| //===- ScalarEvolutionNormalization.cpp - See below -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements utilities for working with "normalized" expressions. |
| // See the comments at the top of ScalarEvolutionNormalization.h for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionNormalization.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| /// Hold the state used during post-inc expression transformation, including a |
| /// map of transformed expressions. |
| class PostIncTransform { |
| TransformKind Kind; |
| Optional<NormalizePredTy> Pred; |
| PostIncLoopSet &Loops; |
| ScalarEvolution &SE; |
| |
| DenseMap<const SCEV*, const SCEV*> Transformed; |
| |
| public: |
| PostIncTransform(TransformKind kind, Optional<NormalizePredTy> Pred, |
| PostIncLoopSet &loops, ScalarEvolution &se) |
| : Kind(kind), Pred(Pred), Loops(loops), SE(se) {} |
| |
| const SCEV *TransformSubExpr(const SCEV *S); |
| |
| protected: |
| const SCEV *TransformImpl(const SCEV *S); |
| }; |
| |
| } // namespace |
| |
| /// Implement post-inc transformation for all valid expression types. |
| const SCEV *PostIncTransform::TransformImpl(const SCEV *S) { |
| if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) { |
| const SCEV *O = X->getOperand(); |
| const SCEV *N = TransformSubExpr(O); |
| if (O != N) |
| switch (S->getSCEVType()) { |
| case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType()); |
| case scSignExtend: return SE.getSignExtendExpr(N, S->getType()); |
| case scTruncate: return SE.getTruncateExpr(N, S->getType()); |
| default: llvm_unreachable("Unexpected SCEVCastExpr kind!"); |
| } |
| return S; |
| } |
| |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| // An addrec. This is the interesting part. |
| SmallVector<const SCEV *, 8> Operands; |
| const Loop *L = AR->getLoop(); |
| |
| transform(AR->operands(), std::back_inserter(Operands), |
| [&](const SCEV *Op) { return TransformSubExpr(Op); }); |
| |
| // Conservatively use AnyWrap until/unless we need FlagNW. |
| const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); |
| switch (Kind) { |
| case Normalize: |
| // We want to normalize step expression, because otherwise we might not be |
| // able to denormalize to the original expression. |
| // |
| // Here is an example what will happen if we don't normalize step: |
| // ORIGINAL ISE: |
| // {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25> |
| // NORMALIZED ISE: |
| // {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+, |
| // (100 /u {0,+,1}<%bb16>)}<%bb25> |
| // DENORMALIZED BACK ISE: |
| // {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+, |
| // (100 /u {1,+,1}<%bb16>)}<%bb25> |
| // Note that the initial value changes after normalization + |
| // denormalization, which isn't correct. |
| if ((Pred && (*Pred)(AR)) || (!Pred && Loops.count(L))) { |
| const SCEV *TransformedStep = |
| TransformSubExpr(AR->getStepRecurrence(SE)); |
| Result = SE.getMinusSCEV(Result, TransformedStep); |
| } |
| #if 0 |
| // See the comment on the assert above. |
| assert(S == TransformSubExpr(Result, User, OperandValToReplace) && |
| "SCEV normalization is not invertible!"); |
| #endif |
| break; |
| case Denormalize: |
| // Here we want to normalize step expressions for the same reasons, as |
| // stated above. |
| if (Loops.count(L)) { |
| const SCEV *TransformedStep = |
| TransformSubExpr(AR->getStepRecurrence(SE)); |
| Result = SE.getAddExpr(Result, TransformedStep); |
| } |
| break; |
| } |
| return Result; |
| } |
| |
| if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) { |
| SmallVector<const SCEV *, 8> Operands; |
| bool Changed = false; |
| // Transform each operand. |
| for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end(); |
| I != E; ++I) { |
| const SCEV *O = *I; |
| const SCEV *N = TransformSubExpr(O); |
| Changed |= N != O; |
| Operands.push_back(N); |
| } |
| // If any operand actually changed, return a transformed result. |
| if (Changed) |
| switch (S->getSCEVType()) { |
| case scAddExpr: return SE.getAddExpr(Operands); |
| case scMulExpr: return SE.getMulExpr(Operands); |
| case scSMaxExpr: return SE.getSMaxExpr(Operands); |
| case scUMaxExpr: return SE.getUMaxExpr(Operands); |
| default: llvm_unreachable("Unexpected SCEVNAryExpr kind!"); |
| } |
| return S; |
| } |
| |
| if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) { |
| const SCEV *LO = X->getLHS(); |
| const SCEV *RO = X->getRHS(); |
| const SCEV *LN = TransformSubExpr(LO); |
| const SCEV *RN = TransformSubExpr(RO); |
| if (LO != LN || RO != RN) |
| return SE.getUDivExpr(LN, RN); |
| return S; |
| } |
| |
| llvm_unreachable("Unexpected SCEV kind!"); |
| } |
| |
| /// Manage recursive transformation across an expression DAG. Revisiting |
| /// expressions would lead to exponential recursion. |
| const SCEV *PostIncTransform::TransformSubExpr(const SCEV *S) { |
| if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S)) |
| return S; |
| |
| const SCEV *Result = Transformed.lookup(S); |
| if (Result) |
| return Result; |
| |
| Result = TransformImpl(S); |
| Transformed[S] = Result; |
| return Result; |
| } |
| |
| /// Top level driver for transforming an expression DAG into its requested |
| /// post-inc form (either "Normalized" or "Denormalized"). |
| const SCEV *llvm::TransformForPostIncUse(TransformKind Kind, const SCEV *S, |
| Optional<NormalizePredTy> Pred, |
| PostIncLoopSet &Loops, |
| ScalarEvolution &SE) { |
| PostIncTransform Transform(Kind, Pred, Loops, SE); |
| return Transform.TransformSubExpr(S); |
| } |