|  | //===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the Base ARM implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARMBaseInstrInfo.h" | 
|  | #include "ARM.h" | 
|  | #include "ARMConstantPoolValue.h" | 
|  | #include "ARMHazardRecognizer.h" | 
|  | #include "ARMMachineFunctionInfo.h" | 
|  | #include "ARMRegisterInfo.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR | 
|  | #include "ARMGenInstrInfo.inc" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, | 
|  | cl::desc("Enable ARM 2-addr to 3-addr conv")); | 
|  |  | 
|  | /// ARM_MLxEntry - Record information about MLA / MLS instructions. | 
|  | struct ARM_MLxEntry { | 
|  | unsigned MLxOpc;     // MLA / MLS opcode | 
|  | unsigned MulOpc;     // Expanded multiplication opcode | 
|  | unsigned AddSubOpc;  // Expanded add / sub opcode | 
|  | bool NegAcc;         // True if the acc is negated before the add / sub. | 
|  | bool HasLane;        // True if instruction has an extra "lane" operand. | 
|  | }; | 
|  |  | 
|  | static const ARM_MLxEntry ARM_MLxTable[] = { | 
|  | // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane | 
|  | // fp scalar ops | 
|  | { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false }, | 
|  | { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false }, | 
|  | { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false }, | 
|  | { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false }, | 
|  | { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false }, | 
|  | { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false }, | 
|  | { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false }, | 
|  | { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false }, | 
|  |  | 
|  | // fp SIMD ops | 
|  | { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false }, | 
|  | { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false }, | 
|  | { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false }, | 
|  | { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false }, | 
|  | { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  }, | 
|  | { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  }, | 
|  | { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  }, | 
|  | { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  }, | 
|  | }; | 
|  |  | 
|  | ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) | 
|  | : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), | 
|  | Subtarget(STI) { | 
|  | for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { | 
|  | if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) | 
|  | assert(false && "Duplicated entries?"); | 
|  | MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); | 
|  | MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl | 
|  | // currently defaults to no prepass hazard recognizer. | 
|  | ScheduleHazardRecognizer *ARMBaseInstrInfo:: | 
|  | CreateTargetHazardRecognizer(const TargetMachine *TM, | 
|  | const ScheduleDAG *DAG) const { | 
|  | if (usePreRAHazardRecognizer()) { | 
|  | const InstrItineraryData *II = TM->getInstrItineraryData(); | 
|  | return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); | 
|  | } | 
|  | return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG); | 
|  | } | 
|  |  | 
|  | ScheduleHazardRecognizer *ARMBaseInstrInfo:: | 
|  | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | if (Subtarget.isThumb2() || Subtarget.hasVFP2()) | 
|  | return (ScheduleHazardRecognizer *) | 
|  | new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG); | 
|  | return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG); | 
|  | } | 
|  |  | 
|  | MachineInstr * | 
|  | ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | LiveVariables *LV) const { | 
|  | // FIXME: Thumb2 support. | 
|  |  | 
|  | if (!EnableARM3Addr) | 
|  | return NULL; | 
|  |  | 
|  | MachineInstr *MI = MBBI; | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | uint64_t TSFlags = MI->getDesc().TSFlags; | 
|  | bool isPre = false; | 
|  | switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { | 
|  | default: return NULL; | 
|  | case ARMII::IndexModePre: | 
|  | isPre = true; | 
|  | break; | 
|  | case ARMII::IndexModePost: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Try splitting an indexed load/store to an un-indexed one plus an add/sub | 
|  | // operation. | 
|  | unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); | 
|  | if (MemOpc == 0) | 
|  | return NULL; | 
|  |  | 
|  | MachineInstr *UpdateMI = NULL; | 
|  | MachineInstr *MemMI = NULL; | 
|  | unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | unsigned NumOps = MCID.getNumOperands(); | 
|  | bool isLoad = !MCID.mayStore(); | 
|  | const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); | 
|  | const MachineOperand &Base = MI->getOperand(2); | 
|  | const MachineOperand &Offset = MI->getOperand(NumOps-3); | 
|  | unsigned WBReg = WB.getReg(); | 
|  | unsigned BaseReg = Base.getReg(); | 
|  | unsigned OffReg = Offset.getReg(); | 
|  | unsigned OffImm = MI->getOperand(NumOps-2).getImm(); | 
|  | ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); | 
|  | switch (AddrMode) { | 
|  | default: | 
|  | assert(false && "Unknown indexed op!"); | 
|  | return NULL; | 
|  | case ARMII::AddrMode2: { | 
|  | bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; | 
|  | unsigned Amt = ARM_AM::getAM2Offset(OffImm); | 
|  | if (OffReg == 0) { | 
|  | if (ARM_AM::getSOImmVal(Amt) == -1) | 
|  | // Can't encode it in a so_imm operand. This transformation will | 
|  | // add more than 1 instruction. Abandon! | 
|  | return NULL; | 
|  | UpdateMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) | 
|  | .addReg(BaseReg).addImm(Amt) | 
|  | .addImm(Pred).addReg(0).addReg(0); | 
|  | } else if (Amt != 0) { | 
|  | ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); | 
|  | unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); | 
|  | UpdateMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) | 
|  | .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) | 
|  | .addImm(Pred).addReg(0).addReg(0); | 
|  | } else | 
|  | UpdateMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) | 
|  | .addReg(BaseReg).addReg(OffReg) | 
|  | .addImm(Pred).addReg(0).addReg(0); | 
|  | break; | 
|  | } | 
|  | case ARMII::AddrMode3 : { | 
|  | bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; | 
|  | unsigned Amt = ARM_AM::getAM3Offset(OffImm); | 
|  | if (OffReg == 0) | 
|  | // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. | 
|  | UpdateMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) | 
|  | .addReg(BaseReg).addImm(Amt) | 
|  | .addImm(Pred).addReg(0).addReg(0); | 
|  | else | 
|  | UpdateMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) | 
|  | .addReg(BaseReg).addReg(OffReg) | 
|  | .addImm(Pred).addReg(0).addReg(0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<MachineInstr*> NewMIs; | 
|  | if (isPre) { | 
|  | if (isLoad) | 
|  | MemMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(MemOpc), MI->getOperand(0).getReg()) | 
|  | .addReg(WBReg).addImm(0).addImm(Pred); | 
|  | else | 
|  | MemMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(MemOpc)).addReg(MI->getOperand(1).getReg()) | 
|  | .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); | 
|  | NewMIs.push_back(MemMI); | 
|  | NewMIs.push_back(UpdateMI); | 
|  | } else { | 
|  | if (isLoad) | 
|  | MemMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(MemOpc), MI->getOperand(0).getReg()) | 
|  | .addReg(BaseReg).addImm(0).addImm(Pred); | 
|  | else | 
|  | MemMI = BuildMI(MF, MI->getDebugLoc(), | 
|  | get(MemOpc)).addReg(MI->getOperand(1).getReg()) | 
|  | .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); | 
|  | if (WB.isDead()) | 
|  | UpdateMI->getOperand(0).setIsDead(); | 
|  | NewMIs.push_back(UpdateMI); | 
|  | NewMIs.push_back(MemMI); | 
|  | } | 
|  |  | 
|  | // Transfer LiveVariables states, kill / dead info. | 
|  | if (LV) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | unsigned Reg = MO.getReg(); | 
|  |  | 
|  | LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); | 
|  | if (MO.isDef()) { | 
|  | MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; | 
|  | if (MO.isDead()) | 
|  | LV->addVirtualRegisterDead(Reg, NewMI); | 
|  | } | 
|  | if (MO.isUse() && MO.isKill()) { | 
|  | for (unsigned j = 0; j < 2; ++j) { | 
|  | // Look at the two new MI's in reverse order. | 
|  | MachineInstr *NewMI = NewMIs[j]; | 
|  | if (!NewMI->readsRegister(Reg)) | 
|  | continue; | 
|  | LV->addVirtualRegisterKilled(Reg, NewMI); | 
|  | if (VI.removeKill(MI)) | 
|  | VI.Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MFI->insert(MBBI, NewMIs[1]); | 
|  | MFI->insert(MBBI, NewMIs[0]); | 
|  | return NewMIs[0]; | 
|  | } | 
|  |  | 
|  | // Branch analysis. | 
|  | bool | 
|  | ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | // If the block has no terminators, it just falls into the block after it. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | if (I == MBB.begin()) | 
|  | return false; | 
|  | --I; | 
|  | while (I->isDebugValue()) { | 
|  | if (I == MBB.begin()) | 
|  | return false; | 
|  | --I; | 
|  | } | 
|  | if (!isUnpredicatedTerminator(I)) | 
|  | return false; | 
|  |  | 
|  | // Get the last instruction in the block. | 
|  | MachineInstr *LastInst = I; | 
|  |  | 
|  | // If there is only one terminator instruction, process it. | 
|  | unsigned LastOpc = LastInst->getOpcode(); | 
|  | if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { | 
|  | if (isUncondBranchOpcode(LastOpc)) { | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  | if (isCondBranchOpcode(LastOpc)) { | 
|  | // Block ends with fall-through condbranch. | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | Cond.push_back(LastInst->getOperand(1)); | 
|  | Cond.push_back(LastInst->getOperand(2)); | 
|  | return false; | 
|  | } | 
|  | return true;  // Can't handle indirect branch. | 
|  | } | 
|  |  | 
|  | // Get the instruction before it if it is a terminator. | 
|  | MachineInstr *SecondLastInst = I; | 
|  | unsigned SecondLastOpc = SecondLastInst->getOpcode(); | 
|  |  | 
|  | // If AllowModify is true and the block ends with two or more unconditional | 
|  | // branches, delete all but the first unconditional branch. | 
|  | if (AllowModify && isUncondBranchOpcode(LastOpc)) { | 
|  | while (isUncondBranchOpcode(SecondLastOpc)) { | 
|  | LastInst->eraseFromParent(); | 
|  | LastInst = SecondLastInst; | 
|  | LastOpc = LastInst->getOpcode(); | 
|  | if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { | 
|  | // Return now the only terminator is an unconditional branch. | 
|  | TBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } else { | 
|  | SecondLastInst = I; | 
|  | SecondLastOpc = SecondLastInst->getOpcode(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are three terminators, we don't know what sort of block this is. | 
|  | if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) | 
|  | return true; | 
|  |  | 
|  | // If the block ends with a B and a Bcc, handle it. | 
|  | if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { | 
|  | TBB =  SecondLastInst->getOperand(0).getMBB(); | 
|  | Cond.push_back(SecondLastInst->getOperand(1)); | 
|  | Cond.push_back(SecondLastInst->getOperand(2)); | 
|  | FBB = LastInst->getOperand(0).getMBB(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the block ends with two unconditional branches, handle it.  The second | 
|  | // one is not executed, so remove it. | 
|  | if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { | 
|  | TBB = SecondLastInst->getOperand(0).getMBB(); | 
|  | I = LastInst; | 
|  | if (AllowModify) | 
|  | I->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // ...likewise if it ends with a branch table followed by an unconditional | 
|  | // branch. The branch folder can create these, and we must get rid of them for | 
|  | // correctness of Thumb constant islands. | 
|  | if ((isJumpTableBranchOpcode(SecondLastOpc) || | 
|  | isIndirectBranchOpcode(SecondLastOpc)) && | 
|  | isUncondBranchOpcode(LastOpc)) { | 
|  | I = LastInst; | 
|  | if (AllowModify) | 
|  | I->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, can't handle this. | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | if (I == MBB.begin()) return 0; | 
|  | --I; | 
|  | while (I->isDebugValue()) { | 
|  | if (I == MBB.begin()) | 
|  | return 0; | 
|  | --I; | 
|  | } | 
|  | if (!isUncondBranchOpcode(I->getOpcode()) && | 
|  | !isCondBranchOpcode(I->getOpcode())) | 
|  | return 0; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | I = MBB.end(); | 
|  |  | 
|  | if (I == MBB.begin()) return 1; | 
|  | --I; | 
|  | if (!isCondBranchOpcode(I->getOpcode())) | 
|  | return 1; | 
|  |  | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | const SmallVectorImpl<MachineOperand> &Cond, | 
|  | DebugLoc DL) const { | 
|  | ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); | 
|  | int BOpc   = !AFI->isThumbFunction() | 
|  | ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); | 
|  | int BccOpc = !AFI->isThumbFunction() | 
|  | ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); | 
|  |  | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 2 || Cond.size() == 0) && | 
|  | "ARM branch conditions have two components!"); | 
|  |  | 
|  | if (FBB == 0) { | 
|  | if (Cond.empty()) // Unconditional branch? | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); | 
|  | else | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) | 
|  | .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Two-way conditional branch. | 
|  | BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) | 
|  | .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); | 
|  | BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); | 
|  | Cond[0].setImm(ARMCC::getOppositeCondition(CC)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | PredicateInstruction(MachineInstr *MI, | 
|  | const SmallVectorImpl<MachineOperand> &Pred) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | if (isUncondBranchOpcode(Opc)) { | 
|  | MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); | 
|  | MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm())); | 
|  | MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int PIdx = MI->findFirstPredOperandIdx(); | 
|  | if (PIdx != -1) { | 
|  | MachineOperand &PMO = MI->getOperand(PIdx); | 
|  | PMO.setImm(Pred[0].getImm()); | 
|  | MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, | 
|  | const SmallVectorImpl<MachineOperand> &Pred2) const { | 
|  | if (Pred1.size() > 2 || Pred2.size() > 2) | 
|  | return false; | 
|  |  | 
|  | ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); | 
|  | ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); | 
|  | if (CC1 == CC2) | 
|  | return true; | 
|  |  | 
|  | switch (CC1) { | 
|  | default: | 
|  | return false; | 
|  | case ARMCC::AL: | 
|  | return true; | 
|  | case ARMCC::HS: | 
|  | return CC2 == ARMCC::HI; | 
|  | case ARMCC::LS: | 
|  | return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; | 
|  | case ARMCC::GE: | 
|  | return CC2 == ARMCC::GT; | 
|  | case ARMCC::LE: | 
|  | return CC2 == ARMCC::LT; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, | 
|  | std::vector<MachineOperand> &Pred) const { | 
|  | // FIXME: This confuses implicit_def with optional CPSR def. | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (!MCID.getImplicitDefs() && !MCID.hasOptionalDef()) | 
|  | return false; | 
|  |  | 
|  | bool Found = false; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == ARM::CPSR) { | 
|  | Pred.push_back(MO); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | /// isPredicable - Return true if the specified instruction can be predicated. | 
|  | /// By default, this returns true for every instruction with a | 
|  | /// PredicateOperand. | 
|  | bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (!MCID.isPredicable()) | 
|  | return false; | 
|  |  | 
|  | if ((MCID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) { | 
|  | ARMFunctionInfo *AFI = | 
|  | MI->getParent()->getParent()->getInfo<ARMFunctionInfo>(); | 
|  | return AFI->isThumb2Function(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing. | 
|  | LLVM_ATTRIBUTE_NOINLINE | 
|  | static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT, | 
|  | unsigned JTI); | 
|  | static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT, | 
|  | unsigned JTI) { | 
|  | assert(JTI < JT.size()); | 
|  | return JT[JTI].MBBs.size(); | 
|  | } | 
|  |  | 
|  | /// GetInstSize - Return the size of the specified MachineInstr. | 
|  | /// | 
|  | unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { | 
|  | const MachineBasicBlock &MBB = *MI->getParent(); | 
|  | const MachineFunction *MF = MBB.getParent(); | 
|  | const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); | 
|  |  | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (MCID.getSize()) | 
|  | return MCID.getSize(); | 
|  |  | 
|  | // If this machine instr is an inline asm, measure it. | 
|  | if (MI->getOpcode() == ARM::INLINEASM) | 
|  | return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); | 
|  | if (MI->isLabel()) | 
|  | return 0; | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | case TargetOpcode::IMPLICIT_DEF: | 
|  | case TargetOpcode::KILL: | 
|  | case TargetOpcode::PROLOG_LABEL: | 
|  | case TargetOpcode::EH_LABEL: | 
|  | case TargetOpcode::DBG_VALUE: | 
|  | return 0; | 
|  | case ARM::MOVi16_ga_pcrel: | 
|  | case ARM::MOVTi16_ga_pcrel: | 
|  | case ARM::t2MOVi16_ga_pcrel: | 
|  | case ARM::t2MOVTi16_ga_pcrel: | 
|  | return 4; | 
|  | case ARM::MOVi32imm: | 
|  | case ARM::t2MOVi32imm: | 
|  | return 8; | 
|  | case ARM::CONSTPOOL_ENTRY: | 
|  | // If this machine instr is a constant pool entry, its size is recorded as | 
|  | // operand #2. | 
|  | return MI->getOperand(2).getImm(); | 
|  | case ARM::Int_eh_sjlj_longjmp: | 
|  | return 16; | 
|  | case ARM::tInt_eh_sjlj_longjmp: | 
|  | return 10; | 
|  | case ARM::Int_eh_sjlj_setjmp: | 
|  | case ARM::Int_eh_sjlj_setjmp_nofp: | 
|  | return 20; | 
|  | case ARM::tInt_eh_sjlj_setjmp: | 
|  | case ARM::t2Int_eh_sjlj_setjmp: | 
|  | case ARM::t2Int_eh_sjlj_setjmp_nofp: | 
|  | return 12; | 
|  | case ARM::BR_JTr: | 
|  | case ARM::BR_JTm: | 
|  | case ARM::BR_JTadd: | 
|  | case ARM::tBR_JTr: | 
|  | case ARM::t2BR_JT: | 
|  | case ARM::t2TBB_JT: | 
|  | case ARM::t2TBH_JT: { | 
|  | // These are jumptable branches, i.e. a branch followed by an inlined | 
|  | // jumptable. The size is 4 + 4 * number of entries. For TBB, each | 
|  | // entry is one byte; TBH two byte each. | 
|  | unsigned EntrySize = (Opc == ARM::t2TBB_JT) | 
|  | ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4); | 
|  | unsigned NumOps = MCID.getNumOperands(); | 
|  | MachineOperand JTOP = | 
|  | MI->getOperand(NumOps - (MCID.isPredicable() ? 3 : 2)); | 
|  | unsigned JTI = JTOP.getIndex(); | 
|  | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); | 
|  | assert(MJTI != 0); | 
|  | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
|  | assert(JTI < JT.size()); | 
|  | // Thumb instructions are 2 byte aligned, but JT entries are 4 byte | 
|  | // 4 aligned. The assembler / linker may add 2 byte padding just before | 
|  | // the JT entries.  The size does not include this padding; the | 
|  | // constant islands pass does separate bookkeeping for it. | 
|  | // FIXME: If we know the size of the function is less than (1 << 16) *2 | 
|  | // bytes, we can use 16-bit entries instead. Then there won't be an | 
|  | // alignment issue. | 
|  | unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4; | 
|  | unsigned NumEntries = getNumJTEntries(JT, JTI); | 
|  | if (Opc == ARM::t2TBB_JT && (NumEntries & 1)) | 
|  | // Make sure the instruction that follows TBB is 2-byte aligned. | 
|  | // FIXME: Constant island pass should insert an "ALIGN" instruction | 
|  | // instead. | 
|  | ++NumEntries; | 
|  | return NumEntries * EntrySize + InstSize; | 
|  | } | 
|  | default: | 
|  | // Otherwise, pseudo-instruction sizes are zero. | 
|  | return 0; | 
|  | } | 
|  | return 0; // Not reached | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, DebugLoc DL, | 
|  | unsigned DestReg, unsigned SrcReg, | 
|  | bool KillSrc) const { | 
|  | bool GPRDest = ARM::GPRRegClass.contains(DestReg); | 
|  | bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg); | 
|  |  | 
|  | if (GPRDest && GPRSrc) { | 
|  | AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool SPRDest = ARM::SPRRegClass.contains(DestReg); | 
|  | bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg); | 
|  |  | 
|  | unsigned Opc; | 
|  | if (SPRDest && SPRSrc) | 
|  | Opc = ARM::VMOVS; | 
|  | else if (GPRDest && SPRSrc) | 
|  | Opc = ARM::VMOVRS; | 
|  | else if (SPRDest && GPRSrc) | 
|  | Opc = ARM::VMOVSR; | 
|  | else if (ARM::DPRRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = ARM::VMOVD; | 
|  | else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = ARM::VORRq; | 
|  | else if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = ARM::VMOVQQ; | 
|  | else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) | 
|  | Opc = ARM::VMOVQQQQ; | 
|  | else | 
|  | llvm_unreachable("Impossible reg-to-reg copy"); | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); | 
|  | MIB.addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | if (Opc == ARM::VORRq) | 
|  | MIB.addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | if (Opc != ARM::VMOVQQ && Opc != ARM::VMOVQQQQ) | 
|  | AddDefaultPred(MIB); | 
|  | } | 
|  |  | 
|  | static const | 
|  | MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, | 
|  | unsigned Reg, unsigned SubIdx, unsigned State, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | if (!SubIdx) | 
|  | return MIB.addReg(Reg, State); | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); | 
|  | return MIB.addReg(Reg, State, SubIdx); | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo:: | 
|  | storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | unsigned SrcReg, bool isKill, int FI, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL; | 
|  | if (I != MBB.end()) DL = I->getDebugLoc(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | unsigned Align = MFI.getObjectAlignment(FI); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo( | 
|  | PseudoSourceValue::getFixedStack(FI)), | 
|  | MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(FI), | 
|  | Align); | 
|  |  | 
|  | // tGPR is used sometimes in ARM instructions that need to avoid using | 
|  | // certain registers.  Just treat it as GPR here. Likewise, rGPR. | 
|  | if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass | 
|  | || RC == ARM::rGPRRegisterClass) | 
|  | RC = ARM::GPRRegisterClass; | 
|  |  | 
|  | switch (RC->getID()) { | 
|  | case ARM::GPRRegClassID: | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); | 
|  | break; | 
|  | case ARM::SPRRegClassID: | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); | 
|  | break; | 
|  | case ARM::DPRRegClassID: | 
|  | case ARM::DPR_VFP2RegClassID: | 
|  | case ARM::DPR_8RegClassID: | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); | 
|  | break; | 
|  | case ARM::QPRRegClassID: | 
|  | case ARM::QPR_VFP2RegClassID: | 
|  | case ARM::QPR_8RegClassID: | 
|  | if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) { | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo)) | 
|  | .addFrameIndex(FI).addImm(16) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addMemOperand(MMO)); | 
|  | } else { | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO)); | 
|  | } | 
|  | break; | 
|  | case ARM::QQPRRegClassID: | 
|  | case ARM::QQPR_VFP2RegClassID: | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { | 
|  | // FIXME: It's possible to only store part of the QQ register if the | 
|  | // spilled def has a sub-register index. | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) | 
|  | .addFrameIndex(FI).addImm(16) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .addMemOperand(MMO)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) | 
|  | .addFrameIndex(FI)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); | 
|  | } | 
|  | break; | 
|  | case ARM::QQQQPRRegClassID: { | 
|  | MachineInstrBuilder MIB = | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) | 
|  | .addFrameIndex(FI)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); | 
|  | MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); | 
|  | AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case ARM::STRrs: | 
|  | case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(2).isReg() && | 
|  | MI->getOperand(3).isImm() && | 
|  | MI->getOperand(2).getReg() == 0 && | 
|  | MI->getOperand(3).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::STRi12: | 
|  | case ARM::t2STRi12: | 
|  | case ARM::tSTRspi: | 
|  | case ARM::VSTRD: | 
|  | case ARM::VSTRS: | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(2).isImm() && | 
|  | MI->getOperand(2).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VST1q64Pseudo: | 
|  | if (MI->getOperand(0).isFI() && | 
|  | MI->getOperand(2).getSubReg() == 0) { | 
|  | FrameIndex = MI->getOperand(0).getIndex(); | 
|  | return MI->getOperand(2).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VSTMQIA: | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(0).getSubReg() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo:: | 
|  | loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, int FI, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | DebugLoc DL; | 
|  | if (I != MBB.end()) DL = I->getDebugLoc(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | unsigned Align = MFI.getObjectAlignment(FI); | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand( | 
|  | MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), | 
|  | MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(FI), | 
|  | Align); | 
|  |  | 
|  | // tGPR is used sometimes in ARM instructions that need to avoid using | 
|  | // certain registers.  Just treat it as GPR here. | 
|  | if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass | 
|  | || RC == ARM::rGPRRegisterClass) | 
|  | RC = ARM::GPRRegisterClass; | 
|  |  | 
|  | switch (RC->getID()) { | 
|  | case ARM::GPRRegClassID: | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); | 
|  | break; | 
|  | case ARM::SPRRegClassID: | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); | 
|  | break; | 
|  | case ARM::DPRRegClassID: | 
|  | case ARM::DPR_VFP2RegClassID: | 
|  | case ARM::DPR_8RegClassID: | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) | 
|  | .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); | 
|  | break; | 
|  | case ARM::QPRRegClassID: | 
|  | case ARM::QPR_VFP2RegClassID: | 
|  | case ARM::QPR_8RegClassID: | 
|  | if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) { | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg) | 
|  | .addFrameIndex(FI).addImm(16) | 
|  | .addMemOperand(MMO)); | 
|  | } else { | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) | 
|  | .addFrameIndex(FI) | 
|  | .addMemOperand(MMO)); | 
|  | } | 
|  | break; | 
|  | case ARM::QQPRRegClassID: | 
|  | case ARM::QQPR_VFP2RegClassID: | 
|  | if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) | 
|  | .addFrameIndex(FI).addImm(16) | 
|  | .addMemOperand(MMO)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB = | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) | 
|  | .addFrameIndex(FI)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI); | 
|  | AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI); | 
|  | } | 
|  | break; | 
|  | case ARM::QQQQPRRegClassID: { | 
|  | MachineInstrBuilder MIB = | 
|  | AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) | 
|  | .addFrameIndex(FI)) | 
|  | .addMemOperand(MMO); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI); | 
|  | MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI); | 
|  | AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unknown regclass!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame. | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(2).isReg() && | 
|  | MI->getOperand(3).isImm() && | 
|  | MI->getOperand(2).getReg() == 0 && | 
|  | MI->getOperand(3).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::LDRi12: | 
|  | case ARM::t2LDRi12: | 
|  | case ARM::tLDRspi: | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(2).isImm() && | 
|  | MI->getOperand(2).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VLD1q64Pseudo: | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(0).getSubReg() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | case ARM::VLDMQIA: | 
|  | if (MI->getOperand(1).isFI() && | 
|  | MI->getOperand(0).getSubReg() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MachineInstr* | 
|  | ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, | 
|  | int FrameIx, uint64_t Offset, | 
|  | const MDNode *MDPtr, | 
|  | DebugLoc DL) const { | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE)) | 
|  | .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr); | 
|  | return &*MIB; | 
|  | } | 
|  |  | 
|  | /// Create a copy of a const pool value. Update CPI to the new index and return | 
|  | /// the label UID. | 
|  | static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { | 
|  | MachineConstantPool *MCP = MF.getConstantPool(); | 
|  | ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
|  |  | 
|  | const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; | 
|  | assert(MCPE.isMachineConstantPoolEntry() && | 
|  | "Expecting a machine constantpool entry!"); | 
|  | ARMConstantPoolValue *ACPV = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); | 
|  |  | 
|  | unsigned PCLabelId = AFI->createPICLabelUId(); | 
|  | ARMConstantPoolValue *NewCPV = 0; | 
|  | // FIXME: The below assumes PIC relocation model and that the function | 
|  | // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and | 
|  | // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR | 
|  | // instructions, so that's probably OK, but is PIC always correct when | 
|  | // we get here? | 
|  | if (ACPV->isGlobalValue()) | 
|  | NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId, | 
|  | ARMCP::CPValue, 4); | 
|  | else if (ACPV->isExtSymbol()) | 
|  | NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(), | 
|  | ACPV->getSymbol(), PCLabelId, 4); | 
|  | else if (ACPV->isBlockAddress()) | 
|  | NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId, | 
|  | ARMCP::CPBlockAddress, 4); | 
|  | else if (ACPV->isLSDA()) | 
|  | NewCPV = new ARMConstantPoolValue(MF.getFunction(), PCLabelId, | 
|  | ARMCP::CPLSDA, 4); | 
|  | else | 
|  | llvm_unreachable("Unexpected ARM constantpool value type!!"); | 
|  | CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); | 
|  | return PCLabelId; | 
|  | } | 
|  |  | 
|  | void ARMBaseInstrInfo:: | 
|  | reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr *Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | unsigned Opcode = Orig->getOpcode(); | 
|  | switch (Opcode) { | 
|  | default: { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
|  | MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | MBB.insert(I, MI); | 
|  | break; | 
|  | } | 
|  | case ARM::tLDRpci_pic: | 
|  | case ARM::t2LDRpci_pic: { | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned CPI = Orig->getOperand(1).getIndex(); | 
|  | unsigned PCLabelId = duplicateCPV(MF, CPI); | 
|  | MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), | 
|  | DestReg) | 
|  | .addConstantPoolIndex(CPI).addImm(PCLabelId); | 
|  | MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstr * | 
|  | ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { | 
|  | MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF); | 
|  | switch(Orig->getOpcode()) { | 
|  | case ARM::tLDRpci_pic: | 
|  | case ARM::t2LDRpci_pic: { | 
|  | unsigned CPI = Orig->getOperand(1).getIndex(); | 
|  | unsigned PCLabelId = duplicateCPV(MF, CPI); | 
|  | Orig->getOperand(1).setIndex(CPI); | 
|  | Orig->getOperand(2).setImm(PCLabelId); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, | 
|  | const MachineInstr *MI1, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | int Opcode = MI0->getOpcode(); | 
|  | if (Opcode == ARM::t2LDRpci || | 
|  | Opcode == ARM::t2LDRpci_pic || | 
|  | Opcode == ARM::tLDRpci || | 
|  | Opcode == ARM::tLDRpci_pic || | 
|  | Opcode == ARM::MOV_ga_dyn || | 
|  | Opcode == ARM::MOV_ga_pcrel || | 
|  | Opcode == ARM::MOV_ga_pcrel_ldr || | 
|  | Opcode == ARM::t2MOV_ga_dyn || | 
|  | Opcode == ARM::t2MOV_ga_pcrel) { | 
|  | if (MI1->getOpcode() != Opcode) | 
|  | return false; | 
|  | if (MI0->getNumOperands() != MI1->getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand &MO0 = MI0->getOperand(1); | 
|  | const MachineOperand &MO1 = MI1->getOperand(1); | 
|  | if (MO0.getOffset() != MO1.getOffset()) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ARM::MOV_ga_dyn || | 
|  | Opcode == ARM::MOV_ga_pcrel || | 
|  | Opcode == ARM::MOV_ga_pcrel_ldr || | 
|  | Opcode == ARM::t2MOV_ga_dyn || | 
|  | Opcode == ARM::t2MOV_ga_pcrel) | 
|  | // Ignore the PC labels. | 
|  | return MO0.getGlobal() == MO1.getGlobal(); | 
|  |  | 
|  | const MachineFunction *MF = MI0->getParent()->getParent(); | 
|  | const MachineConstantPool *MCP = MF->getConstantPool(); | 
|  | int CPI0 = MO0.getIndex(); | 
|  | int CPI1 = MO1.getIndex(); | 
|  | const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; | 
|  | const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; | 
|  | bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); | 
|  | bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); | 
|  | if (isARMCP0 && isARMCP1) { | 
|  | ARMConstantPoolValue *ACPV0 = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); | 
|  | ARMConstantPoolValue *ACPV1 = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); | 
|  | return ACPV0->hasSameValue(ACPV1); | 
|  | } else if (!isARMCP0 && !isARMCP1) { | 
|  | return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; | 
|  | } | 
|  | return false; | 
|  | } else if (Opcode == ARM::PICLDR) { | 
|  | if (MI1->getOpcode() != Opcode) | 
|  | return false; | 
|  | if (MI0->getNumOperands() != MI1->getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | unsigned Addr0 = MI0->getOperand(1).getReg(); | 
|  | unsigned Addr1 = MI1->getOperand(1).getReg(); | 
|  | if (Addr0 != Addr1) { | 
|  | if (!MRI || | 
|  | !TargetRegisterInfo::isVirtualRegister(Addr0) || | 
|  | !TargetRegisterInfo::isVirtualRegister(Addr1)) | 
|  | return false; | 
|  |  | 
|  | // This assumes SSA form. | 
|  | MachineInstr *Def0 = MRI->getVRegDef(Addr0); | 
|  | MachineInstr *Def1 = MRI->getVRegDef(Addr1); | 
|  | // Check if the loaded value, e.g. a constantpool of a global address, are | 
|  | // the same. | 
|  | if (!produceSameValue(Def0, Def1, MRI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { | 
|  | // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg | 
|  | const MachineOperand &MO0 = MI0->getOperand(i); | 
|  | const MachineOperand &MO1 = MI1->getOperand(i); | 
|  | if (!MO0.isIdenticalTo(MO1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
|  | } | 
|  |  | 
|  | /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to | 
|  | /// determine if two loads are loading from the same base address. It should | 
|  | /// only return true if the base pointers are the same and the only differences | 
|  | /// between the two addresses is the offset. It also returns the offsets by | 
|  | /// reference. | 
|  | bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | 
|  | int64_t &Offset1, | 
|  | int64_t &Offset2) const { | 
|  | // Don't worry about Thumb: just ARM and Thumb2. | 
|  | if (Subtarget.isThumb1Only()) return false; | 
|  |  | 
|  | if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | switch (Load1->getMachineOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case ARM::LDRi12: | 
|  | case ARM::LDRBi12: | 
|  | case ARM::LDRD: | 
|  | case ARM::LDRH: | 
|  | case ARM::LDRSB: | 
|  | case ARM::LDRSH: | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | case ARM::t2LDRi8: | 
|  | case ARM::t2LDRDi8: | 
|  | case ARM::t2LDRSHi8: | 
|  | case ARM::t2LDRi12: | 
|  | case ARM::t2LDRSHi12: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (Load2->getMachineOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case ARM::LDRi12: | 
|  | case ARM::LDRBi12: | 
|  | case ARM::LDRD: | 
|  | case ARM::LDRH: | 
|  | case ARM::LDRSB: | 
|  | case ARM::LDRSH: | 
|  | case ARM::VLDRD: | 
|  | case ARM::VLDRS: | 
|  | case ARM::t2LDRi8: | 
|  | case ARM::t2LDRDi8: | 
|  | case ARM::t2LDRSHi8: | 
|  | case ARM::t2LDRi12: | 
|  | case ARM::t2LDRSHi12: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check if base addresses and chain operands match. | 
|  | if (Load1->getOperand(0) != Load2->getOperand(0) || | 
|  | Load1->getOperand(4) != Load2->getOperand(4)) | 
|  | return false; | 
|  |  | 
|  | // Index should be Reg0. | 
|  | if (Load1->getOperand(3) != Load2->getOperand(3)) | 
|  | return false; | 
|  |  | 
|  | // Determine the offsets. | 
|  | if (isa<ConstantSDNode>(Load1->getOperand(1)) && | 
|  | isa<ConstantSDNode>(Load2->getOperand(1))) { | 
|  | Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); | 
|  | Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to | 
|  | /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should | 
|  | /// be scheduled togther. On some targets if two loads are loading from | 
|  | /// addresses in the same cache line, it's better if they are scheduled | 
|  | /// together. This function takes two integers that represent the load offsets | 
|  | /// from the common base address. It returns true if it decides it's desirable | 
|  | /// to schedule the two loads together. "NumLoads" is the number of loads that | 
|  | /// have already been scheduled after Load1. | 
|  | bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
|  | int64_t Offset1, int64_t Offset2, | 
|  | unsigned NumLoads) const { | 
|  | // Don't worry about Thumb: just ARM and Thumb2. | 
|  | if (Subtarget.isThumb1Only()) return false; | 
|  |  | 
|  | assert(Offset2 > Offset1); | 
|  |  | 
|  | if ((Offset2 - Offset1) / 8 > 64) | 
|  | return false; | 
|  |  | 
|  | if (Load1->getMachineOpcode() != Load2->getMachineOpcode()) | 
|  | return false;  // FIXME: overly conservative? | 
|  |  | 
|  | // Four loads in a row should be sufficient. | 
|  | if (NumLoads >= 3) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Debug info is never a scheduling boundary. It's necessary to be explicit | 
|  | // due to the special treatment of IT instructions below, otherwise a | 
|  | // dbg_value followed by an IT will result in the IT instruction being | 
|  | // considered a scheduling hazard, which is wrong. It should be the actual | 
|  | // instruction preceding the dbg_value instruction(s), just like it is | 
|  | // when debug info is not present. | 
|  | if (MI->isDebugValue()) | 
|  | return false; | 
|  |  | 
|  | // Terminators and labels can't be scheduled around. | 
|  | if (MI->getDesc().isTerminator() || MI->isLabel()) | 
|  | return true; | 
|  |  | 
|  | // Treat the start of the IT block as a scheduling boundary, but schedule | 
|  | // t2IT along with all instructions following it. | 
|  | // FIXME: This is a big hammer. But the alternative is to add all potential | 
|  | // true and anti dependencies to IT block instructions as implicit operands | 
|  | // to the t2IT instruction. The added compile time and complexity does not | 
|  | // seem worth it. | 
|  | MachineBasicBlock::const_iterator I = MI; | 
|  | // Make sure to skip any dbg_value instructions | 
|  | while (++I != MBB->end() && I->isDebugValue()) | 
|  | ; | 
|  | if (I != MBB->end() && I->getOpcode() == ARM::t2IT) | 
|  | return true; | 
|  |  | 
|  | // Don't attempt to schedule around any instruction that defines | 
|  | // a stack-oriented pointer, as it's unlikely to be profitable. This | 
|  | // saves compile time, because it doesn't require every single | 
|  | // stack slot reference to depend on the instruction that does the | 
|  | // modification. | 
|  | if (MI->definesRegister(ARM::SP)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | isProfitableToIfCvt(MachineBasicBlock &MBB, | 
|  | unsigned NumCycles, unsigned ExtraPredCycles, | 
|  | const BranchProbability &Probability) const { | 
|  | if (!NumCycles) | 
|  | return false; | 
|  |  | 
|  | // Attempt to estimate the relative costs of predication versus branching. | 
|  | unsigned UnpredCost = Probability.getNumerator() * NumCycles; | 
|  | UnpredCost /= Probability.getDenominator(); | 
|  | UnpredCost += 1; // The branch itself | 
|  | UnpredCost += Subtarget.getMispredictionPenalty() / 10; | 
|  |  | 
|  | return (NumCycles + ExtraPredCycles) <= UnpredCost; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
|  | unsigned TCycles, unsigned TExtra, | 
|  | MachineBasicBlock &FMBB, | 
|  | unsigned FCycles, unsigned FExtra, | 
|  | const BranchProbability &Probability) const { | 
|  | if (!TCycles || !FCycles) | 
|  | return false; | 
|  |  | 
|  | // Attempt to estimate the relative costs of predication versus branching. | 
|  | unsigned TUnpredCost = Probability.getNumerator() * TCycles; | 
|  | TUnpredCost /= Probability.getDenominator(); | 
|  |  | 
|  | uint32_t Comp = Probability.getDenominator() - Probability.getNumerator(); | 
|  | unsigned FUnpredCost = Comp * FCycles; | 
|  | FUnpredCost /= Probability.getDenominator(); | 
|  |  | 
|  | unsigned UnpredCost = TUnpredCost + FUnpredCost; | 
|  | UnpredCost += 1; // The branch itself | 
|  | UnpredCost += Subtarget.getMispredictionPenalty() / 10; | 
|  |  | 
|  | return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost; | 
|  | } | 
|  |  | 
|  | /// getInstrPredicate - If instruction is predicated, returns its predicate | 
|  | /// condition, otherwise returns AL. It also returns the condition code | 
|  | /// register by reference. | 
|  | ARMCC::CondCodes | 
|  | llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { | 
|  | int PIdx = MI->findFirstPredOperandIdx(); | 
|  | if (PIdx == -1) { | 
|  | PredReg = 0; | 
|  | return ARMCC::AL; | 
|  | } | 
|  |  | 
|  | PredReg = MI->getOperand(PIdx+1).getReg(); | 
|  | return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); | 
|  | } | 
|  |  | 
|  |  | 
|  | int llvm::getMatchingCondBranchOpcode(int Opc) { | 
|  | if (Opc == ARM::B) | 
|  | return ARM::Bcc; | 
|  | else if (Opc == ARM::tB) | 
|  | return ARM::tBcc; | 
|  | else if (Opc == ARM::t2B) | 
|  | return ARM::t2Bcc; | 
|  |  | 
|  | llvm_unreachable("Unknown unconditional branch opcode!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator &MBBI, DebugLoc dl, | 
|  | unsigned DestReg, unsigned BaseReg, int NumBytes, | 
|  | ARMCC::CondCodes Pred, unsigned PredReg, | 
|  | const ARMBaseInstrInfo &TII, unsigned MIFlags) { | 
|  | bool isSub = NumBytes < 0; | 
|  | if (isSub) NumBytes = -NumBytes; | 
|  |  | 
|  | while (NumBytes) { | 
|  | unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); | 
|  | unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); | 
|  | assert(ThisVal && "Didn't extract field correctly"); | 
|  |  | 
|  | // We will handle these bits from offset, clear them. | 
|  | NumBytes &= ~ThisVal; | 
|  |  | 
|  | assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); | 
|  |  | 
|  | // Build the new ADD / SUB. | 
|  | unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; | 
|  | BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) | 
|  | .addReg(BaseReg, RegState::Kill).addImm(ThisVal) | 
|  | .addImm((unsigned)Pred).addReg(PredReg).addReg(0) | 
|  | .setMIFlags(MIFlags); | 
|  | BaseReg = DestReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, | 
|  | unsigned FrameReg, int &Offset, | 
|  | const ARMBaseInstrInfo &TII) { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); | 
|  | bool isSub = false; | 
|  |  | 
|  | // Memory operands in inline assembly always use AddrMode2. | 
|  | if (Opcode == ARM::INLINEASM) | 
|  | AddrMode = ARMII::AddrMode2; | 
|  |  | 
|  | if (Opcode == ARM::ADDri) { | 
|  | Offset += MI.getOperand(FrameRegIdx+1).getImm(); | 
|  | if (Offset == 0) { | 
|  | // Turn it into a move. | 
|  | MI.setDesc(TII.get(ARM::MOVr)); | 
|  | MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); | 
|  | MI.RemoveOperand(FrameRegIdx+1); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } else if (Offset < 0) { | 
|  | Offset = -Offset; | 
|  | isSub = true; | 
|  | MI.setDesc(TII.get(ARM::SUBri)); | 
|  | } | 
|  |  | 
|  | // Common case: small offset, fits into instruction. | 
|  | if (ARM_AM::getSOImmVal(Offset) != -1) { | 
|  | // Replace the FrameIndex with sp / fp | 
|  | MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); | 
|  | MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, pull as much of the immedidate into this ADDri/SUBri | 
|  | // as possible. | 
|  | unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); | 
|  | unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); | 
|  |  | 
|  | // We will handle these bits from offset, clear them. | 
|  | Offset &= ~ThisImmVal; | 
|  |  | 
|  | // Get the properly encoded SOImmVal field. | 
|  | assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && | 
|  | "Bit extraction didn't work?"); | 
|  | MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); | 
|  | } else { | 
|  | unsigned ImmIdx = 0; | 
|  | int InstrOffs = 0; | 
|  | unsigned NumBits = 0; | 
|  | unsigned Scale = 1; | 
|  | switch (AddrMode) { | 
|  | case ARMII::AddrMode_i12: { | 
|  | ImmIdx = FrameRegIdx + 1; | 
|  | InstrOffs = MI.getOperand(ImmIdx).getImm(); | 
|  | NumBits = 12; | 
|  | break; | 
|  | } | 
|  | case ARMII::AddrMode2: { | 
|  | ImmIdx = FrameRegIdx+2; | 
|  | InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 12; | 
|  | break; | 
|  | } | 
|  | case ARMII::AddrMode3: { | 
|  | ImmIdx = FrameRegIdx+2; | 
|  | InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 8; | 
|  | break; | 
|  | } | 
|  | case ARMII::AddrMode4: | 
|  | case ARMII::AddrMode6: | 
|  | // Can't fold any offset even if it's zero. | 
|  | return false; | 
|  | case ARMII::AddrMode5: { | 
|  | ImmIdx = FrameRegIdx+1; | 
|  | InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); | 
|  | if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) | 
|  | InstrOffs *= -1; | 
|  | NumBits = 8; | 
|  | Scale = 4; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unsupported addressing mode!"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Offset += InstrOffs * Scale; | 
|  | assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); | 
|  | if (Offset < 0) { | 
|  | Offset = -Offset; | 
|  | isSub = true; | 
|  | } | 
|  |  | 
|  | // Attempt to fold address comp. if opcode has offset bits | 
|  | if (NumBits > 0) { | 
|  | // Common case: small offset, fits into instruction. | 
|  | MachineOperand &ImmOp = MI.getOperand(ImmIdx); | 
|  | int ImmedOffset = Offset / Scale; | 
|  | unsigned Mask = (1 << NumBits) - 1; | 
|  | if ((unsigned)Offset <= Mask * Scale) { | 
|  | // Replace the FrameIndex with sp | 
|  | MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); | 
|  | // FIXME: When addrmode2 goes away, this will simplify (like the | 
|  | // T2 version), as the LDR.i12 versions don't need the encoding | 
|  | // tricks for the offset value. | 
|  | if (isSub) { | 
|  | if (AddrMode == ARMII::AddrMode_i12) | 
|  | ImmedOffset = -ImmedOffset; | 
|  | else | 
|  | ImmedOffset |= 1 << NumBits; | 
|  | } | 
|  | ImmOp.ChangeToImmediate(ImmedOffset); | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, it didn't fit. Pull in what we can to simplify the immed. | 
|  | ImmedOffset = ImmedOffset & Mask; | 
|  | if (isSub) { | 
|  | if (AddrMode == ARMII::AddrMode_i12) | 
|  | ImmedOffset = -ImmedOffset; | 
|  | else | 
|  | ImmedOffset |= 1 << NumBits; | 
|  | } | 
|  | ImmOp.ChangeToImmediate(ImmedOffset); | 
|  | Offset &= ~(Mask*Scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | Offset = (isSub) ? -Offset : Offset; | 
|  | return Offset == 0; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask, | 
|  | int &CmpValue) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case ARM::CMPri: | 
|  | case ARM::t2CMPri: | 
|  | SrcReg = MI->getOperand(0).getReg(); | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI->getOperand(1).getImm(); | 
|  | return true; | 
|  | case ARM::TSTri: | 
|  | case ARM::t2TSTri: | 
|  | SrcReg = MI->getOperand(0).getReg(); | 
|  | CmpMask = MI->getOperand(1).getImm(); | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isSuitableForMask - Identify a suitable 'and' instruction that | 
|  | /// operates on the given source register and applies the same mask | 
|  | /// as a 'tst' instruction. Provide a limited look-through for copies. | 
|  | /// When successful, MI will hold the found instruction. | 
|  | static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, | 
|  | int CmpMask, bool CommonUse) { | 
|  | switch (MI->getOpcode()) { | 
|  | case ARM::ANDri: | 
|  | case ARM::t2ANDri: | 
|  | if (CmpMask != MI->getOperand(2).getImm()) | 
|  | return false; | 
|  | if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) | 
|  | return true; | 
|  | break; | 
|  | case ARM::COPY: { | 
|  | // Walk down one instruction which is potentially an 'and'. | 
|  | const MachineInstr &Copy = *MI; | 
|  | MachineBasicBlock::iterator AND( | 
|  | llvm::next(MachineBasicBlock::iterator(MI))); | 
|  | if (AND == MI->getParent()->end()) return false; | 
|  | MI = AND; | 
|  | return isSuitableForMask(MI, Copy.getOperand(0).getReg(), | 
|  | CmpMask, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// OptimizeCompareInstr - Convert the instruction supplying the argument to the | 
|  | /// comparison into one that sets the zero bit in the flags register. | 
|  | bool ARMBaseInstrInfo:: | 
|  | OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask, | 
|  | int CmpValue, const MachineRegisterInfo *MRI) const { | 
|  | if (CmpValue != 0) | 
|  | return false; | 
|  |  | 
|  | MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg); | 
|  | if (llvm::next(DI) != MRI->def_end()) | 
|  | // Only support one definition. | 
|  | return false; | 
|  |  | 
|  | MachineInstr *MI = &*DI; | 
|  |  | 
|  | // Masked compares sometimes use the same register as the corresponding 'and'. | 
|  | if (CmpMask != ~0) { | 
|  | if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) { | 
|  | MI = 0; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg), | 
|  | UE = MRI->use_end(); UI != UE; ++UI) { | 
|  | if (UI->getParent() != CmpInstr->getParent()) continue; | 
|  | MachineInstr *PotentialAND = &*UI; | 
|  | if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true)) | 
|  | continue; | 
|  | MI = PotentialAND; | 
|  | break; | 
|  | } | 
|  | if (!MI) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Conservatively refuse to convert an instruction which isn't in the same BB | 
|  | // as the comparison. | 
|  | if (MI->getParent() != CmpInstr->getParent()) | 
|  | return false; | 
|  |  | 
|  | // Check that CPSR isn't set between the comparison instruction and the one we | 
|  | // want to change. | 
|  | MachineBasicBlock::const_iterator I = CmpInstr, E = MI, | 
|  | B = MI->getParent()->begin(); | 
|  |  | 
|  | // Early exit if CmpInstr is at the beginning of the BB. | 
|  | if (I == B) return false; | 
|  |  | 
|  | --I; | 
|  | for (; I != E; --I) { | 
|  | const MachineInstr &Instr = *I; | 
|  |  | 
|  | for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) { | 
|  | const MachineOperand &MO = Instr.getOperand(IO); | 
|  | if (!MO.isReg()) continue; | 
|  |  | 
|  | // This instruction modifies or uses CPSR after the one we want to | 
|  | // change. We can't do this transformation. | 
|  | if (MO.getReg() == ARM::CPSR) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (I == B) | 
|  | // The 'and' is below the comparison instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set the "zero" bit in CPSR. | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case ARM::RSBrr: | 
|  | case ARM::RSBri: | 
|  | case ARM::RSCrr: | 
|  | case ARM::RSCri: | 
|  | case ARM::ADDrr: | 
|  | case ARM::ADDri: | 
|  | case ARM::ADCrr: | 
|  | case ARM::ADCri: | 
|  | case ARM::SUBrr: | 
|  | case ARM::SUBri: | 
|  | case ARM::SBCrr: | 
|  | case ARM::SBCri: | 
|  | case ARM::t2RSBri: | 
|  | case ARM::t2ADDrr: | 
|  | case ARM::t2ADDri: | 
|  | case ARM::t2ADCrr: | 
|  | case ARM::t2ADCri: | 
|  | case ARM::t2SUBrr: | 
|  | case ARM::t2SUBri: | 
|  | case ARM::t2SBCrr: | 
|  | case ARM::t2SBCri: | 
|  | case ARM::ANDrr: | 
|  | case ARM::ANDri: | 
|  | case ARM::t2ANDrr: | 
|  | case ARM::t2ANDri: | 
|  | case ARM::ORRrr: | 
|  | case ARM::ORRri: | 
|  | case ARM::t2ORRrr: | 
|  | case ARM::t2ORRri: | 
|  | case ARM::EORrr: | 
|  | case ARM::EORri: | 
|  | case ARM::t2EORrr: | 
|  | case ARM::t2EORri: { | 
|  | // Scan forward for the use of CPSR, if it's a conditional code requires | 
|  | // checking of V bit, then this is not safe to do. If we can't find the | 
|  | // CPSR use (i.e. used in another block), then it's not safe to perform | 
|  | // the optimization. | 
|  | bool isSafe = false; | 
|  | I = CmpInstr; | 
|  | E = MI->getParent()->end(); | 
|  | while (!isSafe && ++I != E) { | 
|  | const MachineInstr &Instr = *I; | 
|  | for (unsigned IO = 0, EO = Instr.getNumOperands(); | 
|  | !isSafe && IO != EO; ++IO) { | 
|  | const MachineOperand &MO = Instr.getOperand(IO); | 
|  | if (!MO.isReg() || MO.getReg() != ARM::CPSR) | 
|  | continue; | 
|  | if (MO.isDef()) { | 
|  | isSafe = true; | 
|  | break; | 
|  | } | 
|  | // Condition code is after the operand before CPSR. | 
|  | ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm(); | 
|  | switch (CC) { | 
|  | default: | 
|  | isSafe = true; | 
|  | break; | 
|  | case ARMCC::VS: | 
|  | case ARMCC::VC: | 
|  | case ARMCC::GE: | 
|  | case ARMCC::LT: | 
|  | case ARMCC::GT: | 
|  | case ARMCC::LE: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isSafe) | 
|  | return false; | 
|  |  | 
|  | // Toggle the optional operand to CPSR. | 
|  | MI->getOperand(5).setReg(ARM::CPSR); | 
|  | MI->getOperand(5).setIsDef(true); | 
|  | CmpInstr->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI, | 
|  | MachineInstr *DefMI, unsigned Reg, | 
|  | MachineRegisterInfo *MRI) const { | 
|  | // Fold large immediates into add, sub, or, xor. | 
|  | unsigned DefOpc = DefMI->getOpcode(); | 
|  | if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) | 
|  | return false; | 
|  | if (!DefMI->getOperand(1).isImm()) | 
|  | // Could be t2MOVi32imm <ga:xx> | 
|  | return false; | 
|  |  | 
|  | if (!MRI->hasOneNonDBGUse(Reg)) | 
|  | return false; | 
|  |  | 
|  | unsigned UseOpc = UseMI->getOpcode(); | 
|  | unsigned NewUseOpc = 0; | 
|  | uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm(); | 
|  | uint32_t SOImmValV1 = 0, SOImmValV2 = 0; | 
|  | bool Commute = false; | 
|  | switch (UseOpc) { | 
|  | default: return false; | 
|  | case ARM::SUBrr: | 
|  | case ARM::ADDrr: | 
|  | case ARM::ORRrr: | 
|  | case ARM::EORrr: | 
|  | case ARM::t2SUBrr: | 
|  | case ARM::t2ADDrr: | 
|  | case ARM::t2ORRrr: | 
|  | case ARM::t2EORrr: { | 
|  | Commute = UseMI->getOperand(2).getReg() != Reg; | 
|  | switch (UseOpc) { | 
|  | default: break; | 
|  | case ARM::SUBrr: { | 
|  | if (Commute) | 
|  | return false; | 
|  | ImmVal = -ImmVal; | 
|  | NewUseOpc = ARM::SUBri; | 
|  | // Fallthrough | 
|  | } | 
|  | case ARM::ADDrr: | 
|  | case ARM::ORRrr: | 
|  | case ARM::EORrr: { | 
|  | if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) | 
|  | return false; | 
|  | SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); | 
|  | SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); | 
|  | switch (UseOpc) { | 
|  | default: break; | 
|  | case ARM::ADDrr: NewUseOpc = ARM::ADDri; break; | 
|  | case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; | 
|  | case ARM::EORrr: NewUseOpc = ARM::EORri; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ARM::t2SUBrr: { | 
|  | if (Commute) | 
|  | return false; | 
|  | ImmVal = -ImmVal; | 
|  | NewUseOpc = ARM::t2SUBri; | 
|  | // Fallthrough | 
|  | } | 
|  | case ARM::t2ADDrr: | 
|  | case ARM::t2ORRrr: | 
|  | case ARM::t2EORrr: { | 
|  | if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) | 
|  | return false; | 
|  | SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); | 
|  | SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); | 
|  | switch (UseOpc) { | 
|  | default: break; | 
|  | case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break; | 
|  | case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; | 
|  | case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned OpIdx = Commute ? 2 : 1; | 
|  | unsigned Reg1 = UseMI->getOperand(OpIdx).getReg(); | 
|  | bool isKill = UseMI->getOperand(OpIdx).isKill(); | 
|  | unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); | 
|  | AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(), | 
|  | *UseMI, UseMI->getDebugLoc(), | 
|  | get(NewUseOpc), NewReg) | 
|  | .addReg(Reg1, getKillRegState(isKill)) | 
|  | .addImm(SOImmValV1))); | 
|  | UseMI->setDesc(get(NewUseOpc)); | 
|  | UseMI->getOperand(1).setReg(NewReg); | 
|  | UseMI->getOperand(1).setIsKill(); | 
|  | UseMI->getOperand(2).ChangeToImmediate(SOImmValV2); | 
|  | DefMI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *MI) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | const MCInstrDesc &Desc = MI->getDesc(); | 
|  | unsigned Class = Desc.getSchedClass(); | 
|  | unsigned UOps = ItinData->Itineraries[Class].NumMicroOps; | 
|  | if (UOps) | 
|  | return UOps; | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected multi-uops instruction!"); | 
|  | break; | 
|  | case ARM::VLDMQIA: | 
|  | case ARM::VSTMQIA: | 
|  | return 2; | 
|  |  | 
|  | // The number of uOps for load / store multiple are determined by the number | 
|  | // registers. | 
|  | // | 
|  | // On Cortex-A8, each pair of register loads / stores can be scheduled on the | 
|  | // same cycle. The scheduling for the first load / store must be done | 
|  | // separately by assuming the the address is not 64-bit aligned. | 
|  | // | 
|  | // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address | 
|  | // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON | 
|  | // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. | 
|  | case ARM::VLDMDIA: | 
|  | case ARM::VLDMDIA_UPD: | 
|  | case ARM::VLDMDDB_UPD: | 
|  | case ARM::VLDMSIA: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | case ARM::VSTMDIA: | 
|  | case ARM::VSTMDIA_UPD: | 
|  | case ARM::VSTMDDB_UPD: | 
|  | case ARM::VSTMSIA: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: { | 
|  | unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands(); | 
|  | return (NumRegs / 2) + (NumRegs % 2) + 1; | 
|  | } | 
|  |  | 
|  | case ARM::LDMIA_RET: | 
|  | case ARM::LDMIA: | 
|  | case ARM::LDMDA: | 
|  | case ARM::LDMDB: | 
|  | case ARM::LDMIB: | 
|  | case ARM::LDMIA_UPD: | 
|  | case ARM::LDMDA_UPD: | 
|  | case ARM::LDMDB_UPD: | 
|  | case ARM::LDMIB_UPD: | 
|  | case ARM::STMIA: | 
|  | case ARM::STMDA: | 
|  | case ARM::STMDB: | 
|  | case ARM::STMIB: | 
|  | case ARM::STMIA_UPD: | 
|  | case ARM::STMDA_UPD: | 
|  | case ARM::STMDB_UPD: | 
|  | case ARM::STMIB_UPD: | 
|  | case ARM::tLDMIA: | 
|  | case ARM::tLDMIA_UPD: | 
|  | case ARM::tSTMIA: | 
|  | case ARM::tSTMIA_UPD: | 
|  | case ARM::tPOP_RET: | 
|  | case ARM::tPOP: | 
|  | case ARM::tPUSH: | 
|  | case ARM::t2LDMIA_RET: | 
|  | case ARM::t2LDMIA: | 
|  | case ARM::t2LDMDB: | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | case ARM::t2STMIA: | 
|  | case ARM::t2STMDB: | 
|  | case ARM::t2STMIA_UPD: | 
|  | case ARM::t2STMDB_UPD: { | 
|  | unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1; | 
|  | if (Subtarget.isCortexA8()) { | 
|  | if (NumRegs < 4) | 
|  | return 2; | 
|  | // 4 registers would be issued: 2, 2. | 
|  | // 5 registers would be issued: 2, 2, 1. | 
|  | UOps = (NumRegs / 2); | 
|  | if (NumRegs % 2) | 
|  | ++UOps; | 
|  | return UOps; | 
|  | } else if (Subtarget.isCortexA9()) { | 
|  | UOps = (NumRegs / 2); | 
|  | // If there are odd number of registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra AGU (Address Generation Unit) cycle. | 
|  | if ((NumRegs % 2) || | 
|  | !MI->hasOneMemOperand() || | 
|  | (*MI->memoperands_begin())->getAlignment() < 8) | 
|  | ++UOps; | 
|  | return UOps; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | return NumRegs; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &DefMCID, | 
|  | unsigned DefClass, | 
|  | unsigned DefIdx, unsigned DefAlign) const { | 
|  | int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | // Def is the address writeback. | 
|  | return ItinData->getOperandCycle(DefClass, DefIdx); | 
|  |  | 
|  | int DefCycle; | 
|  | if (Subtarget.isCortexA8()) { | 
|  | // (regno / 2) + (regno % 2) + 1 | 
|  | DefCycle = RegNo / 2 + 1; | 
|  | if (RegNo % 2) | 
|  | ++DefCycle; | 
|  | } else if (Subtarget.isCortexA9()) { | 
|  | DefCycle = RegNo; | 
|  | bool isSLoad = false; | 
|  |  | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VLDMSIA: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | isSLoad = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are odd number of 'S' registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra cycle. | 
|  | if ((isSLoad && (RegNo % 2)) || DefAlign < 8) | 
|  | ++DefCycle; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | DefCycle = RegNo + 2; | 
|  | } | 
|  |  | 
|  | return DefCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &DefMCID, | 
|  | unsigned DefClass, | 
|  | unsigned DefIdx, unsigned DefAlign) const { | 
|  | int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | // Def is the address writeback. | 
|  | return ItinData->getOperandCycle(DefClass, DefIdx); | 
|  |  | 
|  | int DefCycle; | 
|  | if (Subtarget.isCortexA8()) { | 
|  | // 4 registers would be issued: 1, 2, 1. | 
|  | // 5 registers would be issued: 1, 2, 2. | 
|  | DefCycle = RegNo / 2; | 
|  | if (DefCycle < 1) | 
|  | DefCycle = 1; | 
|  | // Result latency is issue cycle + 2: E2. | 
|  | DefCycle += 2; | 
|  | } else if (Subtarget.isCortexA9()) { | 
|  | DefCycle = (RegNo / 2); | 
|  | // If there are odd number of registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra AGU (Address Generation Unit) cycle. | 
|  | if ((RegNo % 2) || DefAlign < 8) | 
|  | ++DefCycle; | 
|  | // Result latency is AGU cycles + 2. | 
|  | DefCycle += 2; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | DefCycle = RegNo + 2; | 
|  | } | 
|  |  | 
|  | return DefCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &UseMCID, | 
|  | unsigned UseClass, | 
|  | unsigned UseIdx, unsigned UseAlign) const { | 
|  | int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | return ItinData->getOperandCycle(UseClass, UseIdx); | 
|  |  | 
|  | int UseCycle; | 
|  | if (Subtarget.isCortexA8()) { | 
|  | // (regno / 2) + (regno % 2) + 1 | 
|  | UseCycle = RegNo / 2 + 1; | 
|  | if (RegNo % 2) | 
|  | ++UseCycle; | 
|  | } else if (Subtarget.isCortexA9()) { | 
|  | UseCycle = RegNo; | 
|  | bool isSStore = false; | 
|  |  | 
|  | switch (UseMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VSTMSIA: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: | 
|  | isSStore = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are odd number of 'S' registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra cycle. | 
|  | if ((isSStore && (RegNo % 2)) || UseAlign < 8) | 
|  | ++UseCycle; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | UseCycle = RegNo + 2; | 
|  | } | 
|  |  | 
|  | return UseCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &UseMCID, | 
|  | unsigned UseClass, | 
|  | unsigned UseIdx, unsigned UseAlign) const { | 
|  | int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; | 
|  | if (RegNo <= 0) | 
|  | return ItinData->getOperandCycle(UseClass, UseIdx); | 
|  |  | 
|  | int UseCycle; | 
|  | if (Subtarget.isCortexA8()) { | 
|  | UseCycle = RegNo / 2; | 
|  | if (UseCycle < 2) | 
|  | UseCycle = 2; | 
|  | // Read in E3. | 
|  | UseCycle += 2; | 
|  | } else if (Subtarget.isCortexA9()) { | 
|  | UseCycle = (RegNo / 2); | 
|  | // If there are odd number of registers or if it's not 64-bit aligned, | 
|  | // then it takes an extra AGU (Address Generation Unit) cycle. | 
|  | if ((RegNo % 2) || UseAlign < 8) | 
|  | ++UseCycle; | 
|  | } else { | 
|  | // Assume the worst. | 
|  | UseCycle = 1; | 
|  | } | 
|  | return UseCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MCInstrDesc &DefMCID, | 
|  | unsigned DefIdx, unsigned DefAlign, | 
|  | const MCInstrDesc &UseMCID, | 
|  | unsigned UseIdx, unsigned UseAlign) const { | 
|  | unsigned DefClass = DefMCID.getSchedClass(); | 
|  | unsigned UseClass = UseMCID.getSchedClass(); | 
|  |  | 
|  | if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) | 
|  | return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
|  |  | 
|  | // This may be a def / use of a variable_ops instruction, the operand | 
|  | // latency might be determinable dynamically. Let the target try to | 
|  | // figure it out. | 
|  | int DefCycle = -1; | 
|  | bool LdmBypass = false; | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: | 
|  | DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | break; | 
|  |  | 
|  | case ARM::VLDMDIA: | 
|  | case ARM::VLDMDIA_UPD: | 
|  | case ARM::VLDMDDB_UPD: | 
|  | case ARM::VLDMSIA: | 
|  | case ARM::VLDMSIA_UPD: | 
|  | case ARM::VLDMSDB_UPD: | 
|  | DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); | 
|  | break; | 
|  |  | 
|  | case ARM::LDMIA_RET: | 
|  | case ARM::LDMIA: | 
|  | case ARM::LDMDA: | 
|  | case ARM::LDMDB: | 
|  | case ARM::LDMIB: | 
|  | case ARM::LDMIA_UPD: | 
|  | case ARM::LDMDA_UPD: | 
|  | case ARM::LDMDB_UPD: | 
|  | case ARM::LDMIB_UPD: | 
|  | case ARM::tLDMIA: | 
|  | case ARM::tLDMIA_UPD: | 
|  | case ARM::tPUSH: | 
|  | case ARM::t2LDMIA_RET: | 
|  | case ARM::t2LDMIA: | 
|  | case ARM::t2LDMDB: | 
|  | case ARM::t2LDMIA_UPD: | 
|  | case ARM::t2LDMDB_UPD: | 
|  | LdmBypass = 1; | 
|  | DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (DefCycle == -1) | 
|  | // We can't seem to determine the result latency of the def, assume it's 2. | 
|  | DefCycle = 2; | 
|  |  | 
|  | int UseCycle = -1; | 
|  | switch (UseMCID.getOpcode()) { | 
|  | default: | 
|  | UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); | 
|  | break; | 
|  |  | 
|  | case ARM::VSTMDIA: | 
|  | case ARM::VSTMDIA_UPD: | 
|  | case ARM::VSTMDDB_UPD: | 
|  | case ARM::VSTMSIA: | 
|  | case ARM::VSTMSIA_UPD: | 
|  | case ARM::VSTMSDB_UPD: | 
|  | UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); | 
|  | break; | 
|  |  | 
|  | case ARM::STMIA: | 
|  | case ARM::STMDA: | 
|  | case ARM::STMDB: | 
|  | case ARM::STMIB: | 
|  | case ARM::STMIA_UPD: | 
|  | case ARM::STMDA_UPD: | 
|  | case ARM::STMDB_UPD: | 
|  | case ARM::STMIB_UPD: | 
|  | case ARM::tSTMIA: | 
|  | case ARM::tSTMIA_UPD: | 
|  | case ARM::tPOP_RET: | 
|  | case ARM::tPOP: | 
|  | case ARM::t2STMIA: | 
|  | case ARM::t2STMDB: | 
|  | case ARM::t2STMIA_UPD: | 
|  | case ARM::t2STMDB_UPD: | 
|  | UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (UseCycle == -1) | 
|  | // Assume it's read in the first stage. | 
|  | UseCycle = 1; | 
|  |  | 
|  | UseCycle = DefCycle - UseCycle + 1; | 
|  | if (UseCycle > 0) { | 
|  | if (LdmBypass) { | 
|  | // It's a variable_ops instruction so we can't use DefIdx here. Just use | 
|  | // first def operand. | 
|  | if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, | 
|  | UseClass, UseIdx)) | 
|  | --UseCycle; | 
|  | } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, | 
|  | UseClass, UseIdx)) { | 
|  | --UseCycle; | 
|  | } | 
|  | } | 
|  |  | 
|  | return UseCycle; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *DefMI, unsigned DefIdx, | 
|  | const MachineInstr *UseMI, unsigned UseIdx) const { | 
|  | if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || | 
|  | DefMI->isRegSequence() || DefMI->isImplicitDef()) | 
|  | return 1; | 
|  |  | 
|  | const MCInstrDesc &DefMCID = DefMI->getDesc(); | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return DefMCID.mayLoad() ? 3 : 1; | 
|  |  | 
|  | const MCInstrDesc &UseMCID = UseMI->getDesc(); | 
|  | const MachineOperand &DefMO = DefMI->getOperand(DefIdx); | 
|  | if (DefMO.getReg() == ARM::CPSR) { | 
|  | if (DefMI->getOpcode() == ARM::FMSTAT) { | 
|  | // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) | 
|  | return Subtarget.isCortexA9() ? 1 : 20; | 
|  | } | 
|  |  | 
|  | // CPSR set and branch can be paired in the same cycle. | 
|  | if (UseMCID.isBranch()) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned DefAlign = DefMI->hasOneMemOperand() | 
|  | ? (*DefMI->memoperands_begin())->getAlignment() : 0; | 
|  | unsigned UseAlign = UseMI->hasOneMemOperand() | 
|  | ? (*UseMI->memoperands_begin())->getAlignment() : 0; | 
|  | int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, | 
|  | UseMCID, UseIdx, UseAlign); | 
|  |  | 
|  | if (Latency > 1 && | 
|  | (Subtarget.isCortexA8() || Subtarget.isCortexA9())) { | 
|  | // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] | 
|  | // variants are one cycle cheaper. | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: { | 
|  | unsigned ShOpVal = DefMI->getOperand(3).getImm(); | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (ShImm == 0 || | 
|  | (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | case ARM::t2LDRs: | 
|  | case ARM::t2LDRBs: | 
|  | case ARM::t2LDRHs: | 
|  | case ARM::t2LDRSHs: { | 
|  | // Thumb2 mode: lsl only. | 
|  | unsigned ShAmt = DefMI->getOperand(3).getImm(); | 
|  | if (ShAmt == 0 || ShAmt == 2) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DefAlign < 8 && Subtarget.isCortexA9()) | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VLD1q8: | 
|  | case ARM::VLD1q16: | 
|  | case ARM::VLD1q32: | 
|  | case ARM::VLD1q64: | 
|  | case ARM::VLD1q8_UPD: | 
|  | case ARM::VLD1q16_UPD: | 
|  | case ARM::VLD1q32_UPD: | 
|  | case ARM::VLD1q64_UPD: | 
|  | case ARM::VLD2d8: | 
|  | case ARM::VLD2d16: | 
|  | case ARM::VLD2d32: | 
|  | case ARM::VLD2q8: | 
|  | case ARM::VLD2q16: | 
|  | case ARM::VLD2q32: | 
|  | case ARM::VLD2d8_UPD: | 
|  | case ARM::VLD2d16_UPD: | 
|  | case ARM::VLD2d32_UPD: | 
|  | case ARM::VLD2q8_UPD: | 
|  | case ARM::VLD2q16_UPD: | 
|  | case ARM::VLD2q32_UPD: | 
|  | case ARM::VLD3d8: | 
|  | case ARM::VLD3d16: | 
|  | case ARM::VLD3d32: | 
|  | case ARM::VLD1d64T: | 
|  | case ARM::VLD3d8_UPD: | 
|  | case ARM::VLD3d16_UPD: | 
|  | case ARM::VLD3d32_UPD: | 
|  | case ARM::VLD1d64T_UPD: | 
|  | case ARM::VLD3q8_UPD: | 
|  | case ARM::VLD3q16_UPD: | 
|  | case ARM::VLD3q32_UPD: | 
|  | case ARM::VLD4d8: | 
|  | case ARM::VLD4d16: | 
|  | case ARM::VLD4d32: | 
|  | case ARM::VLD1d64Q: | 
|  | case ARM::VLD4d8_UPD: | 
|  | case ARM::VLD4d16_UPD: | 
|  | case ARM::VLD4d32_UPD: | 
|  | case ARM::VLD1d64Q_UPD: | 
|  | case ARM::VLD4q8_UPD: | 
|  | case ARM::VLD4q16_UPD: | 
|  | case ARM::VLD4q32_UPD: | 
|  | case ARM::VLD1DUPq8: | 
|  | case ARM::VLD1DUPq16: | 
|  | case ARM::VLD1DUPq32: | 
|  | case ARM::VLD1DUPq8_UPD: | 
|  | case ARM::VLD1DUPq16_UPD: | 
|  | case ARM::VLD1DUPq32_UPD: | 
|  | case ARM::VLD2DUPd8: | 
|  | case ARM::VLD2DUPd16: | 
|  | case ARM::VLD2DUPd32: | 
|  | case ARM::VLD2DUPd8_UPD: | 
|  | case ARM::VLD2DUPd16_UPD: | 
|  | case ARM::VLD2DUPd32_UPD: | 
|  | case ARM::VLD4DUPd8: | 
|  | case ARM::VLD4DUPd16: | 
|  | case ARM::VLD4DUPd32: | 
|  | case ARM::VLD4DUPd8_UPD: | 
|  | case ARM::VLD4DUPd16_UPD: | 
|  | case ARM::VLD4DUPd32_UPD: | 
|  | case ARM::VLD1LNd8: | 
|  | case ARM::VLD1LNd16: | 
|  | case ARM::VLD1LNd32: | 
|  | case ARM::VLD1LNd8_UPD: | 
|  | case ARM::VLD1LNd16_UPD: | 
|  | case ARM::VLD1LNd32_UPD: | 
|  | case ARM::VLD2LNd8: | 
|  | case ARM::VLD2LNd16: | 
|  | case ARM::VLD2LNd32: | 
|  | case ARM::VLD2LNq16: | 
|  | case ARM::VLD2LNq32: | 
|  | case ARM::VLD2LNd8_UPD: | 
|  | case ARM::VLD2LNd16_UPD: | 
|  | case ARM::VLD2LNd32_UPD: | 
|  | case ARM::VLD2LNq16_UPD: | 
|  | case ARM::VLD2LNq32_UPD: | 
|  | case ARM::VLD4LNd8: | 
|  | case ARM::VLD4LNd16: | 
|  | case ARM::VLD4LNd32: | 
|  | case ARM::VLD4LNq16: | 
|  | case ARM::VLD4LNq32: | 
|  | case ARM::VLD4LNd8_UPD: | 
|  | case ARM::VLD4LNd16_UPD: | 
|  | case ARM::VLD4LNd32_UPD: | 
|  | case ARM::VLD4LNq16_UPD: | 
|  | case ARM::VLD4LNq32_UPD: | 
|  | // If the address is not 64-bit aligned, the latencies of these | 
|  | // instructions increases by one. | 
|  | ++Latency; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | int | 
|  | ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *DefNode, unsigned DefIdx, | 
|  | SDNode *UseNode, unsigned UseIdx) const { | 
|  | if (!DefNode->isMachineOpcode()) | 
|  | return 1; | 
|  |  | 
|  | const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); | 
|  |  | 
|  | if (isZeroCost(DefMCID.Opcode)) | 
|  | return 0; | 
|  |  | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return DefMCID.mayLoad() ? 3 : 1; | 
|  |  | 
|  | if (!UseNode->isMachineOpcode()) { | 
|  | int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); | 
|  | if (Subtarget.isCortexA9()) | 
|  | return Latency <= 2 ? 1 : Latency - 1; | 
|  | else | 
|  | return Latency <= 3 ? 1 : Latency - 2; | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); | 
|  | const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); | 
|  | unsigned DefAlign = !DefMN->memoperands_empty() | 
|  | ? (*DefMN->memoperands_begin())->getAlignment() : 0; | 
|  | const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); | 
|  | unsigned UseAlign = !UseMN->memoperands_empty() | 
|  | ? (*UseMN->memoperands_begin())->getAlignment() : 0; | 
|  | int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, | 
|  | UseMCID, UseIdx, UseAlign); | 
|  |  | 
|  | if (Latency > 1 && | 
|  | (Subtarget.isCortexA8() || Subtarget.isCortexA9())) { | 
|  | // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] | 
|  | // variants are one cycle cheaper. | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::LDRrs: | 
|  | case ARM::LDRBrs: { | 
|  | unsigned ShOpVal = | 
|  | cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); | 
|  | unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); | 
|  | if (ShImm == 0 || | 
|  | (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | case ARM::t2LDRs: | 
|  | case ARM::t2LDRBs: | 
|  | case ARM::t2LDRHs: | 
|  | case ARM::t2LDRSHs: { | 
|  | // Thumb2 mode: lsl only. | 
|  | unsigned ShAmt = | 
|  | cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); | 
|  | if (ShAmt == 0 || ShAmt == 2) | 
|  | --Latency; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DefAlign < 8 && Subtarget.isCortexA9()) | 
|  | switch (DefMCID.getOpcode()) { | 
|  | default: break; | 
|  | case ARM::VLD1q8Pseudo: | 
|  | case ARM::VLD1q16Pseudo: | 
|  | case ARM::VLD1q32Pseudo: | 
|  | case ARM::VLD1q64Pseudo: | 
|  | case ARM::VLD1q8Pseudo_UPD: | 
|  | case ARM::VLD1q16Pseudo_UPD: | 
|  | case ARM::VLD1q32Pseudo_UPD: | 
|  | case ARM::VLD1q64Pseudo_UPD: | 
|  | case ARM::VLD2d8Pseudo: | 
|  | case ARM::VLD2d16Pseudo: | 
|  | case ARM::VLD2d32Pseudo: | 
|  | case ARM::VLD2q8Pseudo: | 
|  | case ARM::VLD2q16Pseudo: | 
|  | case ARM::VLD2q32Pseudo: | 
|  | case ARM::VLD2d8Pseudo_UPD: | 
|  | case ARM::VLD2d16Pseudo_UPD: | 
|  | case ARM::VLD2d32Pseudo_UPD: | 
|  | case ARM::VLD2q8Pseudo_UPD: | 
|  | case ARM::VLD2q16Pseudo_UPD: | 
|  | case ARM::VLD2q32Pseudo_UPD: | 
|  | case ARM::VLD3d8Pseudo: | 
|  | case ARM::VLD3d16Pseudo: | 
|  | case ARM::VLD3d32Pseudo: | 
|  | case ARM::VLD1d64TPseudo: | 
|  | case ARM::VLD3d8Pseudo_UPD: | 
|  | case ARM::VLD3d16Pseudo_UPD: | 
|  | case ARM::VLD3d32Pseudo_UPD: | 
|  | case ARM::VLD1d64TPseudo_UPD: | 
|  | case ARM::VLD3q8Pseudo_UPD: | 
|  | case ARM::VLD3q16Pseudo_UPD: | 
|  | case ARM::VLD3q32Pseudo_UPD: | 
|  | case ARM::VLD3q8oddPseudo: | 
|  | case ARM::VLD3q16oddPseudo: | 
|  | case ARM::VLD3q32oddPseudo: | 
|  | case ARM::VLD3q8oddPseudo_UPD: | 
|  | case ARM::VLD3q16oddPseudo_UPD: | 
|  | case ARM::VLD3q32oddPseudo_UPD: | 
|  | case ARM::VLD4d8Pseudo: | 
|  | case ARM::VLD4d16Pseudo: | 
|  | case ARM::VLD4d32Pseudo: | 
|  | case ARM::VLD1d64QPseudo: | 
|  | case ARM::VLD4d8Pseudo_UPD: | 
|  | case ARM::VLD4d16Pseudo_UPD: | 
|  | case ARM::VLD4d32Pseudo_UPD: | 
|  | case ARM::VLD1d64QPseudo_UPD: | 
|  | case ARM::VLD4q8Pseudo_UPD: | 
|  | case ARM::VLD4q16Pseudo_UPD: | 
|  | case ARM::VLD4q32Pseudo_UPD: | 
|  | case ARM::VLD4q8oddPseudo: | 
|  | case ARM::VLD4q16oddPseudo: | 
|  | case ARM::VLD4q32oddPseudo: | 
|  | case ARM::VLD4q8oddPseudo_UPD: | 
|  | case ARM::VLD4q16oddPseudo_UPD: | 
|  | case ARM::VLD4q32oddPseudo_UPD: | 
|  | case ARM::VLD1DUPq8Pseudo: | 
|  | case ARM::VLD1DUPq16Pseudo: | 
|  | case ARM::VLD1DUPq32Pseudo: | 
|  | case ARM::VLD1DUPq8Pseudo_UPD: | 
|  | case ARM::VLD1DUPq16Pseudo_UPD: | 
|  | case ARM::VLD1DUPq32Pseudo_UPD: | 
|  | case ARM::VLD2DUPd8Pseudo: | 
|  | case ARM::VLD2DUPd16Pseudo: | 
|  | case ARM::VLD2DUPd32Pseudo: | 
|  | case ARM::VLD2DUPd8Pseudo_UPD: | 
|  | case ARM::VLD2DUPd16Pseudo_UPD: | 
|  | case ARM::VLD2DUPd32Pseudo_UPD: | 
|  | case ARM::VLD4DUPd8Pseudo: | 
|  | case ARM::VLD4DUPd16Pseudo: | 
|  | case ARM::VLD4DUPd32Pseudo: | 
|  | case ARM::VLD4DUPd8Pseudo_UPD: | 
|  | case ARM::VLD4DUPd16Pseudo_UPD: | 
|  | case ARM::VLD4DUPd32Pseudo_UPD: | 
|  | case ARM::VLD1LNq8Pseudo: | 
|  | case ARM::VLD1LNq16Pseudo: | 
|  | case ARM::VLD1LNq32Pseudo: | 
|  | case ARM::VLD1LNq8Pseudo_UPD: | 
|  | case ARM::VLD1LNq16Pseudo_UPD: | 
|  | case ARM::VLD1LNq32Pseudo_UPD: | 
|  | case ARM::VLD2LNd8Pseudo: | 
|  | case ARM::VLD2LNd16Pseudo: | 
|  | case ARM::VLD2LNd32Pseudo: | 
|  | case ARM::VLD2LNq16Pseudo: | 
|  | case ARM::VLD2LNq32Pseudo: | 
|  | case ARM::VLD2LNd8Pseudo_UPD: | 
|  | case ARM::VLD2LNd16Pseudo_UPD: | 
|  | case ARM::VLD2LNd32Pseudo_UPD: | 
|  | case ARM::VLD2LNq16Pseudo_UPD: | 
|  | case ARM::VLD2LNq32Pseudo_UPD: | 
|  | case ARM::VLD4LNd8Pseudo: | 
|  | case ARM::VLD4LNd16Pseudo: | 
|  | case ARM::VLD4LNd32Pseudo: | 
|  | case ARM::VLD4LNq16Pseudo: | 
|  | case ARM::VLD4LNq32Pseudo: | 
|  | case ARM::VLD4LNd8Pseudo_UPD: | 
|  | case ARM::VLD4LNd16Pseudo_UPD: | 
|  | case ARM::VLD4LNd32Pseudo_UPD: | 
|  | case ARM::VLD4LNq16Pseudo_UPD: | 
|  | case ARM::VLD4LNq32Pseudo_UPD: | 
|  | // If the address is not 64-bit aligned, the latencies of these | 
|  | // instructions increases by one. | 
|  | ++Latency; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Latency; | 
|  | } | 
|  |  | 
|  | int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *MI, | 
|  | unsigned *PredCost) const { | 
|  | if (MI->isCopyLike() || MI->isInsertSubreg() || | 
|  | MI->isRegSequence() || MI->isImplicitDef()) | 
|  | return 1; | 
|  |  | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | unsigned Class = MCID.getSchedClass(); | 
|  | unsigned UOps = ItinData->Itineraries[Class].NumMicroOps; | 
|  | if (PredCost && MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) | 
|  | // When predicated, CPSR is an additional source operand for CPSR updating | 
|  | // instructions, this apparently increases their latencies. | 
|  | *PredCost = 1; | 
|  | if (UOps) | 
|  | return ItinData->getStageLatency(Class); | 
|  | return getNumMicroOps(ItinData, MI); | 
|  | } | 
|  |  | 
|  | int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
|  | SDNode *Node) const { | 
|  | if (!Node->isMachineOpcode()) | 
|  | return 1; | 
|  |  | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return 1; | 
|  |  | 
|  | unsigned Opcode = Node->getMachineOpcode(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return ItinData->getStageLatency(get(Opcode).getSchedClass()); | 
|  | case ARM::VLDMQIA: | 
|  | case ARM::VSTMQIA: | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | hasHighOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const MachineInstr *DefMI, unsigned DefIdx, | 
|  | const MachineInstr *UseMI, unsigned UseIdx) const { | 
|  | unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; | 
|  | unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask; | 
|  | if (Subtarget.isCortexA8() && | 
|  | (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) | 
|  | // CortexA8 VFP instructions are not pipelined. | 
|  | return true; | 
|  |  | 
|  | // Hoist VFP / NEON instructions with 4 or higher latency. | 
|  | int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); | 
|  | if (Latency <= 3) | 
|  | return false; | 
|  | return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || | 
|  | UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; | 
|  | } | 
|  |  | 
|  | bool ARMBaseInstrInfo:: | 
|  | hasLowDefLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr *DefMI, unsigned DefIdx) const { | 
|  | if (!ItinData || ItinData->isEmpty()) | 
|  | return false; | 
|  |  | 
|  | unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; | 
|  | if (DDomain == ARMII::DomainGeneral) { | 
|  | unsigned DefClass = DefMI->getDesc().getSchedClass(); | 
|  | int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); | 
|  | return (DefCycle != -1 && DefCycle <= 2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, | 
|  | unsigned &AddSubOpc, | 
|  | bool &NegAcc, bool &HasLane) const { | 
|  | DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); | 
|  | if (I == MLxEntryMap.end()) | 
|  | return false; | 
|  |  | 
|  | const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; | 
|  | MulOpc = Entry.MulOpc; | 
|  | AddSubOpc = Entry.AddSubOpc; | 
|  | NegAcc = Entry.NegAcc; | 
|  | HasLane = Entry.HasLane; | 
|  | return true; | 
|  | } |