| //===- SymbolTable.cpp ----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SymbolTable.h" |
| #include "Config.h" |
| #include "Error.h" |
| #include "Symbols.h" |
| #include "Target.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::ELF; |
| |
| using namespace lld; |
| using namespace lld::elf2; |
| |
| SymbolTable::SymbolTable() {} |
| |
| bool SymbolTable::shouldUseRela() const { |
| ELFKind K = getFirstELF()->getELFKind(); |
| return K == ELF64LEKind || K == ELF64BEKind; |
| } |
| |
| void SymbolTable::addFile(std::unique_ptr<InputFile> File) { |
| if (auto *AF = dyn_cast<ArchiveFile>(File.get())) { |
| File.release(); |
| ArchiveFiles.emplace_back(AF); |
| if (Config->WholeArchive) { |
| for (MemoryBufferRef &MBRef : AF->getMembers()) |
| addFile(createELFFile<ObjectFile>(MBRef)); |
| return; |
| } |
| AF->parse(); |
| for (Lazy &Sym : AF->getLazySymbols()) |
| addLazy(&Sym); |
| return; |
| } |
| if (auto *S = dyn_cast<SharedFileBase>(File.get())) { |
| S->parseSoName(); |
| if (!IncludedSoNames.insert(S->getSoName()).second) |
| return; |
| } |
| File->parse(); |
| addELFFile(cast<ELFFileBase>(File.release())); |
| } |
| |
| static TargetInfo *createTarget(uint16_t EMachine) { |
| switch (EMachine) { |
| case EM_386: |
| return new X86TargetInfo(); |
| case EM_AARCH64: |
| return new AArch64TargetInfo(); |
| case EM_ARM: |
| return new ARMTargetInfo(); |
| case EM_MIPS: |
| return new MipsTargetInfo(); |
| case EM_PPC: |
| return new PPCTargetInfo(); |
| case EM_PPC64: |
| return new PPC64TargetInfo(); |
| case EM_X86_64: |
| return new X86_64TargetInfo(); |
| } |
| error("Unknown target machine"); |
| } |
| |
| void SymbolTable::addUndefinedSym(StringRef Name) { |
| switch (getFirstELF()->getELFKind()) { |
| case ELF32LEKind: |
| addUndefinedSym<ELF32LE>(Name); |
| break; |
| case ELF32BEKind: |
| addUndefinedSym<ELF32BE>(Name); |
| break; |
| case ELF64LEKind: |
| addUndefinedSym<ELF64LE>(Name); |
| break; |
| case ELF64BEKind: |
| addUndefinedSym<ELF64BE>(Name); |
| break; |
| default: |
| llvm_unreachable("Invalid kind"); |
| } |
| } |
| |
| template <class ELFT> void SymbolTable::addUndefinedSym(StringRef Name) { |
| resolve<ELFT>(new (Alloc) Undefined<ELFT>(Name, Undefined<ELFT>::Optional)); |
| } |
| |
| template <class ELFT> |
| void SymbolTable::addSyntheticSym(StringRef Name, OutputSection<ELFT> &Section, |
| typename ELFFile<ELFT>::uintX_t Value) { |
| typedef typename DefinedSynthetic<ELFT>::Elf_Sym Elf_Sym; |
| auto ESym = new (Alloc) Elf_Sym; |
| memset(ESym, 0, sizeof(Elf_Sym)); |
| ESym->st_value = Value; |
| auto Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, *ESym, Section); |
| resolve<ELFT>(Sym); |
| } |
| |
| template <class ELFT> void SymbolTable::addIgnoredSym(StringRef Name) { |
| auto Sym = new (Alloc) |
| DefinedAbsolute<ELFT>(Name, DefinedAbsolute<ELFT>::IgnoreUndef); |
| resolve<ELFT>(Sym); |
| } |
| |
| template <class ELFT> void SymbolTable::init(uint16_t EMachine) { |
| Target.reset(createTarget(EMachine)); |
| if (Config->Shared) |
| return; |
| EntrySym = new (Alloc) Undefined<ELFT>( |
| Config->Entry.empty() ? Target->getDefaultEntry() : Config->Entry, |
| Undefined<ELFT>::Required); |
| resolve<ELFT>(EntrySym); |
| |
| // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol is magical |
| // and is used to produce a R_386_GOTPC relocation. |
| // The R_386_GOTPC relocation value doesn't actually depend on the |
| // symbol value, so it could use an index of STN_UNDEF which, according to the |
| // spec, means the symbol value is 0. |
| // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in |
| // the object file. |
| // The situation is even stranger on x86_64 where the assembly doesn't |
| // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as |
| // an undefined symbol in the .o files. |
| // Given that the symbol is effectively unused, we just create a dummy |
| // hidden one to avoid the undefined symbol error. |
| addIgnoredSym<ELFT>("_GLOBAL_OFFSET_TABLE_"); |
| } |
| |
| template <class ELFT> void SymbolTable::addELFFile(ELFFileBase *File) { |
| const ELFFileBase *Old = getFirstELF(); |
| if (auto *O = dyn_cast<ObjectFileBase>(File)) |
| ObjectFiles.emplace_back(O); |
| else if (auto *S = dyn_cast<SharedFile<ELFT>>(File)) |
| SharedFiles.emplace_back(S); |
| |
| if (!Old) |
| init<ELFT>(File->getEMachine()); |
| |
| if (auto *O = dyn_cast<ObjectFileBase>(File)) { |
| for (SymbolBody *Body : O->getSymbols()) |
| resolve<ELFT>(Body); |
| } |
| |
| if (auto *S = dyn_cast<SharedFile<ELFT>>(File)) { |
| for (SharedSymbol<ELFT> &Body : S->getSharedSymbols()) |
| resolve<ELFT>(&Body); |
| } |
| } |
| |
| void SymbolTable::addELFFile(ELFFileBase *File) { |
| switch (File->getELFKind()) { |
| case ELF32LEKind: |
| addELFFile<ELF32LE>(File); |
| break; |
| case ELF32BEKind: |
| addELFFile<ELF32BE>(File); |
| break; |
| case ELF64LEKind: |
| addELFFile<ELF64LE>(File); |
| break; |
| case ELF64BEKind: |
| addELFFile<ELF64BE>(File); |
| break; |
| default: |
| llvm_unreachable("Invalid kind"); |
| } |
| } |
| |
| template <class ELFT> |
| void SymbolTable::reportConflict(const SymbolBody &Old, const SymbolBody &New) { |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; |
| |
| const Elf_Sym &OldE = cast<ELFSymbolBody<ELFT>>(Old).Sym; |
| const Elf_Sym &NewE = cast<ELFSymbolBody<ELFT>>(New).Sym; |
| ELFFileBase *OldFile = nullptr; |
| ELFFileBase *NewFile = nullptr; |
| |
| for (const std::unique_ptr<ObjectFileBase> &F : ObjectFiles) { |
| const auto &File = cast<ObjectFile<ELFT>>(*F); |
| Elf_Sym_Range Syms = File.getObj().symbols(File.getSymbolTable()); |
| if (&OldE > Syms.begin() && &OldE < Syms.end()) |
| OldFile = F.get(); |
| if (&NewE > Syms.begin() && &NewE < Syms.end()) |
| NewFile = F.get(); |
| } |
| |
| std::string Msg = (Twine("duplicate symbol: ") + Old.getName() + " in " + |
| OldFile->getName() + " and " + NewFile->getName()) |
| .str(); |
| if (Config->AllowMultipleDefinition) |
| warning(Msg); |
| else |
| error(Msg); |
| } |
| |
| // This function resolves conflicts if there's an existing symbol with |
| // the same name. Decisions are made based on symbol type. |
| template <class ELFT> void SymbolTable::resolve(SymbolBody *New) { |
| Symbol *Sym = insert(New); |
| if (Sym->Body == New) |
| return; |
| |
| SymbolBody *Existing = Sym->Body; |
| |
| if (Lazy *L = dyn_cast<Lazy>(Existing)) { |
| if (New->isUndefined()) { |
| if (New->isWeak()) { |
| // See the explanation in SymbolTable::addLazy |
| L->setUsedInRegularObj(); |
| L->setWeak(); |
| return; |
| } |
| addMemberFile(L); |
| return; |
| } |
| |
| // Found a definition for something also in an archive. Ignore the archive |
| // definition. |
| Sym->Body = New; |
| return; |
| } |
| |
| // compare() returns -1, 0, or 1 if the lhs symbol is less preferable, |
| // equivalent (conflicting), or more preferable, respectively. |
| int comp = Existing->compare<ELFT>(New); |
| if (comp < 0) |
| Sym->Body = New; |
| else if (comp == 0) |
| reportConflict<ELFT>(*Existing, *New); |
| } |
| |
| Symbol *SymbolTable::insert(SymbolBody *New) { |
| // Find an existing Symbol or create and insert a new one. |
| StringRef Name = New->getName(); |
| Symbol *&Sym = Symtab[Name]; |
| if (!Sym) { |
| Sym = new (Alloc) Symbol(New); |
| New->setBackref(Sym); |
| return Sym; |
| } |
| New->setBackref(Sym); |
| return Sym; |
| } |
| |
| void SymbolTable::addLazy(Lazy *New) { |
| Symbol *Sym = insert(New); |
| if (Sym->Body == New) |
| return; |
| SymbolBody *Existing = Sym->Body; |
| if (Existing->isDefined() || Existing->isLazy()) |
| return; |
| Sym->Body = New; |
| assert(Existing->isUndefined() && "Unexpected symbol kind."); |
| |
| // Weak undefined symbols should not fetch members from archives. |
| // If we were to keep old symbol we would not know that an archive member was |
| // available if a strong undefined symbol shows up afterwards in the link. |
| // If a strong undefined symbol never shows up, this lazy symbol will |
| // get to the end of the link and must be treated as the weak undefined one. |
| // We set UsedInRegularObj in a similar way to what is done with shared |
| // symbols and mark it as weak to reduce how many special cases are needed. |
| if (Existing->isWeak()) { |
| New->setUsedInRegularObj(); |
| New->setWeak(); |
| return; |
| } |
| addMemberFile(New); |
| } |
| |
| void SymbolTable::addMemberFile(Lazy *Body) { |
| std::unique_ptr<InputFile> File = Body->getMember(); |
| |
| // getMember returns nullptr if the member was already read from the library. |
| if (!File) |
| return; |
| |
| addFile(std::move(File)); |
| } |
| |
| namespace lld { |
| namespace elf2 { |
| template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF32LE> &, |
| ELFFile<ELF32LE>::uintX_t); |
| template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF32BE> &, |
| ELFFile<ELF32BE>::uintX_t); |
| template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF64LE> &, |
| ELFFile<ELF64LE>::uintX_t); |
| template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF64BE> &, |
| ELFFile<ELF64BE>::uintX_t); |
| |
| template void SymbolTable::addIgnoredSym<ELF32LE>(StringRef); |
| template void SymbolTable::addIgnoredSym<ELF32BE>(StringRef); |
| template void SymbolTable::addIgnoredSym<ELF64LE>(StringRef); |
| template void SymbolTable::addIgnoredSym<ELF64BE>(StringRef); |
| } |
| } |