /// CheckCastTypes - Check type constraints for casting between types. | 
|  | bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr, | 
|  | CastExpr::CastKind& Kind, | 
|  | CXXMethodDecl *& ConversionDecl, | 
|  | bool FunctionalStyle) { | 
|  | if (getLangOptions().CPlusPlus) | 
|  | return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle, | 
|  | ConversionDecl); | 
|  |  | 
|  | DefaultFunctionArrayConversion(castExpr); | 
|  |  | 
|  | // C99 6.5.4p2: the cast type needs to be void or scalar and the expression | 
|  | // type needs to be scalar. | 
|  | if (castType->isVoidType()) { | 
|  | // Cast to void allows any expr type. | 
|  | Kind = CastExpr::CK_ToVoid; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!castType->isScalarType() && !castType->isVectorType()) { | 
|  | if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) && | 
|  | (castType->isStructureType() || castType->isUnionType())) { | 
|  | // GCC struct/union extension: allow cast to self. | 
|  | // FIXME: Check that the cast destination type is complete. | 
|  | Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) | 
|  | << castType << castExpr->getSourceRange(); | 
|  | Kind = CastExpr::CK_NoOp; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (castType->isUnionType()) { | 
|  | // GCC cast to union extension | 
|  | RecordDecl *RD = castType->getAs<RecordType>()->getDecl(); | 
|  | RecordDecl::field_iterator Field, FieldEnd; | 
|  | for (Field = RD->field_begin(), FieldEnd = RD->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | if (Context.hasSameUnqualifiedType(Field->getType(), | 
|  | castExpr->getType())) { | 
|  | Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) | 
|  | << castExpr->getSourceRange(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Field == FieldEnd) | 
|  | return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) | 
|  | << castExpr->getType() << castExpr->getSourceRange(); | 
|  | Kind = CastExpr::CK_ToUnion; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Reject any other conversions to non-scalar types. | 
|  | return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) | 
|  | << castType << castExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (!castExpr->getType()->isScalarType() && | 
|  | !castExpr->getType()->isVectorType()) { | 
|  | return Diag(castExpr->getLocStart(), | 
|  | diag::err_typecheck_expect_scalar_operand) | 
|  | << castExpr->getType() << castExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | if (castType->isExtVectorType()) | 
|  | return CheckExtVectorCast(TyR, castType, castExpr, Kind); | 
|  |  | 
|  | if (castType->isVectorType()) | 
|  | return CheckVectorCast(TyR, castType, castExpr->getType(), Kind); | 
|  | if (castExpr->getType()->isVectorType()) | 
|  | return CheckVectorCast(TyR, castExpr->getType(), castType, Kind); | 
|  |  | 
|  | if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) | 
|  | return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR; | 
|  |  | 
|  | if (isa<ObjCSelectorExpr>(castExpr)) | 
|  | return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr); | 
|  |  | 
|  | if (!castType->isArithmeticType()) { | 
|  | QualType castExprType = castExpr->getType(); | 
|  | if (!castExprType->isIntegralType() && castExprType->isArithmeticType()) | 
|  | return Diag(castExpr->getLocStart(), | 
|  | diag::err_cast_pointer_from_non_pointer_int) | 
|  | << castExprType << castExpr->getSourceRange(); | 
|  | } else if (!castExpr->getType()->isArithmeticType()) { | 
|  | if (!castType->isIntegralType() && castType->isArithmeticType()) | 
|  | return Diag(castExpr->getLocStart(), | 
|  | diag::err_cast_pointer_to_non_pointer_int) | 
|  | << castType << castExpr->getSourceRange(); | 
|  | } | 
|  |  | 
|  | Kind = getScalarCastKind(Context, castExpr->getType(), castType); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, | 
|  | CastExpr::CastKind &Kind) { | 
|  | assert(VectorTy->isVectorType() && "Not a vector type!"); | 
|  |  | 
|  | if (Ty->isVectorType() || Ty->isIntegerType()) { | 
|  | if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) | 
|  | return Diag(R.getBegin(), | 
|  | Ty->isVectorType() ? | 
|  | diag::err_invalid_conversion_between_vectors : | 
|  | diag::err_invalid_conversion_between_vector_and_integer) | 
|  | << VectorTy << Ty << R; | 
|  | } else | 
|  | return Diag(R.getBegin(), | 
|  | diag::err_invalid_conversion_between_vector_and_scalar) | 
|  | << VectorTy << Ty << R; | 
|  |  | 
|  | Kind = CastExpr::CK_BitCast; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr, | 
|  | CastExpr::CastKind &Kind) { | 
|  | assert(DestTy->isExtVectorType() && "Not an extended vector type!"); | 
|  |  | 
|  | QualType SrcTy = CastExpr->getType(); | 
|  |  | 
|  | // If SrcTy is a VectorType, the total size must match to explicitly cast to | 
|  | // an ExtVectorType. | 
|  | if (SrcTy->isVectorType()) { | 
|  | if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) | 
|  | return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) | 
|  | << DestTy << SrcTy << R; | 
|  | Kind = CastExpr::CK_BitCast; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All non-pointer scalars can be cast to ExtVector type.  The appropriate | 
|  | // conversion will take place first from scalar to elt type, and then | 
|  | // splat from elt type to vector. | 
|  | if (SrcTy->isPointerType()) | 
|  | return Diag(R.getBegin(), | 
|  | diag::err_invalid_conversion_between_vector_and_scalar) | 
|  | << DestTy << SrcTy << R; | 
|  |  | 
|  | QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType(); | 
|  | ImpCastExprToType(CastExpr, DestElemTy, | 
|  | getScalarCastKind(Context, SrcTy, DestElemTy)); | 
|  |  | 
|  | Kind = CastExpr::CK_VectorSplat; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty, | 
|  | SourceLocation RParenLoc, ExprArg Op) { | 
|  | CastExpr::CastKind Kind = CastExpr::CK_Unknown; | 
|  |  | 
|  | assert((Ty != 0) && (Op.get() != 0) && | 
|  | "ActOnCastExpr(): missing type or expr"); | 
|  |  | 
|  | Expr *castExpr = (Expr *)Op.get(); | 
|  | //FIXME: Preserve type source info. | 
|  | QualType castType = GetTypeFromParser(Ty); | 
|  |  | 
|  | // If the Expr being casted is a ParenListExpr, handle it specially. | 
|  | if (isa<ParenListExpr>(castExpr)) | 
|  | return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType); | 
|  | CXXMethodDecl *Method = 0; | 
|  | if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr, | 
|  | Kind, Method)) | 
|  | return ExprError(); | 
|  |  | 
|  | if (Method) { | 
|  | OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind, | 
|  | Method, move(Op)); | 
|  |  | 
|  | if (CastArg.isInvalid()) | 
|  | return ExprError(); | 
|  |  | 
|  | castExpr = CastArg.takeAs<Expr>(); | 
|  | } else { | 
|  | Op.release(); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(), | 
|  | Kind, castExpr, castType, | 
|  | LParenLoc, RParenLoc)); | 
|  | } | 
|  |  | 
|  | /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence | 
|  | /// of comma binary operators. | 
|  | Action::OwningExprResult | 
|  | Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) { | 
|  | Expr *expr = EA.takeAs<Expr>(); | 
|  | ParenListExpr *E = dyn_cast<ParenListExpr>(expr); | 
|  | if (!E) | 
|  | return Owned(expr); | 
|  |  | 
|  | OwningExprResult Result(*this, E->getExpr(0)); | 
|  |  | 
|  | for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) | 
|  | Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result), | 
|  | Owned(E->getExpr(i))); | 
|  |  | 
|  | return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result)); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult | 
|  | Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc, | 
|  | SourceLocation RParenLoc, ExprArg Op, | 
|  | QualType Ty) { | 
|  | ParenListExpr *PE = (ParenListExpr *)Op.get(); | 
|  |  | 
|  | // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')' | 
|  | // then handle it as such. | 
|  | if (getLangOptions().AltiVec && Ty->isVectorType()) { | 
|  | if (PE->getNumExprs() == 0) { | 
|  | Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | llvm::SmallVector<Expr *, 8> initExprs; | 
|  | for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i) | 
|  | initExprs.push_back(PE->getExpr(i)); | 
|  |  | 
|  | // FIXME: This means that pretty-printing the final AST will produce curly | 
|  | // braces instead of the original commas. | 
|  | Op.release(); | 
|  | InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0], | 
|  | initExprs.size(), RParenLoc); | 
|  | E->setType(Ty); | 
|  | return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc, | 
|  | Owned(E)); | 
|  | } else { | 
|  | // This is not an AltiVec-style cast, so turn the ParenListExpr into a | 
|  | // sequence of BinOp comma operators. | 
|  | Op = MaybeConvertParenListExprToParenExpr(S, move(Op)); | 
|  | return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L, | 
|  | SourceLocation R, | 
|  | MultiExprArg Val) { | 
|  | unsigned nexprs = Val.size(); | 
|  | Expr **exprs = reinterpret_cast<Expr**>(Val.release()); | 
|  | assert((exprs != 0) && "ActOnParenListExpr() missing expr list"); | 
|  | Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R); | 
|  | return Owned(expr); | 
|  | } | 
|  |  | 
|  | /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension. | 
|  | /// In that case, lhs = cond. | 
|  | /// C99 6.5.15 | 
|  | QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, | 
|  | SourceLocation QuestionLoc) { | 
|  | // C++ is sufficiently different to merit its own checker. | 
|  | if (getLangOptions().CPlusPlus) | 
|  | return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc); | 
|  |  | 
|  | CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional); | 
|  |  | 
|  | UsualUnaryConversions(Cond); | 
|  | UsualUnaryConversions(LHS); | 
|  | UsualUnaryConversions(RHS); | 
|  | QualType CondTy = Cond->getType(); | 
|  | QualType LHSTy = LHS->getType(); | 
|  | QualType RHSTy = RHS->getType(); | 
|  |  | 
|  | // first, check the condition. | 
|  | if (!CondTy->isScalarType()) { // C99 6.5.15p2 | 
|  | Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) | 
|  | << CondTy; | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Now check the two expressions. | 
|  | if (LHSTy->isVectorType() || RHSTy->isVectorType()) | 
|  | return CheckVectorOperands(QuestionLoc, LHS, RHS); | 
|  |  | 
|  | // If both operands have arithmetic type, do the usual arithmetic conversions | 
|  | // to find a common type: C99 6.5.15p3,5. | 
|  | if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { | 
|  | UsualArithmeticConversions(LHS, RHS); | 
|  | return LHS->getType(); | 
|  | } | 
|  |  | 
|  | // If both operands are the same structure or union type, the result is that | 
|  | // type. | 
|  | if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3 | 
|  | if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) | 
|  | if (LHSRT->getDecl() == RHSRT->getDecl()) | 
|  | // "If both the operands have structure or union type, the result has | 
|  | // that type."  This implies that CV qualifiers are dropped. | 
|  | return LHSTy.getUnqualifiedType(); | 
|  | // FIXME: Type of conditional expression must be complete in C mode. | 
|  | } | 
|  |  | 
|  | // C99 6.5.15p5: "If both operands have void type, the result has void type." | 
|  | // The following || allows only one side to be void (a GCC-ism). | 
|  | if (LHSTy->isVoidType() || RHSTy->isVoidType()) { | 
|  | if (!LHSTy->isVoidType()) | 
|  | Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void) | 
|  | << RHS->getSourceRange(); | 
|  | if (!RHSTy->isVoidType()) | 
|  | Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void) | 
|  | << LHS->getSourceRange(); | 
|  | ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid); | 
|  | ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid); | 
|  | return Context.VoidTy; | 
|  | } | 
|  | // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has | 
|  | // the type of the other operand." | 
|  | if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) && | 
|  | RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | // promote the null to a pointer. | 
|  | ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown); | 
|  | return LHSTy; | 
|  | } | 
|  | if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) && | 
|  | LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { | 
|  | ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown); | 
|  | return RHSTy; | 
|  | } | 
|  | // Handle things like Class and struct objc_class*.  Here we case the result | 
|  | // to the pseudo-builtin, because that will be implicitly cast back to the | 
|  | // redefinition type if an attempt is made to access its fields. | 
|  | if (LHSTy->isObjCClassType() && | 
|  | (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { | 
|  | ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); | 
|  | return LHSTy; | 
|  | } | 
|  | if (RHSTy->isObjCClassType() && | 
|  | (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) { | 
|  | ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); | 
|  | return RHSTy; | 
|  | } | 
|  | // And the same for struct objc_object* / id | 
|  | if (LHSTy->isObjCIdType() && | 
|  | (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { | 
|  | ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); | 
|  | return LHSTy; | 
|  | } | 
|  | if (RHSTy->isObjCIdType() && | 
|  | (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) { | 
|  | ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast); | 
|  | return RHSTy; | 
|  | } | 
|  | // Handle block pointer types. | 
|  | if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { | 
|  | if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { | 
|  | if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { | 
|  | QualType destType = Context.getPointerType(Context.VoidTy); | 
|  | ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); | 
|  | return destType; | 
|  | } | 
|  | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | 
|  | << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | // We have 2 block pointer types. | 
|  | if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { | 
|  | // Two identical block pointer types are always compatible. | 
|  | return LHSTy; | 
|  | } | 
|  | // The block pointer types aren't identical, continue checking. | 
|  | QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType(); | 
|  | QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType(); | 
|  |  | 
|  | if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), | 
|  | rhptee.getUnqualifiedType())) { | 
|  | Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) | 
|  | << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | // In this situation, we assume void* type. No especially good | 
|  | // reason, but this is what gcc does, and we do have to pick | 
|  | // to get a consistent AST. | 
|  | QualType incompatTy = Context.getPointerType(Context.VoidTy); | 
|  | ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); | 
|  | return incompatTy; | 
|  | } | 
|  | // The block pointer types are compatible. | 
|  | ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); | 
|  | return LHSTy; | 
|  | } | 
|  | // Check constraints for Objective-C object pointers types. | 
|  | if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { | 
|  |  | 
|  | if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { | 
|  | // Two identical object pointer types are always compatible. | 
|  | return LHSTy; | 
|  | } | 
|  | const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>(); | 
|  | QualType compositeType = LHSTy; | 
|  |  | 
|  | // If both operands are interfaces and either operand can be | 
|  | // assigned to the other, use that type as the composite | 
|  | // type. This allows | 
|  | //   xxx ? (A*) a : (B*) b | 
|  | // where B is a subclass of A. | 
|  | // | 
|  | // Additionally, as for assignment, if either type is 'id' | 
|  | // allow silent coercion. Finally, if the types are | 
|  | // incompatible then make sure to use 'id' as the composite | 
|  | // type so the result is acceptable for sending messages to. | 
|  |  | 
|  | // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. | 
|  | // It could return the composite type. | 
|  | if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { | 
|  | compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; | 
|  | } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { | 
|  | compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; | 
|  | } else if ((LHSTy->isObjCQualifiedIdType() || | 
|  | RHSTy->isObjCQualifiedIdType()) && | 
|  | Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { | 
|  | // Need to handle "id<xx>" explicitly. | 
|  | // GCC allows qualified id and any Objective-C type to devolve to | 
|  | // id. Currently localizing to here until clear this should be | 
|  | // part of ObjCQualifiedIdTypesAreCompatible. | 
|  | compositeType = Context.getObjCIdType(); | 
|  | } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { | 
|  | compositeType = Context.getObjCIdType(); | 
|  | } else if (!(compositeType = | 
|  | Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) | 
|  | ; | 
|  | else { | 
|  | Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) | 
|  | << LHSTy << RHSTy | 
|  | << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | QualType incompatTy = Context.getObjCIdType(); | 
|  | ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); | 
|  | return incompatTy; | 
|  | } | 
|  | // The object pointer types are compatible. | 
|  | ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast); | 
|  | return compositeType; | 
|  | } | 
|  | // Check Objective-C object pointer types and 'void *' | 
|  | if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { | 
|  | QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); | 
|  | QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); | 
|  | QualType destPointee | 
|  | = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | 
|  | QualType destType = Context.getPointerType(destPointee); | 
|  | // Add qualifiers if necessary. | 
|  | ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp); | 
|  | // Promote to void*. | 
|  | ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); | 
|  | return destType; | 
|  | } | 
|  | if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { | 
|  | QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); | 
|  | QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); | 
|  | QualType destPointee | 
|  | = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | 
|  | QualType destType = Context.getPointerType(destPointee); | 
|  | // Add qualifiers if necessary. | 
|  | ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp); | 
|  | // Promote to void*. | 
|  | ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); | 
|  | return destType; | 
|  | } | 
|  | // Check constraints for C object pointers types (C99 6.5.15p3,6). | 
|  | if (LHSTy->isPointerType() && RHSTy->isPointerType()) { | 
|  | // get the "pointed to" types | 
|  | QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); | 
|  | QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); | 
|  |  | 
|  | // ignore qualifiers on void (C99 6.5.15p3, clause 6) | 
|  | if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { | 
|  | // Figure out necessary qualifiers (C99 6.5.15p6) | 
|  | QualType destPointee | 
|  | = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | 
|  | QualType destType = Context.getPointerType(destPointee); | 
|  | // Add qualifiers if necessary. | 
|  | ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp); | 
|  | // Promote to void*. | 
|  | ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast); | 
|  | return destType; | 
|  | } | 
|  | if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { | 
|  | QualType destPointee | 
|  | = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | 
|  | QualType destType = Context.getPointerType(destPointee); | 
|  | // Add qualifiers if necessary. | 
|  | ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp); | 
|  | // Promote to void*. | 
|  | ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast); | 
|  | return destType; | 
|  | } | 
|  |  | 
|  | if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { | 
|  | // Two identical pointer types are always compatible. | 
|  | return LHSTy; | 
|  | } | 
|  | if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), | 
|  | rhptee.getUnqualifiedType())) { | 
|  | Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) | 
|  | << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | // In this situation, we assume void* type. No especially good | 
|  | // reason, but this is what gcc does, and we do have to pick | 
|  | // to get a consistent AST. | 
|  | QualType incompatTy = Context.getPointerType(Context.VoidTy); | 
|  | ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast); | 
|  | return incompatTy; | 
|  | } | 
|  | // The pointer types are compatible. | 
|  | // C99 6.5.15p6: If both operands are pointers to compatible types *or* to | 
|  | // differently qualified versions of compatible types, the result type is | 
|  | // a pointer to an appropriately qualified version of the *composite* | 
|  | // type. | 
|  | // FIXME: Need to calculate the composite type. | 
|  | // FIXME: Need to add qualifiers | 
|  | ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast); | 
|  | return LHSTy; | 
|  | } | 
|  |  | 
|  | // GCC compatibility: soften pointer/integer mismatch. | 
|  | if (RHSTy->isPointerType() && LHSTy->isIntegerType()) { | 
|  | Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) | 
|  | << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer); | 
|  | return RHSTy; | 
|  | } | 
|  | if (LHSTy->isPointerType() && RHSTy->isIntegerType()) { | 
|  | Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) | 
|  | << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer); | 
|  | return LHSTy; | 
|  | } | 
|  |  | 
|  | // Otherwise, the operands are not compatible. | 
|  | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | 
|  | << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null | 
|  | /// in the case of a the GNU conditional expr extension. | 
|  | Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, | 
|  | SourceLocation ColonLoc, | 
|  | ExprArg Cond, ExprArg LHS, | 
|  | ExprArg RHS) { | 
|  | Expr *CondExpr = (Expr *) Cond.get(); | 
|  | Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get(); | 
|  |  | 
|  | // If this is the gnu "x ?: y" extension, analyze the types as though the LHS | 
|  | // was the condition. | 
|  | bool isLHSNull = LHSExpr == 0; | 
|  | if (isLHSNull) | 
|  | LHSExpr = CondExpr; | 
|  |  | 
|  | QualType result = CheckConditionalOperands(CondExpr, LHSExpr, | 
|  | RHSExpr, QuestionLoc); | 
|  | if (result.isNull()) | 
|  | return ExprError(); | 
|  |  | 
|  | Cond.release(); | 
|  | LHS.release(); | 
|  | RHS.release(); | 
|  | return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc, | 
|  | isLHSNull ? 0 : LHSExpr, | 
|  | ColonLoc, RHSExpr, result)); | 
|  | } | 
|  |  | 
|  | // CheckPointerTypesForAssignment - This is a very tricky routine (despite | 
|  | // being closely modeled after the C99 spec:-). The odd characteristic of this | 
|  | // routine is it effectively iqnores the qualifiers on the top level pointee. | 
|  | // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. | 
|  | // FIXME: add a couple examples in this comment. | 
|  | Sema::AssignConvertType | 
|  | Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { | 
|  | QualType lhptee, rhptee; | 
|  |  | 
|  | if ((lhsType->isObjCClassType() && | 
|  | (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) || | 
|  | (rhsType->isObjCClassType() && | 
|  | (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) { | 
|  | return Compatible; | 
|  | } | 
|  |  | 
|  | // get the "pointed to" type (ignoring qualifiers at the top level) | 
|  | lhptee = lhsType->getAs<PointerType>()->getPointeeType(); | 
|  | rhptee = rhsType->getAs<PointerType>()->getPointeeType(); | 
|  |  | 
|  | // make sure we operate on the canonical type | 
|  | lhptee = Context.getCanonicalType(lhptee); | 
|  | rhptee = Context.getCanonicalType(rhptee); | 
|  |  | 
|  | AssignConvertType ConvTy = Compatible; | 
|  |  | 
|  | // C99 6.5.16.1p1: This following citation is common to constraints | 
|  | // 3 & 4 (below). ...and the type *pointed to* by the left has all the | 
|  | // qualifiers of the type *pointed to* by the right; | 
|  | // FIXME: Handle ExtQualType | 
|  | if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) | 
|  | ConvTy = CompatiblePointerDiscardsQualifiers; | 
|  |  | 
|  | // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or | 
|  | // incomplete type and the other is a pointer to a qualified or unqualified | 
|  | // version of void... | 
|  | if (lhptee->isVoidType()) { | 
|  | if (rhptee->isIncompleteOrObjectType()) | 
|  | return ConvTy; | 
|  |  | 
|  | // As an extension, we allow cast to/from void* to function pointer. | 
|  | assert(rhptee->isFunctionType()); | 
|  | return FunctionVoidPointer; | 
|  | } | 
|  |  | 
|  | if (rhptee->isVoidType()) { | 
|  | if (lhptee->isIncompleteOrObjectType()) | 
|  | return ConvTy; | 
|  |  | 
|  | // As an extension, we allow cast to/from void* to function pointer. | 
|  | assert(lhptee->isFunctionType()); | 
|  | return FunctionVoidPointer; | 
|  | } | 
|  | // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or | 
|  | // unqualified versions of compatible types, ... | 
|  | lhptee = lhptee.getUnqualifiedType(); | 
|  | rhptee = rhptee.getUnqualifiedType(); | 
|  | if (!Context.typesAreCompatible(lhptee, rhptee)) { | 
|  | // Check if the pointee types are compatible ignoring the sign. | 
|  | // We explicitly check for char so that we catch "char" vs | 
|  | // "unsigned char" on systems where "char" is unsigned. | 
|  | if (lhptee->isCharType()) | 
|  | lhptee = Context.UnsignedCharTy; | 
|  | else if (lhptee->isSignedIntegerType()) | 
|  | lhptee = Context.getCorrespondingUnsignedType(lhptee); | 
|  |  | 
|  | if (rhptee->isCharType()) | 
|  | rhptee = Context.UnsignedCharTy; | 
|  | else if (rhptee->isSignedIntegerType()) | 
|  | rhptee = Context.getCorrespondingUnsignedType(rhptee); | 
|  |  | 
|  | if (lhptee == rhptee) { | 
|  | // Types are compatible ignoring the sign. Qualifier incompatibility | 
|  | // takes priority over sign incompatibility because the sign | 
|  | // warning can be disabled. | 
|  | if (ConvTy != Compatible) | 
|  | return ConvTy; | 
|  | return IncompatiblePointerSign; | 
|  | } | 
|  |  | 
|  | // If we are a multi-level pointer, it's possible that our issue is simply | 
|  | // one of qualification - e.g. char ** -> const char ** is not allowed. If | 
|  | // the eventual target type is the same and the pointers have the same | 
|  | // level of indirection, this must be the issue. | 
|  | if (lhptee->isPointerType() && rhptee->isPointerType()) { | 
|  | do { | 
|  | lhptee = lhptee->getAs<PointerType>()->getPointeeType(); | 
|  | rhptee = rhptee->getAs<PointerType>()->getPointeeType(); | 
|  |  | 
|  | lhptee = Context.getCanonicalType(lhptee); | 
|  | rhptee = Context.getCanonicalType(rhptee); | 
|  | } while (lhptee->isPointerType() && rhptee->isPointerType()); | 
|  |  | 
|  | if (Context.hasSameUnqualifiedType(lhptee, rhptee)) | 
|  | return IncompatibleNestedPointerQualifiers; | 
|  | } | 
|  |  | 
|  | // General pointer incompatibility takes priority over qualifiers. | 
|  | return IncompatiblePointer; | 
|  | } | 
|  | return ConvTy; | 
|  | } | 
|  |  | 
|  | /// CheckBlockPointerTypesForAssignment - This routine determines whether two | 
|  | /// block pointer types are compatible or whether a block and normal pointer | 
|  | /// are compatible. It is more restrict than comparing two function pointer | 
|  | // types. | 
|  | Sema::AssignConvertType | 
|  | Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, | 
|  | QualType rhsType) { | 
|  | QualType lhptee, rhptee; | 
|  |  | 
|  | // get the "pointed to" type (ignoring qualifiers at the top level) | 
|  | lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType(); | 
|  | rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType(); | 
|  |  | 
|  | // make sure we operate on the canonical type | 
|  | lhptee = Context.getCanonicalType(lhptee); | 
|  | rhptee = Context.getCanonicalType(rhptee); | 
|  |  | 
|  | AssignConvertType ConvTy = Compatible; | 
|  |  | 
|  | // For blocks we enforce that qualifiers are identical. | 
|  | if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers()) | 
|  | ConvTy = CompatiblePointerDiscardsQualifiers; | 
|  |  | 
|  | if (!Context.typesAreCompatible(lhptee, rhptee)) | 
|  | return IncompatibleBlockPointer; | 
|  | return ConvTy; | 
|  | } | 
|  |  | 
|  | /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently | 
|  | /// has code to accommodate several GCC extensions when type checking | 
|  | /// pointers. Here are some objectionable examples that GCC considers warnings: | 
|  | /// | 
|  | ///  int a, *pint; | 
|  | ///  short *pshort; | 
|  | ///  struct foo *pfoo; | 
|  | /// | 
|  | ///  pint = pshort; // warning: assignment from incompatible pointer type | 
|  | ///  a = pint; // warning: assignment makes integer from pointer without a cast | 
|  | ///  pint = a; // warning: assignment makes pointer from integer without a cast | 
|  | ///  pint = pfoo; // warning: assignment from incompatible pointer type | 
|  | /// | 
|  | /// As a result, the code for dealing with pointers is more complex than the | 
|  | /// C99 spec dictates. | 
|  | /// | 
|  | Sema::AssignConvertType | 
|  | Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { | 
|  | // Get canonical types.  We're not formatting these types, just comparing | 
|  | // them. | 
|  | lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); | 
|  | rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); | 
|  |  | 
|  | if (lhsType == rhsType) | 
|  | return Compatible; // Common case: fast path an exact match. | 
|  |  | 
|  | if ((lhsType->isObjCClassType() && | 
|  | (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) || | 
|  | (rhsType->isObjCClassType() && | 
|  | (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) { | 
|  | return Compatible; | 
|  | } | 
|  |  | 
|  | // If the left-hand side is a reference type, then we are in a | 
|  | // (rare!) case where we've allowed the use of references in C, | 
|  | // e.g., as a parameter type in a built-in function. In this case, | 
|  | // just make sure that the type referenced is compatible with the | 
|  | // right-hand side type. The caller is responsible for adjusting | 
|  | // lhsType so that the resulting expression does not have reference | 
|  | // type. | 
|  | if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) { | 
|  | if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) | 
|  | return Compatible; | 
|  | return Incompatible; | 
|  | } | 
|  | // Allow scalar to ExtVector assignments, and assignments of an ExtVector type | 
|  | // to the same ExtVector type. | 
|  | if (lhsType->isExtVectorType()) { | 
|  | if (rhsType->isExtVectorType()) | 
|  | return lhsType == rhsType ? Compatible : Incompatible; | 
|  | if (!rhsType->isVectorType() && rhsType->isArithmeticType()) | 
|  | return Compatible; | 
|  | } | 
|  |  | 
|  | if (lhsType->isVectorType() || rhsType->isVectorType()) { | 
|  | // If we are allowing lax vector conversions, and LHS and RHS are both | 
|  | // vectors, the total size only needs to be the same. This is a bitcast; | 
|  | // no bits are changed but the result type is different. | 
|  | if (getLangOptions().LaxVectorConversions && | 
|  | lhsType->isVectorType() && rhsType->isVectorType()) { | 
|  | if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) | 
|  | return IncompatibleVectors; | 
|  | } | 
|  | return Incompatible; | 
|  | } | 
|  |  | 
|  | if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) | 
|  | return Compatible; | 
|  |  | 
|  | if (isa<PointerType>(lhsType)) { | 
|  | if (rhsType->isIntegerType()) | 
|  | return IntToPointer; | 
|  |  | 
|  | if (isa<PointerType>(rhsType)) | 
|  | return CheckPointerTypesForAssignment(lhsType, rhsType); | 
|  |  | 
|  | // In general, C pointers are not compatible with ObjC object pointers. | 
|  | if (isa<ObjCObjectPointerType>(rhsType)) { | 
|  | if (lhsType->isVoidPointerType()) // an exception to the rule. | 
|  | return Compatible; | 
|  | return IncompatiblePointer; | 
|  | } | 
|  | if (rhsType->getAs<BlockPointerType>()) { | 
|  | if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) | 
|  | return Compatible; | 
|  |  | 
|  | // Treat block pointers as objects. | 
|  | if (getLangOptions().ObjC1 && lhsType->isObjCIdType()) | 
|  | return Compatible; | 
|  | } | 
|  | return Incompatible; | 
|  | } | 
|  |  | 
|  | if (isa<BlockPointerType>(lhsType)) { | 
|  | if (rhsType->isIntegerType()) | 
|  | return IntToBlockPointer; | 
|  |  | 
|  | // Treat block pointers as objects. | 
|  | if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) | 
|  | return Compatible; | 
|  |  | 
|  | if (rhsType->isBlockPointerType()) | 
|  | return CheckBlockPointerTypesForAssignment(lhsType, rhsType); | 
|  |  | 
|  | if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) { | 
|  | if (RHSPT->getPointeeType()->isVoidType()) | 
|  | return Compatible; | 
|  | } | 
|  | return Incompatible; | 
|  | } | 
|  |  | 
|  | if (isa<ObjCObjectPointerType>(lhsType)) { | 
|  | if (rhsType->isIntegerType()) | 
|  | return IntToPointer; | 
|  |  | 
|  | // In general, C pointers are not compatible with ObjC object pointers. | 
|  | if (isa<PointerType>(rhsType)) { | 
|  | if (rhsType->isVoidPointerType()) // an exception to the rule. | 
|  | return Compatible; | 
|  | return IncompatiblePointer; | 
|  | } | 
|  | if (rhsType->isObjCObjectPointerType()) { | 
|  | if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType()) | 
|  | return Compatible; | 
|  | if (Context.typesAreCompatible(lhsType, rhsType)) | 
|  | return Compatible; | 
|  | if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) | 
|  | return IncompatibleObjCQualifiedId; | 
|  | return IncompatiblePointer; | 
|  | } | 
|  | if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) { | 
|  | if (RHSPT->getPointeeType()->isVoidType()) | 
|  | return Compatible; | 
|  | } | 
|  | // Treat block pointers as objects. | 
|  | if (rhsType->isBlockPointerType()) | 
|  | return Compatible; | 
|  | return Incompatible; | 
|  | } | 
|  | if (isa<PointerType>(rhsType)) { | 
|  | // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. | 
|  | if (lhsType == Context.BoolTy) | 
|  | return Compatible; | 
|  |  | 
|  | if (lhsType->isIntegerType()) | 
|  | return PointerToInt; | 
|  |  | 
|  | if (isa<PointerType>(lhsType)) | 
|  | return CheckPointerTypesForAssignment(lhsType, rhsType); | 
|  |  | 
|  | if (isa<BlockPointerType>(lhsType) && | 
|  | rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) | 
|  | return Compatible; | 
|  | return Incompatible; | 
|  | } | 
|  | if (isa<ObjCObjectPointerType>(rhsType)) { | 
|  | // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. | 
|  | if (lhsType == Context.BoolTy) | 
|  | return Compatible; | 
|  |  | 
|  | if (lhsType->isIntegerType()) | 
|  | return PointerToInt; | 
|  |  | 
|  | // In general, C pointers are not compatible with ObjC object pointers. | 
|  | if (isa<PointerType>(lhsType)) { | 
|  | if (lhsType->isVoidPointerType()) // an exception to the rule. | 
|  | return Compatible; | 
|  | return IncompatiblePointer; | 
|  | } | 
|  | if (isa<BlockPointerType>(lhsType) && | 
|  | rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) | 
|  | return Compatible; | 
|  | return Incompatible; | 
|  | } | 
|  |  | 
|  | if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { | 
|  | if (Context.typesAreCompatible(lhsType, rhsType)) | 
|  | return Compatible; | 
|  | } | 
|  | return Incompatible; | 
|  | } | 
|  |  | 
|  | /// \brief Constructs a transparent union from an expression that is | 
|  | /// used to initialize the transparent union. | 
|  | static void ConstructTransparentUnion(ASTContext &C, Expr *&E, | 
|  | QualType UnionType, FieldDecl *Field) { | 
|  | // Build an initializer list that designates the appropriate member | 
|  | // of the transparent union. | 
|  | InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(), | 
|  | &E, 1, | 
|  | SourceLocation()); | 
|  | Initializer->setType(UnionType); | 
|  | Initializer->setInitializedFieldInUnion(Field); | 
|  |  | 
|  | // Build a compound literal constructing a value of the transparent | 
|  | // union type from this initializer list. | 
|  | E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer, | 
|  | false); | 
|  | } | 
|  |  | 
|  | Sema::AssignConvertType | 
|  | Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) { | 
|  | QualType FromType = rExpr->getType(); | 
|  |  | 
|  | // If the ArgType is a Union type, we want to handle a potential | 
|  | // transparent_union GCC extension. | 
|  | const RecordType *UT = ArgType->getAsUnionType(); | 
|  | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
|  | return Incompatible; | 
|  |  | 
|  | // The field to initialize within the transparent union. | 
|  | RecordDecl *UD = UT->getDecl(); | 
|  | FieldDecl *InitField = 0; | 
|  | // It's compatible if the expression matches any of the fields. | 
|  | for (RecordDecl::field_iterator it = UD->field_begin(), | 
|  | itend = UD->field_end(); | 
|  | it != itend; ++it) { | 
|  | if (it->getType()->isPointerType()) { | 
|  | // If the transparent union contains a pointer type, we allow: | 
|  | // 1) void pointer | 
|  | // 2) null pointer constant | 
|  | if (FromType->isPointerType()) | 
|  | if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) { | 
|  | ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast); | 
|  | InitField = *it; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (rExpr->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull)) { | 
|  | ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer); | 
|  | InitField = *it; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckAssignmentConstraints(it->getType(), rExpr->getType()) | 
|  | == Compatible) { | 
|  | InitField = *it; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!InitField) | 
|  | return Incompatible; | 
|  |  | 
|  | ConstructTransparentUnion(Context, rExpr, ArgType, InitField); | 
|  | return Compatible; | 
|  | } | 
|  |  | 
|  | Sema::AssignConvertType | 
|  | Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | if (!lhsType->isRecordType()) { | 
|  | // C++ 5.17p3: If the left operand is not of class type, the | 
|  | // expression is implicitly converted (C++ 4) to the | 
|  | // cv-unqualified type of the left operand. | 
|  | if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(), | 
|  | "assigning")) | 
|  | return Incompatible; | 
|  | return Compatible; | 
|  | } | 
|  |  | 
|  | // FIXME: Currently, we fall through and treat C++ classes like C | 
|  | // structures. | 
|  | } | 
|  |  | 
|  | // C99 6.5.16.1p1: the left operand is a pointer and the right is | 
|  | // a null pointer constant. | 
|  | if ((lhsType->isPointerType() || | 
|  | lhsType->isObjCObjectPointerType() || | 
|  | lhsType->isBlockPointerType()) | 
|  | && rExpr->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull)) { | 
|  | ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown); | 
|  | return Compatible; | 
|  | } | 
|  |  | 
|  | // This check seems unnatural, however it is necessary to ensure the proper | 
|  | // conversion of functions/arrays. If the conversion were done for all | 
|  | // DeclExpr's (created by ActOnIdExpression), it would mess up the unary | 
|  | // expressions that surpress this implicit conversion (&, sizeof). | 
|  | // | 
|  | // Suppress this for references: C++ 8.5.3p5. | 
|  | if (!lhsType->isReferenceType()) | 
|  | DefaultFunctionArrayConversion(rExpr); | 
|  |  | 
|  | Sema::AssignConvertType result = | 
|  | CheckAssignmentConstraints(lhsType, rExpr->getType()); | 
|  |  | 
|  | // C99 6.5.16.1p2: The value of the right operand is converted to the | 
|  | // type of the assignment expression. | 
|  | // CheckAssignmentConstraints allows the left-hand side to be a reference, | 
|  | // so that we can use references in built-in functions even in C. | 
|  | // The getNonReferenceType() call makes sure that the resulting expression | 
|  | // does not have reference type. | 
|  | if (result != Incompatible && rExpr->getType() != lhsType) | 
|  | ImpCastExprToType(rExpr, lhsType.getNonReferenceType(), | 
|  | CastExpr::CK_Unknown); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { | 
|  | Diag(Loc, diag::err_typecheck_invalid_operands) | 
|  | << lex->getType() << rex->getType() | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, | 
|  | Expr *&rex) { | 
|  | // For conversion purposes, we ignore any qualifiers. | 
|  | // For example, "const float" and "float" are equivalent. | 
|  | QualType lhsType = | 
|  | Context.getCanonicalType(lex->getType()).getUnqualifiedType(); | 
|  | QualType rhsType = | 
|  | Context.getCanonicalType(rex->getType()).getUnqualifiedType(); | 
|  |  | 
|  | // If the vector types are identical, return. | 
|  | if (lhsType == rhsType) | 
|  | return lhsType; | 
|  |  | 
|  | // Handle the case of a vector & extvector type of the same size and element | 
|  | // type.  It would be nice if we only had one vector type someday. | 
|  | if (getLangOptions().LaxVectorConversions) { | 
|  | // FIXME: Should we warn here? | 
|  | if (const VectorType *LV = lhsType->getAs<VectorType>()) { | 
|  | if (const VectorType *RV = rhsType->getAs<VectorType>()) | 
|  | if (LV->getElementType() == RV->getElementType() && | 
|  | LV->getNumElements() == RV->getNumElements()) { | 
|  | return lhsType->isExtVectorType() ? lhsType : rhsType; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Canonicalize the ExtVector to the LHS, remember if we swapped so we can | 
|  | // swap back (so that we don't reverse the inputs to a subtract, for instance. | 
|  | bool swapped = false; | 
|  | if (rhsType->isExtVectorType()) { | 
|  | swapped = true; | 
|  | std::swap(rex, lex); | 
|  | std::swap(rhsType, lhsType); | 
|  | } | 
|  |  | 
|  | // Handle the case of an ext vector and scalar. | 
|  | if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) { | 
|  | QualType EltTy = LV->getElementType(); | 
|  | if (EltTy->isIntegralType() && rhsType->isIntegralType()) { | 
|  | if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) { | 
|  | ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast); | 
|  | if (swapped) std::swap(rex, lex); | 
|  | return lhsType; | 
|  | } | 
|  | } | 
|  | if (EltTy->isRealFloatingType() && rhsType->isScalarType() && | 
|  | rhsType->isRealFloatingType()) { | 
|  | if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) { | 
|  | ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast); | 
|  | if (swapped) std::swap(rex, lex); | 
|  | return lhsType; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Vectors of different size or scalar and non-ext-vector are errors. | 
|  | Diag(Loc, diag::err_typecheck_vector_not_convertable) | 
|  | << lex->getType() << rex->getType() | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | inline QualType Sema::CheckMultiplyDivideOperands( | 
|  | Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) | 
|  | return CheckVectorOperands(Loc, lex, rex); | 
|  |  | 
|  | QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); | 
|  |  | 
|  | if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) | 
|  | return compType; | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | inline QualType Sema::CheckRemainderOperands( | 
|  | Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { | 
|  | if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) | 
|  | return CheckVectorOperands(Loc, lex, rex); | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); | 
|  |  | 
|  | if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) | 
|  | return compType; | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 | 
|  | Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) { | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { | 
|  | QualType compType = CheckVectorOperands(Loc, lex, rex); | 
|  | if (CompLHSTy) *CompLHSTy = compType; | 
|  | return compType; | 
|  | } | 
|  |  | 
|  | QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); | 
|  |  | 
|  | // handle the common case first (both operands are arithmetic). | 
|  | if (lex->getType()->isArithmeticType() && | 
|  | rex->getType()->isArithmeticType()) { | 
|  | if (CompLHSTy) *CompLHSTy = compType; | 
|  | return compType; | 
|  | } | 
|  |  | 
|  | // Put any potential pointer into PExp | 
|  | Expr* PExp = lex, *IExp = rex; | 
|  | if (IExp->getType()->isAnyPointerType()) | 
|  | std::swap(PExp, IExp); | 
|  |  | 
|  | if (PExp->getType()->isAnyPointerType()) { | 
|  |  | 
|  | if (IExp->getType()->isIntegerType()) { | 
|  | QualType PointeeTy = PExp->getType()->getPointeeType(); | 
|  |  | 
|  | // Check for arithmetic on pointers to incomplete types. | 
|  | if (PointeeTy->isVoidType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(Loc, diag::err_typecheck_pointer_arith_void_type) | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // GNU extension: arithmetic on pointer to void | 
|  | Diag(Loc, diag::ext_gnu_void_ptr) | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } else if (PointeeTy->isFunctionType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(Loc, diag::err_typecheck_pointer_arith_function_type) | 
|  | << lex->getType() << lex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // GNU extension: arithmetic on pointer to function | 
|  | Diag(Loc, diag::ext_gnu_ptr_func_arith) | 
|  | << lex->getType() << lex->getSourceRange(); | 
|  | } else { | 
|  | // Check if we require a complete type. | 
|  | if (((PExp->getType()->isPointerType() && | 
|  | !PExp->getType()->isDependentType()) || | 
|  | PExp->getType()->isObjCObjectPointerType()) && | 
|  | RequireCompleteType(Loc, PointeeTy, | 
|  | PDiag(diag::err_typecheck_arithmetic_incomplete_type) | 
|  | << PExp->getSourceRange() | 
|  | << PExp->getType())) | 
|  | return QualType(); | 
|  | } | 
|  | // Diagnose bad cases where we step over interface counts. | 
|  | if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { | 
|  | Diag(Loc, diag::err_arithmetic_nonfragile_interface) | 
|  | << PointeeTy << PExp->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | if (CompLHSTy) { | 
|  | QualType LHSTy = Context.isPromotableBitField(lex); | 
|  | if (LHSTy.isNull()) { | 
|  | LHSTy = lex->getType(); | 
|  | if (LHSTy->isPromotableIntegerType()) | 
|  | LHSTy = Context.getPromotedIntegerType(LHSTy); | 
|  | } | 
|  | *CompLHSTy = LHSTy; | 
|  | } | 
|  | return PExp->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | // C99 6.5.6 | 
|  | QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, | 
|  | SourceLocation Loc, QualType* CompLHSTy) { | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { | 
|  | QualType compType = CheckVectorOperands(Loc, lex, rex); | 
|  | if (CompLHSTy) *CompLHSTy = compType; | 
|  | return compType; | 
|  | } | 
|  |  | 
|  | QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); | 
|  |  | 
|  | // Enforce type constraints: C99 6.5.6p3. | 
|  |  | 
|  | // Handle the common case first (both operands are arithmetic). | 
|  | if (lex->getType()->isArithmeticType() | 
|  | && rex->getType()->isArithmeticType()) { | 
|  | if (CompLHSTy) *CompLHSTy = compType; | 
|  | return compType; | 
|  | } | 
|  |  | 
|  | // Either ptr - int   or   ptr - ptr. | 
|  | if (lex->getType()->isAnyPointerType()) { | 
|  | QualType lpointee = lex->getType()->getPointeeType(); | 
|  |  | 
|  | // The LHS must be an completely-defined object type. | 
|  |  | 
|  | bool ComplainAboutVoid = false; | 
|  | Expr *ComplainAboutFunc = 0; | 
|  | if (lpointee->isVoidType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(Loc, diag::err_typecheck_pointer_arith_void_type) | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // GNU C extension: arithmetic on pointer to void | 
|  | ComplainAboutVoid = true; | 
|  | } else if (lpointee->isFunctionType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(Loc, diag::err_typecheck_pointer_arith_function_type) | 
|  | << lex->getType() << lex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // GNU C extension: arithmetic on pointer to function | 
|  | ComplainAboutFunc = lex; | 
|  | } else if (!lpointee->isDependentType() && | 
|  | RequireCompleteType(Loc, lpointee, | 
|  | PDiag(diag::err_typecheck_sub_ptr_object) | 
|  | << lex->getSourceRange() | 
|  | << lex->getType())) | 
|  | return QualType(); | 
|  |  | 
|  | // Diagnose bad cases where we step over interface counts. | 
|  | if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { | 
|  | Diag(Loc, diag::err_arithmetic_nonfragile_interface) | 
|  | << lpointee << lex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // The result type of a pointer-int computation is the pointer type. | 
|  | if (rex->getType()->isIntegerType()) { | 
|  | if (ComplainAboutVoid) | 
|  | Diag(Loc, diag::ext_gnu_void_ptr) | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | if (ComplainAboutFunc) | 
|  | Diag(Loc, diag::ext_gnu_ptr_func_arith) | 
|  | << ComplainAboutFunc->getType() | 
|  | << ComplainAboutFunc->getSourceRange(); | 
|  |  | 
|  | if (CompLHSTy) *CompLHSTy = lex->getType(); | 
|  | return lex->getType(); | 
|  | } | 
|  |  | 
|  | // Handle pointer-pointer subtractions. | 
|  | if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) { | 
|  | QualType rpointee = RHSPTy->getPointeeType(); | 
|  |  | 
|  | // RHS must be a completely-type object type. | 
|  | // Handle the GNU void* extension. | 
|  | if (rpointee->isVoidType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(Loc, diag::err_typecheck_pointer_arith_void_type) | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | ComplainAboutVoid = true; | 
|  | } else if (rpointee->isFunctionType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(Loc, diag::err_typecheck_pointer_arith_function_type) | 
|  | << rex->getType() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // GNU extension: arithmetic on pointer to function | 
|  | if (!ComplainAboutFunc) | 
|  | ComplainAboutFunc = rex; | 
|  | } else if (!rpointee->isDependentType() && | 
|  | RequireCompleteType(Loc, rpointee, | 
|  | PDiag(diag::err_typecheck_sub_ptr_object) | 
|  | << rex->getSourceRange() | 
|  | << rex->getType())) | 
|  | return QualType(); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // Pointee types must be the same: C++ [expr.add] | 
|  | if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { | 
|  | Diag(Loc, diag::err_typecheck_sub_ptr_compatible) | 
|  | << lex->getType() << rex->getType() | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | } else { | 
|  | // Pointee types must be compatible C99 6.5.6p3 | 
|  | if (!Context.typesAreCompatible( | 
|  | Context.getCanonicalType(lpointee).getUnqualifiedType(), | 
|  | Context.getCanonicalType(rpointee).getUnqualifiedType())) { | 
|  | Diag(Loc, diag::err_typecheck_sub_ptr_compatible) | 
|  | << lex->getType() << rex->getType() | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ComplainAboutVoid) | 
|  | Diag(Loc, diag::ext_gnu_void_ptr) | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | if (ComplainAboutFunc) | 
|  | Diag(Loc, diag::ext_gnu_ptr_func_arith) | 
|  | << ComplainAboutFunc->getType() | 
|  | << ComplainAboutFunc->getSourceRange(); | 
|  |  | 
|  | if (CompLHSTy) *CompLHSTy = lex->getType(); | 
|  | return Context.getPointerDiffType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | // C99 6.5.7 | 
|  | QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, | 
|  | bool isCompAssign) { | 
|  | // C99 6.5.7p2: Each of the operands shall have integer type. | 
|  | if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  |  | 
|  | // Vector shifts promote their scalar inputs to vector type. | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) | 
|  | return CheckVectorOperands(Loc, lex, rex); | 
|  |  | 
|  | // Shifts don't perform usual arithmetic conversions, they just do integer | 
|  | // promotions on each operand. C99 6.5.7p3 | 
|  | QualType LHSTy = Context.isPromotableBitField(lex); | 
|  | if (LHSTy.isNull()) { | 
|  | LHSTy = lex->getType(); | 
|  | if (LHSTy->isPromotableIntegerType()) | 
|  | LHSTy = Context.getPromotedIntegerType(LHSTy); | 
|  | } | 
|  | if (!isCompAssign) | 
|  | ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast); | 
|  |  | 
|  | UsualUnaryConversions(rex); | 
|  |  | 
|  | // Sanity-check shift operands | 
|  | llvm::APSInt Right; | 
|  | // Check right/shifter operand | 
|  | if (!rex->isValueDependent() && | 
|  | rex->isIntegerConstantExpr(Right, Context)) { | 
|  | if (Right.isNegative()) | 
|  | Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange(); | 
|  | else { | 
|  | llvm::APInt LeftBits(Right.getBitWidth(), | 
|  | Context.getTypeSize(lex->getType())); | 
|  | if (Right.uge(LeftBits)) | 
|  | Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // "The type of the result is that of the promoted left operand." | 
|  | return LHSTy; | 
|  | } | 
|  |  | 
|  | /// \brief Implements -Wsign-compare. | 
|  | /// | 
|  | /// \param lex the left-hand expression | 
|  | /// \param rex the right-hand expression | 
|  | /// \param OpLoc the location of the joining operator | 
|  | /// \param Equality whether this is an "equality-like" join, which | 
|  | ///   suppresses the warning in some cases | 
|  | void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc, | 
|  | const PartialDiagnostic &PD, bool Equality) { | 
|  | // Don't warn if we're in an unevaluated context. | 
|  | if (ExprEvalContext == Unevaluated) | 
|  | return; | 
|  |  | 
|  | QualType lt = lex->getType(), rt = rex->getType(); | 
|  |  | 
|  | // Only warn if both operands are integral. | 
|  | if (!lt->isIntegerType() || !rt->isIntegerType()) | 
|  | return; | 
|  |  | 
|  | // If either expression is value-dependent, don't warn. We'll get another | 
|  | // chance at instantiation time. | 
|  | if (lex->isValueDependent() || rex->isValueDependent()) | 
|  | return; | 
|  |  | 
|  | // The rule is that the signed operand becomes unsigned, so isolate the | 
|  | // signed operand. | 
|  | Expr *signedOperand, *unsignedOperand; | 
|  | if (lt->isSignedIntegerType()) { | 
|  | if (rt->isSignedIntegerType()) return; | 
|  | signedOperand = lex; | 
|  | unsignedOperand = rex; | 
|  | } else { | 
|  | if (!rt->isSignedIntegerType()) return; | 
|  | signedOperand = rex; | 
|  | unsignedOperand = lex; | 
|  | } | 
|  |  | 
|  | // If the unsigned type is strictly smaller than the signed type, | 
|  | // then (1) the result type will be signed and (2) the unsigned | 
|  | // value will fit fully within the signed type, and thus the result | 
|  | // of the comparison will be exact. | 
|  | if (Context.getIntWidth(signedOperand->getType()) > | 
|  | Context.getIntWidth(unsignedOperand->getType())) | 
|  | return; | 
|  |  | 
|  | // If the value is a non-negative integer constant, then the | 
|  | // signed->unsigned conversion won't change it. | 
|  | llvm::APSInt value; | 
|  | if (signedOperand->isIntegerConstantExpr(value, Context)) { | 
|  | assert(value.isSigned() && "result of signed expression not signed"); | 
|  |  | 
|  | if (value.isNonNegative()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Equality) { | 
|  | // For (in)equality comparisons, if the unsigned operand is a | 
|  | // constant which cannot collide with a overflowed signed operand, | 
|  | // then reinterpreting the signed operand as unsigned will not | 
|  | // change the result of the comparison. | 
|  | if (unsignedOperand->isIntegerConstantExpr(value, Context)) { | 
|  | assert(!value.isSigned() && "result of unsigned expression is signed"); | 
|  |  | 
|  | // 2's complement:  test the top bit. | 
|  | if (value.isNonNegative()) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | Diag(OpLoc, PD) | 
|  | << lex->getType() << rex->getType() | 
|  | << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // C99 6.5.8, C++ [expr.rel] | 
|  | QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, | 
|  | unsigned OpaqueOpc, bool isRelational) { | 
|  | BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc; | 
|  |  | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) | 
|  | return CheckVectorCompareOperands(lex, rex, Loc, isRelational); | 
|  |  | 
|  | CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison, | 
|  | (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE)); | 
|  |  | 
|  | // C99 6.5.8p3 / C99 6.5.9p4 | 
|  | if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) | 
|  | UsualArithmeticConversions(lex, rex); | 
|  | else { | 
|  | UsualUnaryConversions(lex); | 
|  | UsualUnaryConversions(rex); | 
|  | } | 
|  | QualType lType = lex->getType(); | 
|  | QualType rType = rex->getType(); | 
|  |  | 
|  | if (!lType->isFloatingType() | 
|  | && !(lType->isBlockPointerType() && isRelational)) { | 
|  | // For non-floating point types, check for self-comparisons of the form | 
|  | // x == x, x != x, x < x, etc.  These always evaluate to a constant, and | 
|  | // often indicate logic errors in the program. | 
|  | // NOTE: Don't warn about comparisons of enum constants. These can arise | 
|  | //  from macro expansions, and are usually quite deliberate. | 
|  | Expr *LHSStripped = lex->IgnoreParens(); | 
|  | Expr *RHSStripped = rex->IgnoreParens(); | 
|  | if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) | 
|  | if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) | 
|  | if (DRL->getDecl() == DRR->getDecl() && | 
|  | !isa<EnumConstantDecl>(DRL->getDecl())) | 
|  | Diag(Loc, diag::warn_selfcomparison); | 
|  |  | 
|  | if (isa<CastExpr>(LHSStripped)) | 
|  | LHSStripped = LHSStripped->IgnoreParenCasts(); | 
|  | if (isa<CastExpr>(RHSStripped)) | 
|  | RHSStripped = RHSStripped->IgnoreParenCasts(); | 
|  |  | 
|  | // Warn about comparisons against a string constant (unless the other | 
|  | // operand is null), the user probably wants strcmp. | 
|  | Expr *literalString = 0; | 
|  | Expr *literalStringStripped = 0; | 
|  | if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && | 
|  | !RHSStripped->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull)) { | 
|  | literalString = lex; | 
|  | literalStringStripped = LHSStripped; | 
|  | } else if ((isa<StringLiteral>(RHSStripped) || | 
|  | isa<ObjCEncodeExpr>(RHSStripped)) && | 
|  | !LHSStripped->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull)) { | 
|  | literalString = rex; | 
|  | literalStringStripped = RHSStripped; | 
|  | } | 
|  |  | 
|  | if (literalString) { | 
|  | std::string resultComparison; | 
|  | switch (Opc) { | 
|  | case BinaryOperator::LT: resultComparison = ") < 0"; break; | 
|  | case BinaryOperator::GT: resultComparison = ") > 0"; break; | 
|  | case BinaryOperator::LE: resultComparison = ") <= 0"; break; | 
|  | case BinaryOperator::GE: resultComparison = ") >= 0"; break; | 
|  | case BinaryOperator::EQ: resultComparison = ") == 0"; break; | 
|  | case BinaryOperator::NE: resultComparison = ") != 0"; break; | 
|  | default: assert(false && "Invalid comparison operator"); | 
|  | } | 
|  | Diag(Loc, diag::warn_stringcompare) | 
|  | << isa<ObjCEncodeExpr>(literalStringStripped) | 
|  | << literalString->getSourceRange() | 
|  | << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ") | 
|  | << CodeModificationHint::CreateInsertion(lex->getLocStart(), | 
|  | "strcmp(") | 
|  | << CodeModificationHint::CreateInsertion( | 
|  | PP.getLocForEndOfToken(rex->getLocEnd()), | 
|  | resultComparison); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The result of comparisons is 'bool' in C++, 'int' in C. | 
|  | QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy; | 
|  |  | 
|  | if (isRelational) { | 
|  | if (lType->isRealType() && rType->isRealType()) | 
|  | return ResultTy; | 
|  | } else { | 
|  | // Check for comparisons of floating point operands using != and ==. | 
|  | if (lType->isFloatingType()) { | 
|  | assert(rType->isFloatingType()); | 
|  | CheckFloatComparison(Loc,lex,rex); | 
|  | } | 
|  |  | 
|  | if (lType->isArithmeticType() && rType->isArithmeticType()) | 
|  | return ResultTy; | 
|  | } | 
|  |  | 
|  | bool LHSIsNull = lex->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull); | 
|  | bool RHSIsNull = rex->isNullPointerConstant(Context, | 
|  | Expr::NPC_ValueDependentIsNull); | 
|  |  | 
|  | // All of the following pointer related warnings are GCC extensions, except | 
|  | // when handling null pointer constants. One day, we can consider making them | 
|  | // errors (when -pedantic-errors is enabled). | 
|  | if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 | 
|  | QualType LCanPointeeTy = | 
|  | Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType()); | 
|  | QualType RCanPointeeTy = | 
|  | Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType()); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | if (LCanPointeeTy == RCanPointeeTy) | 
|  | return ResultTy; | 
|  |  | 
|  | // C++ [expr.rel]p2: | 
|  | //   [...] Pointer conversions (4.10) and qualification | 
|  | //   conversions (4.4) are performed on pointer operands (or on | 
|  | //   a pointer operand and a null pointer constant) to bring | 
|  | //   them to their composite pointer type. [...] | 
|  | // | 
|  | // C++ [expr.eq]p1 uses the same notion for (in)equality | 
|  | // comparisons of pointers. | 
|  | QualType T = FindCompositePointerType(lex, rex); | 
|  | if (T.isNull()) { | 
|  | Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | ImpCastExprToType(lex, T, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(rex, T, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  | // C99 6.5.9p2 and C99 6.5.8p2 | 
|  | if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), | 
|  | RCanPointeeTy.getUnqualifiedType())) { | 
|  | // Valid unless a relational comparison of function pointers | 
|  | if (isRelational && LCanPointeeTy->isFunctionType()) { | 
|  | Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | } else if (!isRelational && | 
|  | (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { | 
|  | // Valid unless comparison between non-null pointer and function pointer | 
|  | if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) | 
|  | && !LHSIsNull && !RHSIsNull) { | 
|  | Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | } else { | 
|  | // Invalid | 
|  | Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | if (LCanPointeeTy != RCanPointeeTy) | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | // Comparison of pointers with null pointer constants and equality | 
|  | // comparisons of member pointers to null pointer constants. | 
|  | if (RHSIsNull && | 
|  | (lType->isPointerType() || | 
|  | (!isRelational && lType->isMemberPointerType()))) { | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer); | 
|  | return ResultTy; | 
|  | } | 
|  | if (LHSIsNull && | 
|  | (rType->isPointerType() || | 
|  | (!isRelational && rType->isMemberPointerType()))) { | 
|  | ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer); | 
|  | return ResultTy; | 
|  | } | 
|  |  | 
|  | // Comparison of member pointers. | 
|  | if (!isRelational && | 
|  | lType->isMemberPointerType() && rType->isMemberPointerType()) { | 
|  | // C++ [expr.eq]p2: | 
|  | //   In addition, pointers to members can be compared, or a pointer to | 
|  | //   member and a null pointer constant. Pointer to member conversions | 
|  | //   (4.11) and qualification conversions (4.4) are performed to bring | 
|  | //   them to a common type. If one operand is a null pointer constant, | 
|  | //   the common type is the type of the other operand. Otherwise, the | 
|  | //   common type is a pointer to member type similar (4.4) to the type | 
|  | //   of one of the operands, with a cv-qualification signature (4.4) | 
|  | //   that is the union of the cv-qualification signatures of the operand | 
|  | //   types. | 
|  | QualType T = FindCompositePointerType(lex, rex); | 
|  | if (T.isNull()) { | 
|  | Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | ImpCastExprToType(lex, T, CastExpr::CK_BitCast); | 
|  | ImpCastExprToType(rex, T, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  |  | 
|  | // Comparison of nullptr_t with itself. | 
|  | if (lType->isNullPtrType() && rType->isNullPtrType()) | 
|  | return ResultTy; | 
|  | } | 
|  |  | 
|  | // Handle block pointer types. | 
|  | if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) { | 
|  | QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType(); | 
|  | QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType(); | 
|  |  | 
|  | if (!LHSIsNull && !RHSIsNull && | 
|  | !Context.typesAreCompatible(lpointee, rpointee)) { | 
|  | Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  | // Allow block pointers to be compared with null pointer constants. | 
|  | if (!isRelational | 
|  | && ((lType->isBlockPointerType() && rType->isPointerType()) | 
|  | || (lType->isPointerType() && rType->isBlockPointerType()))) { | 
|  | if (!LHSIsNull && !RHSIsNull) { | 
|  | if (!((rType->isPointerType() && rType->getAs<PointerType>() | 
|  | ->getPointeeType()->isVoidType()) | 
|  | || (lType->isPointerType() && lType->getAs<PointerType>() | 
|  | ->getPointeeType()->isVoidType()))) | 
|  | Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  |  | 
|  | if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) { | 
|  | if (lType->isPointerType() || rType->isPointerType()) { | 
|  | const PointerType *LPT = lType->getAs<PointerType>(); | 
|  | const PointerType *RPT = rType->getAs<PointerType>(); | 
|  | bool LPtrToVoid = LPT ? | 
|  | Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false; | 
|  | bool RPtrToVoid = RPT ? | 
|  | Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false; | 
|  |  | 
|  | if (!LPtrToVoid && !RPtrToVoid && | 
|  | !Context.typesAreCompatible(lType, rType)) { | 
|  | Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  | if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) { | 
|  | if (!Context.areComparableObjCPointerTypes(lType, rType)) | 
|  | Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_BitCast); | 
|  | return ResultTy; | 
|  | } | 
|  | } | 
|  | if (lType->isAnyPointerType() && rType->isIntegerType()) { | 
|  | unsigned DiagID = 0; | 
|  | if (RHSIsNull) { | 
|  | if (isRelational) | 
|  | DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; | 
|  | } else if (isRelational) | 
|  | DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; | 
|  | else | 
|  | DiagID = diag::ext_typecheck_comparison_of_pointer_integer; | 
|  |  | 
|  | if (DiagID) { | 
|  | Diag(Loc, DiagID) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer); | 
|  | return ResultTy; | 
|  | } | 
|  | if (lType->isIntegerType() && rType->isAnyPointerType()) { | 
|  | unsigned DiagID = 0; | 
|  | if (LHSIsNull) { | 
|  | if (isRelational) | 
|  | DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; | 
|  | } else if (isRelational) | 
|  | DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; | 
|  | else | 
|  | DiagID = diag::ext_typecheck_comparison_of_pointer_integer; | 
|  |  | 
|  | if (DiagID) { | 
|  | Diag(Loc, DiagID) | 
|  | << lType << rType << lex->getSourceRange() << rex->getSourceRange(); | 
|  | } | 
|  | ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer); | 
|  | return ResultTy; | 
|  | } | 
|  | // Handle block pointers. | 
|  | if (!isRelational && RHSIsNull | 
|  | && lType->isBlockPointerType() && rType->isIntegerType()) { | 
|  | ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer); | 
|  | return ResultTy; | 
|  | } | 
|  | if (!isRelational && LHSIsNull | 
|  | && lType->isIntegerType() && rType->isBlockPointerType()) { | 
|  | ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer); | 
|  | return ResultTy; | 
|  | } | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | /// CheckVectorCompareOperands - vector comparisons are a clang extension that | 
|  | /// operates on extended vector types.  Instead of producing an IntTy result, | 
|  | /// like a scalar comparison, a vector comparison produces a vector of integer | 
|  | /// types. | 
|  | QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, | 
|  | SourceLocation Loc, | 
|  | bool isRelational) { | 
|  | // Check to make sure we're operating on vectors of the same type and width, | 
|  | // Allowing one side to be a scalar of element type. | 
|  | QualType vType = CheckVectorOperands(Loc, lex, rex); | 
|  | if (vType.isNull()) | 
|  | return vType; | 
|  |  | 
|  | QualType lType = lex->getType(); | 
|  | QualType rType = rex->getType(); | 
|  |  | 
|  | // For non-floating point types, check for self-comparisons of the form | 
|  | // x == x, x != x, x < x, etc.  These always evaluate to a constant, and | 
|  | // often indicate logic errors in the program. | 
|  | if (!lType->isFloatingType()) { | 
|  | if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) | 
|  | if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) | 
|  | if (DRL->getDecl() == DRR->getDecl()) | 
|  | Diag(Loc, diag::warn_selfcomparison); | 
|  | } | 
|  |  | 
|  | // Check for comparisons of floating point operands using != and ==. | 
|  | if (!isRelational && lType->isFloatingType()) { | 
|  | assert (rType->isFloatingType()); | 
|  | CheckFloatComparison(Loc,lex,rex); | 
|  | } | 
|  |  | 
|  | // Return the type for the comparison, which is the same as vector type for | 
|  | // integer vectors, or an integer type of identical size and number of | 
|  | // elements for floating point vectors. | 
|  | if (lType->isIntegerType()) | 
|  | return lType; | 
|  |  | 
|  | const VectorType *VTy = lType->getAs<VectorType>(); | 
|  | unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); | 
|  | if (TypeSize == Context.getTypeSize(Context.IntTy)) | 
|  | return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); | 
|  | if (TypeSize == Context.getTypeSize(Context.LongTy)) | 
|  | return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); | 
|  |  | 
|  | assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && | 
|  | "Unhandled vector element size in vector compare"); | 
|  | return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); | 
|  | } | 
|  |  | 
|  | inline QualType Sema::CheckBitwiseOperands( | 
|  | Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { | 
|  | if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) | 
|  | return CheckVectorOperands(Loc, lex, rex); | 
|  |  | 
|  | QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); | 
|  |  | 
|  | if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) | 
|  | return compType; | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  | } | 
|  |  | 
|  | inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] | 
|  | Expr *&lex, Expr *&rex, SourceLocation Loc) { | 
|  | UsualUnaryConversions(lex); | 
|  | UsualUnaryConversions(rex); | 
|  |  | 
|  | if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType()) | 
|  | return InvalidOperands(Loc, lex, rex); | 
|  |  | 
|  | if (Context.getLangOptions().CPlusPlus) { | 
|  | // C++ [expr.log.and]p2 | 
|  | // C++ [expr.log.or]p2 | 
|  | return Context.BoolTy; | 
|  | } | 
|  |  | 
|  | return Context.IntTy; | 
|  | } | 
|  |  | 
|  | /// IsReadonlyProperty - Verify that otherwise a valid l-value expression | 
|  | /// is a read-only property; return true if so. A readonly property expression | 
|  | /// depends on various declarations and thus must be treated specially. | 
|  | /// | 
|  | static bool IsReadonlyProperty(Expr *E, Sema &S) { | 
|  | if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { | 
|  | const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); | 
|  | if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) { | 
|  | QualType BaseType = PropExpr->getBase()->getType(); | 
|  | if (const ObjCObjectPointerType *OPT = | 
|  | BaseType->getAsObjCInterfacePointerType()) | 
|  | if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl()) | 
|  | if (S.isPropertyReadonly(PDecl, IFace)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not, | 
|  | /// emit an error and return true.  If so, return false. | 
|  | static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { | 
|  | SourceLocation OrigLoc = Loc; | 
|  | Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, | 
|  | &Loc); | 
|  | if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) | 
|  | IsLV = Expr::MLV_ReadonlyProperty; | 
|  | if (IsLV == Expr::MLV_Valid) | 
|  | return false; | 
|  |  | 
|  | unsigned Diag = 0; | 
|  | bool NeedType = false; | 
|  | switch (IsLV) { // C99 6.5.16p2 | 
|  | default: assert(0 && "Unknown result from isModifiableLvalue!"); | 
|  | case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; | 
|  | case Expr::MLV_ArrayType: | 
|  | Diag = diag::err_typecheck_array_not_modifiable_lvalue; | 
|  | NeedType = true; | 
|  | break; | 
|  | case Expr::MLV_NotObjectType: | 
|  | Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; | 
|  | NeedType = true; | 
|  | break; | 
|  | case Expr::MLV_LValueCast: | 
|  | Diag = diag::err_typecheck_lvalue_casts_not_supported; | 
|  | break; | 
|  | case Expr::MLV_InvalidExpression: | 
|  | Diag = diag::err_typecheck_expression_not_modifiable_lvalue; | 
|  | break; | 
|  | case Expr::MLV_IncompleteType: | 
|  | case Expr::MLV_IncompleteVoidType: | 
|  | return S.RequireCompleteType(Loc, E->getType(), | 
|  | PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue) | 
|  | << E->getSourceRange()); | 
|  | case Expr::MLV_DuplicateVectorComponents: | 
|  | Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; | 
|  | break; | 
|  | case Expr::MLV_NotBlockQualified: | 
|  | Diag = diag::err_block_decl_ref_not_modifiable_lvalue; | 
|  | break; | 
|  | case Expr::MLV_ReadonlyProperty: | 
|  | Diag = diag::error_readonly_property_assignment; | 
|  | break; | 
|  | case Expr::MLV_NoSetterProperty: | 
|  | Diag = diag::error_nosetter_property_assignment; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SourceRange Assign; | 
|  | if (Loc != OrigLoc) | 
|  | Assign = SourceRange(OrigLoc, OrigLoc); | 
|  | if (NeedType) | 
|  | S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; | 
|  | else | 
|  | S.Diag(Loc, Diag) << E->getSourceRange() << Assign; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // C99 6.5.16.1 | 
|  | QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS, | 
|  | SourceLocation Loc, | 
|  | QualType CompoundType) { | 
|  | // Verify that LHS is a modifiable lvalue, and emit error if not. | 
|  | if (CheckForModifiableLvalue(LHS, Loc, *this)) | 
|  | return QualType(); | 
|  |  | 
|  | QualType LHSType = LHS->getType(); | 
|  | QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType; | 
|  |  | 
|  | AssignConvertType ConvTy; | 
|  | if (CompoundType.isNull()) { | 
|  | // Simple assignment "x = y". | 
|  | ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS); | 
|  | // Special case of NSObject attributes on c-style pointer types. | 
|  | if (ConvTy == IncompatiblePointer && | 
|  | ((Context.isObjCNSObjectType(LHSType) && | 
|  | RHSType->isObjCObjectPointerType()) || | 
|  | (Context.isObjCNSObjectType(RHSType) && | 
|  | LHSType->isObjCObjectPointerType()))) | 
|  | ConvTy = Compatible; | 
|  |  | 
|  | // If the RHS is a unary plus or minus, check to see if they = and + are | 
|  | // right next to each other.  If so, the user may have typo'd "x =+ 4" | 
|  | // instead of "x += 4". | 
|  | Expr *RHSCheck = RHS; | 
|  | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) | 
|  | RHSCheck = ICE->getSubExpr(); | 
|  | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { | 
|  | if ((UO->getOpcode() == UnaryOperator::Plus || | 
|  | UO->getOpcode() == UnaryOperator::Minus) && | 
|  | Loc.isFileID() && UO->getOperatorLoc().isFileID() && | 
|  | // Only if the two operators are exactly adjacent. | 
|  | Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() && | 
|  | // And there is a space or other character before the subexpr of the | 
|  | // unary +/-.  We don't want to warn on "x=-1". | 
|  | Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() && | 
|  | UO->getSubExpr()->getLocStart().isFileID()) { | 
|  | Diag(Loc, diag::warn_not_compound_assign) | 
|  | << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-") | 
|  | << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Compound assignment "x += y" | 
|  | ConvTy = CheckAssignmentConstraints(LHSType, RHSType); | 
|  | } | 
|  |  | 
|  | if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, | 
|  | RHS, "assigning")) | 
|  | return QualType(); | 
|  |  | 
|  | // C99 6.5.16p3: The type of an assignment expression is the type of the | 
|  | // left operand unless the left operand has qualified type, in which case | 
|  | // it is the unqualified version of the type of the left operand. | 
|  | // C99 6.5.16.1p2: In simple assignment, the value of the right operand | 
|  | // is converted to the type of the assignment expression (above). | 
|  | // C++ 5.17p1: the type of the assignment expression is that of its left | 
|  | // operand. | 
|  | return LHSType.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | // C99 6.5.17 | 
|  | QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) { | 
|  | // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions. | 
|  | DefaultFunctionArrayConversion(RHS); | 
|  |  | 
|  | // FIXME: Check that RHS type is complete in C mode (it's legal for it to be | 
|  | // incomplete in C++). | 
|  |  | 
|  | return RHS->getType(); | 
|  | } | 
|  |  | 
|  | /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine | 
|  | /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. | 
|  | QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc, | 
|  | bool isInc) { | 
|  | if (Op->isTypeDependent()) | 
|  | return Context.DependentTy; | 
|  |  | 
|  | QualType ResType = Op->getType(); | 
|  | assert(!ResType.isNull() && "no type for increment/decrement expression"); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus && ResType->isBooleanType()) { | 
|  | // Decrement of bool is not allowed. | 
|  | if (!isInc) { | 
|  | Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | // Increment of bool sets it to true, but is deprecated. | 
|  | Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); | 
|  | } else if (ResType->isRealType()) { | 
|  | // OK! | 
|  | } else if (ResType->isAnyPointerType()) { | 
|  | QualType PointeeTy = ResType->getPointeeType(); | 
|  |  | 
|  | // C99 6.5.2.4p2, 6.5.6p2 | 
|  | if (PointeeTy->isVoidType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type) | 
|  | << Op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | // Pointer to void is a GNU extension in C. | 
|  | Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); | 
|  | } else if (PointeeTy->isFunctionType()) { | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type) | 
|  | << Op->getType() << Op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | Diag(OpLoc, diag::ext_gnu_ptr_func_arith) | 
|  | << ResType << Op->getSourceRange(); | 
|  | } else if (RequireCompleteType(OpLoc, PointeeTy, | 
|  | PDiag(diag::err_typecheck_arithmetic_incomplete_type) | 
|  | << Op->getSourceRange() | 
|  | << ResType)) | 
|  | return QualType(); | 
|  | // Diagnose bad cases where we step over interface counts. | 
|  | else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) { | 
|  | Diag(OpLoc, diag::err_arithmetic_nonfragile_interface) | 
|  | << PointeeTy << Op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | } else if (ResType->isComplexType()) { | 
|  | // C99 does not support ++/-- on complex types, we allow as an extension. | 
|  | Diag(OpLoc, diag::ext_integer_increment_complex) | 
|  | << ResType << Op->getSourceRange(); | 
|  | } else { | 
|  | Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) | 
|  | << ResType << Op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | // At this point, we know we have a real, complex or pointer type. | 
|  | // Now make sure the operand is a modifiable lvalue. | 
|  | if (CheckForModifiableLvalue(Op, OpLoc, *this)) | 
|  | return QualType(); | 
|  | return ResType; | 
|  | } | 
|  |  | 
|  | /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). | 
|  | /// This routine allows us to typecheck complex/recursive expressions | 
|  | /// where the declaration is needed for type checking. We only need to | 
|  | /// handle cases when the expression references a function designator | 
|  | /// or is an lvalue. Here are some examples: | 
|  | ///  - &(x) => x | 
|  | ///  - &*****f => f for f a function designator. | 
|  | ///  - &s.xx => s | 
|  | ///  - &s.zz[1].yy -> s, if zz is an array | 
|  | ///  - *(x + 1) -> x, if x is an array | 
|  | ///  - &"123"[2] -> 0 | 
|  | ///  - & __real__ x -> x | 
|  | static NamedDecl *getPrimaryDecl(Expr *E) { | 
|  | switch (E->getStmtClass()) { | 
|  | case Stmt::DeclRefExprClass: | 
|  | return cast<DeclRefExpr>(E)->getDecl(); | 
|  | case Stmt::MemberExprClass: | 
|  | // If this is an arrow operator, the address is an offset from | 
|  | // the base's value, so the object the base refers to is | 
|  | // irrelevant. | 
|  | if (cast<MemberExpr>(E)->isArrow()) | 
|  | return 0; | 
|  | // Otherwise, the expression refers to a part of the base | 
|  | return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); | 
|  | case Stmt::ArraySubscriptExprClass: { | 
|  | // FIXME: This code shouldn't be necessary!  We should catch the implicit | 
|  | // promotion of register arrays earlier. | 
|  | Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); | 
|  | if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { | 
|  | if (ICE->getSubExpr()->getType()->isArrayType()) | 
|  | return getPrimaryDecl(ICE->getSubExpr()); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | case Stmt::UnaryOperatorClass: { | 
|  | UnaryOperator *UO = cast<UnaryOperator>(E); | 
|  |  | 
|  | switch(UO->getOpcode()) { | 
|  | case UnaryOperator::Real: | 
|  | case UnaryOperator::Imag: | 
|  | case UnaryOperator::Extension: | 
|  | return getPrimaryDecl(UO->getSubExpr()); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | case Stmt::ParenExprClass: | 
|  | return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); | 
|  | case Stmt::ImplicitCastExprClass: | 
|  | // If the result of an implicit cast is an l-value, we care about | 
|  | // the sub-expression; otherwise, the result here doesn't matter. | 
|  | return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckAddressOfOperand - The operand of & must be either a function | 
|  | /// designator or an lvalue designating an object. If it is an lvalue, the | 
|  | /// object cannot be declared with storage class register or be a bit field. | 
|  | /// Note: The usual conversions are *not* applied to the operand of the & | 
|  | /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. | 
|  | /// In C++, the operand might be an overloaded function name, in which case | 
|  | /// we allow the '&' but retain the overloaded-function type. | 
|  | QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { | 
|  | // Make sure to ignore parentheses in subsequent checks | 
|  | op = op->IgnoreParens(); | 
|  |  | 
|  | if (op->isTypeDependent()) | 
|  | return Context.DependentTy; | 
|  |  | 
|  | if (getLangOptions().C99) { | 
|  | // Implement C99-only parts of addressof rules. | 
|  | if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { | 
|  | if (uOp->getOpcode() == UnaryOperator::Deref) | 
|  | // Per C99 6.5.3.2, the address of a deref always returns a valid result | 
|  | // (assuming the deref expression is valid). | 
|  | return uOp->getSubExpr()->getType(); | 
|  | } | 
|  | // Technically, there should be a check for array subscript | 
|  | // expressions here, but the result of one is always an lvalue anyway. | 
|  | } | 
|  | NamedDecl *dcl = getPrimaryDecl(op); | 
|  | Expr::isLvalueResult lval = op->isLvalue(Context); | 
|  |  | 
|  | if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { | 
|  | // C99 6.5.3.2p1 | 
|  | // The operand must be either an l-value or a function designator | 
|  | if (!op->getType()->isFunctionType()) { | 
|  | // FIXME: emit more specific diag... | 
|  | Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) | 
|  | << op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | } else if (op->getBitField()) { // C99 6.5.3.2p1 | 
|  | // The operand cannot be a bit-field | 
|  | Diag(OpLoc, diag::err_typecheck_address_of) | 
|  | << "bit-field" << op->getSourceRange(); | 
|  | return QualType(); | 
|  | } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) && | 
|  | cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){ | 
|  | // The operand cannot be an element of a vector | 
|  | Diag(OpLoc, diag::err_typecheck_address_of) | 
|  | << "vector element" << op->getSourceRange(); | 
|  | return QualType(); | 
|  | } else if (isa<ObjCPropertyRefExpr>(op)) { | 
|  | // cannot take address of a property expression. | 
|  | Diag(OpLoc, diag::err_typecheck_address_of) | 
|  | << "property expression" << op->getSourceRange(); | 
|  | return QualType(); | 
|  | } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) { | 
|  | // FIXME: Can LHS ever be null here? | 
|  | if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull()) | 
|  | return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc); | 
|  | } else if (isa<UnresolvedLookupExpr>(op)) { | 
|  | return Context.OverloadTy; | 
|  | } else if (dcl) { // C99 6.5.3.2p1 | 
|  | // We have an lvalue with a decl. Make sure the decl is not declared | 
|  | // with the register storage-class specifier. | 
|  | if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { | 
|  | if (vd->getStorageClass() == VarDecl::Register) { | 
|  | Diag(OpLoc, diag::err_typecheck_address_of) | 
|  | << "register variable" << op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  | } else if (isa<FunctionTemplateDecl>(dcl)) { | 
|  | return Context.OverloadTy; | 
|  | } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) { | 
|  | // Okay: we can take the address of a field. | 
|  | // Could be a pointer to member, though, if there is an explicit | 
|  | // scope qualifier for the class. | 
|  | if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { | 
|  | DeclContext *Ctx = dcl->getDeclContext(); | 
|  | if (Ctx && Ctx->isRecord()) { | 
|  | if (FD->getType()->isReferenceType()) { | 
|  | Diag(OpLoc, | 
|  | diag::err_cannot_form_pointer_to_member_of_reference_type) | 
|  | << FD->getDeclName() << FD->getType(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | return Context.getMemberPointerType(op->getType(), | 
|  | Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); | 
|  | } | 
|  | } | 
|  | } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) { | 
|  | // Okay: we can take the address of a function. | 
|  | // As above. | 
|  | if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() && | 
|  | MD->isInstance()) | 
|  | return Context.getMemberPointerType(op->getType(), | 
|  | Context.getTypeDeclType(MD->getParent()).getTypePtr()); | 
|  | } else if (!isa<FunctionDecl>(dcl)) | 
|  | assert(0 && "Unknown/unexpected decl type"); | 
|  | } | 
|  |  | 
|  | if (lval == Expr::LV_IncompleteVoidType) { | 
|  | // Taking the address of a void variable is technically illegal, but we | 
|  | // allow it in cases which are otherwise valid. | 
|  | // Example: "extern void x; void* y = &x;". | 
|  | Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); | 
|  | } | 
|  |  | 
|  | // If the operand has type "type", the result has type "pointer to type". | 
|  | return Context.getPointerType(op->getType()); | 
|  | } | 
|  |  | 
|  | QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) { | 
|  | if (Op->isTypeDependent()) | 
|  | return Context.DependentTy; | 
|  |  | 
|  | UsualUnaryConversions(Op); | 
|  | QualType Ty = Op->getType(); | 
|  |  | 
|  | // Note that per both C89 and C99, this is always legal, even if ptype is an | 
|  | // incomplete type or void.  It would be possible to warn about dereferencing | 
|  | // a void pointer, but it's completely well-defined, and such a warning is | 
|  | // unlikely to catch any mistakes. | 
|  | if (const PointerType *PT = Ty->getAs<PointerType>()) | 
|  | return PT->getPointeeType(); | 
|  |  | 
|  | if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>()) | 
|  | return OPT->getPointeeType(); | 
|  |  | 
|  | Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) | 
|  | << Ty << Op->getSourceRange(); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( | 
|  | tok::TokenKind Kind) { | 
|  | BinaryOperator::Opcode Opc; | 
|  | switch (Kind) { | 
|  | default: assert(0 && "Unknown binop!"); | 
|  | case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break; | 
|  | case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break; | 
|  | case tok::star:                 Opc = BinaryOperator::Mul; break; | 
|  | case tok::slash:                Opc = BinaryOperator::Div; break; | 
|  | case tok::percent:              Opc = BinaryOperator::Rem; break; | 
|  | case tok::plus:                 Opc = BinaryOperator::Add; break; | 
|  | case tok::minus:                Opc = BinaryOperator::Sub; break; | 
|  | case tok::lessless:             Opc = BinaryOperator::Shl; break; | 
|  | case tok::greatergreater:       Opc = BinaryOperator::Shr; break; | 
|  | case tok::lessequal:            Opc = BinaryOperator::LE; break; | 
|  | case tok::less:                 Opc = BinaryOperator::LT; break; | 
|  | case tok::greaterequal:         Opc = BinaryOperator::GE; break; | 
|  | case tok::greater:              Opc = BinaryOperator::GT; break; | 
|  | case tok::exclaimequal:         Opc = BinaryOperator::NE; break; | 
|  | case tok::equalequal:           Opc = BinaryOperator::EQ; break; | 
|  | case tok::amp:                  Opc = BinaryOperator::And; break; | 
|  | case tok::caret:                Opc = BinaryOperator::Xor; break; | 
|  | case tok::pipe:                 Opc = BinaryOperator::Or; break; | 
|  | case tok::ampamp:               Opc = BinaryOperator::LAnd; break; | 
|  | case tok::pipepipe:             Opc = BinaryOperator::LOr; break; | 
|  | case tok::equal:                Opc = BinaryOperator::Assign; break; | 
|  | case tok::starequal:            Opc = BinaryOperator::MulAssign; break; | 
|  | case tok::slashequal:           Opc = BinaryOperator::DivAssign; break; | 
|  | case tok::percentequal:         Opc = BinaryOperator::RemAssign; break; | 
|  | case tok::plusequal:            Opc = BinaryOperator::AddAssign; break; | 
|  | case tok::minusequal:           Opc = BinaryOperator::SubAssign; break; | 
|  | case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break; | 
|  | case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break; | 
|  | case tok::ampequal:             Opc = BinaryOperator::AndAssign; break; | 
|  | case tok::caretequal:           Opc = BinaryOperator::XorAssign; break; | 
|  | case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break; | 
|  | case tok::comma:                Opc = BinaryOperator::Comma; break; | 
|  | } | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( | 
|  | tok::TokenKind Kind) { | 
|  | UnaryOperator::Opcode Opc; | 
|  | switch (Kind) { | 
|  | default: assert(0 && "Unknown unary op!"); | 
|  | case tok::plusplus:     Opc = UnaryOperator::PreInc; break; | 
|  | case tok::minusminus:   Opc = UnaryOperator::PreDec; break; | 
|  | case tok::amp:          Opc = UnaryOperator::AddrOf; break; | 
|  | case tok::star:         Opc = UnaryOperator::Deref; break; | 
|  | case tok::plus:         Opc = UnaryOperator::Plus; break; | 
|  | case tok::minus:        Opc = UnaryOperator::Minus; break; | 
|  | case tok::tilde:        Opc = UnaryOperator::Not; break; | 
|  | case tok::exclaim:      Opc = UnaryOperator::LNot; break; | 
|  | case tok::kw___real:    Opc = UnaryOperator::Real; break; | 
|  | case tok::kw___imag:    Opc = UnaryOperator::Imag; break; | 
|  | case tok::kw___extension__: Opc = UnaryOperator::Extension; break; | 
|  | } | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | /// CreateBuiltinBinOp - Creates a new built-in binary operation with | 
|  | /// operator @p Opc at location @c TokLoc. This routine only supports | 
|  | /// built-in operations; ActOnBinOp handles overloaded operators. | 
|  | Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, | 
|  | unsigned Op, | 
|  | Expr *lhs, Expr *rhs) { | 
|  | QualType ResultTy;     // Result type of the binary operator. | 
|  | BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op; | 
|  | // The following two variables are used for compound assignment operators | 
|  | QualType CompLHSTy;    // Type of LHS after promotions for computation | 
|  | QualType CompResultTy; // Type of computation result | 
|  |  | 
|  | switch (Opc) { | 
|  | case BinaryOperator::Assign: | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType()); | 
|  | break; | 
|  | case BinaryOperator::PtrMemD: | 
|  | case BinaryOperator::PtrMemI: | 
|  | ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc, | 
|  | Opc == BinaryOperator::PtrMemI); | 
|  | break; | 
|  | case BinaryOperator::Mul: | 
|  | case BinaryOperator::Div: | 
|  | ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::Rem: | 
|  | ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::Add: | 
|  | ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::Sub: | 
|  | ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::Shl: | 
|  | case BinaryOperator::Shr: | 
|  | ResultTy = CheckShiftOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::LE: | 
|  | case BinaryOperator::LT: | 
|  | case BinaryOperator::GE: | 
|  | case BinaryOperator::GT: | 
|  | ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true); | 
|  | break; | 
|  | case BinaryOperator::EQ: | 
|  | case BinaryOperator::NE: | 
|  | ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false); | 
|  | break; | 
|  | case BinaryOperator::And: | 
|  | case BinaryOperator::Xor: | 
|  | case BinaryOperator::Or: | 
|  | ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::LAnd: | 
|  | case BinaryOperator::LOr: | 
|  | ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | case BinaryOperator::MulAssign: | 
|  | case BinaryOperator::DivAssign: | 
|  | CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true); | 
|  | CompLHSTy = CompResultTy; | 
|  | if (!CompResultTy.isNull()) | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); | 
|  | break; | 
|  | case BinaryOperator::RemAssign: | 
|  | CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); | 
|  | CompLHSTy = CompResultTy; | 
|  | if (!CompResultTy.isNull()) | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); | 
|  | break; | 
|  | case BinaryOperator::AddAssign: | 
|  | CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy); | 
|  | if (!CompResultTy.isNull()) | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); | 
|  | break; | 
|  | case BinaryOperator::SubAssign: | 
|  | CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy); | 
|  | if (!CompResultTy.isNull()) | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); | 
|  | break; | 
|  | case BinaryOperator::ShlAssign: | 
|  | case BinaryOperator::ShrAssign: | 
|  | CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true); | 
|  | CompLHSTy = CompResultTy; | 
|  | if (!CompResultTy.isNull()) | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); | 
|  | break; | 
|  | case BinaryOperator::AndAssign: | 
|  | case BinaryOperator::XorAssign: | 
|  | case BinaryOperator::OrAssign: | 
|  | CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); | 
|  | CompLHSTy = CompResultTy; | 
|  | if (!CompResultTy.isNull()) | 
|  | ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy); | 
|  | break; | 
|  | case BinaryOperator::Comma: | 
|  | ResultTy = CheckCommaOperands(lhs, rhs, OpLoc); | 
|  | break; | 
|  | } | 
|  | if (ResultTy.isNull()) | 
|  | return ExprError(); | 
|  | if (CompResultTy.isNull()) | 
|  | return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc)); | 
|  | else | 
|  | return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy, | 
|  | CompLHSTy, CompResultTy, | 
|  | OpLoc)); | 
|  | } | 
|  |  | 
|  | /// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps | 
|  | /// ParenRange in parentheses. | 
|  | static void SuggestParentheses(Sema &Self, SourceLocation Loc, | 
|  | const PartialDiagnostic &PD, | 
|  | SourceRange ParenRange) | 
|  | { | 
|  | SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd()); | 
|  | if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { | 
|  | // We can't display the parentheses, so just dig the | 
|  | // warning/error and return. | 
|  | Self.Diag(Loc, PD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Self.Diag(Loc, PD) | 
|  | << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(") | 
|  | << CodeModificationHint::CreateInsertion(EndLoc, ")"); | 
|  | } | 
|  |  | 
|  | /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison | 
|  | /// operators are mixed in a way that suggests that the programmer forgot that | 
|  | /// comparison operators have higher precedence. The most typical example of | 
|  | /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". | 
|  | static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc, | 
|  | SourceLocation OpLoc,Expr *lhs,Expr *rhs){ | 
|  | typedef BinaryOperator BinOp; | 
|  | BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1), | 
|  | rhsopc = static_cast<BinOp::Opcode>(-1); | 
|  | if (BinOp *BO = dyn_cast<BinOp>(lhs)) | 
|  | lhsopc = BO->getOpcode(); | 
|  | if (BinOp *BO = dyn_cast<BinOp>(rhs)) | 
|  | rhsopc = BO->getOpcode(); | 
|  |  | 
|  | // Subs are not binary operators. | 
|  | if (lhsopc == -1 && rhsopc == -1) | 
|  | return; | 
|  |  | 
|  | // Bitwise operations are sometimes used as eager logical ops. | 
|  | // Don't diagnose this. | 
|  | if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) && | 
|  | (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc))) | 
|  | return; | 
|  |  | 
|  | if (BinOp::isComparisonOp(lhsopc)) | 
|  | SuggestParentheses(Self, OpLoc, | 
|  | PDiag(diag::warn_precedence_bitwise_rel) | 
|  | << SourceRange(lhs->getLocStart(), OpLoc) | 
|  | << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc), | 
|  | SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd())); | 
|  | else if (BinOp::isComparisonOp(rhsopc)) | 
|  | SuggestParentheses(Self, OpLoc, | 
|  | PDiag(diag::warn_precedence_bitwise_rel) | 
|  | << SourceRange(OpLoc, rhs->getLocEnd()) | 
|  | << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc), | 
|  | SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart())); | 
|  | } | 
|  |  | 
|  | /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky | 
|  | /// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3". | 
|  | /// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does. | 
|  | static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc, | 
|  | SourceLocation OpLoc, Expr *lhs, Expr *rhs){ | 
|  | if (BinaryOperator::isBitwiseOp(Opc)) | 
|  | DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs); | 
|  | } | 
|  |  | 
|  | // Binary Operators.  'Tok' is the token for the operator. | 
|  | Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, | 
|  | tok::TokenKind Kind, | 
|  | ExprArg LHS, ExprArg RHS) { | 
|  | BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); | 
|  | Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>(); | 
|  |  | 
|  | assert((lhs != 0) && "ActOnBinOp(): missing left expression"); | 
|  | assert((rhs != 0) && "ActOnBinOp(): missing right expression"); | 
|  |  | 
|  | // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" | 
|  | DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs); | 
|  |  | 
|  | return BuildBinOp(S, TokLoc, Opc, lhs, rhs); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, | 
|  | BinaryOperator::Opcode Opc, | 
|  | Expr *lhs, Expr *rhs) { | 
|  | if (getLangOptions().CPlusPlus && | 
|  | (lhs->getType()->isOverloadableType() || | 
|  | rhs->getType()->isOverloadableType())) { | 
|  | // Find all of the overloaded operators visible from this | 
|  | // point. We perform both an operator-name lookup from the local | 
|  | // scope and an argument-dependent lookup based on the types of | 
|  | // the arguments. | 
|  | FunctionSet Functions; | 
|  | OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); | 
|  | if (OverOp != OO_None) { | 
|  | if (S) | 
|  | LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(), | 
|  | Functions); | 
|  | Expr *Args[2] = { lhs, rhs }; | 
|  | DeclarationName OpName | 
|  | = Context.DeclarationNames.getCXXOperatorName(OverOp); | 
|  | ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions); | 
|  | } | 
|  |  | 
|  | // Build the (potentially-overloaded, potentially-dependent) | 
|  | // binary operation. | 
|  | return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs); | 
|  | } | 
|  |  | 
|  | // Build a built-in binary operation. | 
|  | return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, | 
|  | unsigned OpcIn, | 
|  | ExprArg InputArg) { | 
|  | UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); | 
|  |  | 
|  | // FIXME: Input is modified below, but InputArg is not updated appropriately. | 
|  | Expr *Input = (Expr *)InputArg.get(); | 
|  | QualType resultType; | 
|  | switch (Opc) { | 
|  | case UnaryOperator::OffsetOf: | 
|  | assert(false && "Invalid unary operator"); | 
|  | break; | 
|  |  | 
|  | case UnaryOperator::PreInc: | 
|  | case UnaryOperator::PreDec: | 
|  | case UnaryOperator::PostInc: | 
|  | case UnaryOperator::PostDec: | 
|  | resultType = CheckIncrementDecrementOperand(Input, OpLoc, | 
|  | Opc == UnaryOperator::PreInc || | 
|  | Opc == UnaryOperator::PostInc); | 
|  | break; | 
|  | case UnaryOperator::AddrOf: | 
|  | resultType = CheckAddressOfOperand(Input, OpLoc); | 
|  | break; | 
|  | case UnaryOperator::Deref: | 
|  | DefaultFunctionArrayConversion(Input); | 
|  | resultType = CheckIndirectionOperand(Input, OpLoc); | 
|  | break; | 
|  | case UnaryOperator::Plus: | 
|  | case UnaryOperator::Minus: | 
|  | UsualUnaryConversions(Input); | 
|  | resultType = Input->getType(); | 
|  | if (resultType->isDependentType()) | 
|  | break; | 
|  | if (resultType->isArithmeticType()) // C99 6.5.3.3p1 | 
|  | break; | 
|  | else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 | 
|  | resultType->isEnumeralType()) | 
|  | break; | 
|  | else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 | 
|  | Opc == UnaryOperator::Plus && | 
|  | resultType->isPointerType()) | 
|  | break; | 
|  |  | 
|  | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | 
|  | << resultType << Input->getSourceRange()); | 
|  | case UnaryOperator::Not: // bitwise complement | 
|  | UsualUnaryConversions(Input); | 
|  | resultType = Input->getType(); | 
|  | if (resultType->isDependentType()) | 
|  | break; | 
|  | // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. | 
|  | if (resultType->isComplexType() || resultType->isComplexIntegerType()) | 
|  | // C99 does not support '~' for complex conjugation. | 
|  | Diag(OpLoc, diag::ext_integer_complement_complex) | 
|  | << resultType << Input->getSourceRange(); | 
|  | else if (!resultType->isIntegerType()) | 
|  | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | 
|  | << resultType << Input->getSourceRange()); | 
|  | break; | 
|  | case UnaryOperator::LNot: // logical negation | 
|  | // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). | 
|  | DefaultFunctionArrayConversion(Input); | 
|  | resultType = Input->getType(); | 
|  | if (resultType->isDependentType()) | 
|  | break; | 
|  | if (!resultType->isScalarType()) // C99 6.5.3.3p1 | 
|  | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | 
|  | << resultType << Input->getSourceRange()); | 
|  | // LNot always has type int. C99 6.5.3.3p5. | 
|  | // In C++, it's bool. C++ 5.3.1p8 | 
|  | resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy; | 
|  | break; | 
|  | case UnaryOperator::Real: | 
|  | case UnaryOperator::Imag: | 
|  | resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real); | 
|  | break; | 
|  | case UnaryOperator::Extension: | 
|  | resultType = Input->getType(); | 
|  | break; | 
|  | } | 
|  | if (resultType.isNull()) | 
|  | return ExprError(); | 
|  |  | 
|  | InputArg.release(); | 
|  | return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc)); | 
|  | } | 
|  |  | 
|  | Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, | 
|  | UnaryOperator::Opcode Opc, | 
|  | ExprArg input) { | 
|  | Expr *Input = (Expr*)input.get(); | 
|  | if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() && | 
|  | Opc != UnaryOperator::Extension) { | 
|  | // Find all of the overloaded operators visible from this | 
|  | // point. We perform both an operator-name lookup from the local | 
|  | // scope and an argument-dependent lookup based on the types of | 
|  | // the arguments. | 
|  | FunctionSet Functions; | 
|  | OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); | 
|  | if (OverOp != OO_None) { | 
|  | if (S) | 
|  | LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), | 
|  | Functions); | 
|  | DeclarationName OpName | 
|  | = Context.DeclarationNames.getCXXOperatorName(OverOp); | 
|  | ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions); | 
|  | } | 
|  |  | 
|  | return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input)); | 
|  | } | 
|  |  | 
|  | return CreateBuiltinUnaryOp(OpLoc, Opc, move(input)); | 
|  | } | 
|  |  | 
|  | // Unary Operators.  'Tok' is the token for the operator. | 
|  | Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, | 
|  | tok::TokenKind Op, ExprArg input) { | 
|  | return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input)); | 
|  | } | 
|  |  | 
|  | /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". | 
|  | Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, | 
|  | SourceLocation LabLoc, | 
|  | IdentifierInfo *LabelII) { | 
|  | // Look up the record for this label identifier. | 
|  | LabelStmt *&LabelDecl = getLabelMap()[LabelII]; | 
|  |  | 
|  | // If we haven't seen this label yet, create a forward reference. It | 
|  | // will be validated and/or cleaned up in ActOnFinishFunctionBody. | 
|  | if (LabelDecl == 0) | 
|  | LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0); | 
|  |  | 
|  | // Create the AST node.  The address of a label always has type 'void*'. | 
|  | return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl, | 
|  | Context.getPointerType(Context.VoidTy))); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult | 
|  | Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt, | 
|  | SourceLocation RPLoc) { // "({..})" | 
|  | Stmt *SubStmt = static_cast<Stmt*>(substmt.get()); | 
|  | assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); | 
|  | CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); | 
|  |  | 
|  | bool isFileScope = getCurFunctionOrMethodDecl() == 0; | 
|  | if (isFileScope) | 
|  | return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); | 
|  |  | 
|  | // FIXME: there are a variety of strange constraints to enforce here, for | 
|  | // example, it is not possible to goto into a stmt expression apparently. | 
|  | // More semantic analysis is needed. | 
|  |  | 
|  | // If there are sub stmts in the compound stmt, take the type of the last one | 
|  | // as the type of the stmtexpr. | 
|  | QualType Ty = Context.VoidTy; | 
|  |  | 
|  | if (!Compound->body_empty()) { | 
|  | Stmt *LastStmt = Compound->body_back(); | 
|  | // If LastStmt is a label, skip down through into the body. | 
|  | while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) | 
|  | LastStmt = Label->getSubStmt(); | 
|  |  | 
|  | if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) | 
|  | Ty = LastExpr->getType(); | 
|  | } | 
|  |  | 
|  | // FIXME: Check that expression type is complete/non-abstract; statement | 
|  | // expressions are not lvalues. | 
|  |  | 
|  | substmt.release(); | 
|  | return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc)); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, | 
|  | SourceLocation BuiltinLoc, | 
|  | SourceLocation TypeLoc, | 
|  | TypeTy *argty, | 
|  | OffsetOfComponent *CompPtr, | 
|  | unsigned NumComponents, | 
|  | SourceLocation RPLoc) { | 
|  | // FIXME: This function leaks all expressions in the offset components on | 
|  | // error. | 
|  | // FIXME: Preserve type source info. | 
|  | QualType ArgTy = GetTypeFromParser(argty); | 
|  | assert(!ArgTy.isNull() && "Missing type argument!"); | 
|  |  | 
|  | bool Dependent = ArgTy->isDependentType(); | 
|  |  | 
|  | // We must have at least one component that refers to the type, and the first | 
|  | // one is known to be a field designator.  Verify that the ArgTy represents | 
|  | // a struct/union/class. | 
|  | if (!Dependent && !ArgTy->isRecordType()) | 
|  | return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy); | 
|  |  | 
|  | // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable | 
|  | // with an incomplete type would be illegal. | 
|  |  | 
|  | // Otherwise, create a null pointer as the base, and iteratively process | 
|  | // the offsetof designators. | 
|  | QualType ArgTyPtr = Context.getPointerType(ArgTy); | 
|  | Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr); | 
|  | Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref, | 
|  | ArgTy, SourceLocation()); | 
|  |  | 
|  | // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a | 
|  | // GCC extension, diagnose them. | 
|  | // FIXME: This diagnostic isn't actually visible because the location is in | 
|  | // a system header! | 
|  | if (NumComponents != 1) | 
|  | Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) | 
|  | << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); | 
|  |  | 
|  | if (!Dependent) { | 
|  | bool DidWarnAboutNonPOD = false; | 
|  |  | 
|  | if (RequireCompleteType(TypeLoc, Res->getType(), | 
|  | diag::err_offsetof_incomplete_type)) | 
|  | return ExprError(); | 
|  |  | 
|  | // FIXME: Dependent case loses a lot of information here. And probably | 
|  | // leaks like a sieve. | 
|  | for (unsigned i = 0; i != NumComponents; ++i) { | 
|  | const OffsetOfComponent &OC = CompPtr[i]; | 
|  | if (OC.isBrackets) { | 
|  | // Offset of an array sub-field.  TODO: Should we allow vector elements? | 
|  | const ArrayType *AT = Context.getAsArrayType(Res->getType()); | 
|  | if (!AT) { | 
|  | Res->Destroy(Context); | 
|  | return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) | 
|  | << Res->getType()); | 
|  | } | 
|  |  | 
|  | // FIXME: C++: Verify that operator[] isn't overloaded. | 
|  |  | 
|  | // Promote the array so it looks more like a normal array subscript | 
|  | // expression. | 
|  | DefaultFunctionArrayConversion(Res); | 
|  |  | 
|  | // C99 6.5.2.1p1 | 
|  | Expr *Idx = static_cast<Expr*>(OC.U.E); | 
|  | // FIXME: Leaks Res | 
|  | if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType()) | 
|  | return ExprError(Diag(Idx->getLocStart(), | 
|  | diag::err_typecheck_subscript_not_integer) | 
|  | << Idx->getSourceRange()); | 
|  |  | 
|  | Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(), | 
|  | OC.LocEnd); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const RecordType *RC = Res->getType()->getAs<RecordType>(); | 
|  | if (!RC) { | 
|  | Res->Destroy(Context); | 
|  | return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) | 
|  | << Res->getType()); | 
|  | } | 
|  |  | 
|  | // Get the decl corresponding to this. | 
|  | RecordDecl *RD = RC->getDecl(); | 
|  | if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | if (!CRD->isPOD() && !DidWarnAboutNonPOD) { | 
|  | ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type) | 
|  | << SourceRange(CompPtr[0].LocStart, OC.LocEnd) | 
|  | << Res->getType()); | 
|  | DidWarnAboutNonPOD = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); | 
|  | LookupQualifiedName(R, RD); | 
|  |  | 
|  | FieldDecl *MemberDecl | 
|  | = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context)); | 
|  | // FIXME: Leaks Res | 
|  | if (!MemberDecl) | 
|  | return ExprError(Diag(BuiltinLoc, diag::err_no_member) | 
|  | << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd)); | 
|  |  | 
|  | // FIXME: C++: Verify that MemberDecl isn't a static field. | 
|  | // FIXME: Verify that MemberDecl isn't a bitfield. | 
|  | if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) { | 
|  | Res = BuildAnonymousStructUnionMemberReference( | 
|  | OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>(); | 
|  | } else { | 
|  | // MemberDecl->getType() doesn't get the right qualifiers, but it | 
|  | // doesn't matter here. | 
|  | Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd, | 
|  | MemberDecl->getType().getNonReferenceType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf, | 
|  | Context.getSizeType(), BuiltinLoc)); | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, | 
|  | TypeTy *arg1,TypeTy *arg2, | 
|  | SourceLocation RPLoc) { | 
|  | // FIXME: Preserve type source info. | 
|  | QualType argT1 = GetTypeFromParser(arg1); | 
|  | QualType argT2 = GetTypeFromParser(arg2); | 
|  |  | 
|  | assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus) | 
|  | << SourceRange(BuiltinLoc, RPLoc); | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, | 
|  | argT1, argT2, RPLoc)); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, | 
|  | ExprArg cond, | 
|  | ExprArg expr1, ExprArg expr2, | 
|  | SourceLocation RPLoc) { | 
|  | Expr *CondExpr = static_cast<Expr*>(cond.get()); | 
|  | Expr *LHSExpr = static_cast<Expr*>(expr1.get()); | 
|  | Expr *RHSExpr = static_cast<Expr*>(expr2.get()); | 
|  |  | 
|  | assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); | 
|  |  | 
|  | QualType resType; | 
|  | bool ValueDependent = false; | 
|  | if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { | 
|  | resType = Context.DependentTy; | 
|  | ValueDependent = true; | 
|  | } else { | 
|  | // The conditional expression is required to be a constant expression. | 
|  | llvm::APSInt condEval(32); | 
|  | SourceLocation ExpLoc; | 
|  | if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) | 
|  | return ExprError(Diag(ExpLoc, | 
|  | diag::err_typecheck_choose_expr_requires_constant) | 
|  | << CondExpr->getSourceRange()); | 
|  |  | 
|  | // If the condition is > zero, then the AST type is the same as the LSHExpr. | 
|  | resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType(); | 
|  | ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent() | 
|  | : RHSExpr->isValueDependent(); | 
|  | } | 
|  |  | 
|  | cond.release(); expr1.release(); expr2.release(); | 
|  | return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, | 
|  | resType, RPLoc, | 
|  | resType->isDependentType(), | 
|  | ValueDependent)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Clang Extensions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnBlockStart - This callback is invoked when a block literal is started. | 
|  | void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { | 
|  | // Analyze block parameters. | 
|  | BlockSemaInfo *BSI = new BlockSemaInfo(); | 
|  |  | 
|  | // Add BSI to CurBlock. | 
|  | BSI->PrevBlockInfo = CurBlock; | 
|  | CurBlock = BSI; | 
|  |  | 
|  | BSI->ReturnType = QualType(); | 
|  | BSI->TheScope = BlockScope; | 
|  | BSI->hasBlockDeclRefExprs = false; | 
|  | BSI->hasPrototype = false; | 
|  | BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking; | 
|  | CurFunctionNeedsScopeChecking = false; | 
|  |  | 
|  | BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc); | 
|  | PushDeclContext(BlockScope, BSI->TheDecl); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { | 
|  | assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); | 
|  |  | 
|  | if (ParamInfo.getNumTypeObjects() == 0 | 
|  | || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) { | 
|  | ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); | 
|  | QualType T = GetTypeForDeclarator(ParamInfo, CurScope); | 
|  |  | 
|  | if (T->isArrayType()) { | 
|  | Diag(ParamInfo.getSourceRange().getBegin(), | 
|  | diag::err_block_returns_array); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The parameter list is optional, if there was none, assume (). | 
|  | if (!T->isFunctionType()) | 
|  | T = Context.getFunctionType(T, NULL, 0, 0, 0); | 
|  |  | 
|  | CurBlock->hasPrototype = true; | 
|  | CurBlock->isVariadic = false; | 
|  | // Check for a valid sentinel attribute on this block. | 
|  | if (CurBlock->TheDecl->getAttr<SentinelAttr>()) { | 
|  | Diag(ParamInfo.getAttributes()->getLoc(), | 
|  | diag::warn_attribute_sentinel_not_variadic) << 1; | 
|  | // FIXME: remove the attribute. | 
|  | } | 
|  | QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType(); | 
|  |  | 
|  | // Do not allow returning a objc interface by-value. | 
|  | if (RetTy->isObjCInterfaceType()) { | 
|  | Diag(ParamInfo.getSourceRange().getBegin(), | 
|  | diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; | 
|  | return; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Analyze arguments to block. | 
|  | assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function && | 
|  | "Not a function declarator!"); | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun; | 
|  |  | 
|  | CurBlock->hasPrototype = FTI.hasPrototype; | 
|  | CurBlock->isVariadic = true; | 
|  |  | 
|  | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes | 
|  | // no arguments, not a function that takes a single void argument. | 
|  | if (FTI.hasPrototype && | 
|  | FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
|  | (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&& | 
|  | FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) { | 
|  | // empty arg list, don't push any params. | 
|  | CurBlock->isVariadic = false; | 
|  | } else if (FTI.hasPrototype) { | 
|  | for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) | 
|  | CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>()); | 
|  | CurBlock->isVariadic = FTI.isVariadic; | 
|  | } | 
|  | CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(), | 
|  | CurBlock->Params.size()); | 
|  | CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic); | 
|  | ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); | 
|  | for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), | 
|  | E = CurBlock->TheDecl->param_end(); AI != E; ++AI) | 
|  | // If this has an identifier, add it to the scope stack. | 
|  | if ((*AI)->getIdentifier()) | 
|  | PushOnScopeChains(*AI, CurBlock->TheScope); | 
|  |  | 
|  | // Check for a valid sentinel attribute on this block. | 
|  | if (!CurBlock->isVariadic && | 
|  | CurBlock->TheDecl->getAttr<SentinelAttr>()) { | 
|  | Diag(ParamInfo.getAttributes()->getLoc(), | 
|  | diag::warn_attribute_sentinel_not_variadic) << 1; | 
|  | // FIXME: remove the attribute. | 
|  | } | 
|  |  | 
|  | // Analyze the return type. | 
|  | QualType T = GetTypeForDeclarator(ParamInfo, CurScope); | 
|  | QualType RetTy = T->getAs<FunctionType>()->getResultType(); | 
|  |  | 
|  | // Do not allow returning a objc interface by-value. | 
|  | if (RetTy->isObjCInterfaceType()) { | 
|  | Diag(ParamInfo.getSourceRange().getBegin(), | 
|  | diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; | 
|  | } else if (!RetTy->isDependentType()) | 
|  | CurBlock->ReturnType = RetTy; | 
|  | } | 
|  |  | 
|  | /// ActOnBlockError - If there is an error parsing a block, this callback | 
|  | /// is invoked to pop the information about the block from the action impl. | 
|  | void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { | 
|  | // Ensure that CurBlock is deleted. | 
|  | llvm::OwningPtr<BlockSemaInfo> CC(CurBlock); | 
|  |  | 
|  | CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking; | 
|  |  | 
|  | // Pop off CurBlock, handle nested blocks. | 
|  | PopDeclContext(); | 
|  | CurBlock = CurBlock->PrevBlockInfo; | 
|  | // FIXME: Delete the ParmVarDecl objects as well??? | 
|  | } | 
|  |  | 
|  | /// ActOnBlockStmtExpr - This is called when the body of a block statement | 
|  | /// literal was successfully completed.  ^(int x){...} | 
|  | Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, | 
|  | StmtArg body, Scope *CurScope) { | 
|  | // If blocks are disabled, emit an error. | 
|  | if (!LangOpts.Blocks) | 
|  | Diag(CaretLoc, diag::err_blocks_disable); | 
|  |  | 
|  | // Ensure that CurBlock is deleted. | 
|  | llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock); | 
|  |  | 
|  | PopDeclContext(); | 
|  |  | 
|  | // Pop off CurBlock, handle nested blocks. | 
|  | CurBlock = CurBlock->PrevBlockInfo; | 
|  |  | 
|  | QualType RetTy = Context.VoidTy; | 
|  | if (!BSI->ReturnType.isNull()) | 
|  | RetTy = BSI->ReturnType; | 
|  |  | 
|  | llvm::SmallVector<QualType, 8> ArgTypes; | 
|  | for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i) | 
|  | ArgTypes.push_back(BSI->Params[i]->getType()); | 
|  |  | 
|  | bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>(); | 
|  | QualType BlockTy; | 
|  | if (!BSI->hasPrototype) | 
|  | BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0, | 
|  | NoReturn); | 
|  | else | 
|  | BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(), | 
|  | BSI->isVariadic, 0, false, false, 0, 0, | 
|  | NoReturn); | 
|  |  | 
|  | // FIXME: Check that return/parameter types are complete/non-abstract | 
|  | DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end()); | 
|  | BlockTy = Context.getBlockPointerType(BlockTy); | 
|  |  | 
|  | // If needed, diagnose invalid gotos and switches in the block. | 
|  | if (CurFunctionNeedsScopeChecking) | 
|  | DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get())); | 
|  | CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking; | 
|  |  | 
|  | BSI->TheDecl->setBody(body.takeAs<CompoundStmt>()); | 
|  | CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody()); | 
|  | return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy, | 
|  | BSI->hasBlockDeclRefExprs)); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, | 
|  | ExprArg expr, TypeTy *type, | 
|  | SourceLocation RPLoc) { | 
|  | QualType T = GetTypeFromParser(type); | 
|  | Expr *E = static_cast<Expr*>(expr.get()); | 
|  | Expr *OrigExpr = E; | 
|  |  | 
|  | InitBuiltinVaListType(); | 
|  |  | 
|  | // Get the va_list type | 
|  | QualType VaListType = Context.getBuiltinVaListType(); | 
|  | if (VaListType->isArrayType()) { | 
|  | // Deal with implicit array decay; for example, on x86-64, | 
|  | // va_list is an array, but it's supposed to decay to | 
|  | // a pointer for va_arg. | 
|  | VaListType = Context.getArrayDecayedType(VaListType); | 
|  | // Make sure the input expression also decays appropriately. | 
|  | UsualUnaryConversions(E); | 
|  | } else { | 
|  | // Otherwise, the va_list argument must be an l-value because | 
|  | // it is modified by va_arg. | 
|  | if (!E->isTypeDependent() && | 
|  | CheckForModifiableLvalue(E, BuiltinLoc, *this)) | 
|  | return ExprError(); | 
|  | } | 
|  |  | 
|  | if (!E->isTypeDependent() && | 
|  | !Context.hasSameType(VaListType, E->getType())) { | 
|  | return ExprError(Diag(E->getLocStart(), | 
|  | diag::err_first_argument_to_va_arg_not_of_type_va_list) | 
|  | << OrigExpr->getType() << E->getSourceRange()); | 
|  | } | 
|  |  | 
|  | // FIXME: Check that type is complete/non-abstract | 
|  | // FIXME: Warn if a non-POD type is passed in. | 
|  |  | 
|  | expr.release(); | 
|  | return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), | 
|  | RPLoc)); | 
|  | } | 
|  |  | 
|  | Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { | 
|  | // The type of __null will be int or long, depending on the size of | 
|  | // pointers on the target. | 
|  | QualType Ty; | 
|  | if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth()) | 
|  | Ty = Context.IntTy; | 
|  | else | 
|  | Ty = Context.LongTy; | 
|  |  | 
|  | return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef, | 
|  | QualType DstType, | 
|  | Expr *SrcExpr, | 
|  | CodeModificationHint &Hint) { | 
|  | if (!SemaRef.getLangOptions().ObjC1) | 
|  | return; | 
|  |  | 
|  | const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); | 
|  | if (!PT) | 
|  | return; | 
|  |  | 
|  | // Check if the destination is of type 'id'. | 
|  | if (!PT->isObjCIdType()) { | 
|  | // Check if the destination is the 'NSString' interface. | 
|  | const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); | 
|  | if (!ID || !ID->getIdentifier()->isStr("NSString")) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Strip off any parens and casts. | 
|  | StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts()); | 
|  | if (!SL || SL->isWide()) | 
|  | return; | 
|  |  | 
|  | Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@"); | 
|  | } | 
|  |  | 
|  | bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, | 
|  | SourceLocation Loc, | 
|  | QualType DstType, QualType SrcType, | 
|  | Expr *SrcExpr, const char *Flavor) { | 
|  | // Decode the result (notice that AST's are still created for extensions). | 
|  | bool isInvalid = false; | 
|  | unsigned DiagKind; | 
|  | CodeModificationHint Hint; | 
|  |  | 
|  | switch (ConvTy) { | 
|  | default: assert(0 && "Unknown conversion type"); | 
|  | case Compatible: return false; | 
|  | case PointerToInt: | 
|  | DiagKind = diag::ext_typecheck_convert_pointer_int; | 
|  | break; | 
|  | case IntToPointer: | 
|  | DiagKind = diag::ext_typecheck_convert_int_pointer; | 
|  | break; | 
|  | case IncompatiblePointer: | 
|  | MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint); | 
|  | DiagKind = diag::ext_typecheck_convert_incompatible_pointer; | 
|  | break; | 
|  | case IncompatiblePointerSign: | 
|  | DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; | 
|  | break; | 
|  | case FunctionVoidPointer: | 
|  | DiagKind = diag::ext_typecheck_convert_pointer_void_func; | 
|  | break; | 
|  | case CompatiblePointerDiscardsQualifiers: | 
|  | // If the qualifiers lost were because we were applying the | 
|  | // (deprecated) C++ conversion from a string literal to a char* | 
|  | // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME: | 
|  | // Ideally, this check would be performed in | 
|  | // CheckPointerTypesForAssignment. However, that would require a | 
|  | // bit of refactoring (so that the second argument is an | 
|  | // expression, rather than a type), which should be done as part | 
|  | // of a larger effort to fix CheckPointerTypesForAssignment for | 
|  | // C++ semantics. | 
|  | if (getLangOptions().CPlusPlus && | 
|  | IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) | 
|  | return false; | 
|  | DiagKind = diag::ext_typecheck_convert_discards_qualifiers; | 
|  | break; | 
|  | case IncompatibleNestedPointerQualifiers: | 
|  | DiagKind = diag::ext_nested_pointer_qualifier_mismatch; | 
|  | break; | 
|  | case IntToBlockPointer: | 
|  | DiagKind = diag::err_int_to_block_pointer; | 
|  | break; | 
|  | case IncompatibleBlockPointer: | 
|  | DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; | 
|  | break; | 
|  | case IncompatibleObjCQualifiedId: | 
|  | // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since | 
|  | // it can give a more specific diagnostic. | 
|  | DiagKind = diag::warn_incompatible_qualified_id; | 
|  | break; | 
|  | case IncompatibleVectors: | 
|  | DiagKind = diag::warn_incompatible_vectors; | 
|  | break; | 
|  | case Incompatible: | 
|  | DiagKind = diag::err_typecheck_convert_incompatible; | 
|  | isInvalid = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Diag(Loc, DiagKind) << DstType << SrcType << Flavor | 
|  | << SrcExpr->getSourceRange() << Hint; | 
|  | return isInvalid; | 
|  | } | 
|  |  | 
|  | bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){ | 
|  | llvm::APSInt ICEResult; | 
|  | if (E->isIntegerConstantExpr(ICEResult, Context)) { | 
|  | if (Result) | 
|  | *Result = ICEResult; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Expr::EvalResult EvalResult; | 
|  |  | 
|  | if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || | 
|  | EvalResult.HasSideEffects) { | 
|  | Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); | 
|  |  | 
|  | if (EvalResult.Diag) { | 
|  | // We only show the note if it's not the usual "invalid subexpression" | 
|  | // or if it's actually in a subexpression. | 
|  | if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || | 
|  | E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) | 
|  | Diag(EvalResult.DiagLoc, EvalResult.Diag); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Diag(E->getExprLoc(), diag::ext_expr_not_ice) << | 
|  | E->getSourceRange(); | 
|  |  | 
|  | if (EvalResult.Diag && | 
|  | Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored) | 
|  | Diag(EvalResult.DiagLoc, EvalResult.Diag); | 
|  |  | 
|  | if (Result) | 
|  | *Result = EvalResult.Val.getInt(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Sema::ExpressionEvaluationContext | 
|  | Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { | 
|  | // Introduce a new set of potentially referenced declarations to the stack. | 
|  | if (NewContext == PotentiallyPotentiallyEvaluated) | 
|  | PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls()); | 
|  |  | 
|  | std::swap(ExprEvalContext, NewContext); | 
|  | return NewContext; | 
|  | } | 
|  |  | 
|  | void | 
|  | Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext, | 
|  | ExpressionEvaluationContext NewContext) { | 
|  | ExprEvalContext = NewContext; | 
|  |  | 
|  | if (OldContext == PotentiallyPotentiallyEvaluated) { | 
|  | // Mark any remaining declarations in the current position of the stack | 
|  | // as "referenced". If they were not meant to be referenced, semantic | 
|  | // analysis would have eliminated them (e.g., in ActOnCXXTypeId). | 
|  | PotentiallyReferencedDecls RemainingDecls; | 
|  | RemainingDecls.swap(PotentiallyReferencedDeclStack.back()); | 
|  | PotentiallyReferencedDeclStack.pop_back(); | 
|  |  | 
|  | for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(), | 
|  | IEnd = RemainingDecls.end(); | 
|  | I != IEnd; ++I) | 
|  | MarkDeclarationReferenced(I->first, I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Note that the given declaration was referenced in the source code. | 
|  | /// | 
|  | /// This routine should be invoke whenever a given declaration is referenced | 
|  | /// in the source code, and where that reference occurred. If this declaration | 
|  | /// reference means that the the declaration is used (C++ [basic.def.odr]p2, | 
|  | /// C99 6.9p3), then the declaration will be marked as used. | 
|  | /// | 
|  | /// \param Loc the location where the declaration was referenced. | 
|  | /// | 
|  | /// \param D the declaration that has been referenced by the source code. | 
|  | void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { | 
|  | assert(D && "No declaration?"); | 
|  |  | 
|  | if (D->isUsed()) | 
|  | return; | 
|  |  | 
|  | // Mark a parameter or variable declaration "used", regardless of whether we're in a | 
|  | // template or not. The reason for this is that unevaluated expressions | 
|  | // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and | 
|  | // -Wunused-parameters) | 
|  | if (isa<ParmVarDecl>(D) || | 
|  | (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) | 
|  | D->setUsed(true); | 
|  |  | 
|  | // Do not mark anything as "used" within a dependent context; wait for | 
|  | // an instantiation. | 
|  | if (CurContext->isDependentContext()) | 
|  | return; | 
|  |  | 
|  | switch (ExprEvalContext) { | 
|  | case Unevaluated: | 
|  | // We are in an expression that is not potentially evaluated; do nothing. | 
|  | return; | 
|  |  | 
|  | case PotentiallyEvaluated: | 
|  | // We are in a potentially-evaluated expression, so this declaration is | 
|  | // "used"; handle this below. | 
|  | break; | 
|  |  | 
|  | case PotentiallyPotentiallyEvaluated: | 
|  | // We are in an expression that may be potentially evaluated; queue this | 
|  | // declaration reference until we know whether the expression is | 
|  | // potentially evaluated. | 
|  | PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Note that this declaration has been used. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | unsigned TypeQuals; | 
|  | if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) { | 
|  | if (!Constructor->isUsed()) | 
|  | DefineImplicitDefaultConstructor(Loc, Constructor); | 
|  | } else if (Constructor->isImplicit() && | 
|  | Constructor->isCopyConstructor(Context, TypeQuals)) { | 
|  | if (!Constructor->isUsed()) | 
|  | DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals); | 
|  | } | 
|  | } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { | 
|  | if (Destructor->isImplicit() && !Destructor->isUsed()) | 
|  | DefineImplicitDestructor(Loc, Destructor); | 
|  |  | 
|  | } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && | 
|  | MethodDecl->getOverloadedOperator() == OO_Equal) { | 
|  | if (!MethodDecl->isUsed()) | 
|  | DefineImplicitOverloadedAssign(Loc, MethodDecl); | 
|  | } | 
|  | } | 
|  | if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { | 
|  | // Implicit instantiation of function templates and member functions of | 
|  | // class templates. | 
|  | if (!Function->getBody() && Function->isImplicitlyInstantiable()) { | 
|  | bool AlreadyInstantiated = false; | 
|  | if (FunctionTemplateSpecializationInfo *SpecInfo | 
|  | = Function->getTemplateSpecializationInfo()) { | 
|  | if (SpecInfo->getPointOfInstantiation().isInvalid()) | 
|  | SpecInfo->setPointOfInstantiation(Loc); | 
|  | else if (SpecInfo->getTemplateSpecializationKind() | 
|  | == TSK_ImplicitInstantiation) | 
|  | AlreadyInstantiated = true; | 
|  | } else if (MemberSpecializationInfo *MSInfo | 
|  | = Function->getMemberSpecializationInfo()) { | 
|  | if (MSInfo->getPointOfInstantiation().isInvalid()) | 
|  | MSInfo->setPointOfInstantiation(Loc); | 
|  | else if (MSInfo->getTemplateSpecializationKind() | 
|  | == TSK_ImplicitInstantiation) | 
|  | AlreadyInstantiated = true; | 
|  | } | 
|  |  | 
|  | if (!AlreadyInstantiated) | 
|  | PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc)); | 
|  | } | 
|  |  | 
|  | // FIXME: keep track of references to static functions | 
|  | Function->setUsed(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
|  | // Implicit instantiation of static data members of class templates. | 
|  | if (Var->isStaticDataMember() && | 
|  | Var->getInstantiatedFromStaticDataMember()) { | 
|  | MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); | 
|  | assert(MSInfo && "Missing member specialization information?"); | 
|  | if (MSInfo->getPointOfInstantiation().isInvalid() && | 
|  | MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) { | 
|  | MSInfo->setPointOfInstantiation(Loc); | 
|  | PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: keep track of references to static data? | 
|  |  | 
|  | D->setUsed(true); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, | 
|  | CallExpr *CE, FunctionDecl *FD) { | 
|  | if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | PartialDiagnostic Note = | 
|  | FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here) | 
|  | << FD->getDeclName() : PDiag(); | 
|  | SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation(); | 
|  |  | 
|  | if (RequireCompleteType(Loc, ReturnType, | 
|  | FD ? | 
|  | PDiag(diag::err_call_function_incomplete_return) | 
|  | << CE->getSourceRange() << FD->getDeclName() : | 
|  | PDiag(diag::err_call_incomplete_return) | 
|  | << CE->getSourceRange(), | 
|  | std::make_pair(NoteLoc, Note))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Diagnose the common s/=/==/ typo.  Note that adding parentheses | 
|  | // will prevent this condition from triggering, which is what we want. | 
|  | void Sema::DiagnoseAssignmentAsCondition(Expr *E) { | 
|  | SourceLocation Loc; | 
|  |  | 
|  | unsigned diagnostic = diag::warn_condition_is_assignment; | 
|  |  | 
|  | if (isa<BinaryOperator>(E)) { | 
|  | BinaryOperator *Op = cast<BinaryOperator>(E); | 
|  | if (Op->getOpcode() != BinaryOperator::Assign) | 
|  | return; | 
|  |  | 
|  | // Greylist some idioms by putting them into a warning subcategory. | 
|  | if (ObjCMessageExpr *ME | 
|  | = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { | 
|  | Selector Sel = ME->getSelector(); | 
|  |  | 
|  | // self = [<foo> init...] | 
|  | if (isSelfExpr(Op->getLHS()) | 
|  | && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init")) | 
|  | diagnostic = diag::warn_condition_is_idiomatic_assignment; | 
|  |  | 
|  | // <foo> = [<bar> nextObject] | 
|  | else if (Sel.isUnarySelector() && | 
|  | Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject") | 
|  | diagnostic = diag::warn_condition_is_idiomatic_assignment; | 
|  | } | 
|  |  | 
|  | Loc = Op->getOperatorLoc(); | 
|  | } else if (isa<CXXOperatorCallExpr>(E)) { | 
|  | CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E); | 
|  | if (Op->getOperator() != OO_Equal) | 
|  | return; | 
|  |  | 
|  | Loc = Op->getOperatorLoc(); | 
|  | } else { | 
|  | // Not an assignment. | 
|  | return; | 
|  | } | 
|  |  | 
|  | SourceLocation Open = E->getSourceRange().getBegin(); | 
|  | SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd()); | 
|  |  | 
|  | Diag(Loc, diagnostic) | 
|  | << E->getSourceRange() | 
|  | << CodeModificationHint::CreateInsertion(Open, "(") | 
|  | << CodeModificationHint::CreateInsertion(Close, ")"); | 
|  | } | 
|  |  | 
|  | bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) { | 
|  | DiagnoseAssignmentAsCondition(E); | 
|  |  | 
|  | if (!E->isTypeDependent()) { | 
|  | DefaultFunctionArrayConversion(E); | 
|  |  | 
|  | QualType T = E->getType(); | 
|  |  | 
|  | if (getLangOptions().CPlusPlus) { | 
|  | if (CheckCXXBooleanCondition(E)) // C++ 6.4p4 | 
|  | return true; | 
|  | } else if (!T->isScalarType()) { // C99 6.8.4.1p1 | 
|  | Diag(Loc, diag::err_typecheck_statement_requires_scalar) | 
|  | << T << E->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } |