|  | //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the Base ARM implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARMBaseInstrInfo.h" | 
|  | #include "ARMBaseRegisterInfo.h" | 
|  | #include "ARMConstantPoolValue.h" | 
|  | #include "ARMFeatures.h" | 
|  | #include "ARMHazardRecognizer.h" | 
|  | #include "ARMMachineFunctionInfo.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "MCTargetDesc/ARMBaseInfo.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <new> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "arm-instrinfo" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #include "ARMGenInstrInfo.inc" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, | 
|  | cl::desc("Enable ARM 2-addr to 3-addr conv")); | 
|  |  | 
|  | /// ARM_MLxEntry - Record information about MLA / MLS instructions. | 
|  | struct ARM_MLxEntry { | 
|  | uint16_t MLxOpc;     // MLA / MLS opcode | 
|  | uint16_t MulOpc;     // Expanded multiplication opcode | 
|  | uint16_t AddSubOpc;  // Expanded add / sub opcode | 
|  | bool NegAcc;         // True if the acc is negated before the add / sub. | 
|  | bool HasLane;        // True if instruction has an extra "lane" operand. | 
|  | }; | 
|  |  | 
|  | static const ARM_MLxEntry ARM_MLxTable[] = { | 
|  | // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane | 
|  | // fp scalar ops | 
|  | { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false }, | 
|  | { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false }, | 
|  | { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false }, | 
|  | { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false }, | 
|  | { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false }, | 
|  | { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false }, | 
|  | { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false }, | 
|  | { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false }, | 
|  |  | 
|  | // fp SIMD ops | 
|  | { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false }, | 
|  | { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false }, | 
|  | { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false }, | 
|  | { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false }, | 
|  | { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  }, | 
|  | { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  }, | 
|  | { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  }, | 
|  | { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  }, | 
|  | }; | 
|  |  | 
|  | ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) | 
|  | : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), | 
|  | Subtarget(STI) { | 
|  | for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { | 
|  | if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) | 
|  | llvm_unreachable("Duplicated entries?"); | 
|  | MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); | 
|  | MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl | 
|  | // currently defaults to no prepass hazard recognizer. | 
|  | ScheduleHazardRecognizer * | 
|  | ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
|  | const ScheduleDAG *DAG) const { | 
|  | if (usePreRAHazardRecognizer()) { | 
|  | const InstrItineraryData *II = | 
|  | static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); | 
|  | return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); | 
|  | } | 
|  | return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); | 
|  | } | 
|  |  | 
|  | ScheduleHazardRecognizer *ARMBaseInstrInfo:: | 
|  | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) | 
|  | return new ARMHazardRecognizer(II, DAG); | 
|  | return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( | 
|  | MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { | 
|  | // FIXME: Thumb2 support. | 
|  |  | 
|  | if (!EnableARM3Addr) | 
|  | return nullptr; | 
|  |  | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | uint64_t TSFlags = MI.getDesc().TSFlags; | 
|  | bool isPre = false; | 
|  | switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { | 
|  | default: return nullptr; | 
|  | case ARMII::IndexModePre: | 
|  | isPre = true; | 
|  | break; | 
|  | case ARMII::IndexModePost: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Try splitting an indexed load/store to an un-indexed one plus an add/sub | 
|  | // operation. | 
|  | unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); | 
|  | if (MemOpc == 0) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *UpdateMI = nullptr; | 
|  | MachineInstr *MemMI = nullptr; | 
|  | unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | unsigned NumOps = MCID.getNumOperands(); | 
|  | bool isLoad = !MI.mayStore(); | 
|  | const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); | 
|  | const MachineOperand &Base = MI.getOperand(2); | 
|  | const MachineOperand &Offset = MI.getOperand(NumOps - 3); | 
|  | Register WBReg = WB.getReg(); | 
|  | Register BaseReg = Base.getReg(); | 
|  | Register OffReg = Offset.getReg(); | 
|  | unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); | 
|  | ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); | 
|  | switch (AddrMode) { | 
|  | default: llvm_unreachable("Unknown indexed op!"); | 
|  | case ARMII::AddrMode2: { | 
|  | bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; | 
|  | unsigned Amt = ARM_AM::getAM2Offset(OffImm); | 
|  | if (OffReg == 0) { | 
|  | if (ARM_AM::getSOImmVal(Amt) == -1) | 
|  | // Can't encode it in a so_imm operand. This transformation will | 
|  | // add more than 1 instruction. Abandon! | 
|  | return nullptr; | 
|  | UpdateMI = BuildMI(MF, MI.getDebugLoc(), | 
|  | get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) | 
|  | .addReg(BaseReg) | 
|  | .addImm(Amt) | 
|  | .add(predOps(Pred)) | 
|  | .add(condCodeOp()); | 
|  | } else if (Amt != 0) { | 
|  | ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); | 
|  | unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); | 
|  | UpdateMI = BuildMI(MF, MI.getDebugLoc(), | 
|  | get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) | 
|  | .addReg(BaseReg) | 
|  | .addReg(OffReg) | 
|  | .addReg(0) | 
|  | .addImm(SOOpc) | 
|  | .add(predOps(Pred)) | 
|  | .add(condCodeOp()); | 
|  | } else | 
|  | UpdateMI = BuildMI(MF, MI.getDebugLoc(), | 
|  | get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) | 
|  | .addReg(BaseReg) | 
|  | .addReg(OffReg) | 
|  | .add(predOps(Pred)) | 
|  | .add(condCodeOp()); | 
|  | break; | 
|  | } | 
|  | case ARMII::AddrMode3 : { | 
|  | bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; | 
|  | unsigned Amt = ARM_AM::getAM3Offset(OffImm); | 
|  | if (OffReg == 0) | 
|  | // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. | 
|  | UpdateMI = BuildMI(MF, MI.getDebugLoc(), | 
|  | get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) | 
|  | .addReg(BaseReg) | 
|  | .addImm(Amt) | 
|  | .add(predOps(Pred)) | 
|  | .add(condCodeOp()); | 
|  | else | 
|  | UpdateMI = BuildMI(MF, MI.getDebugLoc(), | 
|  | get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) | 
|  | .addReg(BaseReg) | 
|  | .addReg(OffReg) | 
|  | .add(predOps(Pred)) | 
|  | .add(condCodeOp()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<MachineInstr*> NewMIs; | 
|  | if (isPre) { | 
|  | if (isLoad) | 
|  | MemMI = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) | 
|  | .addReg(WBReg) | 
|  | .addImm(0) | 
|  | .addImm(Pred); | 
|  | else | 
|  | MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) | 
|  | .addReg(MI.getOperand(1).getReg()) | 
|  | .addReg(WBReg) | 
|  | .addReg(0) | 
|  | .addImm(0) | 
|  | .addImm(Pred); | 
|  | NewMIs.push_back(MemMI); | 
|  | NewMIs.push_back(UpdateMI); | 
|  | } else { | 
|  | if (isLoad) | 
|  | MemMI = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) | 
|  | .addReg(BaseReg) | 
|  | .addImm(0) | 
|  | .addImm(Pred); | 
|  | else | 
|  | MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) | 
|  | .addReg(MI.getOperand(1).getReg()) | 
|  | .addReg(BaseReg) | 
|  | .addReg(0) | 
|  | .addImm(0) | 
|  | .addImm(Pred); | 
|  | if (WB.isDead()) | 
|  | UpdateMI->getOperand(0).setIsDead(); | 
|  | NewMIs.push_back(UpdateMI); | 
|  | NewMIs.push_back(MemMI); | 
|  | } | 
|  |  | 
|  | // Transfer LiveVariables states, kill / dead info. | 
|  | if (LV) { | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { | 
|  | Register Reg = MO.getReg(); | 
|  |  | 
|  | LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); | 
|  | if (MO.isDef()) { | 
|  | MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; | 
|  | if (MO.isDead()) | 
|  | LV->addVirtualRegisterDead(Reg, *NewMI); | 
|  | } | 
|  | if (MO.isUse() && MO.isKill()) { | 
|  | for (unsigned j = 0; j < 2; ++j) { | 
|  | // Look at the two new MI's in reverse order. | 
|  | MachineInstr *NewMI = NewMIs[j]; | 
|  | if (!NewMI->readsRegister(Reg)) | 
|  | continue; | 
|  | LV->addVirtualRegisterKilled(Reg, *NewMI); | 
|  | if (VI.removeKill(MI)) | 
|  | VI.Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = MI.getIterator(); | 
|  | MFI->insert(MBBI, NewMIs[1]); | 
|  | MFI->insert(MBBI, NewMIs[0]); | 
|  | return NewMIs[0]; | 
|  | } | 
|  |  | 
|  | // Branch analysis. | 
|  | bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | TBB = nullptr; | 
|  | FBB = nullptr; | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | if (I == MBB.begin()) | 
|  | return false; // Empty blocks are easy. | 
|  | --I; | 
|  |  | 
|  | // Walk backwards from the end of the basic block until the branch is | 
|  | // analyzed or we give up. | 
|  | while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { | 
|  | // Flag to be raised on unanalyzeable instructions. This is useful in cases | 
|  | // where we want to clean up on the end of the basic block before we bail | 
|  | // out. | 
|  | bool CantAnalyze = false; | 
|  |  | 
|  | // Skip over DEBUG values and predicated nonterminators. | 
|  | while (I->isDebugInstr() || !I->isTerminator()) { | 
|  | if (I == MBB.begin()) | 
|  | return false; | 
|  | --I; | 
|  | } | 
|  |  | 
|  | if (isIndirectBranchOpcode(I->getOpcode()) || | 
|  | isJumpTableBranchOpcode(I->getOpcode())) { | 
|  | // Indirect branches and jump tables can't be analyzed, but we still want | 
|  | // to clean up any instructions at the tail of the basic block. | 
|  | CantAnalyze = true; | 
|  | } else if (isUncondBranchOpcode(I->getOpcode())) { | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | } else if (isCondBranchOpcode(I->getOpcode())) { | 
|  | // Bail out if we encounter multiple conditional branches. | 
|  | if (!Cond.empty()) | 
|  | return true; | 
|  |  | 
|  | assert(!FBB && "FBB should have been null."); | 
|  | FBB = TBB; | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | Cond.push_back(I->getOperand(1)); | 
|  | Cond.push_back(I->getOperand(2)); | 
|  | } else if (I->isReturn()) { | 
|  | // Returns can't be analyzed, but we should run cleanup. | 
|  | CantAnalyze = !isPredicated(*I); | 
|  | } else { | 
|  | // We encountered other unrecognized terminator. Bail out immediately. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Cleanup code - to be run for unpredicated unconditional branches and | 
|  | //                returns. | 
|  | if (!isPredicated(*I) && | 
|  | (isUncondBranchOpcode(I->getOpcode()) || | 
|  | isIndirectBranchOpcode(I->getOpcode()) || | 
|  | isJumpTableBranchOpcode(I->getOpcode()) || | 
|  | I->isReturn())) { | 
|  | // Forget any previous condition branch information - it no longer applies. | 
|  | Cond.clear(); | 
|  | FBB = nullptr; | 
|  |  | 
|  | // If we can modify the function, delete everything below this | 
|  | // unconditional branch. | 
|  | if (AllowModify) { | 
|  | MachineBasicBlock::iterator DI = std::next(I); | 
|  | while (DI != MBB.end()) { | 
|  | MachineInstr &InstToDelete = *DI; | 
|  | ++DI; | 
|  | InstToDelete.eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CantAnalyze) | 
|  | return true; | 
|  |  | 
|  | if (I == MBB.begin()) | 
|  | return false; | 
|  |  | 
|  | --I; | 
|  | } | 
|  |  | 
|  | // We made it past the terminators without bailing out - we must have | 
|  | // analyzed this branch successfully. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, | 
|  | int *BytesRemoved) const { | 
|  | assert(!BytesRemoved && "code size not handled"); | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); | 
|  | if (I == MBB.end()) | 
|  | return 0; | 
|  |  | 
|  | if (!isUncondBranchOpcode(I->getOpcode()) && | 
|  | !isCondBranchOpcode(I->getOpcode())) | 
|  | return 0; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | I = MBB.end(); | 
|  |  | 
|  | if (I == MBB.begin()) return 1; | 
|  | --I; | 
|  | if (!isCondBranchOpcode(I->getOpcode())) | 
|  | return 1; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL, | 
|  | int *BytesAdded) const { | 
|  | assert(!BytesAdded && "code size not handled"); | 
|  | ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); | 
|  | int BOpc   = !AFI->isThumbFunction() | 
|  | ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); | 
|  | int BccOpc = !AFI->isThumbFunction() | 
|  | ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); | 
|  | bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); | 
|  |  | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "insertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 2 || Cond.size() == 0) && | 
|  | "ARM branch conditions have two components!"); | 
|  |  | 
|  | // For conditional branches, we use addOperand to preserve CPSR flags. | 
|  |  | 
|  | if (!FBB) { | 
|  | if (Cond.empty()) { // Unconditional branch? | 
|  | if (isThumb) | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); | 
|  | else | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); | 
|  | } else | 
|  | BuildMI(&MBB, DL, get(BccOpc)) | 
|  | .addMBB(TBB) | 
|  | .addImm(Cond[0].getImm()) | 
|  | .add(Cond[1]); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Two-way conditional branch. | 
|  | BuildMI(&MBB, DL, get(BccOpc)) | 
|  | .addMBB(TBB) | 
|  | .addImm(Cond[0].getImm()) | 
|  | .add(Cond[1]); | 
|  | if (isThumb) | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); | 
|  | else | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); | 
|  | Cond[0].setImm(ARMCC::getOppositeCondition(CC)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { | 
|  | if (MI.isBundle()) { | 
|  | MachineBasicBlock::const_instr_iterator I = MI.getIterator(); | 
|  | MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); | 
|  | while (++I != E && I->isInsideBundle()) { | 
|  | int PIdx = I->findFirstPredOperandIdx(); | 
|  | if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int PIdx = MI.findFirstPredOperandIdx(); | 
|  | return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::PredicateInstruction( | 
|  | MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | if (isUncondBranchOpcode(Opc)) { | 
|  | MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); | 
|  | MachineInstrBuilder(*MI.getParent()->getParent(), MI) | 
|  | .addImm(Pred[0].getImm()) | 
|  | .addReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int PIdx = MI.findFirstPredOperandIdx(); | 
|  | if (PIdx != -1) { | 
|  | MachineOperand &PMO = MI.getOperand(PIdx); | 
|  | PMO.setImm(Pred[0].getImm()); | 
|  | MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | 
|  | ArrayRef<MachineOperand> Pred2) const { | 
|  | if (Pred1.size() > 2 || Pred2.size() > 2) | 
|  | return false; | 
|  |  | 
|  | ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); | 
|  | ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); | 
|  | if (CC1 == CC2) | 
|  | return true; | 
|  |  | 
|  | switch (CC1) { | 
|  | default: | 
|  | return false; | 
|  | case ARMCC::AL: | 
|  | return true; | 
|  | case ARMCC::HS: | 
|  | return CC2 == ARMCC::HI; | 
|  | case ARMCC::LS: | 
|  | return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; | 
|  | case ARMCC::GE: | 
|  | return CC2 == ARMCC::GT; | 
|  | case ARMCC::LE: | 
|  | return CC2 == ARMCC::LT; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::DefinesPredicate( | 
|  | MachineInstr &MI, std::vector<MachineOperand> &Pred) const { | 
|  | bool Found = false; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || | 
|  | (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { | 
|  | Pred.push_back(MO); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { | 
|  | for (const auto &MO : MI.operands()) | 
|  | if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, | 
|  | unsigned Op) const { | 
|  | const MachineOperand &Offset = MI.getOperand(Op + 1); | 
|  | return Offset.getReg() != 0; | 
|  | } | 
|  |  | 
|  | // Load with negative register offset requires additional 1cyc and +I unit | 
|  | // for Cortex A57 | 
|  | bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, | 
|  | unsigned Op) const { | 
|  | const MachineOperand &Offset = MI.getOperand(Op + 1); | 
|  | const MachineOperand &Opc = MI.getOperand(Op + 2); | 
|  | assert(Opc.isImm()); | 
|  | assert(Offset.isReg()); | 
|  | int64_t OpcImm = Opc.getImm(); | 
|  |  | 
|  | bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; | 
|  | return (isSub && Offset.getReg() != 0); | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, | 
|  | unsigned Op) const { | 
|  | const MachineOperand &Opc = MI.getOperand(Op + 2); | 
|  | unsigned OffImm = Opc.getImm(); | 
|  | return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; | 
|  | } | 
|  |  | 
|  | // Load, scaled register offset, not plus LSL2 | 
|  | bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, | 
|  | unsigned Op) const { | 
|  | const MachineOperand &Opc = MI.getOperand(Op + 2); | 
|  | unsigned OffImm = Opc.getImm(); | 
|  |  | 
|  | bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; | 
|  | unsigned Amt = ARM_AM::getAM2Offset(OffImm); | 
|  | ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); | 
|  | if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled | 
|  | bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); | 
|  | return !SimpleScaled; | 
|  | } | 
|  |  | 
|  | // Minus reg for ldstso addr mode | 
|  | bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, | 
|  | unsigned Op) const { | 
|  | unsigned OffImm = MI.getOperand(Op + 2).getImm(); | 
|  | return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; | 
|  | } | 
|  |  | 
|  | // Load, scaled register offset | 
|  | bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, | 
|  | unsigned Op) const { | 
|  | unsigned OffImm = MI.getOperand(Op + 2).getImm(); | 
|  | return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; | 
|  | } | 
|  |  | 
|  | static bool isEligibleForITBlock(const MachineInstr *MI) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return true; | 
|  | case ARM::tADC:   // ADC (register) T1 | 
|  | case ARM::tADDi3: // ADD (immediate) T1 | 
|  | case ARM::tADDi8: // ADD (immediate) T2 | 
|  | case ARM::tADDrr: // ADD (register) T1 | 
|  | case ARM::tAND:   // AND (register) T1 | 
|  | case ARM::tASRri: // ASR (immediate) T1 | 
|  | case ARM::tASRrr: // ASR (register) T1 | 
|  | case ARM::tBIC:   // BIC (register) T1 | 
|  | case ARM::tEOR:   // EOR (register) T1 | 
|  | case ARM::tLSLri: // LSL (immediate) T1 | 
|  | case ARM::tLSLrr: // LSL (register) T1 | 
|  | case ARM::tLSRri: // LSR (immediate) T1 | 
|  | case ARM::tLSRrr: // LSR (register) T1 | 
|  | case ARM::tMUL:   // MUL T1 | 
|  | case ARM::tMVN:   // MVN (register) T1 | 
|  | case ARM::tORR:   // ORR (register) T1 | 
|  | case ARM::tROR:   // ROR (register) T1 | 
|  | case ARM::tRSB:   // RSB (immediate) T1 | 
|  | case ARM::tSBC:   // SBC (register) T1 | 
|  | case ARM::tSUBi3: // SUB (immediate) T1 | 
|  | case ARM::tSUBi8: // SUB (immediate) T2 | 
|  | case ARM::tSUBrr: // SUB (register) T1 | 
|  | return !ARMBaseInstrInfo::isCPSRDefined(*MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isPredicable - Return true if the specified instruction can be predicated. | 
|  | /// By default, this returns true for every instruction with a | 
|  | /// PredicateOperand. | 
|  | bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { | 
|  | if (!MI.isPredicable()) | 
|  | return false; | 
|  |  | 
|  | if (MI.isBundle()) | 
|  | return false; | 
|  |  | 
|  | if (!isEligibleForITBlock(&MI)) | 
|  | return false; | 
|  |  | 
|  | const ARMFunctionInfo *AFI = | 
|  | MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); | 
|  |  | 
|  | // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. | 
|  | // In their ARM encoding, they can't be encoded in a conditional form. | 
|  | if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) | 
|  | return false; | 
|  |  | 
|  | if (AFI->isThumb2Function()) { | 
|  | if (getSubtarget().restrictIT()) | 
|  | return isV8EligibleForIT(&MI); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || MO.isUndef() || MO.isUse()) | 
|  | continue; | 
|  | if (MO.getReg() != ARM::CPSR) | 
|  | continue; | 
|  | if (!MO.isDead()) | 
|  | return false; | 
|  | } | 
|  | // all definitions of CPSR are dead | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | /// GetInstSize - Return the size of the specified MachineInstr. | 
|  | /// | 
|  | unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { | 
|  | const MachineBasicBlock &MBB = *MI.getParent(); | 
|  | const MachineFunction *MF = MBB.getParent(); | 
|  | const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); | 
|  |  | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | if (MCID.getSize()) | 
|  | return MCID.getSize(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // pseudo-instruction sizes are zero. | 
|  | return 0; | 
|  | case TargetOpcode::BUNDLE: | 
|  | return getInstBundleLength(MI); | 
|  | case ARM::MOVi16_ga_pcrel: | 
|  | case ARM::MOVTi16_ga_pcrel: | 
|  | case ARM::t2MOVi16_ga_pcrel: | 
|  | case ARM::t2MOVTi16_ga_pcrel: | 
|  | return 4; | 
|  | case ARM::MOVi32imm: | 
|  | case ARM::t2MOVi32imm: | 
|  | return 8; | 
|  | case ARM::CONSTPOOL_ENTRY: | 
|  | case ARM::JUMPTABLE_INSTS: | 
|  | case ARM::JUMPTABLE_ADDRS: | 
|  | case ARM::JUMPTABLE_TBB: | 
|  | case ARM::JUMPTABLE_TBH: | 
|  | // If this machine instr is a constant pool entry, its size is recorded as | 
|  | // operand #2. | 
|  | return MI.getOperand(2).getImm(); | 
|  | case ARM::Int_eh_sjlj_longjmp: | 
|  | return 16; | 
|  | case ARM::tInt_eh_sjlj_longjmp: | 
|  | return 10; | 
|  | case ARM::tInt_WIN_eh_sjlj_longjmp: | 
|  | return 12; | 
|  | case ARM::Int_eh_sjlj_setjmp: | 
|  | case ARM::Int_eh_sjlj_setjmp_nofp: | 
|  | return 20; | 
|  | case ARM::tInt_eh_sjlj_setjmp: | 
|  | case ARM::t2Int_eh_sjlj_setjmp: | 
|  | case ARM::t2Int_eh_sjlj_setjmp_nofp: | 
|  | return 12; | 
|  | case ARM::SPACE: | 
|  | return MI.getOperand(1).getImm(); | 
|  | case ARM::INLINEASM: | 
|  | case ARM::INLINEASM_BR: { | 
|  | // If this machine instr is an inline asm, measure it. | 
|  | unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); | 
|  | if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) | 
|  | Size = alignTo(Size, 4); | 
|  | return Size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { | 
|  | unsigned Size = 0; | 
|  | MachineBasicBlock::const_instr_iterator I = MI.getIterator(); | 
|  | MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); | 
|  | while (++I != E && I->isInsideBundle()) { | 
|  | assert(!I->isBundle() && "No nested bundle!"); | 
|  | Size += getInstSizeInBytes(*I); | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, bool KillSrc, | 
|  | const ARMSubtarget &Subtarget) const { | 
|  | unsigned Opc = Subtarget.isThumb() | 
|  | ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) | 
|  | : ARM::MRS; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); | 
|  |  | 
|  | // There is only 1 A/R class MRS instruction, and it always refers to | 
|  | // APSR. However, there are lots of other possibilities on M-class cores. | 
|  | if (Subtarget.isMClass()) | 
|  | MIB.addImm(0x800); | 
|  |  | 
|  | MIB.add(predOps(ARMCC::AL)) | 
|  | .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned SrcReg, bool KillSrc, | 
|  | const ARMSubtarget &Subtarget) const { | 
|  | unsigned Opc = Subtarget.isThumb() | 
|  | ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) | 
|  | : ARM::MSR; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); | 
|  |  | 
|  | if (Subtarget.isMClass()) | 
|  | MIB.addImm(0x800); | 
|  | else | 
|  | MIB.addImm(8); | 
|  |  | 
|  | MIB.addReg(SrcReg, getKillRegState(KillSrc)) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); | 
|  | } | 
|  |  | 
|  | void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { | 
|  | MIB.addImm(ARMVCC::None); | 
|  | MIB.addReg(0); | 
|  | } | 
|  |  | 
|  | void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, | 
|  | unsigned DestReg) { | 
|  | addUnpredicatedMveVpredNOp(MIB); | 
|  | MIB.addReg(DestReg, RegState::Undef); | 
|  | } | 
|  |  | 
|  | void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { | 
|  | MIB.addImm(Cond); | 
|  | MIB.addReg(ARM::VPR, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, | 
|  | unsigned Cond, unsigned Inactive) { | 
|  | addPredicatedMveVpredNOp(MIB, Cond); | 
|  | MIB.addReg(Inactive); | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, MCRegister DestReg, | 
|  | MCRegister SrcReg, bool KillSrc) const { | 
|  | bool GPRDest = ARM::GPRRegClass.contains(DestReg); | 
|  | bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); | 
|  |  | 
|  | if (GPRDest && GPRSrc) { | 
|  | BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .add(condCodeOp()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool SPRDest = ARM::SPRRegClass.contains(DestReg); | 
|  | bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); | 
|  |  | 
|  | unsigned Opc = 0; | 
|  | if (SPRDest && SPRSrc) | 
|  | Opc = ARM::VMOVS; | 
|  | else if (GPRDest && SPRSrc) | 
|  | Opc = ARM::VMOVRS; | 
|  | else if (SPRDest && GPRSrc) | 
|  | Opc = ARM::VMOVSR; | 
|  | else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) | 
|  | Opc = ARM::VMOVD; | 
|  | else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; | 
|  |  | 
|  | if (Opc) { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); | 
|  | MIB.addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) | 
|  | MIB.addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | if (Opc == ARM::MVE_VORR) | 
|  | addUnpredicatedMveVpredROp(MIB, DestReg); | 
|  | else | 
|  | MIB.add(predOps(ARMCC::AL)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle register classes that require multiple instructions. | 
|  | unsigned BeginIdx = 0; | 
|  | unsigned SubRegs = 0; | 
|  | int Spacing = 1; | 
|  |  | 
|  | // Use VORRq when possible. | 
|  | if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; | 
|  | BeginIdx = ARM::qsub_0; | 
|  | SubRegs = 2; | 
|  | } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; | 
|  | BeginIdx = ARM::qsub_0; | 
|  | SubRegs = 4; | 
|  | // Fall back to VMOVD. | 
|  | } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = ARM::VMOVD; | 
|  | BeginIdx = ARM::dsub_0; | 
|  | SubRegs = 2; | 
|  | } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = ARM::VMOVD; | 
|  | BeginIdx = ARM::dsub_0; | 
|  | SubRegs = 3; | 
|  | } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = ARM::VMOVD; | 
|  | BeginIdx = ARM::dsub_0; | 
|  | SubRegs = 4; | 
|  | } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; | 
|  | BeginIdx = ARM::gsub_0; | 
|  | SubRegs = 2; | 
|  | } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = ARM::VMOVD; | 
|  | BeginIdx = ARM::dsub_0; | 
|  | SubRegs = 2; | 
|  | Spacing = 2; | 
|  | } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = ARM::VMOVD; | 
|  | BeginIdx = ARM::dsub_0; | 
|  | SubRegs = 3; | 
|  | Spacing = 2; | 
|  | } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { | 
|  | Opc = ARM::VMOVD; | 
|  | BeginIdx = ARM::dsub_0; | 
|  | SubRegs = 4; | 
|  | Spacing = 2; | 
|  | } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && | 
|  | !Subtarget.hasFP64()) { | 
|  | Opc = ARM::VMOVS; | 
|  | BeginIdx = ARM::ssub_0; | 
|  | SubRegs = 2; | 
|  | } else if (SrcReg == ARM::CPSR) { | 
|  | copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); | 
|  | return; | 
|  | } else if (DestReg == ARM::CPSR) { | 
|  | copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); | 
|  | return; | 
|  | } else if (DestReg == ARM::VPR) { | 
|  | assert(ARM::GPRRegClass.contains(SrcReg)); | 
|  | BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | return; | 
|  | } else if (SrcReg == ARM::VPR) { | 
|  | assert(ARM::GPRRegClass.contains(DestReg)); | 
|  | BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | return; | 
|  | } else if (DestReg == ARM::FPSCR_NZCV) { | 
|  | assert(ARM::GPRRegClass.contains(SrcReg)); | 
|  | BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | return; | 
|  | } else if (SrcReg == ARM::FPSCR_NZCV) { | 
|  | assert(ARM::GPRRegClass.contains(DestReg)); | 
|  | BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Opc && "Impossible reg-to-reg copy"); | 
|  |  | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | MachineInstrBuilder Mov; | 
|  |  | 
|  | // Copy register tuples backward when the first Dest reg overlaps with SrcReg. | 
|  | if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { | 
|  | BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); | 
|  | Spacing = -Spacing; | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | SmallSet<unsigned, 4> DstRegs; | 
|  | #endif | 
|  | for (unsigned i = 0; i != SubRegs; ++i) { | 
|  | Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); | 
|  | Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); | 
|  | assert(Dst && Src && "Bad sub-register"); | 
|  | #ifndef NDEBUG | 
|  | assert(!DstRegs.count(Src) && "destructive vector copy"); | 
|  | DstRegs.insert(Dst); | 
|  | #endif | 
|  | Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); | 
|  | // VORR (NEON or MVE) takes two source operands. | 
|  | if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { | 
|  | Mov.addReg(Src); | 
|  | } | 
|  | // MVE VORR takes predicate operands in place of an ordinary condition. | 
|  | if (Opc == ARM::MVE_VORR) | 
|  | addUnpredicatedMveVpredROp(Mov, Dst); | 
|  | else | 
|  | Mov = Mov.add(predOps(ARMCC::AL)); | 
|  | // MOVr can set CC. | 
|  | if (Opc == ARM::MOVr) | 
|  | Mov = Mov.add(condCodeOp()); | 
|  | } | 
|  | // Add implicit super-register defs and kills to the last instruction. | 
|  | Mov->addRegisterDefined(DestReg, TRI); | 
|  | if (KillSrc) | 
|  | Mov->addRegisterKilled(SrcReg, TRI); | 
|  | } | 
|  |  | 
|  | Optional<DestSourcePair> | 
|  | ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { | 
|  | // VMOVRRD is also a copy instruction but it requires | 
|  | // special way of handling. It is more complex copy version | 
|  | // and since that we are not considering it. For recognition | 
|  | // of such instruction isExtractSubregLike MI interface fuction | 
|  | // could be used. | 
|  | // VORRq is considered as a move only if two inputs are | 
|  | // the same register. | 
|  | if (!MI.isMoveReg() || | 
|  | (MI.getOpcode() == ARM::VORRq && | 
|  | MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) | 
|  | return None; | 
|  | return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; | 
|  | } | 
|  |  | 
|  | const MachineInstrBuilder & | 
|  | ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, | 
|  | unsigned SubIdx, unsigned State, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (!SubIdx) | 
|  | return MIB.addReg(Reg, State); | 
|  |  | 
|  | if (Register::isPhysicalRegister(Reg)) | 
|  | return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); | 
|  | return MIB.addReg(Reg, State, SubIdx); | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo:: | 
|  | storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | unsigned SrcReg, bool isKill, int FI, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned Align = MFI.getObjectAlignment(FI); | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(FI), Align); | 
|  |  | 
|  | switch (TRI->getSpillSize(*RC)) { | 
|  | case 2: | 
|  | if (ARM::HPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 4: | 
|  | if (ARM::GPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 8: | 
|  | if (ARM::DPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { | 
|  | if (Subtarget.hasV5TEOps()) { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); | 
|  | AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); | 
|  | MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | // Fallback to STM instruction, which has existed since the dawn of | 
|  | // time. | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 16: | 
|  | if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { | 
|  | // Use aligned spills if the stack can be realigned. | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(16) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } | 
|  | } else if (ARM::QPRRegClass.hasSubClassEq(RC) && | 
|  | Subtarget.hasMVEIntegerOps()) { | 
|  | auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); | 
|  | MIB.addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO); | 
|  | addUnpredicatedMveVpredNOp(MIB); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 24: | 
|  | if (ARM::DTripleRegClass.hasSubClassEq(RC)) { | 
|  | // Use aligned spills if the stack can be realigned. | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && | 
|  | Subtarget.hasNEON()) { | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(16) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), | 
|  | get(ARM::VSTMDIA)) | 
|  | .addFrameIndex(FI) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 32: | 
|  | if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && | 
|  | Subtarget.hasNEON()) { | 
|  | // FIXME: It's possible to only store part of the QQ register if the | 
|  | // spilled def has a sub-register index. | 
|  | BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(16) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), | 
|  | get(ARM::VSTMDIA)) | 
|  | .addFrameIndex(FI) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 64: | 
|  | if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) | 
|  | .addFrameIndex(FI) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::STRrs: | 
|  | case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && | 
|  | MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && | 
|  | MI.getOperand(3).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::STRi12: | 
|  | case ARM::t2STRi12: | 
|  | case ARM::tSTRspi: | 
|  | case ARM::VSTRD: | 
|  | case ARM::VSTRS: | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && | 
|  | MI.getOperand(2).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VSTR_P0_off: | 
|  | if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && | 
|  | MI.getOperand(1).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(0).getIndex(); | 
|  | return ARM::P0; | 
|  | } | 
|  | break; | 
|  | case ARM::VST1q64: | 
|  | case ARM::VST1d64TPseudo: | 
|  | case ARM::VST1d64QPseudo: | 
|  | if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { | 
|  | FrameIndex = MI.getOperand(0).getIndex(); | 
|  | return MI.getOperand(2).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VSTMQIA: | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | SmallVector<const MachineMemOperand *, 1> Accesses; | 
|  | if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && | 
|  | Accesses.size() == 1) { | 
|  | FrameIndex = | 
|  | cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) | 
|  | ->getFrameIndex(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo:: | 
|  | loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, int FI, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL; | 
|  | if (I != MBB.end()) DL = I->getDebugLoc(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned Align = MFI.getObjectAlignment(FI); | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(FI), Align); | 
|  |  | 
|  | switch (TRI->getSpillSize(*RC)) { | 
|  | case 2: | 
|  | if (ARM::HPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 4: | 
|  | if (ARM::GPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 8: | 
|  | if (ARM::DPRRegClass.hasSubClassEq(RC)) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | if (Subtarget.hasV5TEOps()) { | 
|  | MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); | 
|  | AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); | 
|  | AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); | 
|  | MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | // Fallback to LDM instruction, which has existed since the dawn of | 
|  | // time. | 
|  | MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); | 
|  | } | 
|  |  | 
|  | if (Register::isPhysicalRegister(DestReg)) | 
|  | MIB.addReg(DestReg, RegState::ImplicitDefine); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 16: | 
|  | if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(16) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } | 
|  | } else if (ARM::QPRRegClass.hasSubClassEq(RC) && | 
|  | Subtarget.hasMVEIntegerOps()) { | 
|  | auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); | 
|  | MIB.addFrameIndex(FI) | 
|  | .addImm(0) | 
|  | .addMemOperand(MMO); | 
|  | addUnpredicatedMveVpredNOp(MIB); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 24: | 
|  | if (ARM::DTripleRegClass.hasSubClassEq(RC)) { | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && | 
|  | Subtarget.hasNEON()) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(16) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); | 
|  | if (Register::isPhysicalRegister(DestReg)) | 
|  | MIB.addReg(DestReg, RegState::ImplicitDefine); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 32: | 
|  | if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && | 
|  | Subtarget.hasNEON()) { | 
|  | BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addImm(16) | 
|  | .addMemOperand(MMO) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) | 
|  | .addFrameIndex(FI) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); | 
|  | if (Register::isPhysicalRegister(DestReg)) | 
|  | MIB.addReg(DestReg, RegState::ImplicitDefine); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | case 64: | 
|  | if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) | 
|  | .addFrameIndex(FI) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); | 
|  | if (Register::isPhysicalRegister(DestReg)) | 
|  | MIB.addReg(DestReg, RegState::ImplicitDefine); | 
|  | } else | 
|  | llvm_unreachable("Unknown reg class!"); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame. | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && | 
|  | MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && | 
|  | MI.getOperand(3).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::LDRi12: | 
|  | case ARM::t2LDRi12: | 
|  | case ARM::tLDRspi: | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && | 
|  | MI.getOperand(2).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VLDR_P0_off: | 
|  | if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && | 
|  | MI.getOperand(1).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(0).getIndex(); | 
|  | return ARM::P0; | 
|  | } | 
|  | break; | 
|  | case ARM::VLD1q64: | 
|  | case ARM::VLD1d8TPseudo: | 
|  | case ARM::VLD1d16TPseudo: | 
|  | case ARM::VLD1d32TPseudo: | 
|  | case ARM::VLD1d64TPseudo: | 
|  | case ARM::VLD1d8QPseudo: | 
|  | case ARM::VLD1d16QPseudo: | 
|  | case ARM::VLD1d32QPseudo: | 
|  | case ARM::VLD1d64QPseudo: | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VLDMQIA: | 
|  | if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { | 
|  | FrameIndex = MI.getOperand(1).getIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | SmallVector<const MachineMemOperand *, 1> Accesses; | 
|  | if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && | 
|  | Accesses.size() == 1) { | 
|  | FrameIndex = | 
|  | cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) | 
|  | ->getFrameIndex(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD | 
|  | /// depending on whether the result is used. | 
|  | void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { | 
|  | bool isThumb1 = Subtarget.isThumb1Only(); | 
|  | bool isThumb2 = Subtarget.isThumb2(); | 
|  | const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); | 
|  |  | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | MachineBasicBlock *BB = MI->getParent(); | 
|  |  | 
|  | MachineInstrBuilder LDM, STM; | 
|  | if (isThumb1 || !MI->getOperand(1).isDead()) { | 
|  | MachineOperand LDWb(MI->getOperand(1)); | 
|  | LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD | 
|  | : isThumb1 ? ARM::tLDMIA_UPD | 
|  | : ARM::LDMIA_UPD)) | 
|  | .add(LDWb); | 
|  | } else { | 
|  | LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); | 
|  | } | 
|  |  | 
|  | if (isThumb1 || !MI->getOperand(0).isDead()) { | 
|  | MachineOperand STWb(MI->getOperand(0)); | 
|  | STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD | 
|  | : isThumb1 ? ARM::tSTMIA_UPD | 
|  | : ARM::STMIA_UPD)) | 
|  | .add(STWb); | 
|  | } else { | 
|  | STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); | 
|  | } | 
|  |  | 
|  | MachineOperand LDBase(MI->getOperand(3)); | 
|  | LDM.add(LDBase).add(predOps(ARMCC::AL)); | 
|  |  | 
|  | MachineOperand STBase(MI->getOperand(2)); | 
|  | STM.add(STBase).add(predOps(ARMCC::AL)); | 
|  |  | 
|  | // Sort the scratch registers into ascending order. | 
|  | const TargetRegisterInfo &TRI = getRegisterInfo(); | 
|  | SmallVector<unsigned, 6> ScratchRegs; | 
|  | for(unsigned I = 5; I < MI->getNumOperands(); ++I) | 
|  | ScratchRegs.push_back(MI->getOperand(I).getReg()); | 
|  | llvm::sort(ScratchRegs, | 
|  | [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { | 
|  | return TRI.getEncodingValue(Reg1) < | 
|  | TRI.getEncodingValue(Reg2); | 
|  | }); | 
|  |  | 
|  | for (const auto &Reg : ScratchRegs) { | 
|  | LDM.addReg(Reg, RegState::Define); | 
|  | STM.addReg(Reg, RegState::Kill); | 
|  | } | 
|  |  | 
|  | BB->erase(MI); | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | 
|  | if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { | 
|  | assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && | 
|  | "LOAD_STACK_GUARD currently supported only for MachO."); | 
|  | expandLoadStackGuard(MI); | 
|  | MI.getParent()->erase(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (MI.getOpcode() == ARM::MEMCPY) { | 
|  | expandMEMCPY(MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This hook gets to expand COPY instructions before they become | 
|  | // copyPhysReg() calls.  Look for VMOVS instructions that can legally be | 
|  | // widened to VMOVD.  We prefer the VMOVD when possible because it may be | 
|  | // changed into a VORR that can go down the NEON pipeline. | 
|  | if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) | 
|  | return false; | 
|  |  | 
|  | // Look for a copy between even S-registers.  That is where we keep floats | 
|  | // when using NEON v2f32 instructions for f32 arithmetic. | 
|  | Register DstRegS = MI.getOperand(0).getReg(); | 
|  | Register SrcRegS = MI.getOperand(1).getReg(); | 
|  | if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, | 
|  | &ARM::DPRRegClass); | 
|  | unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, | 
|  | &ARM::DPRRegClass); | 
|  | if (!DstRegD || !SrcRegD) | 
|  | return false; | 
|  |  | 
|  | // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only | 
|  | // legal if the COPY already defines the full DstRegD, and it isn't a | 
|  | // sub-register insertion. | 
|  | if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) | 
|  | return false; | 
|  |  | 
|  | // A dead copy shouldn't show up here, but reject it just in case. | 
|  | if (MI.getOperand(0).isDead()) | 
|  | return false; | 
|  |  | 
|  | // All clear, widen the COPY. | 
|  | LLVM_DEBUG(dbgs() << "widening:    " << MI); | 
|  | MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); | 
|  |  | 
|  | // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg | 
|  | // or some other super-register. | 
|  | int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); | 
|  | if (ImpDefIdx != -1) | 
|  | MI.RemoveOperand(ImpDefIdx); | 
|  |  | 
|  | // Change the opcode and operands. | 
|  | MI.setDesc(get(ARM::VMOVD)); | 
|  | MI.getOperand(0).setReg(DstRegD); | 
|  | MI.getOperand(1).setReg(SrcRegD); | 
|  | MIB.add(predOps(ARMCC::AL)); | 
|  |  | 
|  | // We are now reading SrcRegD instead of SrcRegS.  This may upset the | 
|  | // register scavenger and machine verifier, so we need to indicate that we | 
|  | // are reading an undefined value from SrcRegD, but a proper value from | 
|  | // SrcRegS. | 
|  | MI.getOperand(1).setIsUndef(); | 
|  | MIB.addReg(SrcRegS, RegState::Implicit); | 
|  |  | 
|  | // SrcRegD may actually contain an unrelated value in the ssub_1 | 
|  | // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register. | 
|  | if (MI.getOperand(1).isKill()) { | 
|  | MI.getOperand(1).setIsKill(false); | 
|  | MI.addRegisterKilled(SrcRegS, TRI, true); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "replaced by: " << MI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Create a copy of a const pool value. Update CPI to the new index and return | 
|  | /// the label UID. | 
|  | static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { | 
|  | MachineConstantPool *MCP = MF.getConstantPool(); | 
|  | ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
|  |  | 
|  | const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; | 
|  | assert(MCPE.isMachineConstantPoolEntry() && | 
|  | "Expecting a machine constantpool entry!"); | 
|  | ARMConstantPoolValue *ACPV = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); | 
|  |  | 
|  | unsigned PCLabelId = AFI->createPICLabelUId(); | 
|  | ARMConstantPoolValue *NewCPV = nullptr; | 
|  |  | 
|  | // FIXME: The below assumes PIC relocation model and that the function | 
|  | // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and | 
|  | // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR | 
|  | // instructions, so that's probably OK, but is PIC always correct when | 
|  | // we get here? | 
|  | if (ACPV->isGlobalValue()) | 
|  | NewCPV = ARMConstantPoolConstant::Create( | 
|  | cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, | 
|  | 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); | 
|  | else if (ACPV->isExtSymbol()) | 
|  | NewCPV = ARMConstantPoolSymbol:: | 
|  | Create(MF.getFunction().getContext(), | 
|  | cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); | 
|  | else if (ACPV->isBlockAddress()) | 
|  | NewCPV = ARMConstantPoolConstant:: | 
|  | Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, | 
|  | ARMCP::CPBlockAddress, 4); | 
|  | else if (ACPV->isLSDA()) | 
|  | NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, | 
|  | ARMCP::CPLSDA, 4); | 
|  | else if (ACPV->isMachineBasicBlock()) | 
|  | NewCPV = ARMConstantPoolMBB:: | 
|  | Create(MF.getFunction().getContext(), | 
|  | cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); | 
|  | else | 
|  | llvm_unreachable("Unexpected ARM constantpool value type!!"); | 
|  | CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); | 
|  | return PCLabelId; | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr &Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | unsigned Opcode = Orig.getOpcode(); | 
|  | switch (Opcode) { | 
|  | default: { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); | 
|  | MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | MBB.insert(I, MI); | 
|  | break; | 
|  | } | 
|  | case ARM::tLDRpci_pic: | 
|  | case ARM::t2LDRpci_pic: { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned CPI = Orig.getOperand(1).getIndex(); | 
|  | unsigned PCLabelId = duplicateCPV(MF, CPI); | 
|  | BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) | 
|  | .addConstantPoolIndex(CPI) | 
|  | .addImm(PCLabelId) | 
|  | .cloneMemRefs(Orig); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstr & | 
|  | ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator InsertBefore, | 
|  | const MachineInstr &Orig) const { | 
|  | MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); | 
|  | MachineBasicBlock::instr_iterator I = Cloned.getIterator(); | 
|  | for (;;) { | 
|  | switch (I->getOpcode()) { | 
|  | case ARM::tLDRpci_pic: | 
|  | case ARM::t2LDRpci_pic: { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned CPI = I->getOperand(1).getIndex(); | 
|  | unsigned PCLabelId = duplicateCPV(MF, CPI); | 
|  | I->getOperand(1).setIndex(CPI); | 
|  | I->getOperand(2).setImm(PCLabelId); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!I->isBundledWithSucc()) | 
|  | break; | 
|  | ++I; | 
|  | } | 
|  | return Cloned; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, | 
|  | const MachineInstr &MI1, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | unsigned Opcode = MI0.getOpcode(); | 
|  | if (Opcode == ARM::t2LDRpci || | 
|  | Opcode == ARM::t2LDRpci_pic || | 
|  | Opcode == ARM::tLDRpci || | 
|  | Opcode == ARM::tLDRpci_pic || | 
|  | Opcode == ARM::LDRLIT_ga_pcrel || | 
|  | Opcode == ARM::LDRLIT_ga_pcrel_ldr || | 
|  | Opcode == ARM::tLDRLIT_ga_pcrel || | 
|  | Opcode == ARM::MOV_ga_pcrel || | 
|  | Opcode == ARM::MOV_ga_pcrel_ldr || | 
|  | Opcode == ARM::t2MOV_ga_pcrel) { | 
|  | if (MI1.getOpcode() != Opcode) | 
|  | return false; | 
|  | if (MI0.getNumOperands() != MI1.getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand &MO0 = MI0.getOperand(1); | 
|  | const MachineOperand &MO1 = MI1.getOperand(1); | 
|  | if (MO0.getOffset() != MO1.getOffset()) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ARM::LDRLIT_ga_pcrel || | 
|  | Opcode == ARM::LDRLIT_ga_pcrel_ldr || | 
|  | Opcode == ARM::tLDRLIT_ga_pcrel || | 
|  | Opcode == ARM::MOV_ga_pcrel || | 
|  | Opcode == ARM::MOV_ga_pcrel_ldr || | 
|  | Opcode == ARM::t2MOV_ga_pcrel) | 
|  | // Ignore the PC labels. | 
|  | return MO0.getGlobal() == MO1.getGlobal(); | 
|  |  | 
|  | const MachineFunction *MF = MI0.getParent()->getParent(); | 
|  | const MachineConstantPool *MCP = MF->getConstantPool(); | 
|  | int CPI0 = MO0.getIndex(); | 
|  | int CPI1 = MO1.getIndex(); | 
|  | const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; | 
|  | const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; | 
|  | bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); | 
|  | bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); | 
|  | if (isARMCP0 && isARMCP1) { | 
|  | ARMConstantPoolValue *ACPV0 = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); | 
|  | ARMConstantPoolValue *ACPV1 = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); | 
|  | return ACPV0->hasSameValue(ACPV1); | 
|  | } else if (!isARMCP0 && !isARMCP1) { | 
|  | return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; | 
|  | } | 
|  | return false; | 
|  | } else if (Opcode == ARM::PICLDR) { | 
|  | if (MI1.getOpcode() != Opcode) | 
|  | return false; | 
|  | if (MI0.getNumOperands() != MI1.getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | Register Addr0 = MI0.getOperand(1).getReg(); | 
|  | Register Addr1 = MI1.getOperand(1).getReg(); | 
|  | if (Addr0 != Addr1) { | 
|  | if (!MRI || !Register::isVirtualRegister(Addr0) || | 
|  | !Register::isVirtualRegister(Addr1)) | 
|  | return false; | 
|  |  | 
|  | // This assumes SSA form. | 
|  | MachineInstr *Def0 = MRI->getVRegDef(Addr0); | 
|  | MachineInstr *Def1 = MRI->getVRegDef(Addr1); | 
|  | // Check if the loaded value, e.g. a constantpool of a global address, are | 
|  | // the same. | 
|  | if (!produceSameValue(*Def0, *Def1, MRI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { | 
|  | // %12 = PICLDR %11, 0, 14, %noreg | 
|  | const MachineOperand &MO0 = MI0.getOperand(i); | 
|  | const MachineOperand &MO1 = MI1.getOperand(i); | 
|  | if (!MO0.isIdenticalTo(MO1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
|  | } | 
|  |  | 
|  | /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to | 
|  | /// determine if two loads are loading from the same base address. It should | 
|  | /// only return true if the base pointers are the same and the only differences | 
|  | /// between the two addresses is the offset. It also returns the offsets by | 
|  | /// reference. | 
|  | /// | 
|  | /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched | 
|  | /// is permanently disabled. | 
|  | bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | 
|  | int64_t &Offset1, | 
|  | int64_t &Offset2) const { | 
|  | // Don't worry about Thumb: just ARM and Thumb2. | 
|  | if (Subtarget.isThumb1Only()) return false; | 
|  |  | 
|  | if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | switch (Load1->getMachineOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case ARM::LDRi12: | 
|  | case ARM::LDRBi12: | 
|  | case ARM::LDRD: | 
|  | case ARM::LDRH: | 
|  | case ARM::LDRSB: | 
|  | case ARM::LDRSH: | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | case ARM::t2LDRi8: | 
|  | case ARM::t2LDRBi8: | 
|  | case ARM::t2LDRDi8: | 
|  | case ARM::t2LDRSHi8: | 
|  | case ARM::t2LDRi12: | 
|  | case ARM::t2LDRBi12: | 
|  | case ARM::t2LDRSHi12: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (Load2->getMachineOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case ARM::LDRi12: | 
|  | case ARM::LDRBi12: | 
|  | case ARM::LDRD: | 
|  | case ARM::LDRH: | 
|  | case ARM::LDRSB: | 
|  | case ARM::LDRSH: | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | case ARM::t2LDRi8: | 
|  | case ARM::t2LDRBi8: | 
|  | case ARM::t2LDRSHi8: | 
|  | case ARM::t2LDRi12: | 
|  | case ARM::t2LDRBi12: | 
|  | case ARM::t2LDRSHi12: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if base addresses and chain operands match. | 
|  | if (Load1->getOperand(0) != Load2->getOperand(0) || | 
|  | Load1->getOperand(4) != Load2->getOperand(4)) | 
|  | return false; | 
|  |  | 
|  | // Index should be Reg0. | 
|  | if (Load1->getOperand(3) != Load2->getOperand(3)) | 
|  | return false; | 
|  |  | 
|  | // Determine the offsets. | 
|  | if (isa<ConstantSDNode>(Load1->getOperand(1)) && | 
|  | isa<ConstantSDNode>(Load2->getOperand(1))) { | 
|  | Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); | 
|  | Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to | 
|  | /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should | 
|  | /// be scheduled togther. On some targets if two loads are loading from | 
|  | /// addresses in the same cache line, it's better if they are scheduled | 
|  | /// together. This function takes two integers that represent the load offsets | 
|  | /// from the common base address. It returns true if it decides it's desirable | 
|  | /// to schedule the two loads together. "NumLoads" is the number of loads that | 
|  | /// have already been scheduled after Load1. | 
|  | /// | 
|  | /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched | 
|  | /// is permanently disabled. | 
|  | bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
|  | int64_t Offset1, int64_t Offset2, | 
|  | unsigned NumLoads) const { | 
|  | // Don't worry about Thumb: just ARM and Thumb2. | 
|  | if (Subtarget.isThumb1Only()) return false; | 
|  |  | 
|  | assert(Offset2 > Offset1); | 
|  |  | 
|  | if ((Offset2 - Offset1) / 8 > 64) | 
|  | return false; | 
|  |  | 
|  | // Check if the machine opcodes are different. If they are different | 
|  | // then we consider them to not be of the same base address, | 
|  | // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. | 
|  | // In this case, they are considered to be the same because they are different | 
|  | // encoding forms of the same basic instruction. | 
|  | if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && | 
|  | !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && | 
|  | Load2->getMachineOpcode() == ARM::t2LDRBi12) || | 
|  | (Load1->getMachineOpcode() == ARM::t2LDRBi12 && | 
|  | Load2->getMachineOpcode() == ARM::t2LDRBi8))) | 
|  | return false;  // FIXME: overly conservative? | 
|  |  | 
|  | // Four loads in a row should be sufficient. | 
|  | if (NumLoads >= 3) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Debug info is never a scheduling boundary. It's necessary to be explicit | 
|  | // due to the special treatment of IT instructions below, otherwise a | 
|  | // dbg_value followed by an IT will result in the IT instruction being | 
|  | // considered a scheduling hazard, which is wrong. It should be the actual | 
|  | // instruction preceding the dbg_value instruction(s), just like it is | 
|  | // when debug info is not present. | 
|  | if (MI.isDebugInstr()) | 
|  | return false; | 
|  |  | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI.isTerminator() || MI.isPosition()) | 
|  | return true; | 
|  |  | 
|  | // Treat the start of the IT block as a scheduling boundary, but schedule | 
|  | // t2IT along with all instructions following it. | 
|  | // FIXME: This is a big hammer. But the alternative is to add all potential | 
|  | // true and anti dependencies to IT block instructions as implicit operands | 
|  | // to the t2IT instruction. The added compile time and complexity does not | 
|  | // seem worth it. | 
|  | MachineBasicBlock::const_iterator I = MI; | 
|  | // Make sure to skip any debug instructions | 
|  | while (++I != MBB->end() && I->isDebugInstr()) | 
|  | ; | 
|  | if (I != MBB->end() && I->getOpcode() == ARM::t2IT) | 
|  | return true; | 
|  |  | 
|  | // Don't attempt to schedule around any instruction that defines | 
|  | // a stack-oriented pointer, as it's unlikely to be profitable. This | 
|  | // saves compile time, because it doesn't require every single | 
|  | // stack slot reference to depend on the instruction that does the | 
|  | // modification. | 
|  | // Calls don't actually change the stack pointer, even if they have imp-defs. | 
|  | // No ARM calling conventions change the stack pointer. (X86 calling | 
|  | // conventions sometimes do). | 
|  | if (!MI.isCall() && MI.definesRegister(ARM::SP)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | isProfitableToIfCvt(MachineBasicBlock &MBB, | 
|  | unsigned NumCycles, unsigned ExtraPredCycles, | 
|  | BranchProbability Probability) const { | 
|  | if (!NumCycles) | 
|  | return false; | 
|  |  | 
|  | // If we are optimizing for size, see if the branch in the predecessor can be | 
|  | // lowered to cbn?z by the constant island lowering pass, and return false if | 
|  | // so. This results in a shorter instruction sequence. | 
|  | if (MBB.getParent()->getFunction().hasOptSize()) { | 
|  | MachineBasicBlock *Pred = *MBB.pred_begin(); | 
|  | if (!Pred->empty()) { | 
|  | MachineInstr *LastMI = &*Pred->rbegin(); | 
|  | if (LastMI->getOpcode() == ARM::t2Bcc) { | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); | 
|  | if (CmpMI) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, | 
|  | MBB, 0, 0, Probability); | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | isProfitableToIfCvt(MachineBasicBlock &TBB, | 
|  | unsigned TCycles, unsigned TExtra, | 
|  | MachineBasicBlock &FBB, | 
|  | unsigned FCycles, unsigned FExtra, | 
|  | BranchProbability Probability) const { | 
|  | if (!TCycles) | 
|  | return false; | 
|  |  | 
|  | // In thumb code we often end up trading one branch for a IT block, and | 
|  | // if we are cloning the instruction can increase code size. Prevent | 
|  | // blocks with multiple predecesors from being ifcvted to prevent this | 
|  | // cloning. | 
|  | if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { | 
|  | if (TBB.pred_size() != 1 || FBB.pred_size() != 1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Attempt to estimate the relative costs of predication versus branching. | 
|  | // Here we scale up each component of UnpredCost to avoid precision issue when | 
|  | // scaling TCycles/FCycles by Probability. | 
|  | const unsigned ScalingUpFactor = 1024; | 
|  |  | 
|  | unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; | 
|  | unsigned UnpredCost; | 
|  | if (!Subtarget.hasBranchPredictor()) { | 
|  | // When we don't have a branch predictor it's always cheaper to not take a | 
|  | // branch than take it, so we have to take that into account. | 
|  | unsigned NotTakenBranchCost = 1; | 
|  | unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); | 
|  | unsigned TUnpredCycles, FUnpredCycles; | 
|  | if (!FCycles) { | 
|  | // Triangle: TBB is the fallthrough | 
|  | TUnpredCycles = TCycles + NotTakenBranchCost; | 
|  | FUnpredCycles = TakenBranchCost; | 
|  | } else { | 
|  | // Diamond: TBB is the block that is branched to, FBB is the fallthrough | 
|  | TUnpredCycles = TCycles + TakenBranchCost; | 
|  | FUnpredCycles = FCycles + NotTakenBranchCost; | 
|  | // The branch at the end of FBB will disappear when it's predicated, so | 
|  | // discount it from PredCost. | 
|  | PredCost -= 1 * ScalingUpFactor; | 
|  | } | 
|  | // The total cost is the cost of each path scaled by their probabilites | 
|  | unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); | 
|  | unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); | 
|  | UnpredCost = TUnpredCost + FUnpredCost; | 
|  | // When predicating assume that the first IT can be folded away but later | 
|  | // ones cost one cycle each | 
|  | if (Subtarget.isThumb2() && TCycles + FCycles > 4) { | 
|  | PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; | 
|  | } | 
|  | } else { | 
|  | unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); | 
|  | unsigned FUnpredCost = | 
|  | Probability.getCompl().scale(FCycles * ScalingUpFactor); | 
|  | UnpredCost = TUnpredCost + FUnpredCost; | 
|  | UnpredCost += 1 * ScalingUpFactor; // The branch itself | 
|  | UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; | 
|  | } | 
|  |  | 
|  | return PredCost <= UnpredCost; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, | 
|  | unsigned NumInsts) const { | 
|  | // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. | 
|  | // ARM has a condition code field in every predicable instruction, using it | 
|  | // doesn't change code size. | 
|  | return Subtarget.isThumb2() ? divideCeil(NumInsts, 4) * 2 : 0; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { | 
|  | // If this branch is likely to be folded into the comparison to form a | 
|  | // CB(N)Z, then removing it won't reduce code size at all, because that will | 
|  | // just replace the CB(N)Z with a CMP. | 
|  | if (MI.getOpcode() == ARM::t2Bcc && | 
|  | findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) | 
|  | return 0; | 
|  |  | 
|  | unsigned Size = getInstSizeInBytes(MI); | 
|  |  | 
|  | // For Thumb2, all branches are 32-bit instructions during the if conversion | 
|  | // pass, but may be replaced with 16-bit instructions during size reduction. | 
|  | // Since the branches considered by if conversion tend to be forward branches | 
|  | // over small basic blocks, they are very likely to be in range for the | 
|  | // narrow instructions, so we assume the final code size will be half what it | 
|  | // currently is. | 
|  | if (Subtarget.isThumb2()) | 
|  | Size /= 2; | 
|  |  | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, | 
|  | MachineBasicBlock &FMBB) const { | 
|  | // Reduce false anti-dependencies to let the target's out-of-order execution | 
|  | // engine do its thing. | 
|  | return Subtarget.isProfitableToUnpredicate(); | 
|  | } | 
|  |  | 
|  | /// getInstrPredicate - If instruction is predicated, returns its predicate | 
|  | /// condition, otherwise returns AL. It also returns the condition code | 
|  | /// register by reference. | 
|  | ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, | 
|  | unsigned &PredReg) { | 
|  | int PIdx = MI.findFirstPredOperandIdx(); | 
|  | if (PIdx == -1) { | 
|  | PredReg = 0; | 
|  | return ARMCC::AL; | 
|  | } | 
|  |  | 
|  | PredReg = MI.getOperand(PIdx+1).getReg(); | 
|  | return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); | 
|  | } | 
|  |  | 
|  | unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { | 
|  | if (Opc == ARM::B) | 
|  | return ARM::Bcc; | 
|  | if (Opc == ARM::tB) | 
|  | return ARM::tBcc; | 
|  | if (Opc == ARM::t2B) | 
|  | return ARM::t2Bcc; | 
|  |  | 
|  | llvm_unreachable("Unknown unconditional branch opcode!"); | 
|  | } | 
|  |  | 
|  | MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, | 
|  | bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case ARM::MOVCCr: | 
|  | case ARM::t2MOVCCr: { | 
|  | // MOVCC can be commuted by inverting the condition. | 
|  | unsigned PredReg = 0; | 
|  | ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); | 
|  | // MOVCC AL can't be inverted. Shouldn't happen. | 
|  | if (CC == ARMCC::AL || PredReg != ARM::CPSR) | 
|  | return nullptr; | 
|  | MachineInstr *CommutedMI = | 
|  | TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | if (!CommutedMI) | 
|  | return nullptr; | 
|  | // After swapping the MOVCC operands, also invert the condition. | 
|  | CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) | 
|  | .setImm(ARMCC::getOppositeCondition(CC)); | 
|  | return CommutedMI; | 
|  | } | 
|  | } | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  |  | 
|  | /// Identify instructions that can be folded into a MOVCC instruction, and | 
|  | /// return the defining instruction. | 
|  | MachineInstr * | 
|  | ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI, | 
|  | const TargetInstrInfo *TII) const { | 
|  | if (!Register::isVirtualRegister(Reg)) | 
|  | return nullptr; | 
|  | if (!MRI.hasOneNonDBGUse(Reg)) | 
|  | return nullptr; | 
|  | MachineInstr *MI = MRI.getVRegDef(Reg); | 
|  | if (!MI) | 
|  | return nullptr; | 
|  | // Check if MI can be predicated and folded into the MOVCC. | 
|  | if (!isPredicable(*MI)) | 
|  | return nullptr; | 
|  | // Check if MI has any non-dead defs or physreg uses. This also detects | 
|  | // predicated instructions which will be reading CPSR. | 
|  | for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | // Reject frame index operands, PEI can't handle the predicated pseudos. | 
|  | if (MO.isFI() || MO.isCPI() || MO.isJTI()) | 
|  | return nullptr; | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | // MI can't have any tied operands, that would conflict with predication. | 
|  | if (MO.isTied()) | 
|  | return nullptr; | 
|  | if (Register::isPhysicalRegister(MO.getReg())) | 
|  | return nullptr; | 
|  | if (MO.isDef() && !MO.isDead()) | 
|  | return nullptr; | 
|  | } | 
|  | bool DontMoveAcrossStores = true; | 
|  | if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) | 
|  | return nullptr; | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | unsigned &TrueOp, unsigned &FalseOp, | 
|  | bool &Optimizable) const { | 
|  | assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && | 
|  | "Unknown select instruction"); | 
|  | // MOVCC operands: | 
|  | // 0: Def. | 
|  | // 1: True use. | 
|  | // 2: False use. | 
|  | // 3: Condition code. | 
|  | // 4: CPSR use. | 
|  | TrueOp = 1; | 
|  | FalseOp = 2; | 
|  | Cond.push_back(MI.getOperand(3)); | 
|  | Cond.push_back(MI.getOperand(4)); | 
|  | // We can always fold a def. | 
|  | Optimizable = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr * | 
|  | ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, | 
|  | SmallPtrSetImpl<MachineInstr *> &SeenMIs, | 
|  | bool PreferFalse) const { | 
|  | assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && | 
|  | "Unknown select instruction"); | 
|  | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); | 
|  | bool Invert = !DefMI; | 
|  | if (!DefMI) | 
|  | DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); | 
|  | if (!DefMI) | 
|  | return nullptr; | 
|  |  | 
|  | // Find new register class to use. | 
|  | MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); | 
|  | Register DestReg = MI.getOperand(0).getReg(); | 
|  | const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); | 
|  | if (!MRI.constrainRegClass(DestReg, PreviousClass)) | 
|  | return nullptr; | 
|  |  | 
|  | // Create a new predicated version of DefMI. | 
|  | // Rfalse is the first use. | 
|  | MachineInstrBuilder NewMI = | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); | 
|  |  | 
|  | // Copy all the DefMI operands, excluding its (null) predicate. | 
|  | const MCInstrDesc &DefDesc = DefMI->getDesc(); | 
|  | for (unsigned i = 1, e = DefDesc.getNumOperands(); | 
|  | i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) | 
|  | NewMI.add(DefMI->getOperand(i)); | 
|  |  | 
|  | unsigned CondCode = MI.getOperand(3).getImm(); | 
|  | if (Invert) | 
|  | NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); | 
|  | else | 
|  | NewMI.addImm(CondCode); | 
|  | NewMI.add(MI.getOperand(4)); | 
|  |  | 
|  | // DefMI is not the -S version that sets CPSR, so add an optional %noreg. | 
|  | if (NewMI->hasOptionalDef()) | 
|  | NewMI.add(condCodeOp()); | 
|  |  | 
|  | // The output register value when the predicate is false is an implicit | 
|  | // register operand tied to the first def. | 
|  | // The tie makes the register allocator ensure the FalseReg is allocated the | 
|  | // same register as operand 0. | 
|  | FalseReg.setImplicit(); | 
|  | NewMI.add(FalseReg); | 
|  | NewMI->tieOperands(0, NewMI->getNumOperands() - 1); | 
|  |  | 
|  | // Update SeenMIs set: register newly created MI and erase removed DefMI. | 
|  | SeenMIs.insert(NewMI); | 
|  | SeenMIs.erase(DefMI); | 
|  |  | 
|  | // If MI is inside a loop, and DefMI is outside the loop, then kill flags on | 
|  | // DefMI would be invalid when tranferred inside the loop.  Checking for a | 
|  | // loop is expensive, but at least remove kill flags if they are in different | 
|  | // BBs. | 
|  | if (DefMI->getParent() != MI.getParent()) | 
|  | NewMI->clearKillInfo(); | 
|  |  | 
|  | // The caller will erase MI, but not DefMI. | 
|  | DefMI->eraseFromParent(); | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the | 
|  | /// instruction is encoded with an 'S' bit is determined by the optional CPSR | 
|  | /// def operand. | 
|  | /// | 
|  | /// This will go away once we can teach tblgen how to set the optional CPSR def | 
|  | /// operand itself. | 
|  | struct AddSubFlagsOpcodePair { | 
|  | uint16_t PseudoOpc; | 
|  | uint16_t MachineOpc; | 
|  | }; | 
|  |  | 
|  | static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { | 
|  | {ARM::ADDSri, ARM::ADDri}, | 
|  | {ARM::ADDSrr, ARM::ADDrr}, | 
|  | {ARM::ADDSrsi, ARM::ADDrsi}, | 
|  | {ARM::ADDSrsr, ARM::ADDrsr}, | 
|  |  | 
|  | {ARM::SUBSri, ARM::SUBri}, | 
|  | {ARM::SUBSrr, ARM::SUBrr}, | 
|  | {ARM::SUBSrsi, ARM::SUBrsi}, | 
|  | {ARM::SUBSrsr, ARM::SUBrsr}, | 
|  |  | 
|  | {ARM::RSBSri, ARM::RSBri}, | 
|  | {ARM::RSBSrsi, ARM::RSBrsi}, | 
|  | {ARM::RSBSrsr, ARM::RSBrsr}, | 
|  |  | 
|  | {ARM::tADDSi3, ARM::tADDi3}, | 
|  | {ARM::tADDSi8, ARM::tADDi8}, | 
|  | {ARM::tADDSrr, ARM::tADDrr}, | 
|  | {ARM::tADCS, ARM::tADC}, | 
|  |  | 
|  | {ARM::tSUBSi3, ARM::tSUBi3}, | 
|  | {ARM::tSUBSi8, ARM::tSUBi8}, | 
|  | {ARM::tSUBSrr, ARM::tSUBrr}, | 
|  | {ARM::tSBCS, ARM::tSBC}, | 
|  | {ARM::tRSBS, ARM::tRSB}, | 
|  | {ARM::tLSLSri, ARM::tLSLri}, | 
|  |  | 
|  | {ARM::t2ADDSri, ARM::t2ADDri}, | 
|  | {ARM::t2ADDSrr, ARM::t2ADDrr}, | 
|  | {ARM::t2ADDSrs, ARM::t2ADDrs}, | 
|  |  | 
|  | {ARM::t2SUBSri, ARM::t2SUBri}, | 
|  | {ARM::t2SUBSrr, ARM::t2SUBrr}, | 
|  | {ARM::t2SUBSrs, ARM::t2SUBrs}, | 
|  |  | 
|  | {ARM::t2RSBSri, ARM::t2RSBri}, | 
|  | {ARM::t2RSBSrs, ARM::t2RSBrs}, | 
|  | }; | 
|  |  | 
|  | unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { | 
|  | for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) | 
|  | if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) | 
|  | return AddSubFlagsOpcodeMap[i].MachineOpc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | const DebugLoc &dl, unsigned DestReg, | 
|  | unsigned BaseReg, int NumBytes, | 
|  | ARMCC::CondCodes Pred, unsigned PredReg, | 
|  | const ARMBaseInstrInfo &TII, | 
|  | unsigned MIFlags) { | 
|  | if (NumBytes == 0 && DestReg != BaseReg) { | 
|  | BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) | 
|  | .addReg(BaseReg, RegState::Kill) | 
|  | .add(predOps(Pred, PredReg)) | 
|  | .add(condCodeOp()) | 
|  | .setMIFlags(MIFlags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool isSub = NumBytes < 0; | 
|  | if (isSub) NumBytes = -NumBytes; | 
|  |  | 
|  | while (NumBytes) { | 
|  | unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); | 
|  | unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); | 
|  | assert(ThisVal && "Didn't extract field correctly"); | 
|  |  | 
|  | // We will handle these bits from offset, clear them. | 
|  | NumBytes &= ~ThisVal; | 
|  |  | 
|  | assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); | 
|  |  | 
|  | // Build the new ADD / SUB. | 
|  | unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; | 
|  | BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) | 
|  | .addReg(BaseReg, RegState::Kill) | 
|  | .addImm(ThisVal) | 
|  | .add(predOps(Pred, PredReg)) | 
|  | .add(condCodeOp()) | 
|  | .setMIFlags(MIFlags); | 
|  | BaseReg = DestReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, | 
|  | MachineFunction &MF, MachineInstr *MI, | 
|  | unsigned NumBytes) { | 
|  | // This optimisation potentially adds lots of load and store | 
|  | // micro-operations, it's only really a great benefit to code-size. | 
|  | if (!Subtarget.hasMinSize()) | 
|  | return false; | 
|  |  | 
|  | // If only one register is pushed/popped, LLVM can use an LDR/STR | 
|  | // instead. We can't modify those so make sure we're dealing with an | 
|  | // instruction we understand. | 
|  | bool IsPop = isPopOpcode(MI->getOpcode()); | 
|  | bool IsPush = isPushOpcode(MI->getOpcode()); | 
|  | if (!IsPush && !IsPop) | 
|  | return false; | 
|  |  | 
|  | bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || | 
|  | MI->getOpcode() == ARM::VLDMDIA_UPD; | 
|  | bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || | 
|  | MI->getOpcode() == ARM::tPOP || | 
|  | MI->getOpcode() == ARM::tPOP_RET; | 
|  |  | 
|  | assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && | 
|  | MI->getOperand(1).getReg() == ARM::SP)) && | 
|  | "trying to fold sp update into non-sp-updating push/pop"); | 
|  |  | 
|  | // The VFP push & pop act on D-registers, so we can only fold an adjustment | 
|  | // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try | 
|  | // if this is violated. | 
|  | if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) | 
|  | return false; | 
|  |  | 
|  | // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ | 
|  | // pred) so the list starts at 4. Thumb1 starts after the predicate. | 
|  | int RegListIdx = IsT1PushPop ? 2 : 4; | 
|  |  | 
|  | // Calculate the space we'll need in terms of registers. | 
|  | unsigned RegsNeeded; | 
|  | const TargetRegisterClass *RegClass; | 
|  | if (IsVFPPushPop) { | 
|  | RegsNeeded = NumBytes / 8; | 
|  | RegClass = &ARM::DPRRegClass; | 
|  | } else { | 
|  | RegsNeeded = NumBytes / 4; | 
|  | RegClass = &ARM::GPRRegClass; | 
|  | } | 
|  |  | 
|  | // We're going to have to strip all list operands off before | 
|  | // re-adding them since the order matters, so save the existing ones | 
|  | // for later. | 
|  | SmallVector<MachineOperand, 4> RegList; | 
|  |  | 
|  | // We're also going to need the first register transferred by this | 
|  | // instruction, which won't necessarily be the first register in the list. | 
|  | unsigned FirstRegEnc = -1; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); | 
|  | for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | RegList.push_back(MO); | 
|  |  | 
|  | if (MO.isReg() && !MO.isImplicit() && | 
|  | TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) | 
|  | FirstRegEnc = TRI->getEncodingValue(MO.getReg()); | 
|  | } | 
|  |  | 
|  | const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); | 
|  |  | 
|  | // Now try to find enough space in the reglist to allocate NumBytes. | 
|  | for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; | 
|  | --CurRegEnc) { | 
|  | unsigned CurReg = RegClass->getRegister(CurRegEnc); | 
|  | if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) | 
|  | continue; | 
|  | if (!IsPop) { | 
|  | // Pushing any register is completely harmless, mark the register involved | 
|  | // as undef since we don't care about its value and must not restore it | 
|  | // during stack unwinding. | 
|  | RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, | 
|  | false, false, true)); | 
|  | --RegsNeeded; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // However, we can only pop an extra register if it's not live. For | 
|  | // registers live within the function we might clobber a return value | 
|  | // register; the other way a register can be live here is if it's | 
|  | // callee-saved. | 
|  | if (isCalleeSavedRegister(CurReg, CSRegs) || | 
|  | MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != | 
|  | MachineBasicBlock::LQR_Dead) { | 
|  | // VFP pops don't allow holes in the register list, so any skip is fatal | 
|  | // for our transformation. GPR pops do, so we should just keep looking. | 
|  | if (IsVFPPushPop) | 
|  | return false; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Mark the unimportant registers as <def,dead> in the POP. | 
|  | RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, | 
|  | true)); | 
|  | --RegsNeeded; | 
|  | } | 
|  |  | 
|  | if (RegsNeeded > 0) | 
|  | return false; | 
|  |  | 
|  | // Finally we know we can profitably perform the optimisation so go | 
|  | // ahead: strip all existing registers off and add them back again | 
|  | // in the right order. | 
|  | for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) | 
|  | MI->RemoveOperand(i); | 
|  |  | 
|  | // Add the complete list back in. | 
|  | MachineInstrBuilder MIB(MF, &*MI); | 
|  | for (int i = RegList.size() - 1; i >= 0; --i) | 
|  | MIB.add(RegList[i]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, | 
|  | unsigned FrameReg, int &Offset, | 
|  | const ARMBaseInstrInfo &TII) { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); | 
|  | bool isSub = false; | 
|  |  | 
|  | // Memory operands in inline assembly always use AddrMode2. | 
|  | if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) | 
|  | AddrMode = ARMII::AddrMode2; | 
|  |  | 
|  | if (Opcode == ARM::ADDri) { | 
|  | Offset += MI.getOperand(FrameRegIdx+1).getImm(); | 
|  | if (Offset == 0) { | 
|  | // Turn it into a move. | 
|  | MI.setDesc(TII.get(ARM::MOVr)); | 
|  | MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); | 
|  | MI.RemoveOperand(FrameRegIdx+1); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } else if (Offset < 0) { | 
|  | Offset = -Offset; | 
|  | isSub = true; | 
|  | MI.setDesc(TII.get(ARM::SUBri)); | 
|  | } | 
|  |  | 
|  | // Common case: small offset, fits into instruction. | 
|  | if (ARM_AM::getSOImmVal(Offset) != -1) { | 
|  | // Replace the FrameIndex with sp / fp | 
|  | MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); | 
|  | MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, pull as much of the immedidate into this ADDri/SUBri | 
|  | // as possible. | 
|  | unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); | 
|  | unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); | 
|  |  | 
|  | // We will handle these bits from offset, clear them. | 
|  | Offset &= ~ThisImmVal; | 
|  |  | 
|  | // Get the properly encoded SOImmVal field. | 
|  | assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && | 
|  | "Bit extraction didn't work?"); | 
|  | MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); | 
|  | } else { | 
|  | unsigned ImmIdx = 0; | 
|  | int InstrOffs = 0; | 
|  | unsigned NumBits = 0; | 
|  | unsigned Scale = 1; | 
|  | switch (AddrMode) { | 
|  | case ARMII::AddrMode_i12: | 
|  | ImmIdx = FrameRegIdx + 1; | 
|  | InstrOffs = MI.getOperand(ImmIdx).getImm(); | 
|  | NumBits = 12; | 
|  | break; | 
|  | case ARMII::AddrMode2: | 
|  | ImmIdx = FrameRegIdx+2; | 
|  | InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 12; | 
|  | break; | 
|  | case ARMII::AddrMode3: | 
|  | ImmIdx = FrameRegIdx+2; | 
|  | InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 8; | 
|  | break; | 
|  | case ARMII::AddrMode4: | 
|  | case ARMII::AddrMode6: | 
|  | // Can't fold any offset even if it's zero. | 
|  | return false; | 
|  | case ARMII::AddrMode5: | 
|  | ImmIdx = FrameRegIdx+1; | 
|  | InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 8; | 
|  | Scale = 4; | 
|  | break; | 
|  | case ARMII::AddrMode5FP16: | 
|  | ImmIdx = FrameRegIdx+1; | 
|  | InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 8; | 
|  | Scale = 2; | 
|  | break; | 
|  | case ARMII::AddrModeT2_i7: | 
|  | case ARMII::AddrModeT2_i7s2: | 
|  | case ARMII::AddrModeT2_i7s4: | 
|  | ImmIdx = FrameRegIdx+1; | 
|  | InstrOffs = MI.getOperand(ImmIdx).getImm(); | 
|  | NumBits = 7; | 
|  | Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : | 
|  | AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unsupported addressing mode!"); | 
|  | } | 
|  |  | 
|  | Offset += InstrOffs * Scale; | 
|  | assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); | 
|  | if (Offset < 0) { | 
|  | Offset = -Offset; | 
|  | isSub = true; | 
|  | } | 
|  |  | 
|  | // Attempt to fold address comp. if opcode has offset bits | 
|  | if (NumBits > 0) { | 
|  | // Common case: small offset, fits into instruction. | 
|  | MachineOperand &ImmOp = MI.getOperand(ImmIdx); | 
|  | int ImmedOffset = Offset / Scale; | 
|  | unsigned Mask = (1 << NumBits) - 1; | 
|  | if ((unsigned)Offset <= Mask * Scale) { | 
|  | // Replace the FrameIndex with sp | 
|  | MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); | 
|  | // FIXME: When addrmode2 goes away, this will simplify (like the | 
|  | // T2 version), as the LDR.i12 versions don't need the encoding | 
|  | // tricks for the offset value. | 
|  | if (isSub) { | 
|  | if (AddrMode == ARMII::AddrMode_i12) | 
|  | ImmedOffset = -ImmedOffset; | 
|  | else | 
|  | ImmedOffset |= 1 << NumBits; | 
|  | } | 
|  | ImmOp.ChangeToImmediate(ImmedOffset); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, it didn't fit. Pull in what we can to simplify the immed. | 
|  | ImmedOffset = ImmedOffset & Mask; | 
|  | if (isSub) { | 
|  | if (AddrMode == ARMII::AddrMode_i12) | 
|  | ImmedOffset = -ImmedOffset; | 
|  | else | 
|  | ImmedOffset |= 1 << NumBits; | 
|  | } | 
|  | ImmOp.ChangeToImmediate(ImmedOffset); | 
|  | Offset &= ~(Mask*Scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | Offset = (isSub) ? -Offset : Offset; | 
|  | return Offset == 0; | 
|  | } | 
|  |  | 
|  | /// analyzeCompare - For a comparison instruction, return the source registers | 
|  | /// in SrcReg and SrcReg2 if having two register operands, and the value it | 
|  | /// compares against in CmpValue. Return true if the comparison instruction | 
|  | /// can be analyzed. | 
|  | bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, | 
|  | unsigned &SrcReg2, int &CmpMask, | 
|  | int &CmpValue) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::CMPri: | 
|  | case ARM::t2CMPri: | 
|  | case ARM::tCMPi8: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI.getOperand(1).getImm(); | 
|  | return true; | 
|  | case ARM::CMPrr: | 
|  | case ARM::t2CMPrr: | 
|  | case ARM::tCMPr: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = MI.getOperand(1).getReg(); | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case ARM::TSTri: | 
|  | case ARM::t2TSTri: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = MI.getOperand(1).getImm(); | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isSuitableForMask - Identify a suitable 'and' instruction that | 
|  | /// operates on the given source register and applies the same mask | 
|  | /// as a 'tst' instruction. Provide a limited look-through for copies. | 
|  | /// When successful, MI will hold the found instruction. | 
|  | static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, | 
|  | int CmpMask, bool CommonUse) { | 
|  | switch (MI->getOpcode()) { | 
|  | case ARM::ANDri: | 
|  | case ARM::t2ANDri: | 
|  | if (CmpMask != MI->getOperand(2).getImm()) | 
|  | return false; | 
|  | if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return | 
|  | /// the condition code if we modify the instructions such that flags are | 
|  | /// set by ADD(a,b,X). | 
|  | inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { | 
|  | switch (CC) { | 
|  | default: return ARMCC::AL; | 
|  | case ARMCC::HS: return ARMCC::LO; | 
|  | case ARMCC::LO: return ARMCC::HS; | 
|  | case ARMCC::VS: return ARMCC::VS; | 
|  | case ARMCC::VC: return ARMCC::VC; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isRedundantFlagInstr - check whether the first instruction, whose only | 
|  | /// purpose is to update flags, can be made redundant. | 
|  | /// CMPrr can be made redundant by SUBrr if the operands are the same. | 
|  | /// CMPri can be made redundant by SUBri if the operands are the same. | 
|  | /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). | 
|  | /// This function can be extended later on. | 
|  | inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, | 
|  | unsigned SrcReg, unsigned SrcReg2, | 
|  | int ImmValue, const MachineInstr *OI, | 
|  | bool &IsThumb1) { | 
|  | if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && | 
|  | (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && | 
|  | ((OI->getOperand(1).getReg() == SrcReg && | 
|  | OI->getOperand(2).getReg() == SrcReg2) || | 
|  | (OI->getOperand(1).getReg() == SrcReg2 && | 
|  | OI->getOperand(2).getReg() == SrcReg))) { | 
|  | IsThumb1 = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && | 
|  | ((OI->getOperand(2).getReg() == SrcReg && | 
|  | OI->getOperand(3).getReg() == SrcReg2) || | 
|  | (OI->getOperand(2).getReg() == SrcReg2 && | 
|  | OI->getOperand(3).getReg() == SrcReg))) { | 
|  | IsThumb1 = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && | 
|  | (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && | 
|  | OI->getOperand(1).getReg() == SrcReg && | 
|  | OI->getOperand(2).getImm() == ImmValue) { | 
|  | IsThumb1 = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CmpI->getOpcode() == ARM::tCMPi8 && | 
|  | (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && | 
|  | OI->getOperand(2).getReg() == SrcReg && | 
|  | OI->getOperand(3).getImm() == ImmValue) { | 
|  | IsThumb1 = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && | 
|  | (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || | 
|  | OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && | 
|  | OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && | 
|  | OI->getOperand(0).getReg() == SrcReg && | 
|  | OI->getOperand(1).getReg() == SrcReg2) { | 
|  | IsThumb1 = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (CmpI->getOpcode() == ARM::tCMPr && | 
|  | (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || | 
|  | OI->getOpcode() == ARM::tADDrr) && | 
|  | OI->getOperand(0).getReg() == SrcReg && | 
|  | OI->getOperand(2).getReg() == SrcReg2) { | 
|  | IsThumb1 = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  | case ARM::tLSLri: | 
|  | case ARM::tLSRri: | 
|  | case ARM::tLSLrr: | 
|  | case ARM::tLSRrr: | 
|  | case ARM::tSUBrr: | 
|  | case ARM::tADDrr: | 
|  | case ARM::tADDi3: | 
|  | case ARM::tADDi8: | 
|  | case ARM::tSUBi3: | 
|  | case ARM::tSUBi8: | 
|  | case ARM::tMUL: | 
|  | case ARM::tADC: | 
|  | case ARM::tSBC: | 
|  | case ARM::tRSB: | 
|  | case ARM::tAND: | 
|  | case ARM::tORR: | 
|  | case ARM::tEOR: | 
|  | case ARM::tBIC: | 
|  | case ARM::tMVN: | 
|  | case ARM::tASRri: | 
|  | case ARM::tASRrr: | 
|  | case ARM::tROR: | 
|  | IsThumb1 = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ARM::RSBrr: | 
|  | case ARM::RSBri: | 
|  | case ARM::RSCrr: | 
|  | case ARM::RSCri: | 
|  | case ARM::ADDrr: | 
|  | case ARM::ADDri: | 
|  | case ARM::ADCrr: | 
|  | case ARM::ADCri: | 
|  | case ARM::SUBrr: | 
|  | case ARM::SUBri: | 
|  | case ARM::SBCrr: | 
|  | case ARM::SBCri: | 
|  | case ARM::t2RSBri: | 
|  | case ARM::t2ADDrr: | 
|  | case ARM::t2ADDri: | 
|  | case ARM::t2ADCrr: | 
|  | case ARM::t2ADCri: | 
|  | case ARM::t2SUBrr: | 
|  | case ARM::t2SUBri: | 
|  | case ARM::t2SBCrr: | 
|  | case ARM::t2SBCri: | 
|  | case ARM::ANDrr: | 
|  | case ARM::ANDri: | 
|  | case ARM::t2ANDrr: | 
|  | case ARM::t2ANDri: | 
|  | case ARM::ORRrr: | 
|  | case ARM::ORRri: | 
|  | case ARM::t2ORRrr: | 
|  | case ARM::t2ORRri: | 
|  | case ARM::EORrr: | 
|  | case ARM::EORri: | 
|  | case ARM::t2EORrr: | 
|  | case ARM::t2EORri: | 
|  | case ARM::t2LSRri: | 
|  | case ARM::t2LSRrr: | 
|  | case ARM::t2LSLri: | 
|  | case ARM::t2LSLrr: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// optimizeCompareInstr - Convert the instruction supplying the argument to the | 
|  | /// comparison into one that sets the zero bit in the flags register; | 
|  | /// Remove a redundant Compare instruction if an earlier instruction can set the | 
|  | /// flags in the same way as Compare. | 
|  | /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two | 
|  | /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the | 
|  | /// condition code of instructions which use the flags. | 
|  | bool ARMBaseInstrInfo::optimizeCompareInstr( | 
|  | MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, | 
|  | int CmpValue, const MachineRegisterInfo *MRI) const { | 
|  | // Get the unique definition of SrcReg. | 
|  | MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); | 
|  | if (!MI) return false; | 
|  |  | 
|  | // Masked compares sometimes use the same register as the corresponding 'and'. | 
|  | if (CmpMask != ~0) { | 
|  | if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { | 
|  | MI = nullptr; | 
|  | for (MachineRegisterInfo::use_instr_iterator | 
|  | UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); | 
|  | UI != UE; ++UI) { | 
|  | if (UI->getParent() != CmpInstr.getParent()) | 
|  | continue; | 
|  | MachineInstr *PotentialAND = &*UI; | 
|  | if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || | 
|  | isPredicated(*PotentialAND)) | 
|  | continue; | 
|  | MI = PotentialAND; | 
|  | break; | 
|  | } | 
|  | if (!MI) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get ready to iterate backward from CmpInstr. | 
|  | MachineBasicBlock::iterator I = CmpInstr, E = MI, | 
|  | B = CmpInstr.getParent()->begin(); | 
|  |  | 
|  | // Early exit if CmpInstr is at the beginning of the BB. | 
|  | if (I == B) return false; | 
|  |  | 
|  | // There are two possible candidates which can be changed to set CPSR: | 
|  | // One is MI, the other is a SUB or ADD instruction. | 
|  | // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or | 
|  | // ADDr[ri](r1, r2, X). | 
|  | // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). | 
|  | MachineInstr *SubAdd = nullptr; | 
|  | if (SrcReg2 != 0) | 
|  | // MI is not a candidate for CMPrr. | 
|  | MI = nullptr; | 
|  | else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { | 
|  | // Conservatively refuse to convert an instruction which isn't in the same | 
|  | // BB as the comparison. | 
|  | // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. | 
|  | // Thus we cannot return here. | 
|  | if (CmpInstr.getOpcode() == ARM::CMPri || | 
|  | CmpInstr.getOpcode() == ARM::t2CMPri || | 
|  | CmpInstr.getOpcode() == ARM::tCMPi8) | 
|  | MI = nullptr; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool IsThumb1 = false; | 
|  | if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) | 
|  | return false; | 
|  |  | 
|  | // We also want to do this peephole for cases like this: if (a*b == 0), | 
|  | // and optimise away the CMP instruction from the generated code sequence: | 
|  | // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values | 
|  | // resulting from the select instruction, but these MOVS instructions for | 
|  | // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. | 
|  | // However, if we only have MOVS instructions in between the CMP and the | 
|  | // other instruction (the MULS in this example), then the CPSR is dead so we | 
|  | // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this | 
|  | // reordering and then continue the analysis hoping we can eliminate the | 
|  | // CMP. This peephole works on the vregs, so is still in SSA form. As a | 
|  | // consequence, the movs won't redefine/kill the MUL operands which would | 
|  | // make this reordering illegal. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (MI && IsThumb1) { | 
|  | --I; | 
|  | if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { | 
|  | bool CanReorder = true; | 
|  | for (; I != E; --I) { | 
|  | if (I->getOpcode() != ARM::tMOVi8) { | 
|  | CanReorder = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (CanReorder) { | 
|  | MI = MI->removeFromParent(); | 
|  | E = CmpInstr; | 
|  | CmpInstr.getParent()->insert(E, MI); | 
|  | } | 
|  | } | 
|  | I = CmpInstr; | 
|  | E = MI; | 
|  | } | 
|  |  | 
|  | // Check that CPSR isn't set between the comparison instruction and the one we | 
|  | // want to change. At the same time, search for SubAdd. | 
|  | bool SubAddIsThumb1 = false; | 
|  | do { | 
|  | const MachineInstr &Instr = *--I; | 
|  |  | 
|  | // Check whether CmpInstr can be made redundant by the current instruction. | 
|  | if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, | 
|  | SubAddIsThumb1)) { | 
|  | SubAdd = &*I; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Allow E (which was initially MI) to be SubAdd but do not search before E. | 
|  | if (I == E) | 
|  | break; | 
|  |  | 
|  | if (Instr.modifiesRegister(ARM::CPSR, TRI) || | 
|  | Instr.readsRegister(ARM::CPSR, TRI)) | 
|  | // This instruction modifies or uses CPSR after the one we want to | 
|  | // change. We can't do this transformation. | 
|  | return false; | 
|  |  | 
|  | if (I == B) { | 
|  | // In some cases, we scan the use-list of an instruction for an AND; | 
|  | // that AND is in the same BB, but may not be scheduled before the | 
|  | // corresponding TST.  In that case, bail out. | 
|  | // | 
|  | // FIXME: We could try to reschedule the AND. | 
|  | return false; | 
|  | } | 
|  | } while (true); | 
|  |  | 
|  | // Return false if no candidates exist. | 
|  | if (!MI && !SubAdd) | 
|  | return false; | 
|  |  | 
|  | // If we found a SubAdd, use it as it will be closer to the CMP | 
|  | if (SubAdd) { | 
|  | MI = SubAdd; | 
|  | IsThumb1 = SubAddIsThumb1; | 
|  | } | 
|  |  | 
|  | // We can't use a predicated instruction - it doesn't always write the flags. | 
|  | if (isPredicated(*MI)) | 
|  | return false; | 
|  |  | 
|  | // Scan forward for the use of CPSR | 
|  | // When checking against MI: if it's a conditional code that requires | 
|  | // checking of the V bit or C bit, then this is not safe to do. | 
|  | // It is safe to remove CmpInstr if CPSR is redefined or killed. | 
|  | // If we are done with the basic block, we need to check whether CPSR is | 
|  | // live-out. | 
|  | SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> | 
|  | OperandsToUpdate; | 
|  | bool isSafe = false; | 
|  | I = CmpInstr; | 
|  | E = CmpInstr.getParent()->end(); | 
|  | while (!isSafe && ++I != E) { | 
|  | const MachineInstr &Instr = *I; | 
|  | for (unsigned IO = 0, EO = Instr.getNumOperands(); | 
|  | !isSafe && IO != EO; ++IO) { | 
|  | const MachineOperand &MO = Instr.getOperand(IO); | 
|  | if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { | 
|  | isSafe = true; | 
|  | break; | 
|  | } | 
|  | if (!MO.isReg() || MO.getReg() != ARM::CPSR) | 
|  | continue; | 
|  | if (MO.isDef()) { | 
|  | isSafe = true; | 
|  | break; | 
|  | } | 
|  | // Condition code is after the operand before CPSR except for VSELs. | 
|  | ARMCC::CondCodes CC; | 
|  | bool IsInstrVSel = true; | 
|  | switch (Instr.getOpcode()) { | 
|  | default: | 
|  | IsInstrVSel = false; | 
|  | CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); | 
|  | break; | 
|  | case ARM::VSELEQD: | 
|  | case ARM::VSELEQS: | 
|  | case ARM::VSELEQH: | 
|  | CC = ARMCC::EQ; | 
|  | break; | 
|  | case ARM::VSELGTD: | 
|  | case ARM::VSELGTS: | 
|  | case ARM::VSELGTH: | 
|  | CC = ARMCC::GT; | 
|  | break; | 
|  | case ARM::VSELGED: | 
|  | case ARM::VSELGES: | 
|  | case ARM::VSELGEH: | 
|  | CC = ARMCC::GE; | 
|  | break; | 
|  | case ARM::VSELVSD: | 
|  | case ARM::VSELVSS: | 
|  | case ARM::VSELVSH: | 
|  | CC = ARMCC::VS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SubAdd) { | 
|  | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based | 
|  | // on CMP needs to be updated to be based on SUB. | 
|  | // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also | 
|  | // needs to be modified. | 
|  | // Push the condition code operands to OperandsToUpdate. | 
|  | // If it is safe to remove CmpInstr, the condition code of these | 
|  | // operands will be modified. | 
|  | unsigned Opc = SubAdd->getOpcode(); | 
|  | bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || | 
|  | Opc == ARM::SUBri || Opc == ARM::t2SUBri || | 
|  | Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || | 
|  | Opc == ARM::tSUBi8; | 
|  | unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; | 
|  | if (!IsSub || | 
|  | (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && | 
|  | SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { | 
|  | // VSel doesn't support condition code update. | 
|  | if (IsInstrVSel) | 
|  | return false; | 
|  | // Ensure we can swap the condition. | 
|  | ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); | 
|  | if (NewCC == ARMCC::AL) | 
|  | return false; | 
|  | OperandsToUpdate.push_back( | 
|  | std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); | 
|  | } | 
|  | } else { | 
|  | // No SubAdd, so this is x = <op> y, z; cmp x, 0. | 
|  | switch (CC) { | 
|  | case ARMCC::EQ: // Z | 
|  | case ARMCC::NE: // Z | 
|  | case ARMCC::MI: // N | 
|  | case ARMCC::PL: // N | 
|  | case ARMCC::AL: // none | 
|  | // CPSR can be used multiple times, we should continue. | 
|  | break; | 
|  | case ARMCC::HS: // C | 
|  | case ARMCC::LO: // C | 
|  | case ARMCC::VS: // V | 
|  | case ARMCC::VC: // V | 
|  | case ARMCC::HI: // C Z | 
|  | case ARMCC::LS: // C Z | 
|  | case ARMCC::GE: // N V | 
|  | case ARMCC::LT: // N V | 
|  | case ARMCC::GT: // Z N V | 
|  | case ARMCC::LE: // Z N V | 
|  | // The instruction uses the V bit or C bit which is not safe. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If CPSR is not killed nor re-defined, we should check whether it is | 
|  | // live-out. If it is live-out, do not optimize. | 
|  | if (!isSafe) { | 
|  | MachineBasicBlock *MBB = CmpInstr.getParent(); | 
|  | for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
|  | SE = MBB->succ_end(); SI != SE; ++SI) | 
|  | if ((*SI)->isLiveIn(ARM::CPSR)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always | 
|  | // set CPSR so this is represented as an explicit output) | 
|  | if (!IsThumb1) { | 
|  | MI->getOperand(5).setReg(ARM::CPSR); | 
|  | MI->getOperand(5).setIsDef(true); | 
|  | } | 
|  | assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); | 
|  | CmpInstr.eraseFromParent(); | 
|  |  | 
|  | // Modify the condition code of operands in OperandsToUpdate. | 
|  | // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to | 
|  | // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | 
|  | for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) | 
|  | OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); | 
|  |  | 
|  | MI->clearRegisterDeads(ARM::CPSR); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { | 
|  | // Do not sink MI if it might be used to optimize a redundant compare. | 
|  | // We heuristically only look at the instruction immediately following MI to | 
|  | // avoid potentially searching the entire basic block. | 
|  | if (isPredicated(MI)) | 
|  | return true; | 
|  | MachineBasicBlock::const_iterator Next = &MI; | 
|  | ++Next; | 
|  | unsigned SrcReg, SrcReg2; | 
|  | int CmpMask, CmpValue; | 
|  | bool IsThumb1; | 
|  | if (Next != MI.getParent()->end() && | 
|  | analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && | 
|  | isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, | 
|  | unsigned Reg, | 
|  | MachineRegisterInfo *MRI) const { | 
|  | // Fold large immediates into add, sub, or, xor. | 
|  | unsigned DefOpc = DefMI.getOpcode(); | 
|  | if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) | 
|  | return false; | 
|  | if (!DefMI.getOperand(1).isImm()) | 
|  | // Could be t2MOVi32imm @xx | 
|  | return false; | 
|  |  | 
|  | if (!MRI->hasOneNonDBGUse(Reg)) | 
|  | return false; | 
|  |  | 
|  | const MCInstrDesc &DefMCID = DefMI.getDesc(); | 
|  | if (DefMCID.hasOptionalDef()) { | 
|  | unsigned NumOps = DefMCID.getNumOperands(); | 
|  | const MachineOperand &MO = DefMI.getOperand(NumOps - 1); | 
|  | if (MO.getReg() == ARM::CPSR && !MO.isDead()) | 
|  | // If DefMI defines CPSR and it is not dead, it's obviously not safe | 
|  | // to delete DefMI. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &UseMCID = UseMI.getDesc(); | 
|  | if (UseMCID.hasOptionalDef()) { | 
|  | unsigned NumOps = UseMCID.getNumOperands(); | 
|  | if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) | 
|  | // If the instruction sets the flag, do not attempt this optimization | 
|  | // since it may change the semantics of the code. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned UseOpc = UseMI.getOpcode(); | 
|  | unsigned NewUseOpc = 0; | 
|  | uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); | 
|  | uint32_t SOImmValV1 = 0, SOImmValV2 = 0; | 
|  | bool Commute = false; | 
|  | switch (UseOpc) { | 
|  | default: return false; | 
|  | case ARM::SUBrr: | 
|  | case ARM::ADDrr: | 
|  | case ARM::ORRrr: | 
|  | case ARM::EORrr: | 
|  | case ARM::t2SUBrr: | 
|  | case ARM::t2ADDrr: | 
|  | case ARM::t2ORRrr: | 
|  | case ARM::t2EORrr: { | 
|  | Commute = UseMI.getOperand(2).getReg() != Reg; | 
|  | switch (UseOpc) { | 
|  | default: break; | 
|  | case ARM::ADDrr: | 
|  | case ARM::SUBrr: | 
|  | if (UseOpc == ARM::SUBrr && Commute) | 
|  | return false; | 
|  |  | 
|  | // ADD/SUB are special because they're essentially the same operation, so | 
|  | // we can handle a larger range of immediates. | 
|  | if (ARM_AM::isSOImmTwoPartVal(ImmVal)) | 
|  | NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; | 
|  | else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { | 
|  | ImmVal = -ImmVal; | 
|  | NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; | 
|  | } else | 
|  | return false; | 
|  | SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); | 
|  | SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); | 
|  | break; | 
|  | case ARM::ORRrr: | 
|  | case ARM::EORrr: | 
|  | if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) | 
|  | return false; | 
|  | SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); | 
|  | SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); | 
|  | switch (UseOpc) { | 
|  | default: break; | 
|  | case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; | 
|  | case ARM::EORrr: NewUseOpc = ARM::EORri; break; | 
|  | } | 
|  | break; | 
|  | case ARM::t2ADDrr: | 
|  | case ARM::t2SUBrr: { | 
|  | if (UseOpc == ARM::t2SUBrr && Commute) | 
|  | return false; | 
|  |  | 
|  | // ADD/SUB are special because they're essentially the same operation, so | 
|  | // we can handle a larger range of immediates. | 
|  | const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; | 
|  | const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; | 
|  | const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; | 
|  | if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) | 
|  | NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; | 
|  | else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { | 
|  | ImmVal = -ImmVal; | 
|  | NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; | 
|  | } else | 
|  | return false; | 
|  | SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); | 
|  | SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); | 
|  | break; | 
|  | } | 
|  | case ARM::t2ORRrr: | 
|  | case ARM::t2EORrr: | 
|  | if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) | 
|  | return false; | 
|  | SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); | 
|  | SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); | 
|  | switch (UseOpc) { | 
|  | default: break; | 
|  | case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; | 
|  | case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned OpIdx = Commute ? 2 : 1; | 
|  | Register Reg1 = UseMI.getOperand(OpIdx).getReg(); | 
|  | bool isKill = UseMI.getOperand(OpIdx).isKill(); | 
|  | const TargetRegisterClass *TRC = MRI->getRegClass(Reg); | 
|  | Register NewReg = MRI->createVirtualRegister(TRC); | 
|  | BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), | 
|  | NewReg) | 
|  | .addReg(Reg1, getKillRegState(isKill)) | 
|  | .addImm(SOImmValV1) | 
|  | .add(predOps(ARMCC::AL)) | 
|  | .add(condCodeOp()); | 
|  | UseMI.setDesc(get(NewUseOpc)); | 
|  | UseMI.getOperand(1).setReg(NewReg); | 
|  | UseMI.getOperand(1).setIsKill(); | 
|  | UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); | 
|  | DefMI.eraseFromParent(); | 
|  | // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. | 
|  | // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. | 
|  | // Then the below code will not be needed, as the input/output register | 
|  | // classes will be rgpr or gprSP. | 
|  | // For now, we fix the UseMI operand explicitly here: | 
|  | switch(NewUseOpc){ | 
|  | case ARM::t2ADDspImm: | 
|  | case ARM::t2SUBspImm: | 
|  | case ARM::t2ADDri: | 
|  | case ARM::t2SUBri: | 
|  | MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: { | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); | 
|  | assert(UOps >= 0 && "bad # UOps"); | 
|  | return UOps; | 
|  | } | 
|  |  | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: | 
|  | case ARM::STRrs: | 
|  | case ARM::STRBrs: { | 
|  | unsigned ShOpVal = MI.getOperand(3).getImm(); | 
|  | bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (!isSub && | 
|  | (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) | 
|  | return 1; | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | case ARM::LDRH: | 
|  | case ARM::STRH: { | 
|  | if (!MI.getOperand(2).getReg()) | 
|  | return 1; | 
|  |  | 
|  | unsigned ShOpVal = MI.getOperand(3).getImm(); | 
|  | bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (!isSub && | 
|  | (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) | 
|  | return 1; | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | case ARM::LDRSB: | 
|  | case ARM::LDRSH: | 
|  | return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; | 
|  |  | 
|  | case ARM::LDRSB_POST: | 
|  | case ARM::LDRSH_POST: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | return (Rt == Rm) ? 4 : 3; | 
|  | } | 
|  |  | 
|  | case ARM::LDR_PRE_REG: | 
|  | case ARM::LDRB_PRE_REG: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | if (Rt == Rm) | 
|  | return 3; | 
|  | unsigned ShOpVal = MI.getOperand(4).getImm(); | 
|  | bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (!isSub && | 
|  | (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) | 
|  | return 2; | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | case ARM::STR_PRE_REG: | 
|  | case ARM::STRB_PRE_REG: { | 
|  | unsigned ShOpVal = MI.getOperand(4).getImm(); | 
|  | bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (!isSub && | 
|  | (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) | 
|  | return 2; | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | case ARM::LDRH_PRE: | 
|  | case ARM::STRH_PRE: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | if (!Rm) | 
|  | return 2; | 
|  | if (Rt == Rm) | 
|  | return 3; | 
|  | return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; | 
|  | } | 
|  |  | 
|  | case ARM::LDR_POST_REG: | 
|  | case ARM::LDRB_POST_REG: | 
|  | case ARM::LDRH_POST: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | return (Rt == Rm) ? 3 : 2; | 
|  | } | 
|  |  | 
|  | case ARM::LDR_PRE_IMM: | 
|  | case ARM::LDRB_PRE_IMM: | 
|  | case ARM::LDR_POST_IMM: | 
|  | case ARM::LDRB_POST_IMM: | 
|  | case ARM::STRB_POST_IMM: | 
|  | case ARM::STRB_POST_REG: | 
|  | case ARM::STRB_PRE_IMM: | 
|  | case ARM::STRH_POST: | 
|  | case ARM::STR_POST_IMM: | 
|  | case ARM::STR_POST_REG: | 
|  | case ARM::STR_PRE_IMM: | 
|  | return 2; | 
|  |  | 
|  | case ARM::LDRSB_PRE: | 
|  | case ARM::LDRSH_PRE: { | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | if (Rm == 0) | 
|  | return 3; | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | if (Rt == Rm) | 
|  | return 4; | 
|  | unsigned ShOpVal = MI.getOperand(4).getImm(); | 
|  | bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (!isSub && | 
|  | (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) | 
|  | return 3; | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | case ARM::LDRD: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rn = MI.getOperand(2).getReg(); | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | if (Rm) | 
|  | return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 | 
|  | : 3; | 
|  | return (Rt == Rn) ? 3 : 2; | 
|  | } | 
|  |  | 
|  | case ARM::STRD: { | 
|  | Register Rm = MI.getOperand(3).getReg(); | 
|  | if (Rm) | 
|  | return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 | 
|  | : 3; | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | case ARM::LDRD_POST: | 
|  | case ARM::t2LDRD_POST: | 
|  | return 3; | 
|  |  | 
|  | case ARM::STRD_POST: | 
|  | case ARM::t2STRD_POST: | 
|  | return 4; | 
|  |  | 
|  | case ARM::LDRD_PRE: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rn = MI.getOperand(3).getReg(); | 
|  | Register Rm = MI.getOperand(4).getReg(); | 
|  | if (Rm) | 
|  | return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 | 
|  | : 4; | 
|  | return (Rt == Rn) ? 4 : 3; | 
|  | } | 
|  |  | 
|  | case ARM::t2LDRD_PRE: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rn = MI.getOperand(3).getReg(); | 
|  | return (Rt == Rn) ? 4 : 3; | 
|  | } | 
|  |  | 
|  | case ARM::STRD_PRE: { | 
|  | Register Rm = MI.getOperand(4).getReg(); | 
|  | if (Rm) | 
|  | return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 | 
|  | : 4; | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | case ARM::t2STRD_PRE: | 
|  | return 3; | 
|  |  | 
|  | case ARM::t2LDR_POST: | 
|  | case ARM::t2LDRB_POST: | 
|  | case ARM::t2LDRB_PRE: | 
|  | case ARM::t2LDRSBi12: | 
|  | case ARM::t2LDRSBi8: | 
|  | case ARM::t2LDRSBpci: | 
|  | case ARM::t2LDRSBs: | 
|  | case ARM::t2LDRH_POST: | 
|  | case ARM::t2LDRH_PRE: | 
|  | case ARM::t2LDRSBT: | 
|  | case ARM::t2LDRSB_POST: | 
|  | case ARM::t2LDRSB_PRE: | 
|  | case ARM::t2LDRSH_POST: | 
|  | case ARM::t2LDRSH_PRE: | 
|  | case ARM::t2LDRSHi12: | 
|  | case ARM::t2LDRSHi8: | 
|  | case ARM::t2LDRSHpci: | 
|  | case ARM::t2LDRSHs: | 
|  | return 2; | 
|  |  | 
|  | case ARM::t2LDRDi8: { | 
|  | Register Rt = MI.getOperand(0).getReg(); | 
|  | Register Rn = MI.getOperand(2).getReg(); | 
|  | return (Rt == Rn) ? 3 : 2; | 
|  | } | 
|  |  | 
|  | case ARM::t2STRB_POST: | 
|  | case ARM::t2STRB_PRE: | 
|  | case ARM::t2STRBs: | 
|  | case ARM::t2STRDi8: | 
|  | case ARM::t2STRH_POST: | 
|  | case ARM::t2STRH_PRE: | 
|  | case ARM::t2STRHs: | 
|  | case ARM::t2STR_POST: | 
|  | case ARM::t2STR_PRE: | 
|  | case ARM::t2STRs: | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the number of 32-bit words loaded by LDM or stored by STM. If this | 
|  | // can't be easily determined return 0 (missing MachineMemOperand). | 
|  | // | 
|  | // FIXME: The current MachineInstr design does not support relying on machine | 
|  | // mem operands to determine the width of a memory access. Instead, we expect | 
|  | // the target to provide this information based on the instruction opcode and | 
|  | // operands. However, using MachineMemOperand is the best solution now for | 
|  | // two reasons: | 
|  | // | 
|  | // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI | 
|  | // operands. This is much more dangerous than using the MachineMemOperand | 
|  | // sizes because CodeGen passes can insert/remove optional machine operands. In | 
|  | // fact, it's totally incorrect for preRA passes and appears to be wrong for | 
|  | // postRA passes as well. | 
|  | // | 
|  | // 2) getNumLDMAddresses is only used by the scheduling machine model and any | 
|  | // machine model that calls this should handle the unknown (zero size) case. | 
|  | // | 
|  | // Long term, we should require a target hook that verifies MachineMemOperand | 
|  | // sizes during MC lowering. That target hook should be local to MC lowering | 
|  | // because we can't ensure that it is aware of other MI forms. Doing this will | 
|  | // ensure that MachineMemOperands are correctly propagated through all passes. | 
|  | unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { | 
|  | unsigned Size = 0; | 
|  | for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), | 
|  | E = MI.memoperands_end(); | 
|  | I != E; ++I) { | 
|  | Size += (*I)->getSize(); | 
|  | } | 
|  | // FIXME: The scheduler currently can't handle values larger than 16. But | 
|  | // the values can actually go up to 32 for floating-point load/store | 
|  | // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory | 
|  | // operations isn't right; we could end up with "extra" memory operands for | 
|  | // various reasons, like tail merge merging two memory operations. | 
|  | return std::min(Size / 4, 16U); | 
|  | } | 
|  |  | 
|  | static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, | 
|  | unsigned NumRegs) { | 
|  | unsigned UOps = 1 + NumRegs; // 1 for address computation. | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | case ARM::VLDMDIA_UPD: | 
|  | case ARM::VLDMDDB_UPD: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | case ARM::VSTMDIA_UPD: | 
|  | case ARM::VSTMDDB_UPD: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: | 
|  | case ARM::LDMIA_UPD: | 
|  | case ARM::LDMDA_UPD: | 
|  | case ARM::LDMDB_UPD: | 
|  | case ARM::LDMIB_UPD: | 
|  | case ARM::STMIA_UPD: | 
|  | case ARM::STMDA_UPD: | 
|  | case ARM::STMDB_UPD: | 
|  | case ARM::STMIB_UPD: | 
|  | case ARM::tLDMIA_UPD: | 
|  | case ARM::tSTMIA_UPD: | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | case ARM::t2STMIA_UPD: | 
|  | case ARM::t2STMDB_UPD: | 
|  | ++UOps; // One for base register writeback. | 
|  | break; | 
|  | case ARM::LDMIA_RET: | 
|  | case ARM::tPOP_RET: | 
|  | case ARM::t2LDMIA_RET: | 
|  | UOps += 2; // One for base reg wb, one for write to pc. | 
|  | break; | 
|  | } | 
|  | return UOps; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | unsigned Class = Desc.getSchedClass(); | 
|  | int ItinUOps = ItinData->getNumMicroOps(Class); | 
|  | if (ItinUOps >= 0) { | 
|  | if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) | 
|  | return getNumMicroOpsSwiftLdSt(ItinData, MI); | 
|  |  | 
|  | return ItinUOps; | 
|  | } | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected multi-uops instruction!"); | 
|  | case ARM::VLDMQIA: | 
|  | case ARM::VSTMQIA: | 
|  | return 2; | 
|  |  | 
|  | // The number of uOps for load / store multiple are determined by the number | 
|  | // registers. | 
|  | // | 
|  | // On Cortex-A8, each pair of register loads / stores can be scheduled on the | 
|  | // same cycle. The scheduling for the first load / store must be done | 
|  | // separately by assuming the address is not 64-bit aligned. | 
|  | // | 
|  | // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address | 
|  | // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON | 
|  | // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. | 
|  | case ARM::VLDMDIA: | 
|  | case ARM::VLDMDIA_UPD: | 
|  | case ARM::VLDMDDB_UPD: | 
|  | case ARM::VLDMSIA: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | case ARM::VSTMDIA: | 
|  | case ARM::VSTMDIA_UPD: | 
|  | case ARM::VSTMDDB_UPD: | 
|  | case ARM::VSTMSIA: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: { | 
|  | unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); | 
|  | return (NumRegs / 2) + (NumRegs % 2) + 1; | 
|  | } | 
|  |  | 
|  | case ARM::LDMIA_RET: | 
|  | case ARM::LDMIA: | 
|  | case ARM::LDMDA: | 
|  | case ARM::LDMDB: | 
|  | case ARM::LDMIB: | 
|  | case ARM::LDMIA_UPD: | 
|  | case ARM::LDMDA_UPD: | 
|  | case ARM::LDMDB_UPD: | 
|  | case ARM::LDMIB_UPD: | 
|  | case ARM::STMIA: | 
|  | case ARM::STMDA: | 
|  | case ARM::STMDB: | 
|  | case ARM::STMIB: | 
|  | case ARM::STMIA_UPD: | 
|  | case ARM::STMDA_UPD: | 
|  | case ARM::STMDB_UPD: | 
|  | case ARM::STMIB_UPD: | 
|  | case ARM::tLDMIA: | 
|  | case ARM::tLDMIA_UPD: | 
|  | case ARM::tSTMIA_UPD: | 
|  | case ARM::tPOP_RET: | 
|  | case ARM::tPOP: | 
|  | case ARM::tPUSH: | 
|  | case ARM::t2LDMIA_RET: | 
|  | case ARM::t2LDMIA: | 
|  | case ARM::t2LDMDB: | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | case ARM::t2STMIA: | 
|  | case ARM::t2STMDB: | 
|  | case ARM::t2STMIA_UPD: | 
|  | case ARM::t2STMDB_UPD: { | 
|  | unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; | 
|  | switch (Subtarget.getLdStMultipleTiming()) { | 
|  | case ARMSubtarget::SingleIssuePlusExtras: | 
|  | return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); | 
|  | case ARMSubtarget::SingleIssue: | 
|  | // Assume the worst. | 
|  | return NumRegs; | 
|  | case ARMSubtarget::DoubleIssue: { | 
|  | if (NumRegs < 4) | 
|  | return 2; | 
|  | // 4 registers would be issued: 2, 2. | 
|  | // 5 registers would be issued: 2, 2, 1. | 
|  | unsigned UOps = (NumRegs / 2); | 
|  | if (NumRegs % 2) | 
|  | ++UOps; | 
|  | return UOps; | 
|  | } | 
|  | case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { | 
|  | unsigned UOps = (NumRegs / 2); | 
|  | // If there are odd number of registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra AGU (Address Generation Unit) cycle. | 
|  | if ((NumRegs % 2) || !MI.hasOneMemOperand() || | 
|  | (*MI.memoperands_begin())->getAlignment() < 8) | 
|  | ++UOps; | 
|  | return UOps; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Didn't find the number of microops"); | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &DefMCID, | 
|  | unsigned DefClass, | 
|  | unsigned DefIdx, unsigned DefAlign) const { | 
|  | int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | // Def is the address writeback. | 
|  | return ItinData->getOperandCycle(DefClass, DefIdx); | 
|  |  | 
|  | int DefCycle; | 
|  | if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { | 
|  | // (regno / 2) + (regno % 2) + 1 | 
|  | DefCycle = RegNo / 2 + 1; | 
|  | if (RegNo % 2) | 
|  | ++DefCycle; | 
|  | } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { | 
|  | DefCycle = RegNo; | 
|  | bool isSLoad = false; | 
|  |  | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VLDMSIA: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | isSLoad = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are odd number of 'S' registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra cycle. | 
|  | if ((isSLoad && (RegNo % 2)) || DefAlign < 8) | 
|  | ++DefCycle; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | DefCycle = RegNo + 2; | 
|  | } | 
|  |  | 
|  | return DefCycle; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { | 
|  | Register BaseReg = MI.getOperand(0).getReg(); | 
|  | for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { | 
|  | const auto &Op = MI.getOperand(i); | 
|  | if (Op.isReg() && Op.getReg() == BaseReg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | unsigned | 
|  | ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { | 
|  | // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops | 
|  | // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) | 
|  | return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &DefMCID, | 
|  | unsigned DefClass, | 
|  | unsigned DefIdx, unsigned DefAlign) const { | 
|  | int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | // Def is the address writeback. | 
|  | return ItinData->getOperandCycle(DefClass, DefIdx); | 
|  |  | 
|  | int DefCycle; | 
|  | if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { | 
|  | // 4 registers would be issued: 1, 2, 1. | 
|  | // 5 registers would be issued: 1, 2, 2. | 
|  | DefCycle = RegNo / 2; | 
|  | if (DefCycle < 1) | 
|  | DefCycle = 1; | 
|  | // Result latency is issue cycle + 2: E2. | 
|  | DefCycle += 2; | 
|  | } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { | 
|  | DefCycle = (RegNo / 2); | 
|  | // If there are odd number of registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra AGU (Address Generation Unit) cycle. | 
|  | if ((RegNo % 2) || DefAlign < 8) | 
|  | ++DefCycle; | 
|  | // Result latency is AGU cycles + 2. | 
|  | DefCycle += 2; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | DefCycle = RegNo + 2; | 
|  | } | 
|  |  | 
|  | return DefCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &UseMCID, | 
|  | unsigned UseClass, | 
|  | unsigned UseIdx, unsigned UseAlign) const { | 
|  | int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | return ItinData->getOperandCycle(UseClass, UseIdx); | 
|  |  | 
|  | int UseCycle; | 
|  | if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { | 
|  | // (regno / 2) + (regno % 2) + 1 | 
|  | UseCycle = RegNo / 2 + 1; | 
|  | if (RegNo % 2) | 
|  | ++UseCycle; | 
|  | } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { | 
|  | UseCycle = RegNo; | 
|  | bool isSStore = false; | 
|  |  | 
|  | switch (UseMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VSTMSIA: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: | 
|  | isSStore = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are odd number of 'S' registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra cycle. | 
|  | if ((isSStore && (RegNo % 2)) || UseAlign < 8) | 
|  | ++UseCycle; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | UseCycle = RegNo + 2; | 
|  | } | 
|  |  | 
|  | return UseCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &UseMCID, | 
|  | unsigned UseClass, | 
|  | unsigned UseIdx, unsigned UseAlign) const { | 
|  | int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | return ItinData->getOperandCycle(UseClass, UseIdx); | 
|  |  | 
|  | int UseCycle; | 
|  | if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { | 
|  | UseCycle = RegNo / 2; | 
|  | if (UseCycle < 2) | 
|  | UseCycle = 2; | 
|  | // Read in E3. | 
|  | UseCycle += 2; | 
|  | } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { | 
|  | UseCycle = (RegNo / 2); | 
|  | // If there are odd number of registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra AGU (Address Generation Unit) cycle. | 
|  | if ((RegNo % 2) || UseAlign < 8) | 
|  | ++UseCycle; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | UseCycle = 1; | 
|  | } | 
|  | return UseCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &DefMCID, | 
|  | unsigned DefIdx, unsigned DefAlign, | 
|  | const MCInstrDesc &UseMCID, | 
|  | unsigned UseIdx, unsigned UseAlign) const { | 
|  | unsigned DefClass = DefMCID.getSchedClass(); | 
|  | unsigned UseClass = UseMCID.getSchedClass(); | 
|  |  | 
|  | if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) | 
|  | return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
|  |  | 
|  | // This may be a def / use of a variable_ops instruction, the operand | 
|  | // latency might be determinable dynamically. Let the target try to | 
|  | // figure it out. | 
|  | int DefCycle = -1; | 
|  | bool LdmBypass = false; | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: | 
|  | DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | break; | 
|  |  | 
|  | case ARM::VLDMDIA: | 
|  | case ARM::VLDMDIA_UPD: | 
|  | case ARM::VLDMDDB_UPD: | 
|  | case ARM::VLDMSIA: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); | 
|  | break; | 
|  |  | 
|  | case ARM::LDMIA_RET: | 
|  | case ARM::LDMIA: | 
|  | case ARM::LDMDA: | 
|  | case ARM::LDMDB: | 
|  | case ARM::LDMIB: | 
|  | case ARM::LDMIA_UPD: | 
|  | case ARM::LDMDA_UPD: | 
|  | case ARM::LDMDB_UPD: | 
|  | case ARM::LDMIB_UPD: | 
|  | case ARM::tLDMIA: | 
|  | case ARM::tLDMIA_UPD: | 
|  | case ARM::tPUSH: | 
|  | case ARM::t2LDMIA_RET: | 
|  | case ARM::t2LDMIA: | 
|  | case ARM::t2LDMDB: | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | LdmBypass = true; | 
|  | DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (DefCycle == -1) | 
|  | // We can't seem to determine the result latency of the def, assume it's 2. | 
|  | DefCycle = 2; | 
|  |  | 
|  | int UseCycle = -1; | 
|  | switch (UseMCID.getOpcode()) { | 
|  | default: | 
|  | UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); | 
|  | break; | 
|  |  | 
|  | case ARM::VSTMDIA: | 
|  | case ARM::VSTMDIA_UPD: | 
|  | case ARM::VSTMDDB_UPD: | 
|  | case ARM::VSTMSIA: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: | 
|  | UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); | 
|  | break; | 
|  |  | 
|  | case ARM::STMIA: | 
|  | case ARM::STMDA: | 
|  | case ARM::STMDB: | 
|  | case ARM::STMIB: | 
|  | case ARM::STMIA_UPD: | 
|  | case ARM::STMDA_UPD: | 
|  | case ARM::STMDB_UPD: | 
|  | case ARM::STMIB_UPD: | 
|  | case ARM::tSTMIA_UPD: | 
|  | case ARM::tPOP_RET: | 
|  | case ARM::tPOP: | 
|  | case ARM::t2STMIA: | 
|  | case ARM::t2STMDB: | 
|  | case ARM::t2STMIA_UPD: | 
|  | case ARM::t2STMDB_UPD: | 
|  | UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (UseCycle == -1) | 
|  | // Assume it's read in the first stage. | 
|  | UseCycle = 1; | 
|  |  | 
|  | UseCycle = DefCycle - UseCycle + 1; | 
|  | if (UseCycle > 0) { | 
|  | if (LdmBypass) { | 
|  | // It's a variable_ops instruction so we can't use DefIdx here. Just use | 
|  | // first def operand. | 
|  | if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, | 
|  | UseClass, UseIdx)) | 
|  | --UseCycle; | 
|  | } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, | 
|  | UseClass, UseIdx)) { | 
|  | --UseCycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | return UseCycle; | 
|  | } | 
|  |  | 
|  | static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, | 
|  | const MachineInstr *MI, unsigned Reg, | 
|  | unsigned &DefIdx, unsigned &Dist) { | 
|  | Dist = 0; | 
|  |  | 
|  | MachineBasicBlock::const_iterator I = MI; ++I; | 
|  | MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); | 
|  | assert(II->isInsideBundle() && "Empty bundle?"); | 
|  |  | 
|  | int Idx = -1; | 
|  | while (II->isInsideBundle()) { | 
|  | Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); | 
|  | if (Idx != -1) | 
|  | break; | 
|  | --II; | 
|  | ++Dist; | 
|  | } | 
|  |  | 
|  | assert(Idx != -1 && "Cannot find bundled definition!"); | 
|  | DefIdx = Idx; | 
|  | return &*II; | 
|  | } | 
|  |  | 
|  | static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, | 
|  | const MachineInstr &MI, unsigned Reg, | 
|  | unsigned &UseIdx, unsigned &Dist) { | 
|  | Dist = 0; | 
|  |  | 
|  | MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); | 
|  | assert(II->isInsideBundle() && "Empty bundle?"); | 
|  | MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); | 
|  |  | 
|  | // FIXME: This doesn't properly handle multiple uses. | 
|  | int Idx = -1; | 
|  | while (II != E && II->isInsideBundle()) { | 
|  | Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); | 
|  | if (Idx != -1) | 
|  | break; | 
|  | if (II->getOpcode() != ARM::t2IT) | 
|  | ++Dist; | 
|  | ++II; | 
|  | } | 
|  |  | 
|  | if (Idx == -1) { | 
|  | Dist = 0; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UseIdx = Idx; | 
|  | return &*II; | 
|  | } | 
|  |  | 
|  | /// Return the number of cycles to add to (or subtract from) the static | 
|  | /// itinerary based on the def opcode and alignment. The caller will ensure that | 
|  | /// adjusted latency is at least one cycle. | 
|  | static int adjustDefLatency(const ARMSubtarget &Subtarget, | 
|  | const MachineInstr &DefMI, | 
|  | const MCInstrDesc &DefMCID, unsigned DefAlign) { | 
|  | int Adjust = 0; | 
|  | if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { | 
|  | // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] | 
|  | // variants are one cycle cheaper. | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: { | 
|  | unsigned ShOpVal = DefMI.getOperand(3).getImm(); | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (ShImm == 0 || | 
|  | (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) | 
|  | --Adjust; | 
|  | break; | 
|  | } | 
|  | case ARM::t2LDRs: | 
|  | case ARM::t2LDRBs: | 
|  | case ARM::t2LDRHs: | 
|  | case ARM::t2LDRSHs: { | 
|  | // Thumb2 mode: lsl only. | 
|  | unsigned ShAmt = DefMI.getOperand(3).getImm(); | 
|  | if (ShAmt == 0 || ShAmt == 2) | 
|  | --Adjust; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (Subtarget.isSwift()) { | 
|  | // FIXME: Properly handle all of the latency adjustments for address | 
|  | // writeback. | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: { | 
|  | unsigned ShOpVal = DefMI.getOperand(3).getImm(); | 
|  | bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (!isSub && | 
|  | (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) | 
|  | Adjust -= 2; | 
|  | else if (!isSub && | 
|  | ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) | 
|  | --Adjust; | 
|  | break; | 
|  | } | 
|  | case ARM::t2LDRs: | 
|  | case ARM::t2LDRBs: | 
|  | case ARM::t2LDRHs: | 
|  | case ARM::t2LDRSHs: { | 
|  | // Thumb2 mode: lsl only. | 
|  | unsigned ShAmt = DefMI.getOperand(3).getImm(); | 
|  | if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) | 
|  | Adjust -= 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VLD1q8: | 
|  | case ARM::VLD1q16: | 
|  | case ARM::VLD1q32: | 
|  | case ARM::VLD1q64: | 
|  | case ARM::VLD1q8wb_fixed: | 
|  | case ARM::VLD1q16wb_fixed: | 
|  | case ARM::VLD1q32wb_fixed: | 
|  | case ARM::VLD1q64wb_fixed: | 
|  | case ARM::VLD1q8wb_register: | 
|  | case ARM::VLD1q16wb_register: | 
|  | case ARM::VLD1q32wb_register: | 
|  | case ARM::VLD1q64wb_register: | 
|  | case ARM::VLD2d8: | 
|  | case ARM::VLD2d16: | 
|  | case ARM::VLD2d32: | 
|  | case ARM::VLD2q8: | 
|  | case ARM::VLD2q16: | 
|  | case ARM::VLD2q32: | 
|  | case ARM::VLD2d8wb_fixed: | 
|  | case ARM::VLD2d16wb_fixed: | 
|  | case ARM::VLD2d32wb_fixed: | 
|  | case ARM::VLD2q8wb_fixed: | 
|  | case ARM::VLD2q16wb_fixed: | 
|  | case ARM::VLD2q32wb_fixed: | 
|  | case ARM::VLD2d8wb_register: | 
|  | case ARM::VLD2d16wb_register: | 
|  | case ARM::VLD2d32wb_register: | 
|  | case ARM::VLD2q8wb_register: | 
|  | case ARM::VLD2q16wb_register: | 
|  | case ARM::VLD2q32wb_register: | 
|  | case ARM::VLD3d8: | 
|  | case ARM::VLD3d16: | 
|  | case ARM::VLD3d32: | 
|  | case ARM::VLD1d64T: | 
|  | case ARM::VLD3d8_UPD: | 
|  | case ARM::VLD3d16_UPD: | 
|  | case ARM::VLD3d32_UPD: | 
|  | case ARM::VLD1d64Twb_fixed: | 
|  | case ARM::VLD1d64Twb_register: | 
|  | case ARM::VLD3q8_UPD: | 
|  | case ARM::VLD3q16_UPD: | 
|  | case ARM::VLD3q32_UPD: | 
|  | case ARM::VLD4d8: | 
|  | case ARM::VLD4d16: | 
|  | case ARM::VLD4d32: | 
|  | case ARM::VLD1d64Q: | 
|  | case ARM::VLD4d8_UPD: | 
|  | case ARM::VLD4d16_UPD: | 
|  | case ARM::VLD4d32_UPD: | 
|  | case ARM::VLD1d64Qwb_fixed: | 
|  | case ARM::VLD1d64Qwb_register: | 
|  | case ARM::VLD4q8_UPD: | 
|  | case ARM::VLD4q16_UPD: | 
|  | case ARM::VLD4q32_UPD: | 
|  | case ARM::VLD1DUPq8: | 
|  | case ARM::VLD1DUPq16: | 
|  | case ARM::VLD1DUPq32: | 
|  | case ARM::VLD1DUPq8wb_fixed: | 
|  | case ARM::VLD1DUPq16wb_fixed: | 
|  | case ARM::VLD1DUPq32wb_fixed: | 
|  | case ARM::VLD1DUPq8wb_register: | 
|  | case ARM::VLD1DUPq16wb_register: | 
|  | case ARM::VLD1DUPq32wb_register: | 
|  | case ARM::VLD2DUPd8: | 
|  | case ARM::VLD2DUPd16: | 
|  | case ARM::VLD2DUPd32: | 
|  | case ARM::VLD2DUPd8wb_fixed: | 
|  | case ARM::VLD2DUPd16wb_fixed: | 
|  | case ARM::VLD2DUPd32wb_fixed: | 
|  | case ARM::VLD2DUPd8wb_register: | 
|  | case ARM::VLD2DUPd16wb_register: | 
|  | case ARM::VLD2DUPd32wb_register: | 
|  | case ARM::VLD4DUPd8: | 
|  | case ARM::VLD4DUPd16: | 
|  | case ARM::VLD4DUPd32: | 
|  | case ARM::VLD4DUPd8_UPD: | 
|  | case ARM::VLD4DUPd16_UPD: | 
|  | case ARM::VLD4DUPd32_UPD: | 
|  | case ARM::VLD1LNd8: | 
|  | case ARM::VLD1LNd16: | 
|  | case ARM::VLD1LNd32: | 
|  | case ARM::VLD1LNd8_UPD: | 
|  | case ARM::VLD1LNd16_UPD: | 
|  | case ARM::VLD1LNd32_UPD: | 
|  | case ARM::VLD2LNd8: | 
|  | case ARM::VLD2LNd16: | 
|  | case ARM::VLD2LNd32: | 
|  | case ARM::VLD2LNq16: | 
|  | case ARM::VLD2LNq32: | 
|  | case ARM::VLD2LNd8_UPD: | 
|  | case ARM::VLD2LNd16_UPD: | 
|  | case ARM::VLD2LNd32_UPD: | 
|  | case ARM::VLD2LNq16_UPD: | 
|  | case ARM::VLD2LNq32_UPD: | 
|  | case ARM::VLD4LNd8: | 
|  | case ARM::VLD4LNd16: | 
|  | case ARM::VLD4LNd32: | 
|  | case ARM::VLD4LNq16: | 
|  | case ARM::VLD4LNq32: | 
|  | case ARM::VLD4LNd8_UPD: | 
|  | case ARM::VLD4LNd16_UPD: | 
|  | case ARM::VLD4LNd32_UPD: | 
|  | case ARM::VLD4LNq16_UPD: | 
|  | case ARM::VLD4LNq32_UPD: | 
|  | // If the address is not 64-bit aligned, the latencies of these | 
|  | // instructions increases by one. | 
|  | ++Adjust; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return Adjust; | 
|  | } | 
|  |  | 
|  | int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | // No operand latency. The caller may fall back to getInstrLatency. | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return -1; | 
|  |  | 
|  | const MachineOperand &DefMO = DefMI.getOperand(DefIdx); | 
|  | Register Reg = DefMO.getReg(); | 
|  |  | 
|  | const MachineInstr *ResolvedDefMI = &DefMI; | 
|  | unsigned DefAdj = 0; | 
|  | if (DefMI.isBundle()) | 
|  | ResolvedDefMI = | 
|  | getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); | 
|  | if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || | 
|  | ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const MachineInstr *ResolvedUseMI = &UseMI; | 
|  | unsigned UseAdj = 0; | 
|  | if (UseMI.isBundle()) { | 
|  | ResolvedUseMI = | 
|  | getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); | 
|  | if (!ResolvedUseMI) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return getOperandLatencyImpl( | 
|  | ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, | 
|  | Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); | 
|  | } | 
|  |  | 
|  | int ARMBaseInstrInfo::getOperandLatencyImpl( | 
|  | const InstrItineraryData *ItinData, const MachineInstr &DefMI, | 
|  | unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, | 
|  | const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, | 
|  | unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { | 
|  | if (Reg == ARM::CPSR) { | 
|  | if (DefMI.getOpcode() == ARM::FMSTAT) { | 
|  | // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) | 
|  | return Subtarget.isLikeA9() ? 1 : 20; | 
|  | } | 
|  |  | 
|  | // CPSR set and branch can be paired in the same cycle. | 
|  | if (UseMI.isBranch()) | 
|  | return 0; | 
|  |  | 
|  | // Otherwise it takes the instruction latency (generally one). | 
|  | unsigned Latency = getInstrLatency(ItinData, DefMI); | 
|  |  | 
|  | // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to | 
|  | // its uses. Instructions which are otherwise scheduled between them may | 
|  | // incur a code size penalty (not able to use the CPSR setting 16-bit | 
|  | // instructions). | 
|  | if (Latency > 0 && Subtarget.isThumb2()) { | 
|  | const MachineFunction *MF = DefMI.getParent()->getParent(); | 
|  | // FIXME: Use Function::hasOptSize(). | 
|  | if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) | 
|  | --Latency; | 
|  | } | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) | 
|  | return -1; | 
|  |  | 
|  | unsigned DefAlign = DefMI.hasOneMemOperand() | 
|  | ? (*DefMI.memoperands_begin())->getAlignment() | 
|  | : 0; | 
|  | unsigned UseAlign = UseMI.hasOneMemOperand() | 
|  | ? (*UseMI.memoperands_begin())->getAlignment() | 
|  | : 0; | 
|  |  | 
|  | // Get the itinerary's latency if possible, and handle variable_ops. | 
|  | int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, | 
|  | UseIdx, UseAlign); | 
|  | // Unable to find operand latency. The caller may resort to getInstrLatency. | 
|  | if (Latency < 0) | 
|  | return Latency; | 
|  |  | 
|  | // Adjust for IT block position. | 
|  | int Adj = DefAdj + UseAdj; | 
|  |  | 
|  | // Adjust for dynamic def-side opcode variants not captured by the itinerary. | 
|  | Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); | 
|  | if (Adj >= 0 || (int)Latency > -Adj) { | 
|  | return Latency + Adj; | 
|  | } | 
|  | // Return the itinerary latency, which may be zero but not less than zero. | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *DefNode, unsigned DefIdx, | 
|  | SDNode *UseNode, unsigned UseIdx) const { | 
|  | if (!DefNode->isMachineOpcode()) | 
|  | return 1; | 
|  |  | 
|  | const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); | 
|  |  | 
|  | if (isZeroCost(DefMCID.Opcode)) | 
|  | return 0; | 
|  |  | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return DefMCID.mayLoad() ? 3 : 1; | 
|  |  | 
|  | if (!UseNode->isMachineOpcode()) { | 
|  | int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); | 
|  | int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); | 
|  | int Threshold = 1 + Adj; | 
|  | return Latency <= Threshold ? 1 : Latency - Adj; | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); | 
|  | auto *DefMN = cast<MachineSDNode>(DefNode); | 
|  | unsigned DefAlign = !DefMN->memoperands_empty() | 
|  | ? (*DefMN->memoperands_begin())->getAlignment() : 0; | 
|  | auto *UseMN = cast<MachineSDNode>(UseNode); | 
|  | unsigned UseAlign = !UseMN->memoperands_empty() | 
|  | ? (*UseMN->memoperands_begin())->getAlignment() : 0; | 
|  | int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, | 
|  | UseMCID, UseIdx, UseAlign); | 
|  |  | 
|  | if (Latency > 1 && | 
|  | (Subtarget.isCortexA8() || Subtarget.isLikeA9() || | 
|  | Subtarget.isCortexA7())) { | 
|  | // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] | 
|  | // variants are one cycle cheaper. | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: { | 
|  | unsigned ShOpVal = | 
|  | cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (ShImm == 0 || | 
|  | (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | case ARM::t2LDRs: | 
|  | case ARM::t2LDRBs: | 
|  | case ARM::t2LDRHs: | 
|  | case ARM::t2LDRSHs: { | 
|  | // Thumb2 mode: lsl only. | 
|  | unsigned ShAmt = | 
|  | cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); | 
|  | if (ShAmt == 0 || ShAmt == 2) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { | 
|  | // FIXME: Properly handle all of the latency adjustments for address | 
|  | // writeback. | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: { | 
|  | unsigned ShOpVal = | 
|  | cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (ShImm == 0 || | 
|  | ((ShImm == 1 || ShImm == 2 || ShImm == 3) && | 
|  | ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) | 
|  | Latency -= 2; | 
|  | else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | case ARM::t2LDRs: | 
|  | case ARM::t2LDRBs: | 
|  | case ARM::t2LDRHs: | 
|  | case ARM::t2LDRSHs: | 
|  | // Thumb2 mode: lsl 0-3 only. | 
|  | Latency -= 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VLD1q8: | 
|  | case ARM::VLD1q16: | 
|  | case ARM::VLD1q32: | 
|  | case ARM::VLD1q64: | 
|  | case ARM::VLD1q8wb_register: | 
|  | case ARM::VLD1q16wb_register: | 
|  | case ARM::VLD1q32wb_register: | 
|  | case ARM::VLD1q64wb_register: | 
|  | case ARM::VLD1q8wb_fixed: | 
|  | case ARM::VLD1q16wb_fixed: | 
|  | case ARM::VLD1q32wb_fixed: | 
|  | case ARM::VLD1q64wb_fixed: | 
|  | case ARM::VLD2d8: | 
|  | case ARM::VLD2d16: | 
|  | case ARM::VLD2d32: | 
|  | case ARM::VLD2q8Pseudo: | 
|  | case ARM::VLD2q16Pseudo: | 
|  | case ARM::VLD2q32Pseudo: | 
|  | case ARM::VLD2d8wb_fixed: | 
|  | case ARM::VLD2d16wb_fixed: | 
|  | case ARM::VLD2d32wb_fixed: | 
|  | case ARM::VLD2q8PseudoWB_fixed: | 
|  | case ARM::VLD2q16PseudoWB_fixed: | 
|  | case ARM::VLD2q32PseudoWB_fixed: | 
|  | case ARM::VLD2d8wb_register: | 
|  | case ARM::VLD2d16wb_register: | 
|  | case ARM::VLD2d32wb_register: | 
|  | case ARM::VLD2q8PseudoWB_register: | 
|  | case ARM::VLD2q16PseudoWB_register: | 
|  | case ARM::VLD2q32PseudoWB_register: | 
|  | case ARM::VLD3d8Pseudo: | 
|  | case ARM::VLD3d16Pseudo: | 
|  | case ARM::VLD3d32Pseudo: | 
|  | case ARM::VLD1d8TPseudo: | 
|  | case ARM::VLD1d16TPseudo: | 
|  | case ARM::VLD1d32TPseudo: | 
|  | case ARM::VLD1d64TPseudo: | 
|  | case ARM::VLD1d64TPseudoWB_fixed: | 
|  | case ARM::VLD1d64TPseudoWB_register: | 
|  | case ARM::VLD3d8Pseudo_UPD: | 
|  | case ARM::VLD3d16Pseudo_UPD: | 
|  | case ARM::VLD3d32Pseudo_UPD: | 
|  | case ARM::VLD3q8Pseudo_UPD: | 
|  | case ARM::VLD3q16Pseudo_UPD: | 
|  | case ARM::VLD3q32Pseudo_UPD: | 
|  | case ARM::VLD3q8oddPseudo: | 
|  | case ARM::VLD3q16oddPseudo: | 
|  | case ARM::VLD3q32oddPseudo: | 
|  | case ARM::VLD3q8oddPseudo_UPD: | 
|  | case ARM::VLD3q16oddPseudo_UPD: | 
|  | case ARM::VLD3q32oddPseudo_UPD: | 
|  | case ARM::VLD4d8Pseudo: | 
|  | case ARM::VLD4d16Pseudo: | 
|  | case ARM::VLD4d32Pseudo: | 
|  | case ARM::VLD1d8QPseudo: | 
|  | case ARM::VLD1d16QPseudo: | 
|  | case ARM::VLD1d32QPseudo: | 
|  | case ARM::VLD1d64QPseudo: | 
|  | case ARM::VLD1d64QPseudoWB_fixed: | 
|  | case ARM::VLD1d64QPseudoWB_register: | 
|  | case ARM::VLD1q8HighQPseudo: | 
|  | case ARM::VLD1q8LowQPseudo_UPD: | 
|  | case ARM::VLD1q8HighTPseudo: | 
|  | case ARM::VLD1q8LowTPseudo_UPD: | 
|  | case ARM::VLD1q16HighQPseudo: | 
|  | case ARM::VLD1q16LowQPseudo_UPD: | 
|  | case ARM::VLD1q16HighTPseudo: | 
|  | case ARM::VLD1q16LowTPseudo_UPD: | 
|  | case ARM::VLD1q32HighQPseudo: | 
|  | case ARM::VLD1q32LowQPseudo_UPD: | 
|  | case ARM::VLD1q32HighTPseudo: | 
|  | case ARM::VLD1q32LowTPseudo_UPD: | 
|  | case ARM::VLD1q64HighQPseudo: | 
|  | case ARM::VLD1q64LowQPseudo_UPD: | 
|  | case ARM::VLD1q64HighTPseudo: | 
|  | case ARM::VLD1q64LowTPseudo_UPD: | 
|  | case ARM::VLD4d8Pseudo_UPD: | 
|  | case ARM::VLD4d16Pseudo_UPD: | 
|  | case ARM::VLD4d32Pseudo_UPD: | 
|  | case ARM::VLD4q8Pseudo_UPD: | 
|  | case ARM::VLD4q16Pseudo_UPD: | 
|  | case ARM::VLD4q32Pseudo_UPD: | 
|  | case ARM::VLD4q8oddPseudo: | 
|  | case ARM::VLD4q16oddPseudo: | 
|  | case ARM::VLD4q32oddPseudo: | 
|  | case ARM::VLD4q8oddPseudo_UPD: | 
|  | case ARM::VLD4q16oddPseudo_UPD: | 
|  | case ARM::VLD4q32oddPseudo_UPD: | 
|  | case ARM::VLD1DUPq8: | 
|  | case ARM::VLD1DUPq16: | 
|  | case ARM::VLD1DUPq32: | 
|  | case ARM::VLD1DUPq8wb_fixed: | 
|  | case ARM::VLD1DUPq16wb_fixed: | 
|  | case ARM::VLD1DUPq32wb_fixed: | 
|  | case ARM::VLD1DUPq8wb_register: | 
|  | case ARM::VLD1DUPq16wb_register: | 
|  | case ARM::VLD1DUPq32wb_register: | 
|  | case ARM::VLD2DUPd8: | 
|  | case ARM::VLD2DUPd16: | 
|  | case ARM::VLD2DUPd32: | 
|  | case ARM::VLD2DUPd8wb_fixed: | 
|  | case ARM::VLD2DUPd16wb_fixed: | 
|  | case ARM::VLD2DUPd32wb_fixed: | 
|  | case ARM::VLD2DUPd8wb_register: | 
|  | case ARM::VLD2DUPd16wb_register: | 
|  | case ARM::VLD2DUPd32wb_register: | 
|  | case ARM::VLD2DUPq8EvenPseudo: | 
|  | case ARM::VLD2DUPq8OddPseudo: | 
|  | case ARM::VLD2DUPq16EvenPseudo: | 
|  | case ARM::VLD2DUPq16OddPseudo: | 
|  | case ARM::VLD2DUPq32EvenPseudo: | 
|  | case ARM::VLD2DUPq32OddPseudo: | 
|  | case ARM::VLD3DUPq8EvenPseudo: | 
|  | case ARM::VLD3DUPq8OddPseudo: | 
|  | case ARM::VLD3DUPq16EvenPseudo: | 
|  | case ARM::VLD3DUPq16OddPseudo: | 
|  | case ARM::VLD3DUPq32EvenPseudo: | 
|  | case ARM::VLD3DUPq32OddPseudo: | 
|  | case ARM::VLD4DUPd8Pseudo: | 
|  | case ARM::VLD4DUPd16Pseudo: | 
|  | case ARM::VLD4DUPd32Pseudo: | 
|  | case ARM::VLD4DUPd8Pseudo_UPD: | 
|  | case ARM::VLD4DUPd16Pseudo_UPD: | 
|  | case ARM::VLD4DUPd32Pseudo_UPD: | 
|  | case ARM::VLD4DUPq8EvenPseudo: | 
|  | case ARM::VLD4DUPq8OddPseudo: | 
|  | case ARM::VLD4DUPq16EvenPseudo: | 
|  | case ARM::VLD4DUPq16OddPseudo: | 
|  | case ARM::VLD4DUPq32EvenPseudo: | 
|  | case ARM::VLD4DUPq32OddPseudo: | 
|  | case ARM::VLD1LNq8Pseudo: | 
|  | case ARM::VLD1LNq16Pseudo: | 
|  | case ARM::VLD1LNq32Pseudo: | 
|  | case ARM::VLD1LNq8Pseudo_UPD: | 
|  | case ARM::VLD1LNq16Pseudo_UPD: | 
|  | case ARM::VLD1LNq32Pseudo_UPD: | 
|  | case ARM::VLD2LNd8Pseudo: | 
|  | case ARM::VLD2LNd16Pseudo: | 
|  | case ARM::VLD2LNd32Pseudo: | 
|  | case ARM::VLD2LNq16Pseudo: | 
|  | case ARM::VLD2LNq32Pseudo: | 
|  | case ARM::VLD2LNd8Pseudo_UPD: | 
|  | case ARM::VLD2LNd16Pseudo_UPD: | 
|  | case ARM::VLD2LNd32Pseudo_UPD: | 
|  | case ARM::VLD2LNq16Pseudo_UPD: | 
|  | case ARM::VLD2LNq32Pseudo_UPD: | 
|  | case ARM::VLD4LNd8Pseudo: | 
|  | case ARM::VLD4LNd16Pseudo: | 
|  | case ARM::VLD4LNd32Pseudo: | 
|  | case ARM::VLD4LNq16Pseudo: | 
|  | case ARM::VLD4LNq32Pseudo: | 
|  | case ARM::VLD4LNd8Pseudo_UPD: | 
|  | case ARM::VLD4LNd16Pseudo_UPD: | 
|  | case ARM::VLD4LNd32Pseudo_UPD: | 
|  | case ARM::VLD4LNq16Pseudo_UPD: | 
|  | case ARM::VLD4LNq32Pseudo_UPD: | 
|  | // If the address is not 64-bit aligned, the latencies of these | 
|  | // instructions increases by one. | 
|  | ++Latency; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { | 
|  | if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || | 
|  | MI.isImplicitDef()) | 
|  | return 0; | 
|  |  | 
|  | if (MI.isBundle()) | 
|  | return 0; | 
|  |  | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  |  | 
|  | if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && | 
|  | !Subtarget.cheapPredicableCPSRDef())) { | 
|  | // When predicated, CPSR is an additional source operand for CPSR updating | 
|  | // instructions, this apparently increases their latencies. | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI, | 
|  | unsigned *PredCost) const { | 
|  | if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || | 
|  | MI.isImplicitDef()) | 
|  | return 1; | 
|  |  | 
|  | // An instruction scheduler typically runs on unbundled instructions, however | 
|  | // other passes may query the latency of a bundled instruction. | 
|  | if (MI.isBundle()) { | 
|  | unsigned Latency = 0; | 
|  | MachineBasicBlock::const_instr_iterator I = MI.getIterator(); | 
|  | MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); | 
|  | while (++I != E && I->isInsideBundle()) { | 
|  | if (I->getOpcode() != ARM::t2IT) | 
|  | Latency += getInstrLatency(ItinData, *I, PredCost); | 
|  | } | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && | 
|  | !Subtarget.cheapPredicableCPSRDef()))) { | 
|  | // When predicated, CPSR is an additional source operand for CPSR updating | 
|  | // instructions, this apparently increases their latencies. | 
|  | *PredCost = 1; | 
|  | } | 
|  | // Be sure to call getStageLatency for an empty itinerary in case it has a | 
|  | // valid MinLatency property. | 
|  | if (!ItinData) | 
|  | return MI.mayLoad() ? 3 : 1; | 
|  |  | 
|  | unsigned Class = MCID.getSchedClass(); | 
|  |  | 
|  | // For instructions with variable uops, use uops as latency. | 
|  | if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) | 
|  | return getNumMicroOps(ItinData, MI); | 
|  |  | 
|  | // For the common case, fall back on the itinerary's latency. | 
|  | unsigned Latency = ItinData->getStageLatency(Class); | 
|  |  | 
|  | // Adjust for dynamic def-side opcode variants not captured by the itinerary. | 
|  | unsigned DefAlign = | 
|  | MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; | 
|  | int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); | 
|  | if (Adj >= 0 || (int)Latency > -Adj) { | 
|  | return Latency + Adj; | 
|  | } | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *Node) const { | 
|  | if (!Node->isMachineOpcode()) | 
|  | return 1; | 
|  |  | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | unsigned Opcode = Node->getMachineOpcode(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return ItinData->getStageLatency(get(Opcode).getSchedClass()); | 
|  | case ARM::VLDMQIA: | 
|  | case ARM::VSTMQIA: | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; | 
|  | unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; | 
|  | if (Subtarget.nonpipelinedVFP() && | 
|  | (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) | 
|  | return true; | 
|  |  | 
|  | // Hoist VFP / NEON instructions with 4 or higher latency. | 
|  | unsigned Latency = | 
|  | SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); | 
|  | if (Latency <= 3) | 
|  | return false; | 
|  | return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || | 
|  | UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx) const { | 
|  | const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return false; | 
|  |  | 
|  | unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; | 
|  | if (DDomain == ARMII::DomainGeneral) { | 
|  | unsigned DefClass = DefMI.getDesc().getSchedClass(); | 
|  | int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | return (DefCycle != -1 && DefCycle <= 2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, | 
|  | StringRef &ErrInfo) const { | 
|  | if (convertAddSubFlagsOpcode(MI.getOpcode())) { | 
|  | ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; | 
|  | return false; | 
|  | } | 
|  | if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { | 
|  | // Make sure we don't generate a lo-lo mov that isn't supported. | 
|  | if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && | 
|  | !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { | 
|  | ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (MI.getOpcode() == ARM::tPUSH || | 
|  | MI.getOpcode() == ARM::tPOP || | 
|  | MI.getOpcode() == ARM::tPOP_RET) { | 
|  | for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { | 
|  | if (MI.getOperand(i).isImplicit() || | 
|  | !MI.getOperand(i).isReg()) | 
|  | continue; | 
|  | Register Reg = MI.getOperand(i).getReg(); | 
|  | if (Reg < ARM::R0 || Reg > ARM::R7) { | 
|  | if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && | 
|  | !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { | 
|  | ErrInfo = "Unsupported register in Thumb1 push/pop"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LoadStackGuard has so far only been implemented for MachO. Different code | 
|  | // sequence is needed for other targets. | 
|  | void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, | 
|  | unsigned LoadImmOpc, | 
|  | unsigned LoadOpc) const { | 
|  | assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && | 
|  | "ROPI/RWPI not currently supported with stack guard"); | 
|  |  | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | Register Reg = MI->getOperand(0).getReg(); | 
|  | const GlobalValue *GV = | 
|  | cast<GlobalValue>((*MI->memoperands_begin())->getValue()); | 
|  | MachineInstrBuilder MIB; | 
|  |  | 
|  | BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) | 
|  | .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); | 
|  |  | 
|  | if (Subtarget.isGVIndirectSymbol(GV)) { | 
|  | MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); | 
|  | MIB.addReg(Reg, RegState::Kill).addImm(0); | 
|  | auto Flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant; | 
|  | MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( | 
|  | MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4); | 
|  | MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); | 
|  | } | 
|  |  | 
|  | MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); | 
|  | MIB.addReg(Reg, RegState::Kill) | 
|  | .addImm(0) | 
|  | .cloneMemRefs(*MI) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, | 
|  | unsigned &AddSubOpc, | 
|  | bool &NegAcc, bool &HasLane) const { | 
|  | DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); | 
|  | if (I == MLxEntryMap.end()) | 
|  | return false; | 
|  |  | 
|  | const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; | 
|  | MulOpc = Entry.MulOpc; | 
|  | AddSubOpc = Entry.AddSubOpc; | 
|  | NegAcc = Entry.NegAcc; | 
|  | HasLane = Entry.HasLane; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Execution domains. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Some instructions go down the NEON pipeline, some go down the VFP pipeline, | 
|  | // and some can go down both.  The vmov instructions go down the VFP pipeline, | 
|  | // but they can be changed to vorr equivalents that are executed by the NEON | 
|  | // pipeline. | 
|  | // | 
|  | // We use the following execution domain numbering: | 
|  | // | 
|  | enum ARMExeDomain { | 
|  | ExeGeneric = 0, | 
|  | ExeVFP = 1, | 
|  | ExeNEON = 2 | 
|  | }; | 
|  |  | 
|  | // | 
|  | // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h | 
|  | // | 
|  | std::pair<uint16_t, uint16_t> | 
|  | ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { | 
|  | // If we don't have access to NEON instructions then we won't be able | 
|  | // to swizzle anything to the NEON domain. Check to make sure. | 
|  | if (Subtarget.hasNEON()) { | 
|  | // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON | 
|  | // if they are not predicated. | 
|  | if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) | 
|  | return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); | 
|  |  | 
|  | // CortexA9 is particularly picky about mixing the two and wants these | 
|  | // converted. | 
|  | if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && | 
|  | (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || | 
|  | MI.getOpcode() == ARM::VMOVS)) | 
|  | return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); | 
|  | } | 
|  | // No other instructions can be swizzled, so just determine their domain. | 
|  | unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; | 
|  |  | 
|  | if (Domain & ARMII::DomainNEON) | 
|  | return std::make_pair(ExeNEON, 0); | 
|  |  | 
|  | // Certain instructions can go either way on Cortex-A8. | 
|  | // Treat them as NEON instructions. | 
|  | if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) | 
|  | return std::make_pair(ExeNEON, 0); | 
|  |  | 
|  | if (Domain & ARMII::DomainVFP) | 
|  | return std::make_pair(ExeVFP, 0); | 
|  |  | 
|  | return std::make_pair(ExeGeneric, 0); | 
|  | } | 
|  |  | 
|  | static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, | 
|  | unsigned SReg, unsigned &Lane) { | 
|  | unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); | 
|  | Lane = 0; | 
|  |  | 
|  | if (DReg != ARM::NoRegister) | 
|  | return DReg; | 
|  |  | 
|  | Lane = 1; | 
|  | DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); | 
|  |  | 
|  | assert(DReg && "S-register with no D super-register?"); | 
|  | return DReg; | 
|  | } | 
|  |  | 
|  | /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, | 
|  | /// set ImplicitSReg to a register number that must be marked as implicit-use or | 
|  | /// zero if no register needs to be defined as implicit-use. | 
|  | /// | 
|  | /// If the function cannot determine if an SPR should be marked implicit use or | 
|  | /// not, it returns false. | 
|  | /// | 
|  | /// This function handles cases where an instruction is being modified from taking | 
|  | /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict | 
|  | /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other | 
|  | /// lane of the DPR). | 
|  | /// | 
|  | /// If the other SPR is defined, an implicit-use of it should be added. Else, | 
|  | /// (including the case where the DPR itself is defined), it should not. | 
|  | /// | 
|  | static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, | 
|  | MachineInstr &MI, unsigned DReg, | 
|  | unsigned Lane, unsigned &ImplicitSReg) { | 
|  | // If the DPR is defined or used already, the other SPR lane will be chained | 
|  | // correctly, so there is nothing to be done. | 
|  | if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { | 
|  | ImplicitSReg = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise we need to go searching to see if the SPR is set explicitly. | 
|  | ImplicitSReg = TRI->getSubReg(DReg, | 
|  | (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); | 
|  | MachineBasicBlock::LivenessQueryResult LQR = | 
|  | MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); | 
|  |  | 
|  | if (LQR == MachineBasicBlock::LQR_Live) | 
|  | return true; | 
|  | else if (LQR == MachineBasicBlock::LQR_Unknown) | 
|  | return false; | 
|  |  | 
|  | // If the register is known not to be live, there is no need to add an | 
|  | // implicit-use. | 
|  | ImplicitSReg = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, | 
|  | unsigned Domain) const { | 
|  | unsigned DstReg, SrcReg, DReg; | 
|  | unsigned Lane; | 
|  | MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("cannot handle opcode!"); | 
|  | break; | 
|  | case ARM::VMOVD: | 
|  | if (Domain != ExeNEON) | 
|  | break; | 
|  |  | 
|  | // Zap the predicate operands. | 
|  | assert(!isPredicated(MI) && "Cannot predicate a VORRd"); | 
|  |  | 
|  | // Make sure we've got NEON instructions. | 
|  | assert(Subtarget.hasNEON() && "VORRd requires NEON"); | 
|  |  | 
|  | // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | for (unsigned i = MI.getDesc().getNumOperands(); i; --i) | 
|  | MI.RemoveOperand(i - 1); | 
|  |  | 
|  | // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) | 
|  | MI.setDesc(get(ARM::VORRd)); | 
|  | MIB.addReg(DstReg, RegState::Define) | 
|  | .addReg(SrcReg) | 
|  | .addReg(SrcReg) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | break; | 
|  | case ARM::VMOVRS: | 
|  | if (Domain != ExeNEON) | 
|  | break; | 
|  | assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); | 
|  |  | 
|  | // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | for (unsigned i = MI.getDesc().getNumOperands(); i; --i) | 
|  | MI.RemoveOperand(i - 1); | 
|  |  | 
|  | DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); | 
|  |  | 
|  | // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) | 
|  | // Note that DSrc has been widened and the other lane may be undef, which | 
|  | // contaminates the entire register. | 
|  | MI.setDesc(get(ARM::VGETLNi32)); | 
|  | MIB.addReg(DstReg, RegState::Define) | 
|  | .addReg(DReg, RegState::Undef) | 
|  | .addImm(Lane) | 
|  | .add(predOps(ARMCC::AL)); | 
|  |  | 
|  | // The old source should be an implicit use, otherwise we might think it | 
|  | // was dead before here. | 
|  | MIB.addReg(SrcReg, RegState::Implicit); | 
|  | break; | 
|  | case ARM::VMOVSR: { | 
|  | if (Domain != ExeNEON) | 
|  | break; | 
|  | assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); | 
|  |  | 
|  | // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); | 
|  |  | 
|  | unsigned ImplicitSReg; | 
|  | if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) | 
|  | break; | 
|  |  | 
|  | for (unsigned i = MI.getDesc().getNumOperands(); i; --i) | 
|  | MI.RemoveOperand(i - 1); | 
|  |  | 
|  | // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) | 
|  | // Again DDst may be undefined at the beginning of this instruction. | 
|  | MI.setDesc(get(ARM::VSETLNi32)); | 
|  | MIB.addReg(DReg, RegState::Define) | 
|  | .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) | 
|  | .addReg(SrcReg) | 
|  | .addImm(Lane) | 
|  | .add(predOps(ARMCC::AL)); | 
|  |  | 
|  | // The narrower destination must be marked as set to keep previous chains | 
|  | // in place. | 
|  | MIB.addReg(DstReg, RegState::Define | RegState::Implicit); | 
|  | if (ImplicitSReg != 0) | 
|  | MIB.addReg(ImplicitSReg, RegState::Implicit); | 
|  | break; | 
|  | } | 
|  | case ARM::VMOVS: { | 
|  | if (Domain != ExeNEON) | 
|  | break; | 
|  |  | 
|  | // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; | 
|  | DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); | 
|  | DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); | 
|  |  | 
|  | unsigned ImplicitSReg; | 
|  | if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) | 
|  | break; | 
|  |  | 
|  | for (unsigned i = MI.getDesc().getNumOperands(); i; --i) | 
|  | MI.RemoveOperand(i - 1); | 
|  |  | 
|  | if (DSrc == DDst) { | 
|  | // Destination can be: | 
|  | //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) | 
|  | MI.setDesc(get(ARM::VDUPLN32d)); | 
|  | MIB.addReg(DDst, RegState::Define) | 
|  | .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) | 
|  | .addImm(SrcLane) | 
|  | .add(predOps(ARMCC::AL)); | 
|  |  | 
|  | // Neither the source or the destination are naturally represented any | 
|  | // more, so add them in manually. | 
|  | MIB.addReg(DstReg, RegState::Implicit | RegState::Define); | 
|  | MIB.addReg(SrcReg, RegState::Implicit); | 
|  | if (ImplicitSReg != 0) | 
|  | MIB.addReg(ImplicitSReg, RegState::Implicit); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In general there's no single instruction that can perform an S <-> S | 
|  | // move in NEON space, but a pair of VEXT instructions *can* do the | 
|  | // job. It turns out that the VEXTs needed will only use DSrc once, with | 
|  | // the position based purely on the combination of lane-0 and lane-1 | 
|  | // involved. For example | 
|  | //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1 | 
|  | //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1 | 
|  | //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1 | 
|  | //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1 | 
|  | // | 
|  | // Pattern of the MachineInstrs is: | 
|  | //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) | 
|  | MachineInstrBuilder NewMIB; | 
|  | NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), | 
|  | DDst); | 
|  |  | 
|  | // On the first instruction, both DSrc and DDst may be undef if present. | 
|  | // Specifically when the original instruction didn't have them as an | 
|  | // <imp-use>. | 
|  | unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; | 
|  | bool CurUndef = !MI.readsRegister(CurReg, TRI); | 
|  | NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); | 
|  |  | 
|  | CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; | 
|  | CurUndef = !MI.readsRegister(CurReg, TRI); | 
|  | NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) | 
|  | .addImm(1) | 
|  | .add(predOps(ARMCC::AL)); | 
|  |  | 
|  | if (SrcLane == DstLane) | 
|  | NewMIB.addReg(SrcReg, RegState::Implicit); | 
|  |  | 
|  | MI.setDesc(get(ARM::VEXTd32)); | 
|  | MIB.addReg(DDst, RegState::Define); | 
|  |  | 
|  | // On the second instruction, DDst has definitely been defined above, so | 
|  | // it is not undef. DSrc, if present, can be undef as above. | 
|  | CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; | 
|  | CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); | 
|  | MIB.addReg(CurReg, getUndefRegState(CurUndef)); | 
|  |  | 
|  | CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; | 
|  | CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); | 
|  | MIB.addReg(CurReg, getUndefRegState(CurUndef)) | 
|  | .addImm(1) | 
|  | .add(predOps(ARMCC::AL)); | 
|  |  | 
|  | if (SrcLane != DstLane) | 
|  | MIB.addReg(SrcReg, RegState::Implicit); | 
|  |  | 
|  | // As before, the original destination is no longer represented, add it | 
|  | // implicitly. | 
|  | MIB.addReg(DstReg, RegState::Define | RegState::Implicit); | 
|  | if (ImplicitSReg != 0) | 
|  | MIB.addReg(ImplicitSReg, RegState::Implicit); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Partial register updates | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Swift renames NEON registers with 64-bit granularity.  That means any | 
|  | // instruction writing an S-reg implicitly reads the containing D-reg.  The | 
|  | // problem is mostly avoided by translating f32 operations to v2f32 operations | 
|  | // on D-registers, but f32 loads are still a problem. | 
|  | // | 
|  | // These instructions can load an f32 into a NEON register: | 
|  | // | 
|  | // VLDRS - Only writes S, partial D update. | 
|  | // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. | 
|  | // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. | 
|  | // | 
|  | // FCONSTD can be used as a dependency-breaking instruction. | 
|  | unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( | 
|  | const MachineInstr &MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); | 
|  | if (!PartialUpdateClearance) | 
|  | return 0; | 
|  |  | 
|  | assert(TRI && "Need TRI instance"); | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(OpNum); | 
|  | if (MO.readsReg()) | 
|  | return 0; | 
|  | Register Reg = MO.getReg(); | 
|  | int UseOp = -1; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | // Normal instructions writing only an S-register. | 
|  | case ARM::VLDRS: | 
|  | case ARM::FCONSTS: | 
|  | case ARM::VMOVSR: | 
|  | case ARM::VMOVv8i8: | 
|  | case ARM::VMOVv4i16: | 
|  | case ARM::VMOVv2i32: | 
|  | case ARM::VMOVv2f32: | 
|  | case ARM::VMOVv1i64: | 
|  | UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); | 
|  | break; | 
|  |  | 
|  | // Explicitly reads the dependency. | 
|  | case ARM::VLD1LNd32: | 
|  | UseOp = 3; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If this instruction actually reads a value from Reg, there is no unwanted | 
|  | // dependency. | 
|  | if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) | 
|  | return 0; | 
|  |  | 
|  | // We must be able to clobber the whole D-reg. | 
|  | if (Register::isVirtualRegister(Reg)) { | 
|  | // Virtual register must be a def undef foo:ssub_0 operand. | 
|  | if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) | 
|  | return 0; | 
|  | } else if (ARM::SPRRegClass.contains(Reg)) { | 
|  | // Physical register: MI must define the full D-reg. | 
|  | unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, | 
|  | &ARM::DPRRegClass); | 
|  | if (!DReg || !MI.definesRegister(DReg, TRI)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // MI has an unwanted D-register dependency. | 
|  | // Avoid defs in the previous N instructrions. | 
|  | return PartialUpdateClearance; | 
|  | } | 
|  |  | 
|  | // Break a partial register dependency after getPartialRegUpdateClearance | 
|  | // returned non-zero. | 
|  | void ARMBaseInstrInfo::breakPartialRegDependency( | 
|  | MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { | 
|  | assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); | 
|  | assert(TRI && "Need TRI instance"); | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(OpNum); | 
|  | Register Reg = MO.getReg(); | 
|  | assert(Register::isPhysicalRegister(Reg) && | 
|  | "Can't break virtual register dependencies."); | 
|  | unsigned DReg = Reg; | 
|  |  | 
|  | // If MI defines an S-reg, find the corresponding D super-register. | 
|  | if (ARM::SPRRegClass.contains(Reg)) { | 
|  | DReg = ARM::D0 + (Reg - ARM::S0) / 2; | 
|  | assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); | 
|  | } | 
|  |  | 
|  | assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); | 
|  | assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); | 
|  |  | 
|  | // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines | 
|  | // the full D-register by loading the same value to both lanes.  The | 
|  | // instruction is micro-coded with 2 uops, so don't do this until we can | 
|  | // properly schedule micro-coded instructions.  The dispatcher stalls cause | 
|  | // too big regressions. | 
|  |  | 
|  | // Insert the dependency-breaking FCONSTD before MI. | 
|  | // 96 is the encoding of 0.5, but the actual value doesn't matter here. | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) | 
|  | .addImm(96) | 
|  | .add(predOps(ARMCC::AL)); | 
|  | MI.addRegisterKilled(DReg, TRI, true); | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::hasNOP() const { | 
|  | return Subtarget.getFeatureBits()[ARM::HasV6KOps]; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { | 
|  | if (MI->getNumOperands() < 4) | 
|  | return true; | 
|  | unsigned ShOpVal = MI->getOperand(3).getImm(); | 
|  | unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); | 
|  | // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. | 
|  | if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || | 
|  | ((ShImm == 1 || ShImm == 2) && | 
|  | ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::getRegSequenceLikeInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { | 
|  | assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); | 
|  | assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case ARM::VMOVDRR: | 
|  | // dX = VMOVDRR rY, rZ | 
|  | // is the same as: | 
|  | // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 | 
|  | // Populate the InputRegs accordingly. | 
|  | // rY | 
|  | const MachineOperand *MOReg = &MI.getOperand(1); | 
|  | if (!MOReg->isUndef()) | 
|  | InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), | 
|  | MOReg->getSubReg(), ARM::ssub_0)); | 
|  | // rZ | 
|  | MOReg = &MI.getOperand(2); | 
|  | if (!MOReg->isUndef()) | 
|  | InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), | 
|  | MOReg->getSubReg(), ARM::ssub_1)); | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("Target dependent opcode missing"); | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::getExtractSubregLikeInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, | 
|  | RegSubRegPairAndIdx &InputReg) const { | 
|  | assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); | 
|  | assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case ARM::VMOVRRD: | 
|  | // rX, rY = VMOVRRD dZ | 
|  | // is the same as: | 
|  | // rX = EXTRACT_SUBREG dZ, ssub_0 | 
|  | // rY = EXTRACT_SUBREG dZ, ssub_1 | 
|  | const MachineOperand &MOReg = MI.getOperand(2); | 
|  | if (MOReg.isUndef()) | 
|  | return false; | 
|  | InputReg.Reg = MOReg.getReg(); | 
|  | InputReg.SubReg = MOReg.getSubReg(); | 
|  | InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("Target dependent opcode missing"); | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::getInsertSubregLikeInputs( | 
|  | const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, | 
|  | RegSubRegPairAndIdx &InsertedReg) const { | 
|  | assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); | 
|  | assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case ARM::VSETLNi32: | 
|  | // dX = VSETLNi32 dY, rZ, imm | 
|  | const MachineOperand &MOBaseReg = MI.getOperand(1); | 
|  | const MachineOperand &MOInsertedReg = MI.getOperand(2); | 
|  | if (MOInsertedReg.isUndef()) | 
|  | return false; | 
|  | const MachineOperand &MOIndex = MI.getOperand(3); | 
|  | BaseReg.Reg = MOBaseReg.getReg(); | 
|  | BaseReg.SubReg = MOBaseReg.getSubReg(); | 
|  |  | 
|  | InsertedReg.Reg = MOInsertedReg.getReg(); | 
|  | InsertedReg.SubReg = MOInsertedReg.getSubReg(); | 
|  | InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("Target dependent opcode missing"); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | const unsigned Mask = ARMII::MO_OPTION_MASK; | 
|  | return std::make_pair(TF & Mask, TF & ~Mask); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace ARMII; | 
|  |  | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { | 
|  | using namespace ARMII; | 
|  |  | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_COFFSTUB, "arm-coffstub"}, | 
|  | {MO_GOT, "arm-got"}, | 
|  | {MO_SBREL, "arm-sbrel"}, | 
|  | {MO_DLLIMPORT, "arm-dllimport"}, | 
|  | {MO_SECREL, "arm-secrel"}, | 
|  | {MO_NONLAZY, "arm-nonlazy"}}; | 
|  | return makeArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, | 
|  | Register Reg) const { | 
|  | int Sign = 1; | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | int64_t Offset = 0; | 
|  |  | 
|  | // TODO: Handle cases where Reg is a super- or sub-register of the | 
|  | // destination register. | 
|  | if (Reg != MI.getOperand(0).getReg()) | 
|  | return None; | 
|  |  | 
|  | // We describe SUBri or ADDri instructions. | 
|  | if (Opcode == ARM::SUBri) | 
|  | Sign = -1; | 
|  | else if (Opcode != ARM::ADDri) | 
|  | return None; | 
|  |  | 
|  | // TODO: Third operand can be global address (usually some string). Since | 
|  | //       strings can be relocated we cannot calculate their offsets for | 
|  | //       now. | 
|  | if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() || | 
|  | !MI.getOperand(2).isImm()) | 
|  | return None; | 
|  |  | 
|  | Offset = MI.getOperand(2).getImm() * Sign; | 
|  | return RegImmPair{MI.getOperand(1).getReg(), Offset}; | 
|  | } | 
|  |  | 
|  | bool llvm::registerDefinedBetween(unsigned Reg, | 
|  | MachineBasicBlock::iterator From, | 
|  | MachineBasicBlock::iterator To, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | for (auto I = From; I != To; ++I) | 
|  | if (I->modifiesRegister(Reg, TRI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | // Search backwards to the instruction that defines CSPR. This may or not | 
|  | // be a CMP, we check that after this loop. If we find another instruction | 
|  | // that reads cpsr, we return nullptr. | 
|  | MachineBasicBlock::iterator CmpMI = Br; | 
|  | while (CmpMI != Br->getParent()->begin()) { | 
|  | --CmpMI; | 
|  | if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) | 
|  | break; | 
|  | if (CmpMI->readsRegister(ARM::CPSR, TRI)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check that this inst is a CMP r[0-7], #0 and that the register | 
|  | // is not redefined between the cmp and the br. | 
|  | if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) | 
|  | return nullptr; | 
|  | Register Reg = CmpMI->getOperand(0).getReg(); | 
|  | unsigned PredReg = 0; | 
|  | ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); | 
|  | if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) | 
|  | return nullptr; | 
|  | if (!isARMLowRegister(Reg)) | 
|  | return nullptr; | 
|  | if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) | 
|  | return nullptr; | 
|  |  | 
|  | return &*CmpMI; | 
|  | } | 
|  |  | 
|  | unsigned llvm::ConstantMaterializationCost(unsigned Val, | 
|  | const ARMSubtarget *Subtarget, | 
|  | bool ForCodesize) { | 
|  | if (Subtarget->isThumb()) { | 
|  | if (Val <= 255) // MOV | 
|  | return ForCodesize ? 2 : 1; | 
|  | if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV | 
|  | ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW | 
|  | ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN | 
|  | return ForCodesize ? 4 : 1; | 
|  | if (Val <= 510) // MOV + ADDi8 | 
|  | return ForCodesize ? 4 : 2; | 
|  | if (~Val <= 255) // MOV + MVN | 
|  | return ForCodesize ? 4 : 2; | 
|  | if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL | 
|  | return ForCodesize ? 4 : 2; | 
|  | } else { | 
|  | if (ARM_AM::getSOImmVal(Val) != -1) // MOV | 
|  | return ForCodesize ? 4 : 1; | 
|  | if (ARM_AM::getSOImmVal(~Val) != -1) // MVN | 
|  | return ForCodesize ? 4 : 1; | 
|  | if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW | 
|  | return ForCodesize ? 4 : 1; | 
|  | if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs | 
|  | return ForCodesize ? 8 : 2; | 
|  | } | 
|  | if (Subtarget->useMovt()) // MOVW + MOVT | 
|  | return ForCodesize ? 8 : 2; | 
|  | return ForCodesize ? 8 : 3; // Literal pool load | 
|  | } | 
|  |  | 
|  | bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, | 
|  | const ARMSubtarget *Subtarget, | 
|  | bool ForCodesize) { | 
|  | // Check with ForCodesize | 
|  | unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); | 
|  | unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); | 
|  | if (Cost1 < Cost2) | 
|  | return true; | 
|  | if (Cost1 > Cost2) | 
|  | return false; | 
|  |  | 
|  | // If they are equal, try with !ForCodesize | 
|  | return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < | 
|  | ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); | 
|  | } |