|  | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the TargetLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// NOTE: The TargetMachine owns TLOF. | 
|  | TargetLowering::TargetLowering(const TargetMachine &tm) | 
|  | : TargetLoweringBase(tm) {} | 
|  |  | 
|  | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isPositionIndependent() const { | 
|  | return getTargetMachine().isPositionIndependent(); | 
|  | } | 
|  |  | 
|  | /// Check whether a given call node is in tail position within its function. If | 
|  | /// so, it sets Chain to the input chain of the tail call. | 
|  | bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, | 
|  | SDValue &Chain) const { | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  |  | 
|  | // Conservatively require the attributes of the call to match those of | 
|  | // the return. Ignore noalias because it doesn't affect the call sequence. | 
|  | AttributeSet CallerAttrs = F->getAttributes(); | 
|  | if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) | 
|  | .removeAttribute(Attribute::NoAlias).hasAttributes()) | 
|  | return false; | 
|  |  | 
|  | // It's not safe to eliminate the sign / zero extension of the return value. | 
|  | if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || | 
|  | CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) | 
|  | return false; | 
|  |  | 
|  | // Check if the only use is a function return node. | 
|  | return isUsedByReturnOnly(Node, Chain); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, | 
|  | const uint32_t *CallerPreservedMask, | 
|  | const SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | const SmallVectorImpl<SDValue> &OutVals) const { | 
|  | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
|  | const CCValAssign &ArgLoc = ArgLocs[I]; | 
|  | if (!ArgLoc.isRegLoc()) | 
|  | continue; | 
|  | unsigned Reg = ArgLoc.getLocReg(); | 
|  | // Only look at callee saved registers. | 
|  | if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) | 
|  | continue; | 
|  | // Check that we pass the value used for the caller. | 
|  | // (We look for a CopyFromReg reading a virtual register that is used | 
|  | //  for the function live-in value of register Reg) | 
|  | SDValue Value = OutVals[I]; | 
|  | if (Value->getOpcode() != ISD::CopyFromReg) | 
|  | return false; | 
|  | unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); | 
|  | if (MRI.getLiveInPhysReg(ArgReg) != Reg) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Set CallLoweringInfo attribute flags based on a call instruction | 
|  | /// and called function attributes. | 
|  | void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, | 
|  | unsigned AttrIdx) { | 
|  | IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); | 
|  | IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); | 
|  | IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); | 
|  | IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); | 
|  | IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); | 
|  | IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); | 
|  | IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); | 
|  | IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); | 
|  | IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); | 
|  | IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); | 
|  | Alignment  = CS->getParamAlignment(AttrIdx); | 
|  | } | 
|  |  | 
|  | /// Generate a libcall taking the given operands as arguments and returning a | 
|  | /// result of type RetVT. | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, | 
|  | ArrayRef<SDValue> Ops, bool isSigned, | 
|  | const SDLoc &dl, bool doesNotReturn, | 
|  | bool isReturnValueUsed) const { | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(Ops.size()); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (SDValue Op : Ops) { | 
|  | Entry.Node = Op; | 
|  | Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); | 
|  | Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); | 
|  | Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | if (LC == RTLIB::UNKNOWN_LIBCALL) | 
|  | report_fatal_error("Unsupported library call operation!"); | 
|  | SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(DAG.getEntryNode()) | 
|  | .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) | 
|  | .setNoReturn(doesNotReturn) | 
|  | .setDiscardResult(!isReturnValueUsed) | 
|  | .setSExtResult(signExtend) | 
|  | .setZExtResult(!signExtend); | 
|  | return LowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | /// Soften the operands of a comparison. This code is shared among BR_CC, | 
|  | /// SELECT_CC, and SETCC handlers. | 
|  | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, | 
|  | SDValue &NewLHS, SDValue &NewRHS, | 
|  | ISD::CondCode &CCCode, | 
|  | const SDLoc &dl) const { | 
|  | assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) | 
|  | && "Unsupported setcc type!"); | 
|  |  | 
|  | // Expand into one or more soft-fp libcall(s). | 
|  | RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; | 
|  | bool ShouldInvertCC = false; | 
|  | switch (CCCode) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OEQ_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; | 
|  | break; | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUNE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::UNE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; | 
|  | break; | 
|  | case ISD::SETUO: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::UO_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; | 
|  | break; | 
|  | case ISD::SETO: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::O_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; | 
|  | break; | 
|  | case ISD::SETONE: | 
|  | // SETONE = SETOLT | SETOGT | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; | 
|  | break; | 
|  | case ISD::SETUEQ: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::UO_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OEQ_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; | 
|  | break; | 
|  | default: | 
|  | // Invert CC for unordered comparisons | 
|  | ShouldInvertCC = true; | 
|  | switch (CCCode) { | 
|  | case ISD::SETULT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; | 
|  | break; | 
|  | default: llvm_unreachable("Do not know how to soften this setcc!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the target specific return value for comparions lib calls. | 
|  | EVT RetVT = getCmpLibcallReturnType(); | 
|  | SDValue Ops[2] = {NewLHS, NewRHS}; | 
|  | NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, | 
|  | dl).first; | 
|  | NewRHS = DAG.getConstant(0, dl, RetVT); | 
|  |  | 
|  | CCCode = getCmpLibcallCC(LC1); | 
|  | if (ShouldInvertCC) | 
|  | CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); | 
|  |  | 
|  | if (LC2 != RTLIB::UNKNOWN_LIBCALL) { | 
|  | SDValue Tmp = DAG.getNode( | 
|  | ISD::SETCC, dl, | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), | 
|  | NewLHS, NewRHS, DAG.getCondCode(CCCode)); | 
|  | NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, | 
|  | dl).first; | 
|  | NewLHS = DAG.getNode( | 
|  | ISD::SETCC, dl, | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), | 
|  | NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); | 
|  | NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); | 
|  | NewRHS = SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the entry encoding for a jump table in the current function. The | 
|  | /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. | 
|  | unsigned TargetLowering::getJumpTableEncoding() const { | 
|  | // In non-pic modes, just use the address of a block. | 
|  | if (!isPositionIndependent()) | 
|  | return MachineJumpTableInfo::EK_BlockAddress; | 
|  |  | 
|  | // In PIC mode, if the target supports a GPRel32 directive, use it. | 
|  | if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) | 
|  | return MachineJumpTableInfo::EK_GPRel32BlockAddress; | 
|  |  | 
|  | // Otherwise, use a label difference. | 
|  | return MachineJumpTableInfo::EK_LabelDifference32; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | // If our PIC model is GP relative, use the global offset table as the base. | 
|  | unsigned JTEncoding = getJumpTableEncoding(); | 
|  |  | 
|  | if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || | 
|  | (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) | 
|  | return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// This returns the relocation base for the given PIC jumptable, the same as | 
|  | /// getPICJumpTableRelocBase, but as an MCExpr. | 
|  | const MCExpr * | 
|  | TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, | 
|  | unsigned JTI,MCContext &Ctx) const{ | 
|  | // The normal PIC reloc base is the label at the start of the jump table. | 
|  | return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | const TargetMachine &TM = getTargetMachine(); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  |  | 
|  | // If the address is not even local to this DSO we will have to load it from | 
|  | // a got and then add the offset. | 
|  | if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) | 
|  | return false; | 
|  |  | 
|  | // If the code is position independent we will have to add a base register. | 
|  | if (isPositionIndependent()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise we can do it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Optimization Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// If the specified instruction has a constant integer operand and there are | 
|  | /// bits set in that constant that are not demanded, then clear those bits and | 
|  | /// return true. | 
|  | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant( | 
|  | SDValue Op, const APInt &Demanded) { | 
|  | SDLoc DL(Op); | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  |  | 
|  | // FIXME: ISD::SELECT, ISD::SELECT_CC | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case ISD::XOR: | 
|  | case ISD::AND: | 
|  | case ISD::OR: { | 
|  | auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (!Op1C) | 
|  | return false; | 
|  |  | 
|  | // If this is a 'not' op, don't touch it because that's a canonical form. | 
|  | const APInt &C = Op1C->getAPIntValue(); | 
|  | if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue()) | 
|  | return false; | 
|  |  | 
|  | if (C.intersects(~Demanded)) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); | 
|  | SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); | 
|  | return CombineTo(Op, NewOp); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. | 
|  | /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be | 
|  | /// generalized for targets with other types of implicit widening casts. | 
|  | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, | 
|  | unsigned BitWidth, | 
|  | const APInt &Demanded, | 
|  | const SDLoc &dl) { | 
|  | assert(Op.getNumOperands() == 2 && | 
|  | "ShrinkDemandedOp only supports binary operators!"); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "ShrinkDemandedOp only supports nodes with one result!"); | 
|  |  | 
|  | // Early return, as this function cannot handle vector types. | 
|  | if (Op.getValueType().isVector()) | 
|  | return false; | 
|  |  | 
|  | // Don't do this if the node has another user, which may require the | 
|  | // full value. | 
|  | if (!Op.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Search for the smallest integer type with free casts to and from | 
|  | // Op's type. For expedience, just check power-of-2 integer types. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); | 
|  | unsigned SmallVTBits = DemandedSize; | 
|  | if (!isPowerOf2_32(SmallVTBits)) | 
|  | SmallVTBits = NextPowerOf2(SmallVTBits); | 
|  | for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { | 
|  | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); | 
|  | if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && | 
|  | TLI.isZExtFree(SmallVT, Op.getValueType())) { | 
|  | // We found a type with free casts. | 
|  | SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, | 
|  | DAG.getNode(ISD::TRUNCATE, dl, SmallVT, | 
|  | Op.getNode()->getOperand(0)), | 
|  | DAG.getNode(ISD::TRUNCATE, dl, SmallVT, | 
|  | Op.getNode()->getOperand(1))); | 
|  | bool NeedZext = DemandedSize > SmallVTBits; | 
|  | SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, | 
|  | dl, Op.getValueType(), X); | 
|  | return CombineTo(Op, Z); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, | 
|  | unsigned OpIdx, | 
|  | const APInt &Demanded, | 
|  | DAGCombinerInfo &DCI) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Op = User->getOperand(OpIdx); | 
|  | APInt KnownZero, KnownOne; | 
|  |  | 
|  | if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, | 
|  | *this, 0, true)) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | // Old will not always be the same as Op.  For example: | 
|  | // | 
|  | // Demanded = 0xffffff | 
|  | // Op = i64 truncate (i32 and x, 0xffffff) | 
|  | // In this case simplify demand bits will want to replace the 'and' node | 
|  | // with the value 'x', which will give us: | 
|  | // Old = i32 and x, 0xffffff | 
|  | // New = x | 
|  | if (Old.hasOneUse()) { | 
|  | // For the one use case, we just commit the change. | 
|  | DCI.CommitTargetLoweringOpt(*this); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If Old has more than one use then it must be Op, because the | 
|  | // AssumeSingleUse flag is not propogated to recursive calls of | 
|  | // SimplifyDemanded bits, so the only node with multiple use that | 
|  | // it will attempt to combine will be opt. | 
|  | assert(Old == Op); | 
|  |  | 
|  | SmallVector <SDValue, 4> NewOps; | 
|  | for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { | 
|  | if (i == OpIdx) { | 
|  | NewOps.push_back(New); | 
|  | continue; | 
|  | } | 
|  | NewOps.push_back(User->getOperand(i)); | 
|  | } | 
|  | DAG.UpdateNodeOperands(User, NewOps); | 
|  | // Op has less users now, so we may be able to perform additional combines | 
|  | // with it. | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | // User's operands have been updated, so we may be able to do new combines | 
|  | // with it. | 
|  | DCI.AddToWorklist(User); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, | 
|  | DAGCombinerInfo &DCI) const { | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | APInt KnownZero, KnownOne; | 
|  |  | 
|  | bool Simplified = SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, | 
|  | TLO); | 
|  | if (Simplified) | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | /// Look at Op. At this point, we know that only the DemandedMask bits of the | 
|  | /// result of Op are ever used downstream. If we can use this information to | 
|  | /// simplify Op, create a new simplified DAG node and return true, returning the | 
|  | /// original and new nodes in Old and New. Otherwise, analyze the expression and | 
|  | /// return a mask of KnownOne and KnownZero bits for the expression (used to | 
|  | /// simplify the caller).  The KnownZero/One bits may only be accurate for those | 
|  | /// bits in the DemandedMask. | 
|  | bool TargetLowering::SimplifyDemandedBits(SDValue Op, | 
|  | const APInt &DemandedMask, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | TargetLoweringOpt &TLO, | 
|  | unsigned Depth, | 
|  | bool AssumeSingleUse) const { | 
|  | unsigned BitWidth = DemandedMask.getBitWidth(); | 
|  | assert(Op.getScalarValueSizeInBits() == BitWidth && | 
|  | "Mask size mismatches value type size!"); | 
|  | APInt NewMask = DemandedMask; | 
|  | SDLoc dl(Op); | 
|  | auto &DL = TLO.DAG.getDataLayout(); | 
|  |  | 
|  | // Don't know anything. | 
|  | KnownZero = KnownOne = APInt(BitWidth, 0); | 
|  |  | 
|  | // Other users may use these bits. | 
|  | if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { | 
|  | if (Depth != 0) { | 
|  | // If not at the root, Just compute the KnownZero/KnownOne bits to | 
|  | // simplify things downstream. | 
|  | TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); | 
|  | return false; | 
|  | } | 
|  | // If this is the root being simplified, allow it to have multiple uses, | 
|  | // just set the NewMask to all bits. | 
|  | NewMask = APInt::getAllOnesValue(BitWidth); | 
|  | } else if (DemandedMask == 0) { | 
|  | // Not demanding any bits from Op. | 
|  | if (!Op.isUndef()) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); | 
|  | return false; | 
|  | } else if (Depth == 6) {        // Limit search depth. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::Constant: | 
|  | // We know all of the bits for a constant! | 
|  | KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); | 
|  | KnownZero = ~KnownOne; | 
|  | return false;   // Don't fall through, will infinitely loop. | 
|  | case ISD::BUILD_VECTOR: | 
|  | // Collect the known bits that are shared by every constant vector element. | 
|  | KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); | 
|  | for (SDValue SrcOp : Op->ops()) { | 
|  | if (!isa<ConstantSDNode>(SrcOp)) { | 
|  | // We can only handle all constant values - bail out with no known bits. | 
|  | KnownZero = KnownOne = APInt(BitWidth, 0); | 
|  | return false; | 
|  | } | 
|  | KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); | 
|  | KnownZero2 = ~KnownOne2; | 
|  |  | 
|  | // BUILD_VECTOR can implicitly truncate sources, we must handle this. | 
|  | if (KnownOne2.getBitWidth() != BitWidth) { | 
|  | assert(KnownOne2.getBitWidth() > BitWidth && | 
|  | KnownZero2.getBitWidth() > BitWidth && | 
|  | "Expected BUILD_VECTOR implicit truncation"); | 
|  | KnownOne2 = KnownOne2.trunc(BitWidth); | 
|  | KnownZero2 = KnownZero2.trunc(BitWidth); | 
|  | } | 
|  |  | 
|  | // Known bits are the values that are shared by every element. | 
|  | // TODO: support per-element known bits. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | } | 
|  | return false;   // Don't fall through, will infinitely loop. | 
|  | case ISD::AND: | 
|  | // If the RHS is a constant, check to see if the LHS would be zero without | 
|  | // using the bits from the RHS.  Below, we use knowledge about the RHS to | 
|  | // simplify the LHS, here we're using information from the LHS to simplify | 
|  | // the RHS. | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | APInt LHSZero, LHSOne; | 
|  | // Do not increment Depth here; that can cause an infinite loop. | 
|  | TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth); | 
|  | // If the LHS already has zeros where RHSC does, this and is dead. | 
|  | if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | // If any of the set bits in the RHS are known zero on the LHS, shrink | 
|  | // the constant. | 
|  | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) | 
|  | return true; | 
|  |  | 
|  | // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its | 
|  | // constant, but if this 'and' is only clearing bits that were just set by | 
|  | // the xor, then this 'and' can be eliminated by shrinking the mask of | 
|  | // the xor. For example, for a 32-bit X: | 
|  | // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 | 
|  | if (isBitwiseNot(Op0) && Op0.hasOneUse() && | 
|  | LHSOne == ~RHSC->getAPIntValue()) { | 
|  | SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), | 
|  | Op0.getOperand(0), Op.getOperand(1)); | 
|  | return TLO.CombineTo(Op, Xor); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, | 
|  | KnownZero2, KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known one on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and'. | 
|  | if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | if ((NewMask & (KnownZero|KnownZero2)) == NewMask) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) | 
|  | return true; | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | KnownZero |= KnownZero2; | 
|  | break; | 
|  | case ISD::OR: | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, | 
|  | KnownZero2, KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'or'. | 
|  | if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If all of the potentially set bits on one side are known to be set on | 
|  | // the other side, just use the 'other' side. | 
|  | if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (TLO.ShrinkDemandedConstant(Op, NewMask)) | 
|  | return true; | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | KnownZero &= KnownZero2; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | KnownOne |= KnownOne2; | 
|  | break; | 
|  | case ISD::XOR: | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'xor'. | 
|  | if ((KnownZero & NewMask) == NewMask) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | if ((KnownZero2 & NewMask) == NewMask) | 
|  | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) | 
|  | return true; | 
|  |  | 
|  | // If all of the unknown bits are known to be zero on one side or the other | 
|  | // (but not both) turn this into an *inclusive* or. | 
|  | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if ((NewMask & ~KnownZero & ~KnownZero2) == 0) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), | 
|  | Op.getOperand(0), | 
|  | Op.getOperand(1))); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  |  | 
|  | // If all of the demanded bits on one side are known, and all of the set | 
|  | // bits on that side are also known to be set on the other side, turn this | 
|  | // into an AND, as we know the bits will be cleared. | 
|  | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | // NB: it is okay if more bits are known than are requested | 
|  | if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side | 
|  | if (KnownOne == KnownOne2) { // set bits are the same on both sides | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, | 
|  | Op.getOperand(0), ANDC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | // for XOR, we prefer to force bits to 1 if they will make a -1. | 
|  | // If we can't force bits, try to shrink the constant. | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | APInt Expanded = C->getAPIntValue() | (~NewMask); | 
|  | // If we can expand it to have all bits set, do it. | 
|  | if (Expanded.isAllOnesValue()) { | 
|  | if (Expanded != C->getAPIntValue()) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), | 
|  | TLO.DAG.getConstant(Expanded, dl, VT)); | 
|  | return TLO.CombineTo(Op, New); | 
|  | } | 
|  | // If it already has all the bits set, nothing to change | 
|  | // but don't shrink either! | 
|  | } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | KnownZero = KnownZeroOut; | 
|  | KnownOne  = KnownOneOut; | 
|  | break; | 
|  | case ISD::SELECT: | 
|  | if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (TLO.ShrinkDemandedConstant(Op, NewMask)) | 
|  | return true; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | break; | 
|  | case ISD::SELECT_CC: | 
|  | if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (TLO.ShrinkDemandedConstant(Op, NewMask)) | 
|  | return true; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | KnownOne &= KnownOne2; | 
|  | KnownZero &= KnownZero2; | 
|  | break; | 
|  | case ISD::SETCC: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | // If (1) we only need the sign-bit, (2) the setcc operands are the same | 
|  | // width as the setcc result, and (3) the result of a setcc conforms to 0 or | 
|  | // -1, we may be able to bypass the setcc. | 
|  | if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth && | 
|  | getBooleanContents(Op.getValueType()) == | 
|  | BooleanContent::ZeroOrNegativeOneBooleanContent) { | 
|  | // If we're testing X < 0, then this compare isn't needed - just use X! | 
|  | // FIXME: We're limiting to integer types here, but this should also work | 
|  | // if we don't care about FP signed-zero. The use of SETLT with FP means | 
|  | // that we don't care about NaNs. | 
|  | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && | 
|  | (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | // TODO: Should we check for other forms of sign-bit comparisons? | 
|  | // Examples: X <= -1, X >= 0 | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: | 
|  | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | SDValue InOp = Op.getOperand(0); | 
|  |  | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (ShAmt >= BitWidth) | 
|  | break; | 
|  |  | 
|  | // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a | 
|  | // single shift.  We can do this if the bottom bits (which are shifted | 
|  | // out) are never demanded. | 
|  | if (InOp.getOpcode() == ISD::SRL && | 
|  | isa<ConstantSDNode>(InOp.getOperand(1))) { | 
|  | if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { | 
|  | unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); | 
|  | unsigned Opc = ISD::SHL; | 
|  | int Diff = ShAmt-C1; | 
|  | if (Diff < 0) { | 
|  | Diff = -Diff; | 
|  | Opc = ISD::SRL; | 
|  | } | 
|  |  | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); | 
|  | EVT VT = Op.getValueType(); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, | 
|  | InOp.getOperand(0), NewSA)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  |  | 
|  | // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits | 
|  | // are not demanded. This will likely allow the anyext to be folded away. | 
|  | if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue InnerOp = InOp.getNode()->getOperand(0); | 
|  | EVT InnerVT = InnerOp.getValueType(); | 
|  | unsigned InnerBits = InnerVT.getSizeInBits(); | 
|  | if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && | 
|  | isTypeDesirableForOp(ISD::SHL, InnerVT)) { | 
|  | EVT ShTy = getShiftAmountTy(InnerVT, DL); | 
|  | if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) | 
|  | ShTy = InnerVT; | 
|  | SDValue NarrowShl = | 
|  | TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, | 
|  | TLO.DAG.getConstant(ShAmt, dl, ShTy)); | 
|  | return | 
|  | TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), | 
|  | NarrowShl)); | 
|  | } | 
|  | // Repeat the SHL optimization above in cases where an extension | 
|  | // intervenes: (shl (anyext (shr x, c1)), c2) to | 
|  | // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits | 
|  | // aren't demanded (as above) and that the shifted upper c1 bits of | 
|  | // x aren't demanded. | 
|  | if (InOp.hasOneUse() && | 
|  | InnerOp.getOpcode() == ISD::SRL && | 
|  | InnerOp.hasOneUse() && | 
|  | isa<ConstantSDNode>(InnerOp.getOperand(1))) { | 
|  | uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) | 
|  | ->getZExtValue(); | 
|  | if (InnerShAmt < ShAmt && | 
|  | InnerShAmt < InnerBits && | 
|  | NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && | 
|  | NewMask.trunc(ShAmt) == 0) { | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, | 
|  | Op.getOperand(1).getValueType()); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, | 
|  | InnerOp.getOperand(0)); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, | 
|  | NewExt, NewSA)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | KnownZero <<= SA->getZExtValue(); | 
|  | KnownOne  <<= SA->getZExtValue(); | 
|  | // low bits known zero. | 
|  | KnownZero.setLowBits(SA->getZExtValue()); | 
|  | } | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | unsigned VTSize = VT.getSizeInBits(); | 
|  | SDValue InOp = Op.getOperand(0); | 
|  |  | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (ShAmt >= BitWidth) | 
|  | break; | 
|  |  | 
|  | APInt InDemandedMask = (NewMask << ShAmt); | 
|  |  | 
|  | // If the shift is exact, then it does demand the low bits (and knows that | 
|  | // they are zero). | 
|  | if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) | 
|  | InDemandedMask.setLowBits(ShAmt); | 
|  |  | 
|  | // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a | 
|  | // single shift.  We can do this if the top bits (which are shifted out) | 
|  | // are never demanded. | 
|  | if (InOp.getOpcode() == ISD::SHL && | 
|  | isa<ConstantSDNode>(InOp.getOperand(1))) { | 
|  | if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { | 
|  | unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); | 
|  | unsigned Opc = ISD::SRL; | 
|  | int Diff = ShAmt-C1; | 
|  | if (Diff < 0) { | 
|  | Diff = -Diff; | 
|  | Opc = ISD::SHL; | 
|  | } | 
|  |  | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, | 
|  | InOp.getOperand(0), NewSA)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the new bits that are at the top now. | 
|  | if (SimplifyDemandedBits(InOp, InDemandedMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.lshr(ShAmt); | 
|  | KnownOne  = KnownOne.lshr(ShAmt); | 
|  |  | 
|  | KnownZero.setHighBits(ShAmt);  // High bits known zero. | 
|  | } | 
|  | break; | 
|  | case ISD::SRA: | 
|  | // If this is an arithmetic shift right and only the low-bit is set, we can | 
|  | // always convert this into a logical shr, even if the shift amount is | 
|  | // variable.  The low bit of the shift cannot be an input sign bit unless | 
|  | // the shift amount is >= the size of the datatype, which is undefined. | 
|  | if (NewMask == 1) | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(1))); | 
|  |  | 
|  | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  |  | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (ShAmt >= BitWidth) | 
|  | break; | 
|  |  | 
|  | APInt InDemandedMask = (NewMask << ShAmt); | 
|  |  | 
|  | // If the shift is exact, then it does demand the low bits (and knows that | 
|  | // they are zero). | 
|  | if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) | 
|  | InDemandedMask.setLowBits(ShAmt); | 
|  |  | 
|  | // If any of the demanded bits are produced by the sign extension, we also | 
|  | // demand the input sign bit. | 
|  | APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); | 
|  | if (HighBits.intersects(NewMask)) | 
|  | InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.lshr(ShAmt); | 
|  | KnownOne  = KnownOne.lshr(ShAmt); | 
|  |  | 
|  | // Handle the sign bit, adjusted to where it is now in the mask. | 
|  | APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); | 
|  |  | 
|  | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | // are demanded, turn this into an unsigned shift right. | 
|  | if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), | 
|  | Op.getOperand(1), &Flags)); | 
|  | } | 
|  |  | 
|  | int Log2 = NewMask.exactLogBase2(); | 
|  | if (Log2 >= 0) { | 
|  | // The bit must come from the sign. | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, | 
|  | Op.getOperand(1).getValueType()); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, | 
|  | Op.getOperand(0), NewSA)); | 
|  | } | 
|  |  | 
|  | if (KnownOne.intersects(SignBit)) | 
|  | // New bits are known one. | 
|  | KnownOne |= HighBits; | 
|  | } | 
|  | break; | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  |  | 
|  | APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); | 
|  | // If we only care about the highest bit, don't bother shifting right. | 
|  | if (MsbMask == NewMask) { | 
|  | unsigned ShAmt = ExVT.getScalarSizeInBits(); | 
|  | SDValue InOp = Op.getOperand(0); | 
|  | unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); | 
|  | bool AlreadySignExtended = | 
|  | TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; | 
|  | // However if the input is already sign extended we expect the sign | 
|  | // extension to be dropped altogether later and do not simplify. | 
|  | if (!AlreadySignExtended) { | 
|  | // Compute the correct shift amount type, which must be getShiftAmountTy | 
|  | // for scalar types after legalization. | 
|  | EVT ShiftAmtTy = Op.getValueType(); | 
|  | if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) | 
|  | ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); | 
|  |  | 
|  | SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, | 
|  | ShiftAmtTy); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, | 
|  | Op.getValueType(), InOp, | 
|  | ShiftAmt)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sign extension.  Compute the demanded bits in the result that are not | 
|  | // present in the input. | 
|  | APInt NewBits = | 
|  | APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth - ExVT.getScalarSizeInBits()); | 
|  |  | 
|  | // If none of the extended bits are demanded, eliminate the sextinreg. | 
|  | if ((NewBits & NewMask) == 0) | 
|  | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  |  | 
|  | APInt InSignBit = | 
|  | APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); | 
|  | APInt InputDemandedBits = | 
|  | APInt::getLowBitsSet(BitWidth, | 
|  | ExVT.getScalarSizeInBits()) & | 
|  | NewMask; | 
|  |  | 
|  | // Since the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | InputDemandedBits |= InSignBit; | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  |  | 
|  | // If the input sign bit is known zero, convert this into a zero extension. | 
|  | if (KnownZero.intersects(InSignBit)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( | 
|  | Op.getOperand(0), dl, ExVT.getScalarType())); | 
|  |  | 
|  | if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set | 
|  | KnownOne |= NewBits; | 
|  | KnownZero &= ~NewBits; | 
|  | } else {                       // Input sign bit unknown | 
|  | KnownZero &= ~NewBits; | 
|  | KnownOne &= ~NewBits; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_PAIR: { | 
|  | EVT HalfVT = Op.getOperand(0).getValueType(); | 
|  | unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); | 
|  |  | 
|  | APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); | 
|  | APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); | 
|  |  | 
|  | APInt KnownZeroLo, KnownOneLo; | 
|  | APInt KnownZeroHi, KnownOneHi; | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, | 
|  | KnownOneLo, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, | 
|  | KnownOneHi, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | KnownZero = KnownZeroLo.zext(BitWidth) | | 
|  | KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); | 
|  |  | 
|  | KnownOne = KnownOneLo.zext(BitWidth) | | 
|  | KnownOneHi.zext(BitWidth).shl(HalfBitWidth); | 
|  | break; | 
|  | } | 
|  | case ISD::ZERO_EXTEND: { | 
|  | unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); | 
|  | APInt InMask = NewMask.trunc(OperandBitWidth); | 
|  |  | 
|  | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | APInt NewBits = | 
|  | APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; | 
|  | if (!NewBits.intersects(NewMask)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, | 
|  | Op.getValueType(), | 
|  | Op.getOperand(0))); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  | KnownZero |= NewBits; | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: { | 
|  | EVT InVT = Op.getOperand(0).getValueType(); | 
|  | unsigned InBits = InVT.getScalarSizeInBits(); | 
|  | APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits); | 
|  | APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); | 
|  | APInt NewBits   = ~InMask & NewMask; | 
|  |  | 
|  | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | if (NewBits == 0) | 
|  | return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, | 
|  | Op.getValueType(), | 
|  | Op.getOperand(0))); | 
|  |  | 
|  | // Since some of the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | APInt InDemandedBits = InMask & NewMask; | 
|  | InDemandedBits |= InSignBit; | 
|  | InDemandedBits = InDemandedBits.trunc(InBits); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, | 
|  | KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  |  | 
|  | // If the sign bit is known zero, convert this to a zero extend. | 
|  | if (KnownZero.intersects(InSignBit)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, | 
|  | Op.getValueType(), | 
|  | Op.getOperand(0))); | 
|  |  | 
|  | // If the sign bit is known one, the top bits match. | 
|  | if (KnownOne.intersects(InSignBit)) { | 
|  | KnownOne |= NewBits; | 
|  | assert((KnownZero & NewBits) == 0); | 
|  | } else {   // Otherwise, top bits aren't known. | 
|  | assert((KnownOne & NewBits) == 0); | 
|  | assert((KnownZero & NewBits) == 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ANY_EXTEND: { | 
|  | unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); | 
|  | APInt InMask = NewMask.trunc(OperandBitWidth); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), InMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | KnownZero = KnownZero.zext(BitWidth); | 
|  | KnownOne = KnownOne.zext(BitWidth); | 
|  | break; | 
|  | } | 
|  | case ISD::TRUNCATE: { | 
|  | // Simplify the input, using demanded bit information, and compute the known | 
|  | // zero/one bits live out. | 
|  | unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); | 
|  | APInt TruncMask = NewMask.zext(OperandBitWidth); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | KnownZero = KnownZero.trunc(BitWidth); | 
|  | KnownOne = KnownOne.trunc(BitWidth); | 
|  |  | 
|  | // If the input is only used by this truncate, see if we can shrink it based | 
|  | // on the known demanded bits. | 
|  | if (Op.getOperand(0).getNode()->hasOneUse()) { | 
|  | SDValue In = Op.getOperand(0); | 
|  | switch (In.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::SRL: | 
|  | // Shrink SRL by a constant if none of the high bits shifted in are | 
|  | // demanded. | 
|  | if (TLO.LegalTypes() && | 
|  | !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) | 
|  | // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is | 
|  | // undesirable. | 
|  | break; | 
|  | ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); | 
|  | if (!ShAmt) | 
|  | break; | 
|  | SDValue Shift = In.getOperand(1); | 
|  | if (TLO.LegalTypes()) { | 
|  | uint64_t ShVal = ShAmt->getZExtValue(); | 
|  | Shift = TLO.DAG.getConstant(ShVal, dl, | 
|  | getShiftAmountTy(Op.getValueType(), DL)); | 
|  | } | 
|  |  | 
|  | APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, | 
|  | OperandBitWidth - BitWidth); | 
|  | HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); | 
|  |  | 
|  | if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { | 
|  | // None of the shifted in bits are needed.  Add a truncate of the | 
|  | // shift input, then shift it. | 
|  | SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, | 
|  | Op.getValueType(), | 
|  | In.getOperand(0)); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, | 
|  | Op.getValueType(), | 
|  | NewTrunc, | 
|  | Shift)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | case ISD::AssertZext: { | 
|  | // AssertZext demands all of the high bits, plus any of the low bits | 
|  | // demanded by its users. | 
|  | EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | APInt InMask = APInt::getLowBitsSet(BitWidth, | 
|  | VT.getSizeInBits()); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, | 
|  | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | return true; | 
|  | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  |  | 
|  | KnownZero |= ~InMask & NewMask; | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: | 
|  | // If this is an FP->Int bitcast and if the sign bit is the only | 
|  | // thing demanded, turn this into a FGETSIGN. | 
|  | if (!TLO.LegalOperations() && | 
|  | !Op.getValueType().isVector() && | 
|  | !Op.getOperand(0).getValueType().isVector() && | 
|  | NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && | 
|  | Op.getOperand(0).getValueType().isFloatingPoint()) { | 
|  | bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); | 
|  | bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); | 
|  | if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && | 
|  | Op.getOperand(0).getValueType() != MVT::f128) { | 
|  | // Cannot eliminate/lower SHL for f128 yet. | 
|  | EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; | 
|  | // Make a FGETSIGN + SHL to move the sign bit into the appropriate | 
|  | // place.  We expect the SHL to be eliminated by other optimizations. | 
|  | SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); | 
|  | unsigned OpVTSizeInBits = Op.getValueSizeInBits(); | 
|  | if (!OpVTLegal && OpVTSizeInBits > 32) | 
|  | Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); | 
|  | unsigned ShVal = Op.getValueSizeInBits() - 1; | 
|  | SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, | 
|  | Op.getValueType(), | 
|  | Sign, ShAmt)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::SUB: { | 
|  | // Add, Sub, and Mul don't demand any bits in positions beyond that | 
|  | // of the highest bit demanded of them. | 
|  | APInt LoMask = APInt::getLowBitsSet(BitWidth, | 
|  | BitWidth - NewMask.countLeadingZeros()); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1) || | 
|  | SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, | 
|  | KnownOne2, TLO, Depth+1) || | 
|  | // See if the operation should be performed at a smaller bit width. | 
|  | TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) { | 
|  | const SDNodeFlags *Flags = Op.getNode()->getFlags(); | 
|  | if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { | 
|  | // Disable the nsw and nuw flags. We can no longer guarantee that we | 
|  | // won't wrap after simplification. | 
|  | SDNodeFlags NewFlags = *Flags; | 
|  | NewFlags.setNoSignedWrap(false); | 
|  | NewFlags.setNoUnsignedWrap(false); | 
|  | SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(1), | 
|  | &NewFlags); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | default: | 
|  | // Just use computeKnownBits to compute output bits. | 
|  | TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we know the value of all of the demanded bits, return this as a | 
|  | // constant. | 
|  | if ((NewMask & (KnownZero|KnownOne)) == NewMask) { | 
|  | // Avoid folding to a constant if any OpaqueConstant is involved. | 
|  | const SDNode *N = Op.getNode(); | 
|  | for (SDNodeIterator I = SDNodeIterator::begin(N), | 
|  | E = SDNodeIterator::end(N); I != E; ++I) { | 
|  | SDNode *Op = *I; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->isOpaque()) | 
|  | return false; | 
|  | } | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine which of the bits specified in Mask are known to be either zero or | 
|  | /// one and return them in the KnownZero/KnownOne bitsets. | 
|  | void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); | 
|  | } | 
|  |  | 
|  | /// This method can be implemented by targets that want to expose additional | 
|  | /// information about sign bits to the DAG Combiner. | 
|  | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, | 
|  | const SelectionDAG &, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use ComputeNumSignBits if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isConstTrueVal(const SDNode *N) const { | 
|  | if (!N) | 
|  | return false; | 
|  |  | 
|  | const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); | 
|  | if (!CN) { | 
|  | const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); | 
|  | if (!BV) | 
|  | return false; | 
|  |  | 
|  | // Only interested in constant splats, we don't care about undef | 
|  | // elements in identifying boolean constants and getConstantSplatNode | 
|  | // returns NULL if all ops are undef; | 
|  | CN = BV->getConstantSplatNode(); | 
|  | if (!CN) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (getBooleanContents(N->getValueType(0))) { | 
|  | case UndefinedBooleanContent: | 
|  | return CN->getAPIntValue()[0]; | 
|  | case ZeroOrOneBooleanContent: | 
|  | return CN->isOne(); | 
|  | case ZeroOrNegativeOneBooleanContent: | 
|  | return CN->isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid boolean contents"); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, | 
|  | const SDLoc &DL) const { | 
|  | unsigned ElementWidth = VT.getScalarSizeInBits(); | 
|  | APInt TrueInt = | 
|  | getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent | 
|  | ? APInt(ElementWidth, 1) | 
|  | : APInt::getAllOnesValue(ElementWidth); | 
|  | return DAG.getConstant(TrueInt, DL, VT); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isConstFalseVal(const SDNode *N) const { | 
|  | if (!N) | 
|  | return false; | 
|  |  | 
|  | const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); | 
|  | if (!CN) { | 
|  | const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); | 
|  | if (!BV) | 
|  | return false; | 
|  |  | 
|  | // Only interested in constant splats, we don't care about undef | 
|  | // elements in identifying boolean constants and getConstantSplatNode | 
|  | // returns NULL if all ops are undef; | 
|  | CN = BV->getConstantSplatNode(); | 
|  | if (!CN) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) | 
|  | return !CN->getAPIntValue()[0]; | 
|  |  | 
|  | return CN->isNullValue(); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, | 
|  | bool SExt) const { | 
|  | if (VT == MVT::i1) | 
|  | return N->isOne(); | 
|  |  | 
|  | TargetLowering::BooleanContent Cnt = getBooleanContents(VT); | 
|  | switch (Cnt) { | 
|  | case TargetLowering::ZeroOrOneBooleanContent: | 
|  | // An extended value of 1 is always true, unless its original type is i1, | 
|  | // in which case it will be sign extended to -1. | 
|  | return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); | 
|  | case TargetLowering::UndefinedBooleanContent: | 
|  | case TargetLowering::ZeroOrNegativeOneBooleanContent: | 
|  | return N->isAllOnesValue() && SExt; | 
|  | } | 
|  | llvm_unreachable("Unexpected enumeration."); | 
|  | } | 
|  |  | 
|  | /// This helper function of SimplifySetCC tries to optimize the comparison when | 
|  | /// either operand of the SetCC node is a bitwise-and instruction. | 
|  | SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &DL) const { | 
|  | // Match these patterns in any of their permutations: | 
|  | // (X & Y) == Y | 
|  | // (X & Y) != Y | 
|  | if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) | 
|  | std::swap(N0, N1); | 
|  |  | 
|  | EVT OpVT = N0.getValueType(); | 
|  | if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || | 
|  | (Cond != ISD::SETEQ && Cond != ISD::SETNE)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue X, Y; | 
|  | if (N0.getOperand(0) == N1) { | 
|  | X = N0.getOperand(1); | 
|  | Y = N0.getOperand(0); | 
|  | } else if (N0.getOperand(1) == N1) { | 
|  | X = N0.getOperand(0); | 
|  | Y = N0.getOperand(1); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Zero = DAG.getConstant(0, DL, OpVT); | 
|  | if (DAG.isKnownToBeAPowerOfTwo(Y)) { | 
|  | // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. | 
|  | // Note that where Y is variable and is known to have at most one bit set | 
|  | // (for example, if it is Z & 1) we cannot do this; the expressions are not | 
|  | // equivalent when Y == 0. | 
|  | Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(Cond, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(DL, VT, N0, Zero, Cond); | 
|  | } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { | 
|  | // If the target supports an 'and-not' or 'and-complement' logic operation, | 
|  | // try to use that to make a comparison operation more efficient. | 
|  | // But don't do this transform if the mask is a single bit because there are | 
|  | // more efficient ways to deal with that case (for example, 'bt' on x86 or | 
|  | // 'rlwinm' on PPC). | 
|  |  | 
|  | // Bail out if the compare operand that we want to turn into a zero is | 
|  | // already a zero (otherwise, infinite loop). | 
|  | auto *YConst = dyn_cast<ConstantSDNode>(Y); | 
|  | if (YConst && YConst->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Transform this into: ~X & Y == 0. | 
|  | SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); | 
|  | SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); | 
|  | return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Try to simplify a setcc built with the specified operands and cc. If it is | 
|  | /// unable to simplify it, return a null SDValue. | 
|  | SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, bool foldBooleans, | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &dl) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // These setcc operations always fold. | 
|  | switch (Cond) { | 
|  | default: break; | 
|  | case ISD::SETFALSE: | 
|  | case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); | 
|  | case ISD::SETTRUE: | 
|  | case ISD::SETTRUE2: { | 
|  | TargetLowering::BooleanContent Cnt = | 
|  | getBooleanContents(N0->getValueType(0)); | 
|  | return DAG.getConstant( | 
|  | Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, | 
|  | VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure that the constant occurs on the RHS, and fold constant | 
|  | // comparisons. | 
|  | ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); | 
|  | if (isa<ConstantSDNode>(N0.getNode()) && | 
|  | (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) | 
|  | return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); | 
|  |  | 
|  | if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { | 
|  | const APInt &C1 = N1C->getAPIntValue(); | 
|  |  | 
|  | // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an | 
|  | // equality comparison, then we're just comparing whether X itself is | 
|  | // zero. | 
|  | if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && | 
|  | N0.getOperand(0).getOpcode() == ISD::CTLZ && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | const APInt &ShAmt | 
|  | = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | ShAmt == Log2_32(N0.getValueSizeInBits())) { | 
|  | if ((C1 == 0) == (Cond == ISD::SETEQ)) { | 
|  | // (srl (ctlz x), 5) == 0  -> X != 0 | 
|  | // (srl (ctlz x), 5) != 1  -> X != 0 | 
|  | Cond = ISD::SETNE; | 
|  | } else { | 
|  | // (srl (ctlz x), 5) != 0  -> X == 0 | 
|  | // (srl (ctlz x), 5) == 1  -> X == 0 | 
|  | Cond = ISD::SETEQ; | 
|  | } | 
|  | SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), | 
|  | Zero, Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CTPOP = N0; | 
|  | // Look through truncs that don't change the value of a ctpop. | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) | 
|  | CTPOP = N0.getOperand(0); | 
|  |  | 
|  | if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && | 
|  | (N0 == CTPOP || | 
|  | N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { | 
|  | EVT CTVT = CTPOP.getValueType(); | 
|  | SDValue CTOp = CTPOP.getOperand(0); | 
|  |  | 
|  | // (ctpop x) u< 2 -> (x & x-1) == 0 | 
|  | // (ctpop x) u> 1 -> (x & x-1) != 0 | 
|  | if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, | 
|  | DAG.getConstant(1, dl, CTVT)); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); | 
|  | ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; | 
|  | return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); | 
|  | } | 
|  |  | 
|  | // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. | 
|  | } | 
|  |  | 
|  | // (zext x) == C --> x == (trunc C) | 
|  | // (sext x) == C --> x == (trunc C) | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | DCI.isBeforeLegalize() && N0->hasOneUse()) { | 
|  | unsigned MinBits = N0.getValueSizeInBits(); | 
|  | SDValue PreExt; | 
|  | bool Signed = false; | 
|  | if (N0->getOpcode() == ISD::ZERO_EXTEND) { | 
|  | // ZExt | 
|  | MinBits = N0->getOperand(0).getValueSizeInBits(); | 
|  | PreExt = N0->getOperand(0); | 
|  | } else if (N0->getOpcode() == ISD::AND) { | 
|  | // DAGCombine turns costly ZExts into ANDs | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) | 
|  | if ((C->getAPIntValue()+1).isPowerOf2()) { | 
|  | MinBits = C->getAPIntValue().countTrailingOnes(); | 
|  | PreExt = N0->getOperand(0); | 
|  | } | 
|  | } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { | 
|  | // SExt | 
|  | MinBits = N0->getOperand(0).getValueSizeInBits(); | 
|  | PreExt = N0->getOperand(0); | 
|  | Signed = true; | 
|  | } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { | 
|  | // ZEXTLOAD / SEXTLOAD | 
|  | if (LN0->getExtensionType() == ISD::ZEXTLOAD) { | 
|  | MinBits = LN0->getMemoryVT().getSizeInBits(); | 
|  | PreExt = N0; | 
|  | } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { | 
|  | Signed = true; | 
|  | MinBits = LN0->getMemoryVT().getSizeInBits(); | 
|  | PreExt = N0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out how many bits we need to preserve this constant. | 
|  | unsigned ReqdBits = Signed ? | 
|  | C1.getBitWidth() - C1.getNumSignBits() + 1 : | 
|  | C1.getActiveBits(); | 
|  |  | 
|  | // Make sure we're not losing bits from the constant. | 
|  | if (MinBits > 0 && | 
|  | MinBits < C1.getBitWidth() && | 
|  | MinBits >= ReqdBits) { | 
|  | EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); | 
|  | if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { | 
|  | // Will get folded away. | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); | 
|  | if (MinBits == 1 && C1 == 1) | 
|  | // Invert the condition. | 
|  | return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); | 
|  | return DAG.getSetCC(dl, VT, Trunc, C, Cond); | 
|  | } | 
|  |  | 
|  | // If truncating the setcc operands is not desirable, we can still | 
|  | // simplify the expression in some cases: | 
|  | // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) | 
|  | // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) | 
|  | // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) | 
|  | // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) | 
|  | // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) | 
|  | // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) | 
|  | SDValue TopSetCC = N0->getOperand(0); | 
|  | unsigned N0Opc = N0->getOpcode(); | 
|  | bool SExt = (N0Opc == ISD::SIGN_EXTEND); | 
|  | if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && | 
|  | TopSetCC.getOpcode() == ISD::SETCC && | 
|  | (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && | 
|  | (isConstFalseVal(N1C) || | 
|  | isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { | 
|  |  | 
|  | bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || | 
|  | (!N1C->isNullValue() && Cond == ISD::SETNE); | 
|  |  | 
|  | if (!Inverse) | 
|  | return TopSetCC; | 
|  |  | 
|  | ISD::CondCode InvCond = ISD::getSetCCInverse( | 
|  | cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), | 
|  | TopSetCC.getOperand(0).getValueType().isInteger()); | 
|  | return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), | 
|  | TopSetCC.getOperand(1), | 
|  | InvCond); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is '(and load, const)', the RHS is 0, | 
|  | // the test is for equality or unsigned, and all 1 bits of the const are | 
|  | // in the same partial word, see if we can shorten the load. | 
|  | if (DCI.isBeforeLegalize() && | 
|  | !ISD::isSignedIntSetCC(Cond) && | 
|  | N0.getOpcode() == ISD::AND && C1 == 0 && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(0).getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | APInt bestMask; | 
|  | unsigned bestWidth = 0, bestOffset = 0; | 
|  | if (!Lod->isVolatile() && Lod->isUnindexed()) { | 
|  | unsigned origWidth = N0.getValueSizeInBits(); | 
|  | unsigned maskWidth = origWidth; | 
|  | // We can narrow (e.g.) 16-bit extending loads on 32-bit target to | 
|  | // 8 bits, but have to be careful... | 
|  | if (Lod->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | origWidth = Lod->getMemoryVT().getSizeInBits(); | 
|  | const APInt &Mask = | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); | 
|  | for (unsigned width = origWidth / 2; width>=8; width /= 2) { | 
|  | APInt newMask = APInt::getLowBitsSet(maskWidth, width); | 
|  | for (unsigned offset=0; offset<origWidth/width; offset++) { | 
|  | if ((newMask & Mask) == Mask) { | 
|  | if (!DAG.getDataLayout().isLittleEndian()) | 
|  | bestOffset = (origWidth/width - offset - 1) * (width/8); | 
|  | else | 
|  | bestOffset = (uint64_t)offset * (width/8); | 
|  | bestMask = Mask.lshr(offset * (width/8) * 8); | 
|  | bestWidth = width; | 
|  | break; | 
|  | } | 
|  | newMask = newMask << width; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (bestWidth) { | 
|  | EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); | 
|  | if (newVT.isRound()) { | 
|  | EVT PtrType = Lod->getOperand(1).getValueType(); | 
|  | SDValue Ptr = Lod->getBasePtr(); | 
|  | if (bestOffset != 0) | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), | 
|  | DAG.getConstant(bestOffset, dl, PtrType)); | 
|  | unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); | 
|  | SDValue NewLoad = DAG.getLoad( | 
|  | newVT, dl, Lod->getChain(), Ptr, | 
|  | Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); | 
|  | return DAG.getSetCC(dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, newVT, NewLoad, | 
|  | DAG.getConstant(bestMask.trunc(bestWidth), | 
|  | dl, newVT)), | 
|  | DAG.getConstant(0LL, dl, newVT), Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | unsigned InSize = N0.getOperand(0).getValueSizeInBits(); | 
|  |  | 
|  | // If the comparison constant has bits in the upper part, the | 
|  | // zero-extended value could never match. | 
|  | if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), | 
|  | C1.getBitWidth() - InSize))) { | 
|  | switch (Cond) { | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETEQ: return DAG.getConstant(0, dl, VT); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETNE: return DAG.getConstant(1, dl, VT); | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | // True if the sign bit of C1 is set. | 
|  | return DAG.getConstant(C1.isNegative(), dl, VT); | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | // True if the sign bit of C1 isn't set. | 
|  | return DAG.getConstant(C1.isNonNegative(), dl, VT); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can perform the comparison with the low bits. | 
|  | switch (Cond) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: { | 
|  | EVT newVT = N0.getOperand(0).getValueType(); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | (isOperationLegal(ISD::SETCC, newVT) && | 
|  | getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { | 
|  | EVT NewSetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); | 
|  | SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); | 
|  |  | 
|  | SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), | 
|  | NewConst, Cond); | 
|  | return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break;   // todo, be more careful with signed comparisons | 
|  | } | 
|  | } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); | 
|  | unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); | 
|  | EVT ExtDstTy = N0.getValueType(); | 
|  | unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); | 
|  |  | 
|  | // If the constant doesn't fit into the number of bits for the source of | 
|  | // the sign extension, it is impossible for both sides to be equal. | 
|  | if (C1.getMinSignedBits() > ExtSrcTyBits) | 
|  | return DAG.getConstant(Cond == ISD::SETNE, dl, VT); | 
|  |  | 
|  | SDValue ZextOp; | 
|  | EVT Op0Ty = N0.getOperand(0).getValueType(); | 
|  | if (Op0Ty == ExtSrcTy) { | 
|  | ZextOp = N0.getOperand(0); | 
|  | } else { | 
|  | APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); | 
|  | ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), | 
|  | DAG.getConstant(Imm, dl, Op0Ty)); | 
|  | } | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(ZextOp.getNode()); | 
|  | // Otherwise, make this a use of a zext. | 
|  | return DAG.getSetCC(dl, VT, ZextOp, | 
|  | DAG.getConstant(C1 & APInt::getLowBitsSet( | 
|  | ExtDstTyBits, | 
|  | ExtSrcTyBits), | 
|  | dl, ExtDstTy), | 
|  | Cond); | 
|  | } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC | 
|  | if (N0.getOpcode() == ISD::SETCC && | 
|  | isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { | 
|  | bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); | 
|  | if (TrueWhenTrue) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); | 
|  | // Invert the condition. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | CC = ISD::getSetCCInverse(CC, | 
|  | N0.getOperand(0).getValueType().isInteger()); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); | 
|  | } | 
|  |  | 
|  | if ((N0.getOpcode() == ISD::XOR || | 
|  | (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::XOR && | 
|  | N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { | 
|  | // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We | 
|  | // can only do this if the top bits are known zero. | 
|  | unsigned BitWidth = N0.getValueSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N0, | 
|  | APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth-1))) { | 
|  | // Okay, get the un-inverted input value. | 
|  | SDValue Val; | 
|  | if (N0.getOpcode() == ISD::XOR) | 
|  | Val = N0.getOperand(0); | 
|  | else { | 
|  | assert(N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::XOR); | 
|  | // ((X^1)&1)^1 -> X & 1 | 
|  | Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), | 
|  | N0.getOperand(0).getOperand(0), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return DAG.getSetCC(dl, VT, Val, N1, | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | } else if (N1C->getAPIntValue() == 1 && | 
|  | (VT == MVT::i1 || | 
|  | getBooleanContents(N0->getValueType(0)) == | 
|  | ZeroOrOneBooleanContent)) { | 
|  | SDValue Op0 = N0; | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  |  | 
|  | if ((Op0.getOpcode() == ISD::XOR) && | 
|  | Op0.getOperand(0).getOpcode() == ISD::SETCC && | 
|  | Op0.getOperand(1).getOpcode() == ISD::SETCC) { | 
|  | // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) | 
|  | Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; | 
|  | return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), | 
|  | Cond); | 
|  | } | 
|  | if (Op0.getOpcode() == ISD::AND && | 
|  | isa<ConstantSDNode>(Op0.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { | 
|  | // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. | 
|  | if (Op0.getValueType().bitsGT(VT)) | 
|  | Op0 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), | 
|  | DAG.getConstant(1, dl, VT)); | 
|  | else if (Op0.getValueType().bitsLT(VT)) | 
|  | Op0 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), | 
|  | DAG.getConstant(1, dl, VT)); | 
|  |  | 
|  | return DAG.getSetCC(dl, VT, Op0, | 
|  | DAG.getConstant(0, dl, Op0.getValueType()), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | if (Op0.getOpcode() == ISD::AssertZext && | 
|  | cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) | 
|  | return DAG.getSetCC(dl, VT, Op0, | 
|  | DAG.getConstant(0, dl, Op0.getValueType()), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt MinVal, MaxVal; | 
|  | unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); | 
|  | if (ISD::isSignedIntSetCC(Cond)) { | 
|  | MinVal = APInt::getSignedMinValue(OperandBitSize); | 
|  | MaxVal = APInt::getSignedMaxValue(OperandBitSize); | 
|  | } else { | 
|  | MinVal = APInt::getMinValue(OperandBitSize); | 
|  | MaxVal = APInt::getMaxValue(OperandBitSize); | 
|  | } | 
|  |  | 
|  | // Canonicalize GE/LE comparisons to use GT/LT comparisons. | 
|  | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { | 
|  | if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true | 
|  | // X >= C0 --> X > (C0 - 1) | 
|  | APInt C = C1 - 1; | 
|  | ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; | 
|  | if ((DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(NewCC, VT.getSimpleVT())) && | 
|  | (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && | 
|  | isLegalICmpImmediate(C.getSExtValue())))) { | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(C, dl, N1.getValueType()), | 
|  | NewCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { | 
|  | if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true | 
|  | // X <= C0 --> X < (C0 + 1) | 
|  | APInt C = C1 + 1; | 
|  | ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; | 
|  | if ((DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(NewCC, VT.getSimpleVT())) && | 
|  | (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && | 
|  | isLegalICmpImmediate(C.getSExtValue())))) { | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(C, dl, N1.getValueType()), | 
|  | NewCC); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) | 
|  | return DAG.getConstant(0, dl, VT);      // X < MIN --> false | 
|  | if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) | 
|  | return DAG.getConstant(1, dl, VT);      // X >= MIN --> true | 
|  | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) | 
|  | return DAG.getConstant(0, dl, VT);      // X > MAX --> false | 
|  | if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) | 
|  | return DAG.getConstant(1, dl, VT);      // X <= MAX --> true | 
|  |  | 
|  | // Canonicalize setgt X, Min --> setne X, Min | 
|  | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); | 
|  | // Canonicalize setlt X, Max --> setne X, Max | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); | 
|  |  | 
|  | // If we have setult X, 1, turn it into seteq X, 0 | 
|  | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(MinVal, dl, N0.getValueType()), | 
|  | ISD::SETEQ); | 
|  | // If we have setugt X, Max-1, turn it into seteq X, Max | 
|  | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(MaxVal, dl, N0.getValueType()), | 
|  | ISD::SETEQ); | 
|  |  | 
|  | // If we have "setcc X, C0", check to see if we can shrink the immediate | 
|  | // by changing cc. | 
|  |  | 
|  | // SETUGT X, SINTMAX  -> SETLT X, 0 | 
|  | if (Cond == ISD::SETUGT && | 
|  | C1 == APInt::getSignedMaxValue(OperandBitSize)) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(0, dl, N1.getValueType()), | 
|  | ISD::SETLT); | 
|  |  | 
|  | // SETULT X, SINTMIN  -> SETGT X, -1 | 
|  | if (Cond == ISD::SETULT && | 
|  | C1 == APInt::getSignedMinValue(OperandBitSize)) { | 
|  | SDValue ConstMinusOne = | 
|  | DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, | 
|  | N1.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); | 
|  | } | 
|  |  | 
|  | // Fold bit comparisons when we can. | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | (VT == N0.getValueType() || | 
|  | (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && | 
|  | N0.getOpcode() == ISD::AND) { | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | EVT ShiftTy = DCI.isBeforeLegalize() | 
|  | ? getPointerTy(DL) | 
|  | : getShiftAmountTy(N0.getValueType(), DL); | 
|  | if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3 | 
|  | // Perform the xform if the AND RHS is a single bit. | 
|  | if (AndRHS->getAPIntValue().isPowerOf2()) { | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, | 
|  | DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, | 
|  | ShiftTy))); | 
|  | } | 
|  | } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { | 
|  | // (X & 8) == 8  -->  (X & 8) >> 3 | 
|  | // Perform the xform if C1 is a single bit. | 
|  | if (C1.isPowerOf2()) { | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, | 
|  | DAG.getConstant(C1.logBase2(), dl, | 
|  | ShiftTy))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C1.getMinSignedBits() <= 64 && | 
|  | !isLegalICmpImmediate(C1.getSExtValue())) { | 
|  | // (X & -256) == 256 -> (X >> 8) == 1 | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | N0.getOpcode() == ISD::AND && N0.hasOneUse()) { | 
|  | if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | const APInt &AndRHSC = AndRHS->getAPIntValue(); | 
|  | if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { | 
|  | unsigned ShiftBits = AndRHSC.countTrailingZeros(); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | EVT ShiftTy = DCI.isBeforeLegalize() | 
|  | ? getPointerTy(DL) | 
|  | : getShiftAmountTy(N0.getValueType(), DL); | 
|  | EVT CmpTy = N0.getValueType(); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), | 
|  | DAG.getConstant(ShiftBits, dl, | 
|  | ShiftTy)); | 
|  | SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); | 
|  | return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); | 
|  | } | 
|  | } | 
|  | } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || | 
|  | Cond == ISD::SETULE || Cond == ISD::SETUGT) { | 
|  | bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); | 
|  | // X <  0x100000000 -> (X >> 32) <  1 | 
|  | // X >= 0x100000000 -> (X >> 32) >= 1 | 
|  | // X <= 0x0ffffffff -> (X >> 32) <  1 | 
|  | // X >  0x0ffffffff -> (X >> 32) >= 1 | 
|  | unsigned ShiftBits; | 
|  | APInt NewC = C1; | 
|  | ISD::CondCode NewCond = Cond; | 
|  | if (AdjOne) { | 
|  | ShiftBits = C1.countTrailingOnes(); | 
|  | NewC = NewC + 1; | 
|  | NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; | 
|  | } else { | 
|  | ShiftBits = C1.countTrailingZeros(); | 
|  | } | 
|  | NewC = NewC.lshr(ShiftBits); | 
|  | if (ShiftBits && NewC.getMinSignedBits() <= 64 && | 
|  | isLegalICmpImmediate(NewC.getSExtValue())) { | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | EVT ShiftTy = DCI.isBeforeLegalize() | 
|  | ? getPointerTy(DL) | 
|  | : getShiftAmountTy(N0.getValueType(), DL); | 
|  | EVT CmpTy = N0.getValueType(); | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, | 
|  | DAG.getConstant(ShiftBits, dl, ShiftTy)); | 
|  | SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); | 
|  | return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantFPSDNode>(N0.getNode())) { | 
|  | // Constant fold or commute setcc. | 
|  | SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); | 
|  | if (O.getNode()) return O; | 
|  | } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { | 
|  | // If the RHS of an FP comparison is a constant, simplify it away in | 
|  | // some cases. | 
|  | if (CFP->getValueAPF().isNaN()) { | 
|  | // If an operand is known to be a nan, we can fold it. | 
|  | switch (ISD::getUnorderedFlavor(Cond)) { | 
|  | default: llvm_unreachable("Unknown flavor!"); | 
|  | case 0:  // Known false. | 
|  | return DAG.getConstant(0, dl, VT); | 
|  | case 1:  // Known true. | 
|  | return DAG.getConstant(1, dl, VT); | 
|  | case 2:  // Undefined. | 
|  | return DAG.getUNDEF(VT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the | 
|  | // constant if knowing that the operand is non-nan is enough.  We prefer to | 
|  | // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to | 
|  | // materialize 0.0. | 
|  | if (Cond == ISD::SETO || Cond == ISD::SETUO) | 
|  | return DAG.getSetCC(dl, VT, N0, N0, Cond); | 
|  |  | 
|  | // setcc (fneg x), C -> setcc swap(pred) x, -C | 
|  | if (N0.getOpcode() == ISD::FNEG) { | 
|  | ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { | 
|  | SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the condition is not legal, see if we can find an equivalent one | 
|  | // which is legal. | 
|  | if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { | 
|  | // If the comparison was an awkward floating-point == or != and one of | 
|  | // the comparison operands is infinity or negative infinity, convert the | 
|  | // condition to a less-awkward <= or >=. | 
|  | if (CFP->getValueAPF().isInfinity()) { | 
|  | if (CFP->getValueAPF().isNegative()) { | 
|  | if (Cond == ISD::SETOEQ && | 
|  | isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); | 
|  | if (Cond == ISD::SETUEQ && | 
|  | isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); | 
|  | if (Cond == ISD::SETUNE && | 
|  | isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); | 
|  | if (Cond == ISD::SETONE && | 
|  | isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); | 
|  | } else { | 
|  | if (Cond == ISD::SETOEQ && | 
|  | isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); | 
|  | if (Cond == ISD::SETUEQ && | 
|  | isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); | 
|  | if (Cond == ISD::SETUNE && | 
|  | isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); | 
|  | if (Cond == ISD::SETONE && | 
|  | isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0 == N1) { | 
|  | // The sext(setcc()) => setcc() optimization relies on the appropriate | 
|  | // constant being emitted. | 
|  | uint64_t EqVal = 0; | 
|  | switch (getBooleanContents(N0.getValueType())) { | 
|  | case UndefinedBooleanContent: | 
|  | case ZeroOrOneBooleanContent: | 
|  | EqVal = ISD::isTrueWhenEqual(Cond); | 
|  | break; | 
|  | case ZeroOrNegativeOneBooleanContent: | 
|  | EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We can always fold X == X for integer setcc's. | 
|  | if (N0.getValueType().isInteger()) { | 
|  | return DAG.getConstant(EqVal, dl, VT); | 
|  | } | 
|  | unsigned UOF = ISD::getUnorderedFlavor(Cond); | 
|  | if (UOF == 2)   // FP operators that are undefined on NaNs. | 
|  | return DAG.getConstant(EqVal, dl, VT); | 
|  | if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) | 
|  | return DAG.getConstant(EqVal, dl, VT); | 
|  | // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO | 
|  | // if it is not already. | 
|  | ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; | 
|  | if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || | 
|  | getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, NewCond); | 
|  | } | 
|  |  | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | N0.getValueType().isInteger()) { | 
|  | if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || | 
|  | N0.getOpcode() == ISD::XOR) { | 
|  | // Simplify (X+Y) == (X+Z) -->  Y == Z | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | if (N0.getOperand(0) == N1.getOperand(0)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); | 
|  | if (N0.getOperand(1) == N1.getOperand(1)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); | 
|  | if (DAG.isCommutativeBinOp(N0.getOpcode())) { | 
|  | // If X op Y == Y op X, try other combinations. | 
|  | if (N0.getOperand(0) == N1.getOperand(1)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), | 
|  | Cond); | 
|  | if (N0.getOperand(1) == N1.getOperand(0)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), | 
|  | Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If RHS is a legal immediate value for a compare instruction, we need | 
|  | // to be careful about increasing register pressure needlessly. | 
|  | bool LegalRHSImm = false; | 
|  |  | 
|  | if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { | 
|  | if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | // Turn (X+C1) == C2 --> X == C2-C1 | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(RHSC->getAPIntValue()- | 
|  | LHSR->getAPIntValue(), | 
|  | dl, N0.getValueType()), Cond); | 
|  | } | 
|  |  | 
|  | // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. | 
|  | if (N0.getOpcode() == ISD::XOR) | 
|  | // If we know that all of the inverted bits are zero, don't bother | 
|  | // performing the inversion. | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) | 
|  | return | 
|  | DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(LHSR->getAPIntValue() ^ | 
|  | RHSC->getAPIntValue(), | 
|  | dl, N0.getValueType()), | 
|  | Cond); | 
|  | } | 
|  |  | 
|  | // Turn (C1-X) == C2 --> X == C1-C2 | 
|  | if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { | 
|  | if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { | 
|  | return | 
|  | DAG.getSetCC(dl, VT, N0.getOperand(1), | 
|  | DAG.getConstant(SUBC->getAPIntValue() - | 
|  | RHSC->getAPIntValue(), | 
|  | dl, N0.getValueType()), | 
|  | Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Could RHSC fold directly into a compare? | 
|  | if (RHSC->getValueType(0).getSizeInBits() <= 64) | 
|  | LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); | 
|  | } | 
|  |  | 
|  | // Simplify (X+Z) == X -->  Z == 0 | 
|  | // Don't do this if X is an immediate that can fold into a cmp | 
|  | // instruction and X+Z has other uses. It could be an induction variable | 
|  | // chain, and the transform would increase register pressure. | 
|  | if (!LegalRHSImm || N0.getNode()->hasOneUse()) { | 
|  | if (N0.getOperand(0) == N1) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), | 
|  | DAG.getConstant(0, dl, N0.getValueType()), Cond); | 
|  | if (N0.getOperand(1) == N1) { | 
|  | if (DAG.isCommutativeBinOp(N0.getOpcode())) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(0, dl, N0.getValueType()), | 
|  | Cond); | 
|  | if (N0.getNode()->hasOneUse()) { | 
|  | assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | // (Z-X) == X  --> Z == X<<1 | 
|  | SDValue SH = DAG.getNode( | 
|  | ISD::SHL, dl, N1.getValueType(), N1, | 
|  | DAG.getConstant(1, dl, | 
|  | getShiftAmountTy(N1.getValueType(), DL))); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(SH.getNode()); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || | 
|  | N1.getOpcode() == ISD::XOR) { | 
|  | // Simplify  X == (X+Z) -->  Z == 0 | 
|  | if (N1.getOperand(0) == N0) | 
|  | return DAG.getSetCC(dl, VT, N1.getOperand(1), | 
|  | DAG.getConstant(0, dl, N1.getValueType()), Cond); | 
|  | if (N1.getOperand(1) == N0) { | 
|  | if (DAG.isCommutativeBinOp(N1.getOpcode())) | 
|  | return DAG.getSetCC(dl, VT, N1.getOperand(0), | 
|  | DAG.getConstant(0, dl, N1.getValueType()), Cond); | 
|  | if (N1.getNode()->hasOneUse()) { | 
|  | assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | // X == (Z-X)  --> X<<1 == Z | 
|  | SDValue SH = DAG.getNode( | 
|  | ISD::SHL, dl, N1.getValueType(), N0, | 
|  | DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(SH.getNode()); | 
|  | return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Fold away ALL boolean setcc's. | 
|  | SDValue Temp; | 
|  | if (N0.getValueType() == MVT::i1 && foldBooleans) { | 
|  | switch (Cond) { | 
|  | default: llvm_unreachable("Unknown integer setcc!"); | 
|  | case ISD::SETEQ:  // X == Y  -> ~(X^Y) | 
|  | Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); | 
|  | N0 = DAG.getNOT(dl, Temp, MVT::i1); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETNE:  // X != Y   -->  (X^Y) | 
|  | N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); | 
|  | break; | 
|  | case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y | 
|  | case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y | 
|  | Temp = DAG.getNOT(dl, N0, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X | 
|  | case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X | 
|  | Temp = DAG.getNOT(dl, N1, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y | 
|  | case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y | 
|  | Temp = DAG.getNOT(dl, N0, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X | 
|  | case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X | 
|  | Temp = DAG.getNOT(dl, N1, MVT::i1); | 
|  | N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); | 
|  | break; | 
|  | } | 
|  | if (VT != MVT::i1) { | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(N0.getNode()); | 
|  | // FIXME: If running after legalize, we probably can't do this. | 
|  | N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); | 
|  | } | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // Could not fold it. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Returns true (and the GlobalValue and the offset) if the node is a | 
|  | /// GlobalAddress + offset. | 
|  | bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, | 
|  | int64_t &Offset) const { | 
|  | if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { | 
|  | GA = GASD->getGlobal(); | 
|  | Offset += GASD->getOffset(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() == ISD::ADD) { | 
|  | SDValue N1 = N->getOperand(0); | 
|  | SDValue N2 = N->getOperand(1); | 
|  | if (isGAPlusOffset(N1.getNode(), GA, Offset)) { | 
|  | if (auto *V = dyn_cast<ConstantSDNode>(N2)) { | 
|  | Offset += V->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { | 
|  | if (auto *V = dyn_cast<ConstantSDNode>(N1)) { | 
|  | Offset += V->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | // Default implementation: no optimization. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Inline Assembler Implementation Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetLowering::ConstraintType | 
|  | TargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | unsigned S = Constraint.size(); | 
|  |  | 
|  | if (S == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'r': return C_RegisterClass; | 
|  | case 'm':    // memory | 
|  | case 'o':    // offsetable | 
|  | case 'V':    // not offsetable | 
|  | return C_Memory; | 
|  | case 'i':    // Simple Integer or Relocatable Constant | 
|  | case 'n':    // Simple Integer | 
|  | case 'E':    // Floating Point Constant | 
|  | case 'F':    // Floating Point Constant | 
|  | case 's':    // Relocatable Constant | 
|  | case 'p':    // Address. | 
|  | case 'X':    // Allow ANY value. | 
|  | case 'I':    // Target registers. | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': | 
|  | case '<': | 
|  | case '>': | 
|  | return C_Other; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { | 
|  | if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" | 
|  | return C_Memory; | 
|  | return C_Register; | 
|  | } | 
|  | return C_Unknown; | 
|  | } | 
|  |  | 
|  | /// Try to replace an X constraint, which matches anything, with another that | 
|  | /// has more specific requirements based on the type of the corresponding | 
|  | /// operand. | 
|  | const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ | 
|  | if (ConstraintVT.isInteger()) | 
|  | return "r"; | 
|  | if (ConstraintVT.isFloatingPoint()) | 
|  | return "f";      // works for many targets | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Lower the specified operand into the Ops vector. | 
|  | /// If it is invalid, don't add anything to Ops. | 
|  | void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | if (Constraint.length() > 1) return; | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: break; | 
|  | case 'X':     // Allows any operand; labels (basic block) use this. | 
|  | if (Op.getOpcode() == ISD::BasicBlock) { | 
|  | Ops.push_back(Op); | 
|  | return; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case 'i':    // Simple Integer or Relocatable Constant | 
|  | case 'n':    // Simple Integer | 
|  | case 's': {  // Relocatable Constant | 
|  | // These operands are interested in values of the form (GV+C), where C may | 
|  | // be folded in as an offset of GV, or it may be explicitly added.  Also, it | 
|  | // is possible and fine if either GV or C are missing. | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
|  | GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); | 
|  |  | 
|  | // If we have "(add GV, C)", pull out GV/C | 
|  | if (Op.getOpcode() == ISD::ADD) { | 
|  | C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); | 
|  | if (!C || !GA) { | 
|  | C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | 
|  | GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); | 
|  | } | 
|  | if (!C || !GA) { | 
|  | C = nullptr; | 
|  | GA = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we find a valid operand, map to the TargetXXX version so that the | 
|  | // value itself doesn't get selected. | 
|  | if (GA) {   // Either &GV   or   &GV+C | 
|  | if (ConstraintLetter != 'n') { | 
|  | int64_t Offs = GA->getOffset(); | 
|  | if (C) Offs += C->getZExtValue(); | 
|  | Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), | 
|  | C ? SDLoc(C) : SDLoc(), | 
|  | Op.getValueType(), Offs)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (C) {   // just C, no GV. | 
|  | // Simple constants are not allowed for 's'. | 
|  | if (ConstraintLetter != 's') { | 
|  | // gcc prints these as sign extended.  Sign extend value to 64 bits | 
|  | // now; without this it would get ZExt'd later in | 
|  | // ScheduleDAGSDNodes::EmitNode, which is very generic. | 
|  | Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), | 
|  | SDLoc(C), MVT::i64)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | if (Constraint.empty() || Constraint[0] != '{') | 
|  | return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); | 
|  | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); | 
|  |  | 
|  | // Remove the braces from around the name. | 
|  | StringRef RegName(Constraint.data()+1, Constraint.size()-2); | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass*> R = | 
|  | std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); | 
|  |  | 
|  | // Figure out which register class contains this reg. | 
|  | for (const TargetRegisterClass *RC : RI->regclasses()) { | 
|  | // If none of the value types for this register class are valid, we | 
|  | // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
|  | if (!isLegalRC(RC)) | 
|  | continue; | 
|  |  | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
|  | I != E; ++I) { | 
|  | if (RegName.equals_lower(RI->getRegAsmName(*I))) { | 
|  | std::pair<unsigned, const TargetRegisterClass*> S = | 
|  | std::make_pair(*I, RC); | 
|  |  | 
|  | // If this register class has the requested value type, return it, | 
|  | // otherwise keep searching and return the first class found | 
|  | // if no other is found which explicitly has the requested type. | 
|  | if (RC->hasType(VT)) | 
|  | return S; | 
|  | else if (!R.second) | 
|  | R = S; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constraint Selection. | 
|  |  | 
|  | /// Return true of this is an input operand that is a matching constraint like | 
|  | /// "4". | 
|  | bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { | 
|  | assert(!ConstraintCode.empty() && "No known constraint!"); | 
|  | return isdigit(static_cast<unsigned char>(ConstraintCode[0])); | 
|  | } | 
|  |  | 
|  | /// If this is an input matching constraint, this method returns the output | 
|  | /// operand it matches. | 
|  | unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { | 
|  | assert(!ConstraintCode.empty() && "No known constraint!"); | 
|  | return atoi(ConstraintCode.c_str()); | 
|  | } | 
|  |  | 
|  | /// Split up the constraint string from the inline assembly value into the | 
|  | /// specific constraints and their prefixes, and also tie in the associated | 
|  | /// operand values. | 
|  | /// If this returns an empty vector, and if the constraint string itself | 
|  | /// isn't empty, there was an error parsing. | 
|  | TargetLowering::AsmOperandInfoVector | 
|  | TargetLowering::ParseConstraints(const DataLayout &DL, | 
|  | const TargetRegisterInfo *TRI, | 
|  | ImmutableCallSite CS) const { | 
|  | /// Information about all of the constraints. | 
|  | AsmOperandInfoVector ConstraintOperands; | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  | unsigned maCount = 0; // Largest number of multiple alternative constraints. | 
|  |  | 
|  | // Do a prepass over the constraints, canonicalizing them, and building up the | 
|  | // ConstraintOperands list. | 
|  | unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
|  |  | 
|  | for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { | 
|  | ConstraintOperands.emplace_back(std::move(CI)); | 
|  | AsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | // Update multiple alternative constraint count. | 
|  | if (OpInfo.multipleAlternatives.size() > maCount) | 
|  | maCount = OpInfo.multipleAlternatives.size(); | 
|  |  | 
|  | OpInfo.ConstraintVT = MVT::Other; | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | // Indirect outputs just consume an argument. | 
|  | if (OpInfo.isIndirect) { | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(!CS.getType()->isVoidTy() && | 
|  | "Bad inline asm!"); | 
|  | if (StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpInfo.ConstraintVT = | 
|  | getSimpleValueType(DL, STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | // Nothing to do. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OpInfo.CallOperandVal) { | 
|  | llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); | 
|  | if (OpInfo.isIndirect) { | 
|  | llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); | 
|  | if (!PtrTy) | 
|  | report_fatal_error("Indirect operand for inline asm not a pointer!"); | 
|  | OpTy = PtrTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. | 
|  | if (StructType *STy = dyn_cast<StructType>(OpTy)) | 
|  | if (STy->getNumElements() == 1) | 
|  | OpTy = STy->getElementType(0); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = DL.getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpInfo.ConstraintVT = | 
|  | MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); | 
|  | break; | 
|  | } | 
|  | } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { | 
|  | unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); | 
|  | OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); | 
|  | } else { | 
|  | OpInfo.ConstraintVT = MVT::getVT(OpTy, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have multiple alternative constraints, select the best alternative. | 
|  | if (!ConstraintOperands.empty()) { | 
|  | if (maCount) { | 
|  | unsigned bestMAIndex = 0; | 
|  | int bestWeight = -1; | 
|  | // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match. | 
|  | int weight = -1; | 
|  | unsigned maIndex; | 
|  | // Compute the sums of the weights for each alternative, keeping track | 
|  | // of the best (highest weight) one so far. | 
|  | for (maIndex = 0; maIndex < maCount; ++maIndex) { | 
|  | int weightSum = 0; | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; | 
|  | if (OpInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, | 
|  | // look up the matching input. If their types mismatch, e.g. one | 
|  | // is an integer, the other is floating point, or their sizes are | 
|  | // different, flag it as an maCantMatch. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (OpInfo.ConstraintVT.getSizeInBits() != | 
|  | Input.ConstraintVT.getSizeInBits())) { | 
|  | weightSum = -1;  // Can't match. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); | 
|  | if (weight == -1) { | 
|  | weightSum = -1; | 
|  | break; | 
|  | } | 
|  | weightSum += weight; | 
|  | } | 
|  | // Update best. | 
|  | if (weightSum > bestWeight) { | 
|  | bestWeight = weightSum; | 
|  | bestMAIndex = maIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now select chosen alternative in each constraint. | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; | 
|  | if (cInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  | cInfo.selectAlternative(bestMAIndex); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check and hook up tied operands, choose constraint code to use. | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input. If their types mismatch, e.g. one is an integer, the | 
|  | // other is floating point, or their sizes are different, flag it as an | 
|  | // error. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  |  | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | std::pair<unsigned, const TargetRegisterClass *> MatchRC = | 
|  | getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  | std::pair<unsigned, const TargetRegisterClass *> InputRC = | 
|  | getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, | 
|  | Input.ConstraintVT); | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (MatchRC.second != InputRC.second)) { | 
|  | report_fatal_error("Unsupported asm: input constraint" | 
|  | " with a matching output constraint of" | 
|  | " incompatible type!"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ConstraintOperands; | 
|  | } | 
|  |  | 
|  | /// Return an integer indicating how general CT is. | 
|  | static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { | 
|  | switch (CT) { | 
|  | case TargetLowering::C_Other: | 
|  | case TargetLowering::C_Unknown: | 
|  | return 0; | 
|  | case TargetLowering::C_Register: | 
|  | return 1; | 
|  | case TargetLowering::C_RegisterClass: | 
|  | return 2; | 
|  | case TargetLowering::C_Memory: | 
|  | return 3; | 
|  | } | 
|  | llvm_unreachable("Invalid constraint type"); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | TargetLowering::getMultipleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, int maIndex) const { | 
|  | InlineAsm::ConstraintCodeVector *rCodes; | 
|  | if (maIndex >= (int)info.multipleAlternatives.size()) | 
|  | rCodes = &info.Codes; | 
|  | else | 
|  | rCodes = &info.multipleAlternatives[maIndex].Codes; | 
|  | ConstraintWeight BestWeight = CW_Invalid; | 
|  |  | 
|  | // Loop over the options, keeping track of the most general one. | 
|  | for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { | 
|  | ConstraintWeight weight = | 
|  | getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); | 
|  | if (weight > BestWeight) | 
|  | BestWeight = weight; | 
|  | } | 
|  |  | 
|  | return BestWeight; | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | case 'i': // immediate integer. | 
|  | case 'n': // immediate integer with a known value. | 
|  | if (isa<ConstantInt>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 's': // non-explicit intregal immediate. | 
|  | if (isa<GlobalValue>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 'E': // immediate float if host format. | 
|  | case 'F': // immediate float. | 
|  | if (isa<ConstantFP>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case '<': // memory operand with autodecrement. | 
|  | case '>': // memory operand with autoincrement. | 
|  | case 'm': // memory operand. | 
|  | case 'o': // offsettable memory operand | 
|  | case 'V': // non-offsettable memory operand | 
|  | weight = CW_Memory; | 
|  | break; | 
|  | case 'r': // general register. | 
|  | case 'g': // general register, memory operand or immediate integer. | 
|  | // note: Clang converts "g" to "imr". | 
|  | if (CallOperandVal->getType()->isIntegerTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'X': // any operand. | 
|  | default: | 
|  | weight = CW_Default; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// If there are multiple different constraints that we could pick for this | 
|  | /// operand (e.g. "imr") try to pick the 'best' one. | 
|  | /// This is somewhat tricky: constraints fall into four classes: | 
|  | ///    Other         -> immediates and magic values | 
|  | ///    Register      -> one specific register | 
|  | ///    RegisterClass -> a group of regs | 
|  | ///    Memory        -> memory | 
|  | /// Ideally, we would pick the most specific constraint possible: if we have | 
|  | /// something that fits into a register, we would pick it.  The problem here | 
|  | /// is that if we have something that could either be in a register or in | 
|  | /// memory that use of the register could cause selection of *other* | 
|  | /// operands to fail: they might only succeed if we pick memory.  Because of | 
|  | /// this the heuristic we use is: | 
|  | /// | 
|  | ///  1) If there is an 'other' constraint, and if the operand is valid for | 
|  | ///     that constraint, use it.  This makes us take advantage of 'i' | 
|  | ///     constraints when available. | 
|  | ///  2) Otherwise, pick the most general constraint present.  This prefers | 
|  | ///     'm' over 'r', for example. | 
|  | /// | 
|  | static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, | 
|  | const TargetLowering &TLI, | 
|  | SDValue Op, SelectionDAG *DAG) { | 
|  | assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); | 
|  | unsigned BestIdx = 0; | 
|  | TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; | 
|  | int BestGenerality = -1; | 
|  |  | 
|  | // Loop over the options, keeping track of the most general one. | 
|  | for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { | 
|  | TargetLowering::ConstraintType CType = | 
|  | TLI.getConstraintType(OpInfo.Codes[i]); | 
|  |  | 
|  | // If this is an 'other' constraint, see if the operand is valid for it. | 
|  | // For example, on X86 we might have an 'rI' constraint.  If the operand | 
|  | // is an integer in the range [0..31] we want to use I (saving a load | 
|  | // of a register), otherwise we must use 'r'. | 
|  | if (CType == TargetLowering::C_Other && Op.getNode()) { | 
|  | assert(OpInfo.Codes[i].size() == 1 && | 
|  | "Unhandled multi-letter 'other' constraint"); | 
|  | std::vector<SDValue> ResultOps; | 
|  | TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], | 
|  | ResultOps, *DAG); | 
|  | if (!ResultOps.empty()) { | 
|  | BestType = CType; | 
|  | BestIdx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Things with matching constraints can only be registers, per gcc | 
|  | // documentation.  This mainly affects "g" constraints. | 
|  | if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) | 
|  | continue; | 
|  |  | 
|  | // This constraint letter is more general than the previous one, use it. | 
|  | int Generality = getConstraintGenerality(CType); | 
|  | if (Generality > BestGenerality) { | 
|  | BestType = CType; | 
|  | BestIdx = i; | 
|  | BestGenerality = Generality; | 
|  | } | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; | 
|  | OpInfo.ConstraintType = BestType; | 
|  | } | 
|  |  | 
|  | /// Determines the constraint code and constraint type to use for the specific | 
|  | /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. | 
|  | void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, | 
|  | SDValue Op, | 
|  | SelectionDAG *DAG) const { | 
|  | assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); | 
|  |  | 
|  | // Single-letter constraints ('r') are very common. | 
|  | if (OpInfo.Codes.size() == 1) { | 
|  | OpInfo.ConstraintCode = OpInfo.Codes[0]; | 
|  | OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); | 
|  | } else { | 
|  | ChooseConstraint(OpInfo, *this, Op, DAG); | 
|  | } | 
|  |  | 
|  | // 'X' matches anything. | 
|  | if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { | 
|  | // Labels and constants are handled elsewhere ('X' is the only thing | 
|  | // that matches labels).  For Functions, the type here is the type of | 
|  | // the result, which is not what we want to look at; leave them alone. | 
|  | Value *v = OpInfo.CallOperandVal; | 
|  | if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { | 
|  | OpInfo.CallOperandVal = v; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, try to resolve it to something we know about by looking at | 
|  | // the actual operand type. | 
|  | if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { | 
|  | OpInfo.ConstraintCode = Repl; | 
|  | OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Given an exact SDIV by a constant, create a multiplication | 
|  | /// with the multiplicative inverse of the constant. | 
|  | static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | std::vector<SDNode *> &Created) { | 
|  | assert(d != 0 && "Division by zero!"); | 
|  |  | 
|  | // Shift the value upfront if it is even, so the LSB is one. | 
|  | unsigned ShAmt = d.countTrailingZeros(); | 
|  | if (ShAmt) { | 
|  | // TODO: For UDIV use SRL instead of SRA. | 
|  | SDValue Amt = | 
|  | DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), | 
|  | DAG.getDataLayout())); | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(true); | 
|  | Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); | 
|  | Created.push_back(Op1.getNode()); | 
|  | d = d.ashr(ShAmt); | 
|  | } | 
|  |  | 
|  | // Calculate the multiplicative inverse, using Newton's method. | 
|  | APInt t, xn = d; | 
|  | while ((t = d*xn) != 1) | 
|  | xn *= APInt(d.getBitWidth(), 2) - t; | 
|  |  | 
|  | SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); | 
|  | Created.push_back(Mul.getNode()); | 
|  | return Mul; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, | 
|  | SelectionDAG &DAG, | 
|  | std::vector<SDNode *> *Created) const { | 
|  | AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | return SDValue(N,0); // Lower SDIV as SDIV | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Given an ISD::SDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, | 
|  | SelectionDAG &DAG, bool IsAfterLegalization, | 
|  | std::vector<SDNode *> *Created) const { | 
|  | assert(Created && "No vector to hold sdiv ops."); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Check to see if we can do this. | 
|  | // FIXME: We should be more aggressive here. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the sdiv has an 'exact' bit we can use a simpler lowering. | 
|  | if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) | 
|  | return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); | 
|  |  | 
|  | APInt::ms magics = Divisor.magic(); | 
|  |  | 
|  | // Multiply the numerator (operand 0) by the magic value | 
|  | // FIXME: We should support doing a MUL in a wider type | 
|  | SDValue Q; | 
|  | if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : | 
|  | isOperationLegalOrCustom(ISD::MULHS, VT)) | 
|  | Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), | 
|  | DAG.getConstant(magics.m, dl, VT)); | 
|  | else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : | 
|  | isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) | 
|  | Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), | 
|  | N->getOperand(0), | 
|  | DAG.getConstant(magics.m, dl, VT)).getNode(), 1); | 
|  | else | 
|  | return SDValue();       // No mulhs or equvialent | 
|  | // If d > 0 and m < 0, add the numerator | 
|  | if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { | 
|  | Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); | 
|  | Created->push_back(Q.getNode()); | 
|  | } | 
|  | // If d < 0 and m > 0, subtract the numerator. | 
|  | if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { | 
|  | Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); | 
|  | Created->push_back(Q.getNode()); | 
|  | } | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | // Shift right algebraic if shift value is nonzero | 
|  | if (magics.s > 0) { | 
|  | Q = DAG.getNode( | 
|  | ISD::SRA, dl, VT, Q, | 
|  | DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); | 
|  | Created->push_back(Q.getNode()); | 
|  | } | 
|  | // Extract the sign bit and add it to the quotient | 
|  | SDValue T = | 
|  | DAG.getNode(ISD::SRL, dl, VT, Q, | 
|  | DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, | 
|  | getShiftAmountTy(Q.getValueType(), DL))); | 
|  | Created->push_back(T.getNode()); | 
|  | return DAG.getNode(ISD::ADD, dl, VT, Q, T); | 
|  | } | 
|  |  | 
|  | /// \brief Given an ISD::UDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, | 
|  | SelectionDAG &DAG, bool IsAfterLegalization, | 
|  | std::vector<SDNode *> *Created) const { | 
|  | assert(Created && "No vector to hold udiv ops."); | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | SDLoc dl(N); | 
|  | auto &DL = DAG.getDataLayout(); | 
|  |  | 
|  | // Check to see if we can do this. | 
|  | // FIXME: We should be more aggressive here. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // FIXME: We should use a narrower constant when the upper | 
|  | // bits are known to be zero. | 
|  | APInt::mu magics = Divisor.magicu(); | 
|  |  | 
|  | SDValue Q = N->getOperand(0); | 
|  |  | 
|  | // If the divisor is even, we can avoid using the expensive fixup by shifting | 
|  | // the divided value upfront. | 
|  | if (magics.a != 0 && !Divisor[0]) { | 
|  | unsigned Shift = Divisor.countTrailingZeros(); | 
|  | Q = DAG.getNode( | 
|  | ISD::SRL, dl, VT, Q, | 
|  | DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); | 
|  | Created->push_back(Q.getNode()); | 
|  |  | 
|  | // Get magic number for the shifted divisor. | 
|  | magics = Divisor.lshr(Shift).magicu(Shift); | 
|  | assert(magics.a == 0 && "Should use cheap fixup now"); | 
|  | } | 
|  |  | 
|  | // Multiply the numerator (operand 0) by the magic value | 
|  | // FIXME: We should support doing a MUL in a wider type | 
|  | if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : | 
|  | isOperationLegalOrCustom(ISD::MULHU, VT)) | 
|  | Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); | 
|  | else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : | 
|  | isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) | 
|  | Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, | 
|  | DAG.getConstant(magics.m, dl, VT)).getNode(), 1); | 
|  | else | 
|  | return SDValue();       // No mulhu or equivalent | 
|  |  | 
|  | Created->push_back(Q.getNode()); | 
|  |  | 
|  | if (magics.a == 0) { | 
|  | assert(magics.s < Divisor.getBitWidth() && | 
|  | "We shouldn't generate an undefined shift!"); | 
|  | return DAG.getNode( | 
|  | ISD::SRL, dl, VT, Q, | 
|  | DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); | 
|  | } else { | 
|  | SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); | 
|  | Created->push_back(NPQ.getNode()); | 
|  | NPQ = DAG.getNode( | 
|  | ISD::SRL, dl, VT, NPQ, | 
|  | DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); | 
|  | Created->push_back(NPQ.getNode()); | 
|  | NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); | 
|  | Created->push_back(NPQ.getNode()); | 
|  | return DAG.getNode( | 
|  | ISD::SRL, dl, VT, NPQ, | 
|  | DAG.getConstant(magics.s - 1, dl, | 
|  | getShiftAmountTy(NPQ.getValueType(), DL))); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TargetLowering:: | 
|  | verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(0))) { | 
|  | DAG.getContext()->emitError("argument to '__builtin_return_address' must " | 
|  | "be a constant integer"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Legalization Utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, | 
|  | SDValue LHS, SDValue RHS, | 
|  | SmallVectorImpl<SDValue> &Result, | 
|  | EVT HiLoVT, SelectionDAG &DAG, | 
|  | MulExpansionKind Kind, SDValue LL, | 
|  | SDValue LH, SDValue RL, SDValue RH) const { | 
|  | assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || | 
|  | Opcode == ISD::SMUL_LOHI); | 
|  |  | 
|  | bool HasMULHS = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::MULHS, HiLoVT); | 
|  | bool HasMULHU = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::MULHU, HiLoVT); | 
|  | bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); | 
|  | bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); | 
|  |  | 
|  | if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) | 
|  | return false; | 
|  |  | 
|  | unsigned OuterBitSize = VT.getScalarSizeInBits(); | 
|  | unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); | 
|  | unsigned LHSSB = DAG.ComputeNumSignBits(LHS); | 
|  | unsigned RHSSB = DAG.ComputeNumSignBits(RHS); | 
|  |  | 
|  | // LL, LH, RL, and RH must be either all NULL or all set to a value. | 
|  | assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || | 
|  | (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); | 
|  | auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, | 
|  | bool Signed) -> bool { | 
|  | if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { | 
|  | Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); | 
|  | Hi = SDValue(Lo.getNode(), 1); | 
|  | return true; | 
|  | } | 
|  | if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { | 
|  | Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); | 
|  | Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | if (!LL.getNode() && !RL.getNode() && | 
|  | isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { | 
|  | LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); | 
|  | RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); | 
|  | } | 
|  |  | 
|  | if (!LL.getNode()) | 
|  | return false; | 
|  |  | 
|  | APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); | 
|  | if (DAG.MaskedValueIsZero(LHS, HighMask) && | 
|  | DAG.MaskedValueIsZero(RHS, HighMask)) { | 
|  | // The inputs are both zero-extended. | 
|  | if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { | 
|  | Result.push_back(Lo); | 
|  | Result.push_back(Hi); | 
|  | if (Opcode != ISD::MUL) { | 
|  | SDValue Zero = DAG.getConstant(0, dl, HiLoVT); | 
|  | Result.push_back(Zero); | 
|  | Result.push_back(Zero); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && | 
|  | RHSSB > InnerBitSize) { | 
|  | // The input values are both sign-extended. | 
|  | // TODO non-MUL case? | 
|  | if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { | 
|  | Result.push_back(Lo); | 
|  | Result.push_back(Hi); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ShiftAmount = OuterBitSize - InnerBitSize; | 
|  | EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { | 
|  | // FIXME getShiftAmountTy does not always return a sensible result when VT | 
|  | // is an illegal type, and so the type may be too small to fit the shift | 
|  | // amount. Override it with i32. The shift will have to be legalized. | 
|  | ShiftAmountTy = MVT::i32; | 
|  | } | 
|  | SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); | 
|  |  | 
|  | if (!LH.getNode() && !RH.getNode() && | 
|  | isOperationLegalOrCustom(ISD::SRL, VT) && | 
|  | isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { | 
|  | LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); | 
|  | LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); | 
|  | RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); | 
|  | RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); | 
|  | } | 
|  |  | 
|  | if (!LH.getNode()) | 
|  | return false; | 
|  |  | 
|  | if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) | 
|  | return false; | 
|  |  | 
|  | Result.push_back(Lo); | 
|  |  | 
|  | if (Opcode == ISD::MUL) { | 
|  | RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); | 
|  | LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); | 
|  | Result.push_back(Hi); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Compute the full width result. | 
|  | auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); | 
|  | Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); | 
|  | Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); | 
|  | }; | 
|  |  | 
|  | SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); | 
|  | if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) | 
|  | return false; | 
|  |  | 
|  | // This is effectively the add part of a multiply-add of half-sized operands, | 
|  | // so it cannot overflow. | 
|  | Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); | 
|  |  | 
|  | if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) | 
|  | return false; | 
|  |  | 
|  | Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, | 
|  | Merge(Lo, Hi)); | 
|  |  | 
|  | SDValue Carry = Next.getValue(1); | 
|  | Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); | 
|  | Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); | 
|  |  | 
|  | if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) | 
|  | return false; | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, dl, HiLoVT); | 
|  | Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, | 
|  | Carry); | 
|  | Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); | 
|  |  | 
|  | if (Opcode == ISD::SMUL_LOHI) { | 
|  | SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); | 
|  | Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); | 
|  |  | 
|  | NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); | 
|  | Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); | 
|  | } | 
|  |  | 
|  | Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); | 
|  | Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); | 
|  | Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, | 
|  | SelectionDAG &DAG, MulExpansionKind Kind, | 
|  | SDValue LL, SDValue LH, SDValue RL, | 
|  | SDValue RH) const { | 
|  | SmallVector<SDValue, 2> Result; | 
|  | bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, | 
|  | N->getOperand(0), N->getOperand(1), Result, HiLoVT, | 
|  | DAG, Kind, LL, LH, RL, RH); | 
|  | if (Ok) { | 
|  | assert(Result.size() == 2); | 
|  | Lo = Result[0]; | 
|  | Hi = Result[1]; | 
|  | } | 
|  | return Ok; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Node->getOperand(0).getValueType(); | 
|  | EVT NVT = Node->getValueType(0); | 
|  | SDLoc dl(SDValue(Node, 0)); | 
|  |  | 
|  | // FIXME: Only f32 to i64 conversions are supported. | 
|  | if (VT != MVT::f32 || NVT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | // Expand f32 -> i64 conversion | 
|  | // This algorithm comes from compiler-rt's implementation of fixsfdi: | 
|  | // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | VT.getSizeInBits()); | 
|  | SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); | 
|  | SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); | 
|  | SDValue Bias = DAG.getConstant(127, dl, IntVT); | 
|  | SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, | 
|  | IntVT); | 
|  | SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); | 
|  | SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); | 
|  |  | 
|  | SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); | 
|  |  | 
|  | auto &DL = DAG.getDataLayout(); | 
|  | SDValue ExponentBits = DAG.getNode( | 
|  | ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), | 
|  | DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); | 
|  | SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); | 
|  |  | 
|  | SDValue Sign = DAG.getNode( | 
|  | ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), | 
|  | DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); | 
|  | Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); | 
|  |  | 
|  | SDValue R = DAG.getNode(ISD::OR, dl, IntVT, | 
|  | DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), | 
|  | DAG.getConstant(0x00800000, dl, IntVT)); | 
|  |  | 
|  | R = DAG.getZExtOrTrunc(R, dl, NVT); | 
|  |  | 
|  | R = DAG.getSelectCC( | 
|  | dl, Exponent, ExponentLoBit, | 
|  | DAG.getNode(ISD::SHL, dl, NVT, R, | 
|  | DAG.getZExtOrTrunc( | 
|  | DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), | 
|  | dl, getShiftAmountTy(IntVT, DL))), | 
|  | DAG.getNode(ISD::SRL, dl, NVT, R, | 
|  | DAG.getZExtOrTrunc( | 
|  | DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), | 
|  | dl, getShiftAmountTy(IntVT, DL))), | 
|  | ISD::SETGT); | 
|  |  | 
|  | SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, | 
|  | DAG.getNode(ISD::XOR, dl, NVT, R, Sign), | 
|  | Sign); | 
|  |  | 
|  | Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), | 
|  | DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(LD); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue BasePTR = LD->getBasePtr(); | 
|  | EVT SrcVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  |  | 
|  | unsigned NumElem = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | EVT SrcEltVT = SrcVT.getScalarType(); | 
|  | EVT DstEltVT = LD->getValueType(0).getScalarType(); | 
|  |  | 
|  | unsigned Stride = SrcEltVT.getSizeInBits() / 8; | 
|  | assert(SrcEltVT.isByteSized()); | 
|  |  | 
|  | EVT PtrVT = BasePTR.getValueType(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Vals; | 
|  | SmallVector<SDValue, 8> LoadChains; | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { | 
|  | SDValue ScalarLoad = | 
|  | DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, | 
|  | LD->getPointerInfo().getWithOffset(Idx * Stride), | 
|  | SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  |  | 
|  | BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, | 
|  | DAG.getConstant(Stride, SL, PtrVT)); | 
|  |  | 
|  | Vals.push_back(ScalarLoad.getValue(0)); | 
|  | LoadChains.push_back(ScalarLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); | 
|  | SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); | 
|  |  | 
|  | return DAG.getMergeValues({ Value, NewChain }, SL); | 
|  | } | 
|  |  | 
|  | // FIXME: This relies on each element having a byte size, otherwise the stride | 
|  | // is 0 and just overwrites the same location. ExpandStore currently expects | 
|  | // this broken behavior. | 
|  | SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(ST); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue BasePtr = ST->getBasePtr(); | 
|  | SDValue Value = ST->getValue(); | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  |  | 
|  | // The type of the data we want to save | 
|  | EVT RegVT = Value.getValueType(); | 
|  | EVT RegSclVT = RegVT.getScalarType(); | 
|  |  | 
|  | // The type of data as saved in memory. | 
|  | EVT MemSclVT = StVT.getScalarType(); | 
|  |  | 
|  | EVT PtrVT = BasePtr.getValueType(); | 
|  |  | 
|  | // Store Stride in bytes | 
|  | unsigned Stride = MemSclVT.getSizeInBits() / 8; | 
|  | EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); | 
|  | unsigned NumElem = StVT.getVectorNumElements(); | 
|  |  | 
|  | // Extract each of the elements from the original vector and save them into | 
|  | // memory individually. | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, | 
|  | DAG.getConstant(Idx, SL, IdxVT)); | 
|  |  | 
|  | SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, | 
|  | DAG.getConstant(Idx * Stride, SL, PtrVT)); | 
|  |  | 
|  | // This scalar TruncStore may be illegal, but we legalize it later. | 
|  | SDValue Store = DAG.getTruncStore( | 
|  | Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), | 
|  | MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
|  |  | 
|  | Stores.push_back(Store); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { | 
|  | assert(LD->getAddressingMode() == ISD::UNINDEXED && | 
|  | "unaligned indexed loads not implemented!"); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | EVT VT = LD->getValueType(0); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | SDLoc dl(LD); | 
|  | if (VT.isFloatingPoint() || VT.isVector()) { | 
|  | EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); | 
|  | if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { | 
|  | if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { | 
|  | // Scalarize the load and let the individual components be handled. | 
|  | SDValue Scalarized = scalarizeVectorLoad(LD, DAG); | 
|  | return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Expand to a (misaligned) integer load of the same size, | 
|  | // then bitconvert to floating point or vector. | 
|  | SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, | 
|  | LD->getMemOperand()); | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); | 
|  | if (LoadedVT != VT) | 
|  | Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : | 
|  | ISD::ANY_EXTEND, dl, VT, Result); | 
|  |  | 
|  | return std::make_pair(Result, newLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Copy the value to a (aligned) stack slot using (unaligned) integer | 
|  | // loads and stores, then do a (aligned) load from the stack slot. | 
|  | MVT RegVT = getRegisterType(*DAG.getContext(), intVT); | 
|  | unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); | 
|  |  | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | SDValue StackPtr = StackBase; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | EVT StackPtrVT = StackPtr.getValueType(); | 
|  |  | 
|  | SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); | 
|  | SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the original location. | 
|  | SDValue Load = DAG.getLoad( | 
|  | RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), | 
|  | MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), | 
|  | LD->getAAInfo()); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, | 
|  | MachinePointerInfo())); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, | 
|  | StackPtrIncrement); | 
|  | } | 
|  |  | 
|  | // The last copy may be partial.  Do an extending load. | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | 8 * (LoadedBytes - Offset)); | 
|  | SDValue Load = | 
|  | DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(Offset), MemVT, | 
|  | MinAlign(LD->getAlignment(), Offset), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | // On big-endian machines this requires a truncating store to ensure | 
|  | // that the bits end up in the right place. | 
|  | Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, | 
|  | MachinePointerInfo(), MemVT)); | 
|  |  | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); | 
|  |  | 
|  | // Finally, perform the original load only redirected to the stack slot. | 
|  | Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, | 
|  | MachinePointerInfo(), LoadedVT); | 
|  |  | 
|  | // Callers expect a MERGE_VALUES node. | 
|  | return std::make_pair(Load, TF); | 
|  | } | 
|  |  | 
|  | assert(LoadedVT.isInteger() && !LoadedVT.isVector() && | 
|  | "Unaligned load of unsupported type."); | 
|  |  | 
|  | // Compute the new VT that is half the size of the old one.  This is an | 
|  | // integer MVT. | 
|  | unsigned NumBits = LoadedVT.getSizeInBits(); | 
|  | EVT NewLoadedVT; | 
|  | NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); | 
|  | NumBits >>= 1; | 
|  |  | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | unsigned IncrementSize = NumBits / 8; | 
|  | ISD::LoadExtType HiExtType = LD->getExtensionType(); | 
|  |  | 
|  | // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. | 
|  | if (HiExtType == ISD::NON_EXTLOAD) | 
|  | HiExtType = ISD::ZEXTLOAD; | 
|  |  | 
|  | // Load the value in two parts | 
|  | SDValue Lo, Hi; | 
|  | if (DAG.getDataLayout().isLittleEndian()) { | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), | 
|  | NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), | 
|  | LD->getAAInfo()); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewLoadedVT, MinAlign(Alignment, IncrementSize), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | } else { | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), | 
|  | NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), | 
|  | LD->getAAInfo()); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewLoadedVT, MinAlign(Alignment, IncrementSize), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | } | 
|  |  | 
|  | // aggregate the two parts | 
|  | SDValue ShiftAmount = | 
|  | DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), | 
|  | DAG.getDataLayout())); | 
|  | SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); | 
|  | Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | return std::make_pair(Result, TF); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(ST->getAddressingMode() == ISD::UNINDEXED && | 
|  | "unaligned indexed stores not implemented!"); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | SDValue Val = ST->getValue(); | 
|  | EVT VT = Val.getValueType(); | 
|  | int Alignment = ST->getAlignment(); | 
|  |  | 
|  | SDLoc dl(ST); | 
|  | if (ST->getMemoryVT().isFloatingPoint() || | 
|  | ST->getMemoryVT().isVector()) { | 
|  | EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  | if (isTypeLegal(intVT)) { | 
|  | if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { | 
|  | // Scalarize the store and let the individual components be handled. | 
|  | SDValue Result = scalarizeVectorStore(ST, DAG); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  | // Expand to a bitconvert of the value to the integer type of the | 
|  | // same size, then a (misaligned) int store. | 
|  | // FIXME: Does not handle truncating floating point stores! | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); | 
|  | Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), | 
|  | Alignment, ST->getMemOperand()->getFlags()); | 
|  | return Result; | 
|  | } | 
|  | // Do a (aligned) store to a stack slot, then copy from the stack slot | 
|  | // to the final destination using (unaligned) integer loads and stores. | 
|  | EVT StoredVT = ST->getMemoryVT(); | 
|  | MVT RegVT = | 
|  | getRegisterType(*DAG.getContext(), | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | StoredVT.getSizeInBits())); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | unsigned StoredBytes = StoredVT.getSizeInBits() / 8; | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); | 
|  |  | 
|  | // Perform the original store, only redirected to the stack slot. | 
|  | SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, | 
|  | MachinePointerInfo(), StoredVT); | 
|  |  | 
|  | EVT StackPtrVT = StackPtr.getValueType(); | 
|  |  | 
|  | SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); | 
|  | SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the stack slot. | 
|  | SDValue Load = | 
|  | DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); | 
|  | // Store it to the final location.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(Offset), | 
|  | MinAlign(ST->getAlignment(), Offset), | 
|  | ST->getMemOperand()->getFlags())); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, | 
|  | StackPtr, StackPtrIncrement); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); | 
|  | } | 
|  |  | 
|  | // The last store may be partial.  Do a truncating store.  On big-endian | 
|  | // machines this requires an extending load from the stack slot to ensure | 
|  | // that the bits are in the right place. | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | 8 * (StoredBytes - Offset)); | 
|  |  | 
|  | // Load from the stack slot. | 
|  | SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, | 
|  | MachinePointerInfo(), MemVT); | 
|  |  | 
|  | Stores.push_back( | 
|  | DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(Offset), MemVT, | 
|  | MinAlign(ST->getAlignment(), Offset), | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo())); | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | assert(ST->getMemoryVT().isInteger() && | 
|  | !ST->getMemoryVT().isVector() && | 
|  | "Unaligned store of unknown type."); | 
|  | // Get the half-size VT | 
|  | EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); | 
|  | int NumBits = NewStoredVT.getSizeInBits(); | 
|  | int IncrementSize = NumBits / 8; | 
|  |  | 
|  | // Divide the stored value in two parts. | 
|  | SDValue ShiftAmount = | 
|  | DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), | 
|  | DAG.getDataLayout())); | 
|  | SDValue Lo = Val; | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); | 
|  |  | 
|  | // Store the two parts | 
|  | SDValue Store1, Store2; | 
|  | Store1 = DAG.getTruncStore(Chain, dl, | 
|  | DAG.getDataLayout().isLittleEndian() ? Lo : Hi, | 
|  | Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, | 
|  | ST->getMemOperand()->getFlags()); | 
|  |  | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, | 
|  | DAG.getConstant(IncrementSize, dl, PtrVT)); | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Store2 = DAG.getTruncStore( | 
|  | Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
|  |  | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, | 
|  | const SDLoc &DL, EVT DataVT, | 
|  | SelectionDAG &DAG, | 
|  | bool IsCompressedMemory) const { | 
|  | SDValue Increment; | 
|  | EVT AddrVT = Addr.getValueType(); | 
|  | EVT MaskVT = Mask.getValueType(); | 
|  | assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && | 
|  | "Incompatible types of Data and Mask"); | 
|  | if (IsCompressedMemory) { | 
|  | // Incrementing the pointer according to number of '1's in the mask. | 
|  | EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); | 
|  | SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); | 
|  | if (MaskIntVT.getSizeInBits() < 32) { | 
|  | MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); | 
|  | MaskIntVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | // Count '1's with POPCNT. | 
|  | Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); | 
|  | Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); | 
|  | // Scale is an element size in bytes. | 
|  | SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, | 
|  | AddrVT); | 
|  | Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); | 
|  | } else | 
|  | Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); | 
|  | } | 
|  |  | 
|  | static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, | 
|  | SDValue Idx, | 
|  | EVT VecVT, | 
|  | const SDLoc &dl) { | 
|  | if (isa<ConstantSDNode>(Idx)) | 
|  | return Idx; | 
|  |  | 
|  | EVT IdxVT = Idx.getValueType(); | 
|  | unsigned NElts = VecVT.getVectorNumElements(); | 
|  | if (isPowerOf2_32(NElts)) { | 
|  | APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), | 
|  | Log2_32(NElts)); | 
|  | return DAG.getNode(ISD::AND, dl, IdxVT, Idx, | 
|  | DAG.getConstant(Imm, dl, IdxVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, | 
|  | DAG.getConstant(NElts - 1, dl, IdxVT)); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, | 
|  | SDValue VecPtr, EVT VecVT, | 
|  | SDValue Index) const { | 
|  | SDLoc dl(Index); | 
|  | // Make sure the index type is big enough to compute in. | 
|  | Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | // Calculate the element offset and add it to the pointer. | 
|  | unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. | 
|  | assert(EltSize * 8 == EltVT.getSizeInBits() && | 
|  | "Converting bits to bytes lost precision"); | 
|  |  | 
|  | Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); | 
|  |  | 
|  | EVT IdxVT = Index.getValueType(); | 
|  |  | 
|  | Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, | 
|  | DAG.getConstant(EltSize, dl, IdxVT)); | 
|  | return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Implementation of Emulated TLS Model | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG) const { | 
|  | // Access to address of TLS varialbe xyz is lowered to a function call: | 
|  | //   __emutls_get_address( address of global variable named "__emutls_v.xyz" ) | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); | 
|  | SDLoc dl(GA); | 
|  |  | 
|  | ArgListTy Args; | 
|  | ArgListEntry Entry; | 
|  | std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); | 
|  | Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); | 
|  | StringRef EmuTlsVarName(NameString); | 
|  | GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); | 
|  | assert(EmuTlsVar && "Cannot find EmuTlsVar "); | 
|  | Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); | 
|  | Entry.Ty = VoidPtrType; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); | 
|  | CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); | 
|  | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | 
|  |  | 
|  | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. | 
|  | // At last for X86 targets, maybe good for other targets too? | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI.setAdjustsStack(true);  // Is this only for X86 target? | 
|  | MFI.setHasCalls(true); | 
|  |  | 
|  | assert((GA->getOffset() == 0) && | 
|  | "Emulated TLS must have zero offset in GlobalAddressSDNode"); | 
|  | return CallResult.first; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); | 
|  | if (!isCtlzFast()) | 
|  | return SDValue(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDLoc dl(Op); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | if (C->isNullValue() && CC == ISD::SETEQ) { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDValue Zext = Op.getOperand(0); | 
|  | if (VT.bitsLT(MVT::i32)) { | 
|  | VT = MVT::i32; | 
|  | Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); | 
|  | } | 
|  | unsigned Log2b = Log2_32(VT.getSizeInBits()); | 
|  | SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); | 
|  | SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, | 
|  | DAG.getConstant(Log2b, dl, MVT::i32)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } |