|  | //===--- AArch64CallLowering.cpp - Call lowering --------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file implements the lowering of LLVM calls to machine code calls for | 
|  | /// GlobalISel. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64CallLowering.h" | 
|  | #include "AArch64ISelLowering.h" | 
|  | #include "AArch64MachineFunctionInfo.h" | 
|  | #include "AArch64Subtarget.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" | 
|  | #include "llvm/CodeGen/GlobalISel/Utils.h" | 
|  | #include "llvm/CodeGen/LowLevelType.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  |  | 
|  | #define DEBUG_TYPE "aarch64-call-lowering" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI) | 
|  | : CallLowering(&TLI) {} | 
|  |  | 
|  | namespace { | 
|  | struct IncomingArgHandler : public CallLowering::ValueHandler { | 
|  | IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, | 
|  | CCAssignFn *AssignFn) | 
|  | : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {} | 
|  |  | 
|  | Register getStackAddress(uint64_t Size, int64_t Offset, | 
|  | MachinePointerInfo &MPO) override { | 
|  | auto &MFI = MIRBuilder.getMF().getFrameInfo(); | 
|  | int FI = MFI.CreateFixedObject(Size, Offset, true); | 
|  | MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); | 
|  | Register AddrReg = MRI.createGenericVirtualRegister(LLT::pointer(0, 64)); | 
|  | MIRBuilder.buildFrameIndex(AddrReg, FI); | 
|  | StackUsed = std::max(StackUsed, Size + Offset); | 
|  | return AddrReg; | 
|  | } | 
|  |  | 
|  | void assignValueToReg(Register ValVReg, Register PhysReg, | 
|  | CCValAssign &VA) override { | 
|  | markPhysRegUsed(PhysReg); | 
|  | switch (VA.getLocInfo()) { | 
|  | default: | 
|  | MIRBuilder.buildCopy(ValVReg, PhysReg); | 
|  | break; | 
|  | case CCValAssign::LocInfo::SExt: | 
|  | case CCValAssign::LocInfo::ZExt: | 
|  | case CCValAssign::LocInfo::AExt: { | 
|  | auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); | 
|  | MIRBuilder.buildTrunc(ValVReg, Copy); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, | 
|  | MachinePointerInfo &MPO, CCValAssign &VA) override { | 
|  | // FIXME: Get alignment | 
|  | auto MMO = MIRBuilder.getMF().getMachineMemOperand( | 
|  | MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, | 
|  | 1); | 
|  | MIRBuilder.buildLoad(ValVReg, Addr, *MMO); | 
|  | } | 
|  |  | 
|  | /// How the physical register gets marked varies between formal | 
|  | /// parameters (it's a basic-block live-in), and a call instruction | 
|  | /// (it's an implicit-def of the BL). | 
|  | virtual void markPhysRegUsed(unsigned PhysReg) = 0; | 
|  |  | 
|  | bool isIncomingArgumentHandler() const override { return true; } | 
|  |  | 
|  | uint64_t StackUsed; | 
|  | }; | 
|  |  | 
|  | struct FormalArgHandler : public IncomingArgHandler { | 
|  | FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, | 
|  | CCAssignFn *AssignFn) | 
|  | : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {} | 
|  |  | 
|  | void markPhysRegUsed(unsigned PhysReg) override { | 
|  | MIRBuilder.getMRI()->addLiveIn(PhysReg); | 
|  | MIRBuilder.getMBB().addLiveIn(PhysReg); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CallReturnHandler : public IncomingArgHandler { | 
|  | CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, | 
|  | MachineInstrBuilder MIB, CCAssignFn *AssignFn) | 
|  | : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} | 
|  |  | 
|  | void markPhysRegUsed(unsigned PhysReg) override { | 
|  | MIB.addDef(PhysReg, RegState::Implicit); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  | }; | 
|  |  | 
|  | struct OutgoingArgHandler : public CallLowering::ValueHandler { | 
|  | OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, | 
|  | MachineInstrBuilder MIB, CCAssignFn *AssignFn, | 
|  | CCAssignFn *AssignFnVarArg, bool IsTailCall = false) | 
|  | : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB), | 
|  | AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), StackSize(0) {} | 
|  |  | 
|  | Register getStackAddress(uint64_t Size, int64_t Offset, | 
|  | MachinePointerInfo &MPO) override { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | LLT p0 = LLT::pointer(0, 64); | 
|  | LLT s64 = LLT::scalar(64); | 
|  |  | 
|  | if (IsTailCall) { | 
|  | // TODO: For -tailcallopt tail calls, Offset will need FPDiff like in | 
|  | // ISelLowering. | 
|  | int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); | 
|  | Register FIReg = MRI.createGenericVirtualRegister(p0); | 
|  | MIRBuilder.buildFrameIndex(FIReg, FI); | 
|  | MPO = MachinePointerInfo::getFixedStack(MF, FI); | 
|  | return FIReg; | 
|  | } | 
|  |  | 
|  | Register SPReg = MRI.createGenericVirtualRegister(p0); | 
|  | MIRBuilder.buildCopy(SPReg, Register(AArch64::SP)); | 
|  |  | 
|  | Register OffsetReg = MRI.createGenericVirtualRegister(s64); | 
|  | MIRBuilder.buildConstant(OffsetReg, Offset); | 
|  |  | 
|  | Register AddrReg = MRI.createGenericVirtualRegister(p0); | 
|  | MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg); | 
|  |  | 
|  | MPO = MachinePointerInfo::getStack(MF, Offset); | 
|  | return AddrReg; | 
|  | } | 
|  |  | 
|  | void assignValueToReg(Register ValVReg, Register PhysReg, | 
|  | CCValAssign &VA) override { | 
|  | MIB.addUse(PhysReg, RegState::Implicit); | 
|  | Register ExtReg = extendRegister(ValVReg, VA); | 
|  | MIRBuilder.buildCopy(PhysReg, ExtReg); | 
|  | } | 
|  |  | 
|  | void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, | 
|  | MachinePointerInfo &MPO, CCValAssign &VA) override { | 
|  | if (VA.getLocInfo() == CCValAssign::LocInfo::AExt) { | 
|  | Size = VA.getLocVT().getSizeInBits() / 8; | 
|  | ValVReg = MIRBuilder.buildAnyExt(LLT::scalar(Size * 8), ValVReg) | 
|  | ->getOperand(0) | 
|  | .getReg(); | 
|  | } | 
|  | auto MMO = MIRBuilder.getMF().getMachineMemOperand( | 
|  | MPO, MachineMemOperand::MOStore, Size, 1); | 
|  | MIRBuilder.buildStore(ValVReg, Addr, *MMO); | 
|  | } | 
|  |  | 
|  | bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, | 
|  | CCValAssign::LocInfo LocInfo, | 
|  | const CallLowering::ArgInfo &Info, | 
|  | ISD::ArgFlagsTy Flags, | 
|  | CCState &State) override { | 
|  | bool Res; | 
|  | if (Info.IsFixed) | 
|  | Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); | 
|  | else | 
|  | Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State); | 
|  |  | 
|  | StackSize = State.getNextStackOffset(); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MIB; | 
|  | CCAssignFn *AssignFnVarArg; | 
|  | bool IsTailCall; | 
|  | uint64_t StackSize; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | void AArch64CallLowering::splitToValueTypes( | 
|  | const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs, | 
|  | const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const { | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  | LLVMContext &Ctx = OrigArg.Ty->getContext(); | 
|  |  | 
|  | if (OrigArg.Ty->isVoidTy()) | 
|  | return; | 
|  |  | 
|  | SmallVector<EVT, 4> SplitVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); | 
|  |  | 
|  | if (SplitVTs.size() == 1) { | 
|  | // No splitting to do, but we want to replace the original type (e.g. [1 x | 
|  | // double] -> double). | 
|  | SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), | 
|  | OrigArg.Flags[0], OrigArg.IsFixed); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create one ArgInfo for each virtual register in the original ArgInfo. | 
|  | assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); | 
|  |  | 
|  | bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( | 
|  | OrigArg.Ty, CallConv, false); | 
|  | for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { | 
|  | Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); | 
|  | SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], | 
|  | OrigArg.IsFixed); | 
|  | if (NeedsRegBlock) | 
|  | SplitArgs.back().Flags[0].setInConsecutiveRegs(); | 
|  | } | 
|  |  | 
|  | SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, | 
|  | const Value *Val, | 
|  | ArrayRef<Register> VRegs, | 
|  | Register SwiftErrorVReg) const { | 
|  | auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR); | 
|  | assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) && | 
|  | "Return value without a vreg"); | 
|  |  | 
|  | bool Success = true; | 
|  | if (!VRegs.empty()) { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const Function &F = MF.getFunction(); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  | CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv()); | 
|  | auto &DL = F.getParent()->getDataLayout(); | 
|  | LLVMContext &Ctx = Val->getType()->getContext(); | 
|  |  | 
|  | SmallVector<EVT, 4> SplitEVTs; | 
|  | ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); | 
|  | assert(VRegs.size() == SplitEVTs.size() && | 
|  | "For each split Type there should be exactly one VReg."); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> SplitArgs; | 
|  | CallingConv::ID CC = F.getCallingConv(); | 
|  |  | 
|  | for (unsigned i = 0; i < SplitEVTs.size(); ++i) { | 
|  | if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) { | 
|  | LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Register CurVReg = VRegs[i]; | 
|  | ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)}; | 
|  | setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); | 
|  |  | 
|  | // i1 is a special case because SDAG i1 true is naturally zero extended | 
|  | // when widened using ANYEXT. We need to do it explicitly here. | 
|  | if (MRI.getType(CurVReg).getSizeInBits() == 1) { | 
|  | CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0); | 
|  | } else { | 
|  | // Some types will need extending as specified by the CC. | 
|  | MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]); | 
|  | if (EVT(NewVT) != SplitEVTs[i]) { | 
|  | unsigned ExtendOp = TargetOpcode::G_ANYEXT; | 
|  | if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex, | 
|  | Attribute::SExt)) | 
|  | ExtendOp = TargetOpcode::G_SEXT; | 
|  | else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex, | 
|  | Attribute::ZExt)) | 
|  | ExtendOp = TargetOpcode::G_ZEXT; | 
|  |  | 
|  | LLT NewLLT(NewVT); | 
|  | LLT OldLLT(MVT::getVT(CurArgInfo.Ty)); | 
|  | CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx); | 
|  | // Instead of an extend, we might have a vector type which needs | 
|  | // padding with more elements, e.g. <2 x half> -> <4 x half>. | 
|  | if (NewVT.isVector()) { | 
|  | if (OldLLT.isVector()) { | 
|  | if (NewLLT.getNumElements() > OldLLT.getNumElements()) { | 
|  | // We don't handle VA types which are not exactly twice the | 
|  | // size, but can easily be done in future. | 
|  | if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) { | 
|  | LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts"); | 
|  | return false; | 
|  | } | 
|  | auto Undef = MIRBuilder.buildUndef({OldLLT}); | 
|  | CurVReg = | 
|  | MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef.getReg(0)}) | 
|  | .getReg(0); | 
|  | } else { | 
|  | // Just do a vector extend. | 
|  | CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}) | 
|  | .getReg(0); | 
|  | } | 
|  | } else if (NewLLT.getNumElements() == 2) { | 
|  | // We need to pad a <1 x S> type to <2 x S>. Since we don't have | 
|  | // <1 x S> vector types in GISel we use a build_vector instead | 
|  | // of a vector merge/concat. | 
|  | auto Undef = MIRBuilder.buildUndef({OldLLT}); | 
|  | CurVReg = | 
|  | MIRBuilder | 
|  | .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)}) | 
|  | .getReg(0); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Could not handle ret ty"); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // A scalar extend. | 
|  | CurVReg = | 
|  | MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (CurVReg != CurArgInfo.Regs[0]) { | 
|  | CurArgInfo.Regs[0] = CurVReg; | 
|  | // Reset the arg flags after modifying CurVReg. | 
|  | setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); | 
|  | } | 
|  | splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC); | 
|  | } | 
|  |  | 
|  | OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn); | 
|  | Success = handleAssignments(MIRBuilder, SplitArgs, Handler); | 
|  | } | 
|  |  | 
|  | if (SwiftErrorVReg) { | 
|  | MIB.addUse(AArch64::X21, RegState::Implicit); | 
|  | MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg); | 
|  | } | 
|  |  | 
|  | MIRBuilder.insertInstr(MIB); | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::lowerFormalArguments( | 
|  | MachineIRBuilder &MIRBuilder, const Function &F, | 
|  | ArrayRef<ArrayRef<Register>> VRegs) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineBasicBlock &MBB = MIRBuilder.getMBB(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | auto &DL = F.getParent()->getDataLayout(); | 
|  |  | 
|  | SmallVector<ArgInfo, 8> SplitArgs; | 
|  | unsigned i = 0; | 
|  | for (auto &Arg : F.args()) { | 
|  | if (DL.getTypeStoreSize(Arg.getType()) == 0) | 
|  | continue; | 
|  |  | 
|  | ArgInfo OrigArg{VRegs[i], Arg.getType()}; | 
|  | setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F); | 
|  |  | 
|  | splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv()); | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | if (!MBB.empty()) | 
|  | MIRBuilder.setInstr(*MBB.begin()); | 
|  |  | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  | CCAssignFn *AssignFn = | 
|  | TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false); | 
|  |  | 
|  | FormalArgHandler Handler(MIRBuilder, MRI, AssignFn); | 
|  | if (!handleAssignments(MIRBuilder, SplitArgs, Handler)) | 
|  | return false; | 
|  |  | 
|  | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | uint64_t StackOffset = Handler.StackUsed; | 
|  | if (F.isVarArg()) { | 
|  | auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); | 
|  | if (!Subtarget.isTargetDarwin()) { | 
|  | // FIXME: we need to reimplement saveVarArgsRegisters from | 
|  | // AArch64ISelLowering. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We currently pass all varargs at 8-byte alignment, or 4 in ILP32. | 
|  | StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8); | 
|  |  | 
|  | auto &MFI = MIRBuilder.getMF().getFrameInfo(); | 
|  | FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); | 
|  | } | 
|  |  | 
|  | // TODO: Port checks for stack to restore for -tailcallopt from ISelLowering. | 
|  | // We need to keep track of the size of function stacks for tail call | 
|  | // optimization. When we tail call, we need to check if the callee's arguments | 
|  | // will fit on the caller's stack. So, whenever we lower formal arguments, | 
|  | // we should keep track of this information, since we might lower a tail call | 
|  | // in this function later. | 
|  | FuncInfo->setBytesInStackArgArea(StackOffset); | 
|  |  | 
|  | auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); | 
|  | if (Subtarget.hasCustomCallingConv()) | 
|  | Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); | 
|  |  | 
|  | // Move back to the end of the basic block. | 
|  | MIRBuilder.setMBB(MBB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the calling convention is one that we can guarantee TCO for. | 
|  | static bool canGuaranteeTCO(CallingConv::ID CC) { | 
|  | return CC == CallingConv::Fast; | 
|  | } | 
|  |  | 
|  | /// Return true if we might ever do TCO for calls with this calling convention. | 
|  | static bool mayTailCallThisCC(CallingConv::ID CC) { | 
|  | switch (CC) { | 
|  | case CallingConv::C: | 
|  | case CallingConv::PreserveMost: | 
|  | case CallingConv::Swift: | 
|  | return true; | 
|  | default: | 
|  | return canGuaranteeTCO(CC); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay( | 
|  | CallLoweringInfo &Info, MachineFunction &MF, | 
|  | SmallVectorImpl<ArgInfo> &InArgs) const { | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  |  | 
|  | // If the calling conventions match, then everything must be the same. | 
|  | if (CalleeCC == CallerCC) | 
|  | return true; | 
|  |  | 
|  | // Check if the caller and callee will handle arguments in the same way. | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  | CCAssignFn *CalleeAssignFn = TLI.CCAssignFnForCall(CalleeCC, Info.IsVarArg); | 
|  | CCAssignFn *CallerAssignFn = | 
|  | TLI.CCAssignFnForCall(CallerCC, CallerF.isVarArg()); | 
|  |  | 
|  | if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFn, *CallerAssignFn)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the caller and callee preserve all of the same registers. | 
|  | auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); | 
|  | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | 
|  | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | 
|  | if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) { | 
|  | TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); | 
|  | TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); | 
|  | } | 
|  |  | 
|  | return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved); | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable( | 
|  | CallLoweringInfo &Info, MachineFunction &MF, | 
|  | SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | // If there are no outgoing arguments, then we are done. | 
|  | if (OutArgs.empty()) | 
|  | return true; | 
|  |  | 
|  | const Function &CallerF = MF.getFunction(); | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | CallingConv::ID CallerCC = CallerF.getCallingConv(); | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  |  | 
|  | // We have outgoing arguments. Make sure that we can tail call with them. | 
|  | SmallVector<CCValAssign, 16> OutLocs; | 
|  | CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); | 
|  |  | 
|  | if (!analyzeArgInfo(OutInfo, OutArgs, | 
|  | *TLI.CCAssignFnForCall(CalleeCC, Info.IsVarArg))) { | 
|  | LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure that they can fit on the caller's stack. | 
|  | const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | 
|  | if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { | 
|  | LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Verify that the parameters in callee-saved registers match. | 
|  | // TODO: Port this over to CallLowering as general code once swiftself is | 
|  | // supported. | 
|  | auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); | 
|  | const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  |  | 
|  | for (unsigned i = 0; i < OutLocs.size(); ++i) { | 
|  | auto &ArgLoc = OutLocs[i]; | 
|  | // If it's not a register, it's fine. | 
|  | if (!ArgLoc.isRegLoc()) { | 
|  | if (Info.IsVarArg) { | 
|  | // Be conservative and disallow variadic memory operands to match SDAG's | 
|  | // behaviour. | 
|  | // FIXME: If the caller's calling convention is C, then we can | 
|  | // potentially use its argument area. However, for cases like fastcc, | 
|  | // we can't do anything. | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Cannot tail call vararg function with stack arguments\n"); | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Register Reg = ArgLoc.getLocReg(); | 
|  |  | 
|  | // Only look at callee-saved registers. | 
|  | if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Call has an argument passed in a callee-saved register.\n"); | 
|  |  | 
|  | // Check if it was copied from. | 
|  | ArgInfo &OutInfo = OutArgs[i]; | 
|  |  | 
|  | if (OutInfo.Regs.size() > 1) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "... Cannot handle arguments in multiple registers.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if we copy the register, walking through copies from virtual | 
|  | // registers. Note that getDefIgnoringCopies does not ignore copies from | 
|  | // physical registers. | 
|  | MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); | 
|  | if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Parameter was not copied into a VReg, cannot tail call.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Got a copy. Verify that it's the same as the register we want. | 
|  | Register CopyRHS = RegDef->getOperand(1).getReg(); | 
|  | if (CopyRHS != Reg) { | 
|  | LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " | 
|  | "VReg, cannot tail call.\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::isEligibleForTailCallOptimization( | 
|  | MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, | 
|  | SmallVectorImpl<ArgInfo> &InArgs, | 
|  | SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | CallingConv::ID CalleeCC = Info.CallConv; | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const Function &CallerF = MF.getFunction(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n"); | 
|  |  | 
|  | if (Info.SwiftErrorVReg) { | 
|  | // TODO: We should handle this. | 
|  | // Note that this is also handled by the check for no outgoing arguments. | 
|  | // Proactively disabling this though, because the swifterror handling in | 
|  | // lowerCall inserts a COPY *after* the location of the call. | 
|  | LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!mayTailCallThisCC(CalleeCC)) { | 
|  | LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Byval parameters hand the function a pointer directly into the stack area | 
|  | // we want to reuse during a tail call. Working around this *is* possible (see | 
|  | // X86). | 
|  | // | 
|  | // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try | 
|  | // it? | 
|  | // | 
|  | // On Windows, "inreg" attributes signify non-aggregate indirect returns. | 
|  | // In this case, it is necessary to save/restore X0 in the callee. Tail | 
|  | // call opt interferes with this. So we disable tail call opt when the | 
|  | // caller has an argument with "inreg" attribute. | 
|  | // | 
|  | // FIXME: Check whether the callee also has an "inreg" argument. | 
|  | // | 
|  | // When the caller has a swifterror argument, we don't want to tail call | 
|  | // because would have to move into the swifterror register before the | 
|  | // tail call. | 
|  | if (any_of(CallerF.args(), [](const Argument &A) { | 
|  | return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr(); | 
|  | })) { | 
|  | LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, " | 
|  | "inreg, or swifterror arguments\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Externally-defined functions with weak linkage should not be | 
|  | // tail-called on AArch64 when the OS does not support dynamic | 
|  | // pre-emption of symbols, as the AAELF spec requires normal calls | 
|  | // to undefined weak functions to be replaced with a NOP or jump to the | 
|  | // next instruction. The behaviour of branch instructions in this | 
|  | // situation (as used for tail calls) is implementation-defined, so we | 
|  | // cannot rely on the linker replacing the tail call with a return. | 
|  | if (Info.Callee.isGlobal()) { | 
|  | const GlobalValue *GV = Info.Callee.getGlobal(); | 
|  | const Triple &TT = MF.getTarget().getTargetTriple(); | 
|  | if (GV->hasExternalWeakLinkage() && | 
|  | (!TT.isOSWindows() || TT.isOSBinFormatELF() || | 
|  | TT.isOSBinFormatMachO())) { | 
|  | LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function " | 
|  | "with weak linkage for this OS.\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have -tailcallopt and matching CCs, at this point, we could return | 
|  | // true. However, we don't have full tail call support yet. So, continue | 
|  | // checking. We want to emit a sibling call. | 
|  |  | 
|  | // I want anyone implementing a new calling convention to think long and hard | 
|  | // about this assert. | 
|  | assert((!Info.IsVarArg || CalleeCC == CallingConv::C) && | 
|  | "Unexpected variadic calling convention"); | 
|  |  | 
|  | // Before we can musttail varargs, we need to forward parameters like in | 
|  | // r345641. Make sure that we don't enable musttail with varargs without | 
|  | // addressing that! | 
|  | assert(!(Info.IsVarArg && Info.IsMustTailCall) && | 
|  | "musttail support for varargs not implemented yet!"); | 
|  |  | 
|  | // Verify that the incoming and outgoing arguments from the callee are | 
|  | // safe to tail call. | 
|  | if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "... Caller and callee have incompatible calling conventions.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "... Call is eligible for tail call optimization.\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned getCallOpcode(const Function &CallerF, bool IsIndirect, | 
|  | bool IsTailCall) { | 
|  | if (!IsTailCall) | 
|  | return IsIndirect ? AArch64::BLR : AArch64::BL; | 
|  |  | 
|  | if (!IsIndirect) | 
|  | return AArch64::TCRETURNdi; | 
|  |  | 
|  | // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use | 
|  | // x16 or x17. | 
|  | if (CallerF.hasFnAttribute("branch-target-enforcement")) | 
|  | return AArch64::TCRETURNriBTI; | 
|  |  | 
|  | return AArch64::TCRETURNri; | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::lowerTailCall( | 
|  | MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, | 
|  | SmallVectorImpl<ArgInfo> &OutArgs) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const Function &F = MF.getFunction(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  |  | 
|  | // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64 | 
|  | // register class. Until we can do that, we should fall back here. | 
|  | if (F.hasFnAttribute("branch-target-enforcement")) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Find out which ABI gets to decide where things go. | 
|  | CCAssignFn *AssignFnFixed = | 
|  | TLI.CCAssignFnForCall(Info.CallConv, /*IsVarArg=*/false); | 
|  | CCAssignFn *AssignFnVarArg = | 
|  | TLI.CCAssignFnForCall(Info.CallConv, /*IsVarArg=*/true); | 
|  |  | 
|  | unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), true); | 
|  | auto MIB = MIRBuilder.buildInstrNoInsert(Opc); | 
|  | MIB.add(Info.Callee); | 
|  |  | 
|  | // Add the byte offset for the tail call. We only have sibling calls, so this | 
|  | // is always 0. | 
|  | // TODO: Handle tail calls where we will have a different value here. | 
|  | MIB.addImm(0); | 
|  |  | 
|  | // Tell the call which registers are clobbered. | 
|  | auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv()); | 
|  | if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) | 
|  | TRI->UpdateCustomCallPreservedMask(MF, &Mask); | 
|  | MIB.addRegMask(Mask); | 
|  |  | 
|  | if (TRI->isAnyArgRegReserved(MF)) | 
|  | TRI->emitReservedArgRegCallError(MF); | 
|  |  | 
|  | // Do the actual argument marshalling. | 
|  | SmallVector<unsigned, 8> PhysRegs; | 
|  | OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, | 
|  | AssignFnVarArg, true); | 
|  | if (!handleAssignments(MIRBuilder, OutArgs, Handler)) | 
|  | return false; | 
|  |  | 
|  | // Now we can add the actual call instruction to the correct basic block. | 
|  | MIRBuilder.insertInstr(MIB); | 
|  |  | 
|  | // If Callee is a reg, since it is used by a target specific instruction, | 
|  | // it must have a register class matching the constraint of that instruction. | 
|  | if (Info.Callee.isReg()) | 
|  | MIB->getOperand(0).setReg(constrainOperandRegClass( | 
|  | MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), | 
|  | *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee, | 
|  | 0)); | 
|  |  | 
|  | MF.getFrameInfo().setHasTailCall(); | 
|  | Info.LoweredTailCall = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, | 
|  | CallLoweringInfo &Info) const { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const Function &F = MF.getFunction(); | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | auto &DL = F.getParent()->getDataLayout(); | 
|  | const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); | 
|  |  | 
|  | if (Info.IsMustTailCall) { | 
|  | // TODO: Until we lower all tail calls, we should fall back on this. | 
|  | LLVM_DEBUG(dbgs() << "Cannot lower musttail calls yet.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Info.IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { | 
|  | // TODO: Until we lower all tail calls, we should fall back on this. | 
|  | LLVM_DEBUG(dbgs() << "Cannot handle -tailcallopt yet.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SmallVector<ArgInfo, 8> OutArgs; | 
|  | for (auto &OrigArg : Info.OrigArgs) { | 
|  | splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv); | 
|  | // AAPCS requires that we zero-extend i1 to 8 bits by the caller. | 
|  | if (OrigArg.Ty->isIntegerTy(1)) | 
|  | OutArgs.back().Flags[0].setZExt(); | 
|  | } | 
|  |  | 
|  | SmallVector<ArgInfo, 8> InArgs; | 
|  | if (!Info.OrigRet.Ty->isVoidTy()) | 
|  | splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv()); | 
|  |  | 
|  | // If we can lower as a tail call, do that instead. | 
|  | if (Info.IsTailCall && | 
|  | isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs)) | 
|  | return lowerTailCall(MIRBuilder, Info, OutArgs); | 
|  |  | 
|  | // Find out which ABI gets to decide where things go. | 
|  | CCAssignFn *AssignFnFixed = | 
|  | TLI.CCAssignFnForCall(Info.CallConv, /*IsVarArg=*/false); | 
|  | CCAssignFn *AssignFnVarArg = | 
|  | TLI.CCAssignFnForCall(Info.CallConv, /*IsVarArg=*/true); | 
|  |  | 
|  | MachineInstrBuilder CallSeqStart; | 
|  | CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); | 
|  |  | 
|  | // Create a temporarily-floating call instruction so we can add the implicit | 
|  | // uses of arg registers. | 
|  | unsigned Opc = getCallOpcode(F, Info.Callee.isReg(), false); | 
|  |  | 
|  | auto MIB = MIRBuilder.buildInstrNoInsert(Opc); | 
|  | MIB.add(Info.Callee); | 
|  |  | 
|  | // Tell the call which registers are clobbered. | 
|  | auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); | 
|  | const uint32_t *Mask = TRI->getCallPreservedMask(MF, F.getCallingConv()); | 
|  | if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) | 
|  | TRI->UpdateCustomCallPreservedMask(MF, &Mask); | 
|  | MIB.addRegMask(Mask); | 
|  |  | 
|  | if (TRI->isAnyArgRegReserved(MF)) | 
|  | TRI->emitReservedArgRegCallError(MF); | 
|  |  | 
|  | // Do the actual argument marshalling. | 
|  | SmallVector<unsigned, 8> PhysRegs; | 
|  | OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, | 
|  | AssignFnVarArg, false); | 
|  | if (!handleAssignments(MIRBuilder, OutArgs, Handler)) | 
|  | return false; | 
|  |  | 
|  | // Now we can add the actual call instruction to the correct basic block. | 
|  | MIRBuilder.insertInstr(MIB); | 
|  |  | 
|  | // If Callee is a reg, since it is used by a target specific | 
|  | // instruction, it must have a register class matching the | 
|  | // constraint of that instruction. | 
|  | if (Info.Callee.isReg()) | 
|  | MIB->getOperand(0).setReg(constrainOperandRegClass( | 
|  | MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), | 
|  | *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee, | 
|  | 0)); | 
|  |  | 
|  | // Finally we can copy the returned value back into its virtual-register. In | 
|  | // symmetry with the arugments, the physical register must be an | 
|  | // implicit-define of the call instruction. | 
|  | if (!Info.OrigRet.Ty->isVoidTy()) { | 
|  | CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(F.getCallingConv()); | 
|  | CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); | 
|  | if (!handleAssignments(MIRBuilder, InArgs, Handler)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Info.SwiftErrorVReg) { | 
|  | MIB.addDef(AArch64::X21, RegState::Implicit); | 
|  | MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21)); | 
|  | } | 
|  |  | 
|  | CallSeqStart.addImm(Handler.StackSize).addImm(0); | 
|  | MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP) | 
|  | .addImm(Handler.StackSize) | 
|  | .addImm(0); | 
|  |  | 
|  | return true; | 
|  | } |