|  | //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by the LLVM research group and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements the bison parser for LLVM assembly languages files. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | %{ | 
|  | #include "ParserInternals.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/SymbolTable.h" | 
|  | #include "llvm/Assembly/AutoUpgrade.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <iostream> | 
|  | #include <list> | 
|  | #include <utility> | 
|  |  | 
|  | // The following is a gross hack. In order to rid the libAsmParser library of | 
|  | // exceptions, we have to have a way of getting the yyparse function to go into | 
|  | // an error situation. So, whenever we want an error to occur, the GenerateError | 
|  | // function (see bottom of file) sets TriggerError. Then, at the end of each | 
|  | // production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR | 
|  | // (a goto) to put YACC in error state. Furthermore, several calls to | 
|  | // GenerateError are made from inside productions and they must simulate the | 
|  | // previous exception behavior by exiting the production immediately. We have | 
|  | // replaced these with the GEN_ERROR macro which calls GeneratError and then | 
|  | // immediately invokes YYERROR. This would be so much cleaner if it was a | 
|  | // recursive descent parser. | 
|  | static bool TriggerError = false; | 
|  | #define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } } | 
|  | #define GEN_ERROR(msg) { GenerateError(msg); YYERROR; } | 
|  |  | 
|  | int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit | 
|  | int yylex();                       // declaration" of xxx warnings. | 
|  | int yyparse(); | 
|  |  | 
|  | namespace llvm { | 
|  | std::string CurFilename; | 
|  | } | 
|  | using namespace llvm; | 
|  |  | 
|  | static Module *ParserResult; | 
|  |  | 
|  | // DEBUG_UPREFS - Define this symbol if you want to enable debugging output | 
|  | // relating to upreferences in the input stream. | 
|  | // | 
|  | //#define DEBUG_UPREFS 1 | 
|  | #ifdef DEBUG_UPREFS | 
|  | #define UR_OUT(X) std::cerr << X | 
|  | #else | 
|  | #define UR_OUT(X) | 
|  | #endif | 
|  |  | 
|  | #define YYERROR_VERBOSE 1 | 
|  |  | 
|  | static bool ObsoleteVarArgs; | 
|  | static bool NewVarArgs; | 
|  | static BasicBlock *CurBB; | 
|  | static GlobalVariable *CurGV; | 
|  |  | 
|  |  | 
|  | // This contains info used when building the body of a function.  It is | 
|  | // destroyed when the function is completed. | 
|  | // | 
|  | typedef std::vector<Value *> ValueList;           // Numbered defs | 
|  | static void | 
|  | ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers, | 
|  | std::map<const Type *,ValueList> *FutureLateResolvers = 0); | 
|  |  | 
|  | static struct PerModuleInfo { | 
|  | Module *CurrentModule; | 
|  | std::map<const Type *, ValueList> Values; // Module level numbered definitions | 
|  | std::map<const Type *,ValueList> LateResolveValues; | 
|  | std::vector<PATypeHolder>    Types; | 
|  | std::map<ValID, PATypeHolder> LateResolveTypes; | 
|  |  | 
|  | /// PlaceHolderInfo - When temporary placeholder objects are created, remember | 
|  | /// how they were referenced and on which line of the input they came from so | 
|  | /// that we can resolve them later and print error messages as appropriate. | 
|  | std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo; | 
|  |  | 
|  | // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward | 
|  | // references to global values.  Global values may be referenced before they | 
|  | // are defined, and if so, the temporary object that they represent is held | 
|  | // here.  This is used for forward references of GlobalValues. | 
|  | // | 
|  | typedef std::map<std::pair<const PointerType *, | 
|  | ValID>, GlobalValue*> GlobalRefsType; | 
|  | GlobalRefsType GlobalRefs; | 
|  |  | 
|  | void ModuleDone() { | 
|  | // If we could not resolve some functions at function compilation time | 
|  | // (calls to functions before they are defined), resolve them now...  Types | 
|  | // are resolved when the constant pool has been completely parsed. | 
|  | // | 
|  | ResolveDefinitions(LateResolveValues); | 
|  | if (TriggerError) | 
|  | return; | 
|  |  | 
|  | // Check to make sure that all global value forward references have been | 
|  | // resolved! | 
|  | // | 
|  | if (!GlobalRefs.empty()) { | 
|  | std::string UndefinedReferences = "Unresolved global references exist:\n"; | 
|  |  | 
|  | for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); | 
|  | I != E; ++I) { | 
|  | UndefinedReferences += "  " + I->first.first->getDescription() + " " + | 
|  | I->first.second.getName() + "\n"; | 
|  | } | 
|  | GenerateError(UndefinedReferences); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look for intrinsic functions and CallInst that need to be upgraded | 
|  | for (Module::iterator FI = CurrentModule->begin(), | 
|  | FE = CurrentModule->end(); FI != FE; ) | 
|  | UpgradeCallsToIntrinsic(FI++); | 
|  |  | 
|  | Values.clear();         // Clear out function local definitions | 
|  | Types.clear(); | 
|  | CurrentModule = 0; | 
|  | } | 
|  |  | 
|  | // GetForwardRefForGlobal - Check to see if there is a forward reference | 
|  | // for this global.  If so, remove it from the GlobalRefs map and return it. | 
|  | // If not, just return null. | 
|  | GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { | 
|  | // Check to see if there is a forward reference to this global variable... | 
|  | // if there is, eliminate it and patch the reference to use the new def'n. | 
|  | GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); | 
|  | GlobalValue *Ret = 0; | 
|  | if (I != GlobalRefs.end()) { | 
|  | Ret = I->second; | 
|  | GlobalRefs.erase(I); | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  | } CurModule; | 
|  |  | 
|  | static struct PerFunctionInfo { | 
|  | Function *CurrentFunction;     // Pointer to current function being created | 
|  |  | 
|  | std::map<const Type*, ValueList> Values; // Keep track of #'d definitions | 
|  | std::map<const Type*, ValueList> LateResolveValues; | 
|  | bool isDeclare;                    // Is this function a forward declararation? | 
|  | GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration. | 
|  |  | 
|  | /// BBForwardRefs - When we see forward references to basic blocks, keep | 
|  | /// track of them here. | 
|  | std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs; | 
|  | std::vector<BasicBlock*> NumberedBlocks; | 
|  | unsigned NextBBNum; | 
|  |  | 
|  | inline PerFunctionInfo() { | 
|  | CurrentFunction = 0; | 
|  | isDeclare = false; | 
|  | Linkage = GlobalValue::ExternalLinkage; | 
|  | } | 
|  |  | 
|  | inline void FunctionStart(Function *M) { | 
|  | CurrentFunction = M; | 
|  | NextBBNum = 0; | 
|  | } | 
|  |  | 
|  | void FunctionDone() { | 
|  | NumberedBlocks.clear(); | 
|  |  | 
|  | // Any forward referenced blocks left? | 
|  | if (!BBForwardRefs.empty()) { | 
|  | GenerateError("Undefined reference to label " + | 
|  | BBForwardRefs.begin()->first->getName()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Resolve all forward references now. | 
|  | ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); | 
|  |  | 
|  | Values.clear();         // Clear out function local definitions | 
|  | CurrentFunction = 0; | 
|  | isDeclare = false; | 
|  | Linkage = GlobalValue::ExternalLinkage; | 
|  | } | 
|  | } CurFun;  // Info for the current function... | 
|  |  | 
|  | static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //               Code to handle definitions of all the types | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static int InsertValue(Value *V, | 
|  | std::map<const Type*,ValueList> &ValueTab = CurFun.Values) { | 
|  | if (V->hasName()) return -1;           // Is this a numbered definition? | 
|  |  | 
|  | // Yes, insert the value into the value table... | 
|  | ValueList &List = ValueTab[V->getType()]; | 
|  | List.push_back(V); | 
|  | return List.size()-1; | 
|  | } | 
|  |  | 
|  | static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { | 
|  | switch (D.Type) { | 
|  | case ValID::NumberVal:               // Is it a numbered definition? | 
|  | // Module constants occupy the lowest numbered slots... | 
|  | if ((unsigned)D.Num < CurModule.Types.size()) | 
|  | return CurModule.Types[(unsigned)D.Num]; | 
|  | break; | 
|  | case ValID::NameVal:                 // Is it a named definition? | 
|  | if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) { | 
|  | D.destroy();  // Free old strdup'd memory... | 
|  | return N; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | GenerateError("Internal parser error: Invalid symbol type reference!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If we reached here, we referenced either a symbol that we don't know about | 
|  | // or an id number that hasn't been read yet.  We may be referencing something | 
|  | // forward, so just create an entry to be resolved later and get to it... | 
|  | // | 
|  | if (DoNotImprovise) return 0;  // Do we just want a null to be returned? | 
|  |  | 
|  |  | 
|  | if (inFunctionScope()) { | 
|  | if (D.Type == ValID::NameVal) { | 
|  | GenerateError("Reference to an undefined type: '" + D.getName() + "'"); | 
|  | return 0; | 
|  | } else { | 
|  | GenerateError("Reference to an undefined type: #" + itostr(D.Num)); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D); | 
|  | if (I != CurModule.LateResolveTypes.end()) | 
|  | return I->second; | 
|  |  | 
|  | Type *Typ = OpaqueType::get(); | 
|  | CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); | 
|  | return Typ; | 
|  | } | 
|  |  | 
|  | static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) { | 
|  | SymbolTable &SymTab = | 
|  | inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() : | 
|  | CurModule.CurrentModule->getSymbolTable(); | 
|  | return SymTab.lookup(Ty, Name); | 
|  | } | 
|  |  | 
|  | // getValNonImprovising - Look up the value specified by the provided type and | 
|  | // the provided ValID.  If the value exists and has already been defined, return | 
|  | // it.  Otherwise return null. | 
|  | // | 
|  | static Value *getValNonImprovising(const Type *Ty, const ValID &D) { | 
|  | if (isa<FunctionType>(Ty)) { | 
|  | GenerateError("Functions are not values and " | 
|  | "must be referenced as pointers"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (D.Type) { | 
|  | case ValID::NumberVal: {                 // Is it a numbered definition? | 
|  | unsigned Num = (unsigned)D.Num; | 
|  |  | 
|  | // Module constants occupy the lowest numbered slots... | 
|  | std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty); | 
|  | if (VI != CurModule.Values.end()) { | 
|  | if (Num < VI->second.size()) | 
|  | return VI->second[Num]; | 
|  | Num -= VI->second.size(); | 
|  | } | 
|  |  | 
|  | // Make sure that our type is within bounds | 
|  | VI = CurFun.Values.find(Ty); | 
|  | if (VI == CurFun.Values.end()) return 0; | 
|  |  | 
|  | // Check that the number is within bounds... | 
|  | if (VI->second.size() <= Num) return 0; | 
|  |  | 
|  | return VI->second[Num]; | 
|  | } | 
|  |  | 
|  | case ValID::NameVal: {                // Is it a named definition? | 
|  | Value *N = lookupInSymbolTable(Ty, std::string(D.Name)); | 
|  | if (N == 0) return 0; | 
|  |  | 
|  | D.destroy();  // Free old strdup'd memory... | 
|  | return N; | 
|  | } | 
|  |  | 
|  | // Check to make sure that "Ty" is an integral type, and that our | 
|  | // value will fit into the specified type... | 
|  | case ValID::ConstSIntVal:    // Is it a constant pool reference?? | 
|  | if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { | 
|  | GenerateError("Signed integral constant '" + | 
|  | itostr(D.ConstPool64) + "' is invalid for type '" + | 
|  | Ty->getDescription() + "'!"); | 
|  | return 0; | 
|  | } | 
|  | return ConstantInt::get(Ty, D.ConstPool64); | 
|  |  | 
|  | case ValID::ConstUIntVal:     // Is it an unsigned const pool reference? | 
|  | if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) { | 
|  | if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { | 
|  | GenerateError("Integral constant '" + utostr(D.UConstPool64) + | 
|  | "' is invalid or out of range!"); | 
|  | return 0; | 
|  | } else {     // This is really a signed reference.  Transmogrify. | 
|  | return ConstantInt::get(Ty, D.ConstPool64); | 
|  | } | 
|  | } else { | 
|  | return ConstantInt::get(Ty, D.UConstPool64); | 
|  | } | 
|  |  | 
|  | case ValID::ConstFPVal:        // Is it a floating point const pool reference? | 
|  | if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) { | 
|  | GenerateError("FP constant invalid for type!!"); | 
|  | return 0; | 
|  | } | 
|  | return ConstantFP::get(Ty, D.ConstPoolFP); | 
|  |  | 
|  | case ValID::ConstNullVal:      // Is it a null value? | 
|  | if (!isa<PointerType>(Ty)) { | 
|  | GenerateError("Cannot create a a non pointer null!"); | 
|  | return 0; | 
|  | } | 
|  | return ConstantPointerNull::get(cast<PointerType>(Ty)); | 
|  |  | 
|  | case ValID::ConstUndefVal:      // Is it an undef value? | 
|  | return UndefValue::get(Ty); | 
|  |  | 
|  | case ValID::ConstZeroVal:      // Is it a zero value? | 
|  | return Constant::getNullValue(Ty); | 
|  |  | 
|  | case ValID::ConstantVal:       // Fully resolved constant? | 
|  | if (D.ConstantValue->getType() != Ty) { | 
|  | GenerateError("Constant expression type different from required type!"); | 
|  | return 0; | 
|  | } | 
|  | return D.ConstantValue; | 
|  |  | 
|  | case ValID::InlineAsmVal: {    // Inline asm expression | 
|  | const PointerType *PTy = dyn_cast<PointerType>(Ty); | 
|  | const FunctionType *FTy = | 
|  | PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; | 
|  | if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) { | 
|  | GenerateError("Invalid type for asm constraint string!"); | 
|  | return 0; | 
|  | } | 
|  | InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints, | 
|  | D.IAD->HasSideEffects); | 
|  | D.destroy();   // Free InlineAsmDescriptor. | 
|  | return IA; | 
|  | } | 
|  | default: | 
|  | assert(0 && "Unhandled case!"); | 
|  | return 0; | 
|  | }   // End of switch | 
|  |  | 
|  | assert(0 && "Unhandled case!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // getVal - This function is identical to getValNonImprovising, except that if a | 
|  | // value is not already defined, it "improvises" by creating a placeholder var | 
|  | // that looks and acts just like the requested variable.  When the value is | 
|  | // defined later, all uses of the placeholder variable are replaced with the | 
|  | // real thing. | 
|  | // | 
|  | static Value *getVal(const Type *Ty, const ValID &ID) { | 
|  | if (Ty == Type::LabelTy) { | 
|  | GenerateError("Cannot use a basic block here"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See if the value has already been defined. | 
|  | Value *V = getValNonImprovising(Ty, ID); | 
|  | if (V) return V; | 
|  | if (TriggerError) return 0; | 
|  |  | 
|  | if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) { | 
|  | GenerateError("Invalid use of a composite type!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If we reached here, we referenced either a symbol that we don't know about | 
|  | // or an id number that hasn't been read yet.  We may be referencing something | 
|  | // forward, so just create an entry to be resolved later and get to it... | 
|  | // | 
|  | V = new Argument(Ty); | 
|  |  | 
|  | // Remember where this forward reference came from.  FIXME, shouldn't we try | 
|  | // to recycle these things?? | 
|  | CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID, | 
|  | llvmAsmlineno))); | 
|  |  | 
|  | if (inFunctionScope()) | 
|  | InsertValue(V, CurFun.LateResolveValues); | 
|  | else | 
|  | InsertValue(V, CurModule.LateResolveValues); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// getBBVal - This is used for two purposes: | 
|  | ///  * If isDefinition is true, a new basic block with the specified ID is being | 
|  | ///    defined. | 
|  | ///  * If isDefinition is true, this is a reference to a basic block, which may | 
|  | ///    or may not be a forward reference. | 
|  | /// | 
|  | static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) { | 
|  | assert(inFunctionScope() && "Can't get basic block at global scope!"); | 
|  |  | 
|  | std::string Name; | 
|  | BasicBlock *BB = 0; | 
|  | switch (ID.Type) { | 
|  | default: | 
|  | GenerateError("Illegal label reference " + ID.getName()); | 
|  | return 0; | 
|  | case ValID::NumberVal:                // Is it a numbered definition? | 
|  | if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size()) | 
|  | CurFun.NumberedBlocks.resize(ID.Num+1); | 
|  | BB = CurFun.NumberedBlocks[ID.Num]; | 
|  | break; | 
|  | case ValID::NameVal:                  // Is it a named definition? | 
|  | Name = ID.Name; | 
|  | if (Value *N = CurFun.CurrentFunction-> | 
|  | getSymbolTable().lookup(Type::LabelTy, Name)) | 
|  | BB = cast<BasicBlock>(N); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // See if the block has already been defined. | 
|  | if (BB) { | 
|  | // If this is the definition of the block, make sure the existing value was | 
|  | // just a forward reference.  If it was a forward reference, there will be | 
|  | // an entry for it in the PlaceHolderInfo map. | 
|  | if (isDefinition && !CurFun.BBForwardRefs.erase(BB)) { | 
|  | // The existing value was a definition, not a forward reference. | 
|  | GenerateError("Redefinition of label " + ID.getName()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ID.destroy();                       // Free strdup'd memory. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | // Otherwise this block has not been seen before. | 
|  | BB = new BasicBlock("", CurFun.CurrentFunction); | 
|  | if (ID.Type == ValID::NameVal) { | 
|  | BB->setName(ID.Name); | 
|  | } else { | 
|  | CurFun.NumberedBlocks[ID.Num] = BB; | 
|  | } | 
|  |  | 
|  | // If this is not a definition, keep track of it so we can use it as a forward | 
|  | // reference. | 
|  | if (!isDefinition) { | 
|  | // Remember where this forward reference came from. | 
|  | CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno); | 
|  | } else { | 
|  | // The forward declaration could have been inserted anywhere in the | 
|  | // function: insert it into the correct place now. | 
|  | CurFun.CurrentFunction->getBasicBlockList().remove(BB); | 
|  | CurFun.CurrentFunction->getBasicBlockList().push_back(BB); | 
|  | } | 
|  | ID.destroy(); | 
|  | return BB; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //              Code to handle forward references in instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This code handles the late binding needed with statements that reference | 
|  | // values not defined yet... for example, a forward branch, or the PHI node for | 
|  | // a loop body. | 
|  | // | 
|  | // This keeps a table (CurFun.LateResolveValues) of all such forward references | 
|  | // and back patchs after we are done. | 
|  | // | 
|  |  | 
|  | // ResolveDefinitions - If we could not resolve some defs at parsing | 
|  | // time (forward branches, phi functions for loops, etc...) resolve the | 
|  | // defs now... | 
|  | // | 
|  | static void | 
|  | ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers, | 
|  | std::map<const Type*,ValueList> *FutureLateResolvers) { | 
|  | // Loop over LateResolveDefs fixing up stuff that couldn't be resolved | 
|  | for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(), | 
|  | E = LateResolvers.end(); LRI != E; ++LRI) { | 
|  | ValueList &List = LRI->second; | 
|  | while (!List.empty()) { | 
|  | Value *V = List.back(); | 
|  | List.pop_back(); | 
|  |  | 
|  | std::map<Value*, std::pair<ValID, int> >::iterator PHI = | 
|  | CurModule.PlaceHolderInfo.find(V); | 
|  | assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!"); | 
|  |  | 
|  | ValID &DID = PHI->second.first; | 
|  |  | 
|  | Value *TheRealValue = getValNonImprovising(LRI->first, DID); | 
|  | if (TriggerError) | 
|  | return; | 
|  | if (TheRealValue) { | 
|  | V->replaceAllUsesWith(TheRealValue); | 
|  | delete V; | 
|  | CurModule.PlaceHolderInfo.erase(PHI); | 
|  | } else if (FutureLateResolvers) { | 
|  | // Functions have their unresolved items forwarded to the module late | 
|  | // resolver table | 
|  | InsertValue(V, *FutureLateResolvers); | 
|  | } else { | 
|  | if (DID.Type == ValID::NameVal) { | 
|  | GenerateError("Reference to an invalid definition: '" +DID.getName()+ | 
|  | "' of type '" + V->getType()->getDescription() + "'", | 
|  | PHI->second.second); | 
|  | return; | 
|  | } else { | 
|  | GenerateError("Reference to an invalid definition: #" + | 
|  | itostr(DID.Num) + " of type '" + | 
|  | V->getType()->getDescription() + "'", | 
|  | PHI->second.second); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LateResolvers.clear(); | 
|  | } | 
|  |  | 
|  | // ResolveTypeTo - A brand new type was just declared.  This means that (if | 
|  | // name is not null) things referencing Name can be resolved.  Otherwise, things | 
|  | // refering to the number can be resolved.  Do this now. | 
|  | // | 
|  | static void ResolveTypeTo(char *Name, const Type *ToTy) { | 
|  | ValID D; | 
|  | if (Name) D = ValID::create(Name); | 
|  | else      D = ValID::create((int)CurModule.Types.size()); | 
|  |  | 
|  | std::map<ValID, PATypeHolder>::iterator I = | 
|  | CurModule.LateResolveTypes.find(D); | 
|  | if (I != CurModule.LateResolveTypes.end()) { | 
|  | ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); | 
|  | CurModule.LateResolveTypes.erase(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // setValueName - Set the specified value to the name given.  The name may be | 
|  | // null potentially, in which case this is a noop.  The string passed in is | 
|  | // assumed to be a malloc'd string buffer, and is free'd by this function. | 
|  | // | 
|  | static void setValueName(Value *V, char *NameStr) { | 
|  | if (NameStr) { | 
|  | std::string Name(NameStr);      // Copy string | 
|  | free(NameStr);                  // Free old string | 
|  |  | 
|  | if (V->getType() == Type::VoidTy) { | 
|  | GenerateError("Can't assign name '" + Name+"' to value with void type!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(inFunctionScope() && "Must be in function scope!"); | 
|  | SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable(); | 
|  | if (ST.lookup(V->getType(), Name)) { | 
|  | GenerateError("Redefinition of value named '" + Name + "' in the '" + | 
|  | V->getType()->getDescription() + "' type plane!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set the name. | 
|  | V->setName(Name); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null, | 
|  | /// this is a declaration, otherwise it is a definition. | 
|  | static GlobalVariable * | 
|  | ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage, | 
|  | bool isConstantGlobal, const Type *Ty, | 
|  | Constant *Initializer) { | 
|  | if (isa<FunctionType>(Ty)) { | 
|  | GenerateError("Cannot declare global vars of function type!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const PointerType *PTy = PointerType::get(Ty); | 
|  |  | 
|  | std::string Name; | 
|  | if (NameStr) { | 
|  | Name = NameStr;      // Copy string | 
|  | free(NameStr);       // Free old string | 
|  | } | 
|  |  | 
|  | // See if this global value was forward referenced.  If so, recycle the | 
|  | // object. | 
|  | ValID ID; | 
|  | if (!Name.empty()) { | 
|  | ID = ValID::create((char*)Name.c_str()); | 
|  | } else { | 
|  | ID = ValID::create((int)CurModule.Values[PTy].size()); | 
|  | } | 
|  |  | 
|  | if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { | 
|  | // Move the global to the end of the list, from whereever it was | 
|  | // previously inserted. | 
|  | GlobalVariable *GV = cast<GlobalVariable>(FWGV); | 
|  | CurModule.CurrentModule->getGlobalList().remove(GV); | 
|  | CurModule.CurrentModule->getGlobalList().push_back(GV); | 
|  | GV->setInitializer(Initializer); | 
|  | GV->setLinkage(Linkage); | 
|  | GV->setConstant(isConstantGlobal); | 
|  | InsertValue(GV, CurModule.Values); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | // If this global has a name, check to see if there is already a definition | 
|  | // of this global in the module.  If so, merge as appropriate.  Note that | 
|  | // this is really just a hack around problems in the CFE.  :( | 
|  | if (!Name.empty()) { | 
|  | // We are a simple redefinition of a value, check to see if it is defined | 
|  | // the same as the old one. | 
|  | if (GlobalVariable *EGV = | 
|  | CurModule.CurrentModule->getGlobalVariable(Name, Ty)) { | 
|  | // We are allowed to redefine a global variable in two circumstances: | 
|  | // 1. If at least one of the globals is uninitialized or | 
|  | // 2. If both initializers have the same value. | 
|  | // | 
|  | if (!EGV->hasInitializer() || !Initializer || | 
|  | EGV->getInitializer() == Initializer) { | 
|  |  | 
|  | // Make sure the existing global version gets the initializer!  Make | 
|  | // sure that it also gets marked const if the new version is. | 
|  | if (Initializer && !EGV->hasInitializer()) | 
|  | EGV->setInitializer(Initializer); | 
|  | if (isConstantGlobal) | 
|  | EGV->setConstant(true); | 
|  | EGV->setLinkage(Linkage); | 
|  | return EGV; | 
|  | } | 
|  |  | 
|  | GenerateError("Redefinition of global variable named '" + Name + | 
|  | "' in the '" + Ty->getDescription() + "' type plane!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise there is no existing GV to use, create one now. | 
|  | GlobalVariable *GV = | 
|  | new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, | 
|  | CurModule.CurrentModule); | 
|  | InsertValue(GV, CurModule.Values); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | // setTypeName - Set the specified type to the name given.  The name may be | 
|  | // null potentially, in which case this is a noop.  The string passed in is | 
|  | // assumed to be a malloc'd string buffer, and is freed by this function. | 
|  | // | 
|  | // This function returns true if the type has already been defined, but is | 
|  | // allowed to be redefined in the specified context.  If the name is a new name | 
|  | // for the type plane, it is inserted and false is returned. | 
|  | static bool setTypeName(const Type *T, char *NameStr) { | 
|  | assert(!inFunctionScope() && "Can't give types function-local names!"); | 
|  | if (NameStr == 0) return false; | 
|  |  | 
|  | std::string Name(NameStr);      // Copy string | 
|  | free(NameStr);                  // Free old string | 
|  |  | 
|  | // We don't allow assigning names to void type | 
|  | if (T == Type::VoidTy) { | 
|  | GenerateError("Can't assign name '" + Name + "' to the void type!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set the type name, checking for conflicts as we do so. | 
|  | bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T); | 
|  |  | 
|  | if (AlreadyExists) {   // Inserting a name that is already defined??? | 
|  | const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); | 
|  | assert(Existing && "Conflict but no matching type?"); | 
|  |  | 
|  | // There is only one case where this is allowed: when we are refining an | 
|  | // opaque type.  In this case, Existing will be an opaque type. | 
|  | if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) { | 
|  | // We ARE replacing an opaque type! | 
|  | const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is an attempt to redefine a type. That's okay if | 
|  | // the redefinition is identical to the original. This will be so if | 
|  | // Existing and T point to the same Type object. In this one case we | 
|  | // allow the equivalent redefinition. | 
|  | if (Existing == T) return true;  // Yes, it's equal. | 
|  |  | 
|  | // Any other kind of (non-equivalent) redefinition is an error. | 
|  | GenerateError("Redefinition of type named '" + Name + "' in the '" + | 
|  | T->getDescription() + "' type plane!"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Code for handling upreferences in type names... | 
|  | // | 
|  |  | 
|  | // TypeContains - Returns true if Ty directly contains E in it. | 
|  | // | 
|  | static bool TypeContains(const Type *Ty, const Type *E) { | 
|  | return std::find(Ty->subtype_begin(), Ty->subtype_end(), | 
|  | E) != Ty->subtype_end(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct UpRefRecord { | 
|  | // NestingLevel - The number of nesting levels that need to be popped before | 
|  | // this type is resolved. | 
|  | unsigned NestingLevel; | 
|  |  | 
|  | // LastContainedTy - This is the type at the current binding level for the | 
|  | // type.  Every time we reduce the nesting level, this gets updated. | 
|  | const Type *LastContainedTy; | 
|  |  | 
|  | // UpRefTy - This is the actual opaque type that the upreference is | 
|  | // represented with. | 
|  | OpaqueType *UpRefTy; | 
|  |  | 
|  | UpRefRecord(unsigned NL, OpaqueType *URTy) | 
|  | : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {} | 
|  | }; | 
|  | } | 
|  |  | 
|  | // UpRefs - A list of the outstanding upreferences that need to be resolved. | 
|  | static std::vector<UpRefRecord> UpRefs; | 
|  |  | 
|  | /// HandleUpRefs - Every time we finish a new layer of types, this function is | 
|  | /// called.  It loops through the UpRefs vector, which is a list of the | 
|  | /// currently active types.  For each type, if the up reference is contained in | 
|  | /// the newly completed type, we decrement the level count.  When the level | 
|  | /// count reaches zero, the upreferenced type is the type that is passed in: | 
|  | /// thus we can complete the cycle. | 
|  | /// | 
|  | static PATypeHolder HandleUpRefs(const Type *ty) { | 
|  | // If Ty isn't abstract, or if there are no up-references in it, then there is | 
|  | // nothing to resolve here. | 
|  | if (!ty->isAbstract() || UpRefs.empty()) return ty; | 
|  |  | 
|  | PATypeHolder Ty(ty); | 
|  | UR_OUT("Type '" << Ty->getDescription() << | 
|  | "' newly formed.  Resolving upreferences.\n" << | 
|  | UpRefs.size() << " upreferences active!\n"); | 
|  |  | 
|  | // If we find any resolvable upreferences (i.e., those whose NestingLevel goes | 
|  | // to zero), we resolve them all together before we resolve them to Ty.  At | 
|  | // the end of the loop, if there is anything to resolve to Ty, it will be in | 
|  | // this variable. | 
|  | OpaqueType *TypeToResolve = 0; | 
|  |  | 
|  | for (unsigned i = 0; i != UpRefs.size(); ++i) { | 
|  | UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " | 
|  | << UpRefs[i].second->getDescription() << ") = " | 
|  | << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n"); | 
|  | if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { | 
|  | // Decrement level of upreference | 
|  | unsigned Level = --UpRefs[i].NestingLevel; | 
|  | UpRefs[i].LastContainedTy = Ty; | 
|  | UR_OUT("  Uplevel Ref Level = " << Level << "\n"); | 
|  | if (Level == 0) {                     // Upreference should be resolved! | 
|  | if (!TypeToResolve) { | 
|  | TypeToResolve = UpRefs[i].UpRefTy; | 
|  | } else { | 
|  | UR_OUT("  * Resolving upreference for " | 
|  | << UpRefs[i].second->getDescription() << "\n"; | 
|  | std::string OldName = UpRefs[i].UpRefTy->getDescription()); | 
|  | UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); | 
|  | UR_OUT("  * Type '" << OldName << "' refined upreference to: " | 
|  | << (const void*)Ty << ", " << Ty->getDescription() << "\n"); | 
|  | } | 
|  | UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list... | 
|  | --i;                                // Do not skip the next element... | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TypeToResolve) { | 
|  | UR_OUT("  * Resolving upreference for " | 
|  | << UpRefs[i].second->getDescription() << "\n"; | 
|  | std::string OldName = TypeToResolve->getDescription()); | 
|  | TypeToResolve->refineAbstractTypeTo(Ty); | 
|  | } | 
|  |  | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | /// This function is used to obtain the correct opcode for an instruction when | 
|  | /// an obsolete opcode is encountered. The OI parameter (OpcodeInfo) has both | 
|  | /// an opcode and an "obsolete" flag. These are generated by the lexer and | 
|  | /// the "obsolete" member will be true when the lexer encounters the token for | 
|  | /// an obsolete opcode. For example, "div" was replaced by [usf]div but we need | 
|  | /// to maintain backwards compatibility for asm files that still have the "div" | 
|  | /// instruction. This function handles converting div -> [usf]div appropriately. | 
|  | /// @brief Convert obsolete BinaryOps opcodes to new values | 
|  | static void | 
|  | sanitizeOpCode(OpcodeInfo<Instruction::BinaryOps> &OI, const PATypeHolder& PATy) | 
|  | { | 
|  | // If its not obsolete, don't do anything | 
|  | if (!OI.obsolete) | 
|  | return; | 
|  |  | 
|  | // If its a packed type we want to use the element type | 
|  | const Type* Ty = PATy; | 
|  | if (const PackedType* PTy = dyn_cast<PackedType>(Ty)) | 
|  | Ty = PTy->getElementType(); | 
|  |  | 
|  | // Depending on the opcode .. | 
|  | switch (OI.opcode) { | 
|  | default: | 
|  | GenerateError("Invalid obsolete opCode (check Lexer.l)"); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | // Handle cases where the opcode needs to change | 
|  | if (Ty->isFloatingPoint()) | 
|  | OI.opcode = Instruction::FDiv; | 
|  | else if (Ty->isSigned()) | 
|  | OI.opcode = Instruction::SDiv; | 
|  | break; | 
|  | case Instruction::URem: | 
|  | if (Ty->isFloatingPoint()) | 
|  | OI.opcode = Instruction::FRem; | 
|  | else if (Ty->isSigned()) | 
|  | OI.opcode = Instruction::SRem; | 
|  | break; | 
|  | } | 
|  | // Its not obsolete any more, we fixed it. | 
|  | OI.obsolete = false; | 
|  | } | 
|  |  | 
|  | /// This function is similar to the previous overload of sanitizeOpCode but | 
|  | /// operates on Instruction::OtherOps instead of Instruction::BinaryOps. | 
|  | /// @brief Convert obsolete OtherOps opcodes to new values | 
|  | static void | 
|  | sanitizeOpCode(OpcodeInfo<Instruction::OtherOps> &OI, const PATypeHolder& PATy) | 
|  | { | 
|  | // If its not obsolete, don't do anything | 
|  | if (!OI.obsolete) | 
|  | return; | 
|  |  | 
|  | const Type* Ty = PATy; // type conversion | 
|  | switch (OI.opcode) { | 
|  | default: | 
|  | GenerateError("Invalid obsolete opcode (check Lexer.l)"); | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | if (Ty->isSigned()) | 
|  | OI.opcode = Instruction::AShr; | 
|  | break; | 
|  | } | 
|  | // Its not obsolete any more, we fixed it. | 
|  | OI.obsolete = false; | 
|  | } | 
|  |  | 
|  | // common code from the two 'RunVMAsmParser' functions | 
|  | static Module* RunParser(Module * M) { | 
|  |  | 
|  | llvmAsmlineno = 1;      // Reset the current line number... | 
|  | ObsoleteVarArgs = false; | 
|  | NewVarArgs = false; | 
|  | CurModule.CurrentModule = M; | 
|  |  | 
|  | // Check to make sure the parser succeeded | 
|  | if (yyparse()) { | 
|  | if (ParserResult) | 
|  | delete ParserResult; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check to make sure that parsing produced a result | 
|  | if (!ParserResult) | 
|  | return 0; | 
|  |  | 
|  | // Reset ParserResult variable while saving its value for the result. | 
|  | Module *Result = ParserResult; | 
|  | ParserResult = 0; | 
|  |  | 
|  | //Not all functions use vaarg, so make a second check for ObsoleteVarArgs | 
|  | { | 
|  | Function* F; | 
|  | if ((F = Result->getNamedFunction("llvm.va_start")) | 
|  | && F->getFunctionType()->getNumParams() == 0) | 
|  | ObsoleteVarArgs = true; | 
|  | if((F = Result->getNamedFunction("llvm.va_copy")) | 
|  | && F->getFunctionType()->getNumParams() == 1) | 
|  | ObsoleteVarArgs = true; | 
|  | } | 
|  |  | 
|  | if (ObsoleteVarArgs && NewVarArgs) { | 
|  | GenerateError( | 
|  | "This file is corrupt: it uses both new and old style varargs"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(ObsoleteVarArgs) { | 
|  | if(Function* F = Result->getNamedFunction("llvm.va_start")) { | 
|  | if (F->arg_size() != 0) { | 
|  | GenerateError("Obsolete va_start takes 0 argument!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //foo = va_start() | 
|  | // -> | 
|  | //bar = alloca typeof(foo) | 
|  | //va_start(bar) | 
|  | //foo = load bar | 
|  |  | 
|  | const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); | 
|  | const Type* ArgTy = F->getFunctionType()->getReturnType(); | 
|  | const Type* ArgTyPtr = PointerType::get(ArgTy); | 
|  | Function* NF = Result->getOrInsertFunction("llvm.va_start", | 
|  | RetTy, ArgTyPtr, (Type *)0); | 
|  |  | 
|  | while (!F->use_empty()) { | 
|  | CallInst* CI = cast<CallInst>(F->use_back()); | 
|  | AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI); | 
|  | new CallInst(NF, bar, "", CI); | 
|  | Value* foo = new LoadInst(bar, "vastart.fix.2", CI); | 
|  | CI->replaceAllUsesWith(foo); | 
|  | CI->getParent()->getInstList().erase(CI); | 
|  | } | 
|  | Result->getFunctionList().erase(F); | 
|  | } | 
|  |  | 
|  | if(Function* F = Result->getNamedFunction("llvm.va_end")) { | 
|  | if(F->arg_size() != 1) { | 
|  | GenerateError("Obsolete va_end takes 1 argument!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //vaend foo | 
|  | // -> | 
|  | //bar = alloca 1 of typeof(foo) | 
|  | //vaend bar | 
|  | const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); | 
|  | const Type* ArgTy = F->getFunctionType()->getParamType(0); | 
|  | const Type* ArgTyPtr = PointerType::get(ArgTy); | 
|  | Function* NF = Result->getOrInsertFunction("llvm.va_end", | 
|  | RetTy, ArgTyPtr, (Type *)0); | 
|  |  | 
|  | while (!F->use_empty()) { | 
|  | CallInst* CI = cast<CallInst>(F->use_back()); | 
|  | AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI); | 
|  | new StoreInst(CI->getOperand(1), bar, CI); | 
|  | new CallInst(NF, bar, "", CI); | 
|  | CI->getParent()->getInstList().erase(CI); | 
|  | } | 
|  | Result->getFunctionList().erase(F); | 
|  | } | 
|  |  | 
|  | if(Function* F = Result->getNamedFunction("llvm.va_copy")) { | 
|  | if(F->arg_size() != 1) { | 
|  | GenerateError("Obsolete va_copy takes 1 argument!"); | 
|  | return 0; | 
|  | } | 
|  | //foo = vacopy(bar) | 
|  | // -> | 
|  | //a = alloca 1 of typeof(foo) | 
|  | //b = alloca 1 of typeof(foo) | 
|  | //store bar -> b | 
|  | //vacopy(a, b) | 
|  | //foo = load a | 
|  |  | 
|  | const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); | 
|  | const Type* ArgTy = F->getFunctionType()->getReturnType(); | 
|  | const Type* ArgTyPtr = PointerType::get(ArgTy); | 
|  | Function* NF = Result->getOrInsertFunction("llvm.va_copy", | 
|  | RetTy, ArgTyPtr, ArgTyPtr, | 
|  | (Type *)0); | 
|  |  | 
|  | while (!F->use_empty()) { | 
|  | CallInst* CI = cast<CallInst>(F->use_back()); | 
|  | AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI); | 
|  | AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI); | 
|  | new StoreInst(CI->getOperand(1), b, CI); | 
|  | new CallInst(NF, a, b, "", CI); | 
|  | Value* foo = new LoadInst(a, "vacopy.fix.3", CI); | 
|  | CI->replaceAllUsesWith(foo); | 
|  | CI->getParent()->getInstList().erase(CI); | 
|  | } | 
|  | Result->getFunctionList().erase(F); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //            RunVMAsmParser - Define an interface to this parser | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) { | 
|  | set_scan_file(F); | 
|  |  | 
|  | CurFilename = Filename; | 
|  | return RunParser(new Module(CurFilename)); | 
|  | } | 
|  |  | 
|  | Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) { | 
|  | set_scan_string(AsmString); | 
|  |  | 
|  | CurFilename = "from_memory"; | 
|  | if (M == NULL) { | 
|  | return RunParser(new Module (CurFilename)); | 
|  | } else { | 
|  | return RunParser(M); | 
|  | } | 
|  | } | 
|  |  | 
|  | %} | 
|  |  | 
|  | %union { | 
|  | llvm::Module                           *ModuleVal; | 
|  | llvm::Function                         *FunctionVal; | 
|  | std::pair<llvm::PATypeHolder*, char*>  *ArgVal; | 
|  | llvm::BasicBlock                       *BasicBlockVal; | 
|  | llvm::TerminatorInst                   *TermInstVal; | 
|  | llvm::Instruction                      *InstVal; | 
|  | llvm::Constant                         *ConstVal; | 
|  |  | 
|  | const llvm::Type                       *PrimType; | 
|  | llvm::PATypeHolder                     *TypeVal; | 
|  | llvm::Value                            *ValueVal; | 
|  |  | 
|  | std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList; | 
|  | std::vector<llvm::Value*>              *ValueList; | 
|  | std::list<llvm::PATypeHolder>          *TypeList; | 
|  | // Represent the RHS of PHI node | 
|  | std::list<std::pair<llvm::Value*, | 
|  | llvm::BasicBlock*> > *PHIList; | 
|  | std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable; | 
|  | std::vector<llvm::Constant*>           *ConstVector; | 
|  |  | 
|  | llvm::GlobalValue::LinkageTypes         Linkage; | 
|  | int64_t                           SInt64Val; | 
|  | uint64_t                          UInt64Val; | 
|  | int                               SIntVal; | 
|  | unsigned                          UIntVal; | 
|  | double                            FPVal; | 
|  | bool                              BoolVal; | 
|  |  | 
|  | char                             *StrVal;   // This memory is strdup'd! | 
|  | llvm::ValID                       ValIDVal; // strdup'd memory maybe! | 
|  |  | 
|  | BinaryOpInfo                      BinaryOpVal; | 
|  | TermOpInfo                        TermOpVal; | 
|  | MemOpInfo                         MemOpVal; | 
|  | OtherOpInfo                       OtherOpVal; | 
|  | llvm::Module::Endianness          Endianness; | 
|  | } | 
|  |  | 
|  | %type <ModuleVal>     Module FunctionList | 
|  | %type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList | 
|  | %type <BasicBlockVal> BasicBlock InstructionList | 
|  | %type <TermInstVal>   BBTerminatorInst | 
|  | %type <InstVal>       Inst InstVal MemoryInst | 
|  | %type <ConstVal>      ConstVal ConstExpr | 
|  | %type <ConstVector>   ConstVector | 
|  | %type <ArgList>       ArgList ArgListH | 
|  | %type <ArgVal>        ArgVal | 
|  | %type <PHIList>       PHIList | 
|  | %type <ValueList>     ValueRefList ValueRefListE  // For call param lists | 
|  | %type <ValueList>     IndexList                   // For GEP derived indices | 
|  | %type <TypeList>      TypeListI ArgTypeListI | 
|  | %type <JumpTable>     JumpTable | 
|  | %type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT? | 
|  | %type <BoolVal>       OptVolatile                 // 'volatile' or not | 
|  | %type <BoolVal>       OptTailCall                 // TAIL CALL or plain CALL. | 
|  | %type <BoolVal>       OptSideEffect               // 'sideeffect' or not. | 
|  | %type <Linkage>       OptLinkage | 
|  | %type <Endianness>    BigOrLittle | 
|  |  | 
|  | // ValueRef - Unresolved reference to a definition or BB | 
|  | %type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef | 
|  | %type <ValueVal>      ResolvedVal            // <type> <valref> pair | 
|  | // Tokens and types for handling constant integer values | 
|  | // | 
|  | // ESINT64VAL - A negative number within long long range | 
|  | %token <SInt64Val> ESINT64VAL | 
|  |  | 
|  | // EUINT64VAL - A positive number within uns. long long range | 
|  | %token <UInt64Val> EUINT64VAL | 
|  | %type  <SInt64Val> EINT64VAL | 
|  |  | 
|  | %token  <SIntVal>   SINTVAL   // Signed 32 bit ints... | 
|  | %token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints... | 
|  | %type   <SIntVal>   INTVAL | 
|  | %token  <FPVal>     FPVAL     // Float or Double constant | 
|  |  | 
|  | // Built in types... | 
|  | %type  <TypeVal> Types TypesV UpRTypes UpRTypesV | 
|  | %type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications | 
|  | %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG | 
|  | %token <PrimType> FLOAT DOUBLE TYPE LABEL | 
|  |  | 
|  | %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT | 
|  | %type  <StrVal> Name OptName OptAssign | 
|  | %type  <UIntVal> OptAlign OptCAlign | 
|  | %type <StrVal> OptSection SectionString | 
|  |  | 
|  | %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK | 
|  | %token DECLARE GLOBAL CONSTANT SECTION VOLATILE | 
|  | %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING | 
|  | %token DLLIMPORT DLLEXPORT EXTERN_WEAK | 
|  | %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN | 
|  | %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT | 
|  | %token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK | 
|  | %token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK | 
|  | %token DATALAYOUT | 
|  | %type <UIntVal> OptCallingConv | 
|  |  | 
|  | // Basic Block Terminating Operators | 
|  | %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE | 
|  |  | 
|  | // Binary Operators | 
|  | %type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories | 
|  | %token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR | 
|  | %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comparators | 
|  |  | 
|  | // Memory Instructions | 
|  | %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR | 
|  |  | 
|  | // Other Operators | 
|  | %type  <OtherOpVal> ShiftOps | 
|  | %token <OtherOpVal> PHI_TOK CAST SELECT SHL LSHR ASHR VAARG | 
|  | %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR | 
|  | %token VAARG_old VANEXT_old //OBSOLETE | 
|  |  | 
|  |  | 
|  | %start Module | 
|  | %% | 
|  |  | 
|  | // Handle constant integer size restriction and conversion... | 
|  | // | 
|  | INTVAL : SINTVAL; | 
|  | INTVAL : UINTVAL { | 
|  | if ($1 > (uint32_t)INT32_MAX)     // Outside of my range! | 
|  | GEN_ERROR("Value too large for type!"); | 
|  | $$ = (int32_t)$1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems... | 
|  | EINT64VAL : EUINT64VAL { | 
|  | if ($1 > (uint64_t)INT64_MAX)     // Outside of my range! | 
|  | GEN_ERROR("Value too large for type!"); | 
|  | $$ = (int64_t)$1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // Operations that are notably excluded from this list include: | 
|  | // RET, BR, & SWITCH because they end basic blocks and are treated specially. | 
|  | // | 
|  | ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM; | 
|  | LogicalOps   : AND | OR | XOR; | 
|  | SetCondOps   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE; | 
|  |  | 
|  | ShiftOps  : SHL | LSHR | ASHR; | 
|  |  | 
|  | // These are some types that allow classification if we only want a particular | 
|  | // thing... for example, only a signed, unsigned, or integral type. | 
|  | SIntType :  LONG |  INT |  SHORT | SBYTE; | 
|  | UIntType : ULONG | UINT | USHORT | UBYTE; | 
|  | IntType  : SIntType | UIntType; | 
|  | FPType   : FLOAT | DOUBLE; | 
|  |  | 
|  | // OptAssign - Value producing statements have an optional assignment component | 
|  | OptAssign : Name '=' { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /*empty*/ { | 
|  | $$ = 0; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | OptLinkage : INTERNAL    { $$ = GlobalValue::InternalLinkage; } | | 
|  | LINKONCE    { $$ = GlobalValue::LinkOnceLinkage; } | | 
|  | WEAK        { $$ = GlobalValue::WeakLinkage; } | | 
|  | APPENDING   { $$ = GlobalValue::AppendingLinkage; } | | 
|  | DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } | | 
|  | DLLEXPORT   { $$ = GlobalValue::DLLExportLinkage; } | | 
|  | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } | | 
|  | /*empty*/   { $$ = GlobalValue::ExternalLinkage; }; | 
|  |  | 
|  | OptCallingConv : /*empty*/          { $$ = CallingConv::C; } | | 
|  | CCC_TOK            { $$ = CallingConv::C; } | | 
|  | CSRETCC_TOK        { $$ = CallingConv::CSRet; } | | 
|  | FASTCC_TOK         { $$ = CallingConv::Fast; } | | 
|  | COLDCC_TOK         { $$ = CallingConv::Cold; } | | 
|  | X86_STDCALLCC_TOK  { $$ = CallingConv::X86_StdCall; } | | 
|  | X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } | | 
|  | CC_TOK EUINT64VAL  { | 
|  | if ((unsigned)$2 != $2) | 
|  | GEN_ERROR("Calling conv too large!"); | 
|  | $$ = $2; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // OptAlign/OptCAlign - An optional alignment, and an optional alignment with | 
|  | // a comma before it. | 
|  | OptAlign : /*empty*/        { $$ = 0; } | | 
|  | ALIGN EUINT64VAL { | 
|  | $$ = $2; | 
|  | if ($$ != 0 && !isPowerOf2_32($$)) | 
|  | GEN_ERROR("Alignment must be a power of two!"); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  | OptCAlign : /*empty*/            { $$ = 0; } | | 
|  | ',' ALIGN EUINT64VAL { | 
|  | $$ = $3; | 
|  | if ($$ != 0 && !isPowerOf2_32($$)) | 
|  | GEN_ERROR("Alignment must be a power of two!"); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | SectionString : SECTION STRINGCONSTANT { | 
|  | for (unsigned i = 0, e = strlen($2); i != e; ++i) | 
|  | if ($2[i] == '"' || $2[i] == '\\') | 
|  | GEN_ERROR("Invalid character in section name!"); | 
|  | $$ = $2; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | OptSection : /*empty*/ { $$ = 0; } | | 
|  | SectionString { $$ = $1; }; | 
|  |  | 
|  | // GlobalVarAttributes - Used to pass the attributes string on a global.  CurGV | 
|  | // is set to be the global we are processing. | 
|  | // | 
|  | GlobalVarAttributes : /* empty */ {} | | 
|  | ',' GlobalVarAttribute GlobalVarAttributes {}; | 
|  | GlobalVarAttribute : SectionString { | 
|  | CurGV->setSection($1); | 
|  | free($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ALIGN EUINT64VAL { | 
|  | if ($2 != 0 && !isPowerOf2_32($2)) | 
|  | GEN_ERROR("Alignment must be a power of two!"); | 
|  | CurGV->setAlignment($2); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Types includes all predefined types... except void, because it can only be | 
|  | // used in specific contexts (function returning void for example).  To have | 
|  | // access to it, a user must explicitly use TypesV. | 
|  | // | 
|  |  | 
|  | // TypesV includes all of 'Types', but it also includes the void type. | 
|  | TypesV    : Types    | VOID { $$ = new PATypeHolder($1); }; | 
|  | UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); }; | 
|  |  | 
|  | Types     : UpRTypes { | 
|  | if (!UpRefs.empty()) | 
|  | GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription()); | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Derived types are added later... | 
|  | // | 
|  | PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ; | 
|  | PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL; | 
|  | UpRTypes : OPAQUE { | 
|  | $$ = new PATypeHolder(OpaqueType::get()); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | PrimType { | 
|  | $$ = new PATypeHolder($1); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  | UpRTypes : SymbolicValueRef {            // Named types are also simple types... | 
|  | const Type* tmp = getTypeVal($1); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new PATypeHolder(tmp); | 
|  | }; | 
|  |  | 
|  | // Include derived types in the Types production. | 
|  | // | 
|  | UpRTypes : '\\' EUINT64VAL {                   // Type UpReference | 
|  | if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range!"); | 
|  | OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder | 
|  | UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector... | 
|  | $$ = new PATypeHolder(OT); | 
|  | UR_OUT("New Upreference!\n"); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type? | 
|  | std::vector<const Type*> Params; | 
|  | for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(), | 
|  | E = $3->end(); I != E; ++I) | 
|  | Params.push_back(*I); | 
|  | bool isVarArg = Params.size() && Params.back() == Type::VoidTy; | 
|  | if (isVarArg) Params.pop_back(); | 
|  |  | 
|  | $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg))); | 
|  | delete $3;      // Delete the argument list | 
|  | delete $1;      // Delete the return type handle | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type? | 
|  | $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | '<' EUINT64VAL 'x' UpRTypes '>' {          // Packed array type? | 
|  | const llvm::Type* ElemTy = $4->get(); | 
|  | if ((unsigned)$2 != $2) | 
|  | GEN_ERROR("Unsigned result not equal to signed result"); | 
|  | if (!ElemTy->isPrimitiveType()) | 
|  | GEN_ERROR("Elemental type of a PackedType must be primitive"); | 
|  | if (!isPowerOf2_32($2)) | 
|  | GEN_ERROR("Vector length should be a power of 2!"); | 
|  | $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2))); | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | '{' TypeListI '}' {                        // Structure type? | 
|  | std::vector<const Type*> Elements; | 
|  | for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(), | 
|  | E = $2->end(); I != E; ++I) | 
|  | Elements.push_back(*I); | 
|  |  | 
|  | $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); | 
|  | delete $2; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | '{' '}' {                                  // Empty structure type? | 
|  | $$ = new PATypeHolder(StructType::get(std::vector<const Type*>())); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | UpRTypes '*' {                             // Pointer type? | 
|  | if (*$1 == Type::LabelTy) | 
|  | GEN_ERROR("Cannot form a pointer to a basic block"); | 
|  | $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1))); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // TypeList - Used for struct declarations and as a basis for function type | 
|  | // declaration type lists | 
|  | // | 
|  | TypeListI : UpRTypes { | 
|  | $$ = new std::list<PATypeHolder>(); | 
|  | $$->push_back(*$1); delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | TypeListI ',' UpRTypes { | 
|  | ($$=$1)->push_back(*$3); delete $3; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // ArgTypeList - List of types for a function type declaration... | 
|  | ArgTypeListI : TypeListI | 
|  | | TypeListI ',' DOTDOTDOT { | 
|  | ($$=$1)->push_back(Type::VoidTy); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | DOTDOTDOT { | 
|  | ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /*empty*/ { | 
|  | $$ = new std::list<PATypeHolder>(); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // ConstVal - The various declarations that go into the constant pool.  This | 
|  | // production is used ONLY to represent constants that show up AFTER a 'const', | 
|  | // 'constant' or 'global' token at global scope.  Constants that can be inlined | 
|  | // into other expressions (such as integers and constexprs) are handled by the | 
|  | // ResolvedVal, ValueRef and ConstValueRef productions. | 
|  | // | 
|  | ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr | 
|  | const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); | 
|  | if (ATy == 0) | 
|  | GEN_ERROR("Cannot make array constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  | const Type *ETy = ATy->getElementType(); | 
|  | int NumElements = ATy->getNumElements(); | 
|  |  | 
|  | // Verify that we have the correct size... | 
|  | if (NumElements != -1 && NumElements != (int)$3->size()) | 
|  | GEN_ERROR("Type mismatch: constant sized array initialized with " + | 
|  | utostr($3->size()) +  " arguments, but has size of " + | 
|  | itostr(NumElements) + "!"); | 
|  |  | 
|  | // Verify all elements are correct type! | 
|  | for (unsigned i = 0; i < $3->size(); i++) { | 
|  | if (ETy != (*$3)[i]->getType()) | 
|  | GEN_ERROR("Element #" + utostr(i) + " is not of type '" + | 
|  | ETy->getDescription() +"' as required!\nIt is of type '"+ | 
|  | (*$3)[i]->getType()->getDescription() + "'."); | 
|  | } | 
|  |  | 
|  | $$ = ConstantArray::get(ATy, *$3); | 
|  | delete $1; delete $3; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types '[' ']' { | 
|  | const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); | 
|  | if (ATy == 0) | 
|  | GEN_ERROR("Cannot make array constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  |  | 
|  | int NumElements = ATy->getNumElements(); | 
|  | if (NumElements != -1 && NumElements != 0) | 
|  | GEN_ERROR("Type mismatch: constant sized array initialized with 0" | 
|  | " arguments, but has size of " + itostr(NumElements) +"!"); | 
|  | $$ = ConstantArray::get(ATy, std::vector<Constant*>()); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types 'c' STRINGCONSTANT { | 
|  | const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); | 
|  | if (ATy == 0) | 
|  | GEN_ERROR("Cannot make array constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  |  | 
|  | int NumElements = ATy->getNumElements(); | 
|  | const Type *ETy = ATy->getElementType(); | 
|  | char *EndStr = UnEscapeLexed($3, true); | 
|  | if (NumElements != -1 && NumElements != (EndStr-$3)) | 
|  | GEN_ERROR("Can't build string constant of size " + | 
|  | itostr((int)(EndStr-$3)) + | 
|  | " when array has size " + itostr(NumElements) + "!"); | 
|  | std::vector<Constant*> Vals; | 
|  | if (ETy == Type::SByteTy) { | 
|  | for (signed char *C = (signed char *)$3; C != (signed char *)EndStr; ++C) | 
|  | Vals.push_back(ConstantInt::get(ETy, *C)); | 
|  | } else if (ETy == Type::UByteTy) { | 
|  | for (unsigned char *C = (unsigned char *)$3; | 
|  | C != (unsigned char*)EndStr; ++C) | 
|  | Vals.push_back(ConstantInt::get(ETy, *C)); | 
|  | } else { | 
|  | free($3); | 
|  | GEN_ERROR("Cannot build string arrays of non byte sized elements!"); | 
|  | } | 
|  | free($3); | 
|  | $$ = ConstantArray::get(ATy, Vals); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types '<' ConstVector '>' { // Nonempty unsized arr | 
|  | const PackedType *PTy = dyn_cast<PackedType>($1->get()); | 
|  | if (PTy == 0) | 
|  | GEN_ERROR("Cannot make packed constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  | const Type *ETy = PTy->getElementType(); | 
|  | int NumElements = PTy->getNumElements(); | 
|  |  | 
|  | // Verify that we have the correct size... | 
|  | if (NumElements != -1 && NumElements != (int)$3->size()) | 
|  | GEN_ERROR("Type mismatch: constant sized packed initialized with " + | 
|  | utostr($3->size()) +  " arguments, but has size of " + | 
|  | itostr(NumElements) + "!"); | 
|  |  | 
|  | // Verify all elements are correct type! | 
|  | for (unsigned i = 0; i < $3->size(); i++) { | 
|  | if (ETy != (*$3)[i]->getType()) | 
|  | GEN_ERROR("Element #" + utostr(i) + " is not of type '" + | 
|  | ETy->getDescription() +"' as required!\nIt is of type '"+ | 
|  | (*$3)[i]->getType()->getDescription() + "'."); | 
|  | } | 
|  |  | 
|  | $$ = ConstantPacked::get(PTy, *$3); | 
|  | delete $1; delete $3; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types '{' ConstVector '}' { | 
|  | const StructType *STy = dyn_cast<StructType>($1->get()); | 
|  | if (STy == 0) | 
|  | GEN_ERROR("Cannot make struct constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  |  | 
|  | if ($3->size() != STy->getNumContainedTypes()) | 
|  | GEN_ERROR("Illegal number of initializers for structure type!"); | 
|  |  | 
|  | // Check to ensure that constants are compatible with the type initializer! | 
|  | for (unsigned i = 0, e = $3->size(); i != e; ++i) | 
|  | if ((*$3)[i]->getType() != STy->getElementType(i)) | 
|  | GEN_ERROR("Expected type '" + | 
|  | STy->getElementType(i)->getDescription() + | 
|  | "' for element #" + utostr(i) + | 
|  | " of structure initializer!"); | 
|  |  | 
|  | $$ = ConstantStruct::get(STy, *$3); | 
|  | delete $1; delete $3; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types '{' '}' { | 
|  | const StructType *STy = dyn_cast<StructType>($1->get()); | 
|  | if (STy == 0) | 
|  | GEN_ERROR("Cannot make struct constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  |  | 
|  | if (STy->getNumContainedTypes() != 0) | 
|  | GEN_ERROR("Illegal number of initializers for structure type!"); | 
|  |  | 
|  | $$ = ConstantStruct::get(STy, std::vector<Constant*>()); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types NULL_TOK { | 
|  | const PointerType *PTy = dyn_cast<PointerType>($1->get()); | 
|  | if (PTy == 0) | 
|  | GEN_ERROR("Cannot make null pointer constant with type: '" + | 
|  | (*$1)->getDescription() + "'!"); | 
|  |  | 
|  | $$ = ConstantPointerNull::get(PTy); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types UNDEF { | 
|  | $$ = UndefValue::get($1->get()); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types SymbolicValueRef { | 
|  | const PointerType *Ty = dyn_cast<PointerType>($1->get()); | 
|  | if (Ty == 0) | 
|  | GEN_ERROR("Global const reference must be a pointer type!"); | 
|  |  | 
|  | // ConstExprs can exist in the body of a function, thus creating | 
|  | // GlobalValues whenever they refer to a variable.  Because we are in | 
|  | // the context of a function, getValNonImprovising will search the functions | 
|  | // symbol table instead of the module symbol table for the global symbol, | 
|  | // which throws things all off.  To get around this, we just tell | 
|  | // getValNonImprovising that we are at global scope here. | 
|  | // | 
|  | Function *SavedCurFn = CurFun.CurrentFunction; | 
|  | CurFun.CurrentFunction = 0; | 
|  |  | 
|  | Value *V = getValNonImprovising(Ty, $2); | 
|  | CHECK_FOR_ERROR | 
|  |  | 
|  | CurFun.CurrentFunction = SavedCurFn; | 
|  |  | 
|  | // If this is an initializer for a constant pointer, which is referencing a | 
|  | // (currently) undefined variable, create a stub now that shall be replaced | 
|  | // in the future with the right type of variable. | 
|  | // | 
|  | if (V == 0) { | 
|  | assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!"); | 
|  | const PointerType *PT = cast<PointerType>(Ty); | 
|  |  | 
|  | // First check to see if the forward references value is already created! | 
|  | PerModuleInfo::GlobalRefsType::iterator I = | 
|  | CurModule.GlobalRefs.find(std::make_pair(PT, $2)); | 
|  |  | 
|  | if (I != CurModule.GlobalRefs.end()) { | 
|  | V = I->second;             // Placeholder already exists, use it... | 
|  | $2.destroy(); | 
|  | } else { | 
|  | std::string Name; | 
|  | if ($2.Type == ValID::NameVal) Name = $2.Name; | 
|  |  | 
|  | // Create the forward referenced global. | 
|  | GlobalValue *GV; | 
|  | if (const FunctionType *FTy = | 
|  | dyn_cast<FunctionType>(PT->getElementType())) { | 
|  | GV = new Function(FTy, GlobalValue::ExternalLinkage, Name, | 
|  | CurModule.CurrentModule); | 
|  | } else { | 
|  | GV = new GlobalVariable(PT->getElementType(), false, | 
|  | GlobalValue::ExternalLinkage, 0, | 
|  | Name, CurModule.CurrentModule); | 
|  | } | 
|  |  | 
|  | // Keep track of the fact that we have a forward ref to recycle it | 
|  | CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); | 
|  | V = GV; | 
|  | } | 
|  | } | 
|  |  | 
|  | $$ = cast<GlobalValue>(V); | 
|  | delete $1;            // Free the type handle | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types ConstExpr { | 
|  | if ($1->get() != $2->getType()) | 
|  | GEN_ERROR("Mismatched types for constant expression!"); | 
|  | $$ = $2; | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Types ZEROINITIALIZER { | 
|  | const Type *Ty = $1->get(); | 
|  | if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty)) | 
|  | GEN_ERROR("Cannot create a null initialized value of this type!"); | 
|  | $$ = Constant::getNullValue(Ty); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | ConstVal : SIntType EINT64VAL {      // integral constants | 
|  | if (!ConstantInt::isValueValidForType($1, $2)) | 
|  | GEN_ERROR("Constant value doesn't fit in type!"); | 
|  | $$ = ConstantInt::get($1, $2); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | UIntType EUINT64VAL {            // integral constants | 
|  | if (!ConstantInt::isValueValidForType($1, $2)) | 
|  | GEN_ERROR("Constant value doesn't fit in type!"); | 
|  | $$ = ConstantInt::get($1, $2); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | BOOL TRUETOK {                      // Boolean constants | 
|  | $$ = ConstantBool::getTrue(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | BOOL FALSETOK {                     // Boolean constants | 
|  | $$ = ConstantBool::getFalse(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FPType FPVAL {                   // Float & Double constants | 
|  | if (!ConstantFP::isValueValidForType($1, $2)) | 
|  | GEN_ERROR("Floating point constant invalid for type!!"); | 
|  | $$ = ConstantFP::get($1, $2); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | ConstExpr: CAST '(' ConstVal TO Types ')' { | 
|  | if (!$3->getType()->isFirstClassType()) | 
|  | GEN_ERROR("cast constant expression from a non-primitive type: '" + | 
|  | $3->getType()->getDescription() + "'!"); | 
|  | if (!$5->get()->isFirstClassType()) | 
|  | GEN_ERROR("cast constant expression to a non-primitive type: '" + | 
|  | $5->get()->getDescription() + "'!"); | 
|  | $$ = ConstantExpr::getCast($3, $5->get()); | 
|  | delete $5; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | GETELEMENTPTR '(' ConstVal IndexList ')' { | 
|  | if (!isa<PointerType>($3->getType())) | 
|  | GEN_ERROR("GetElementPtr requires a pointer operand!"); | 
|  |  | 
|  | // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte struct | 
|  | // indices to uint struct indices for compatibility. | 
|  | generic_gep_type_iterator<std::vector<Value*>::iterator> | 
|  | GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()), | 
|  | GTE = gep_type_end($3->getType(), $4->begin(), $4->end()); | 
|  | for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI) | 
|  | if (isa<StructType>(*GTI))        // Only change struct indices | 
|  | if (ConstantInt *CUI = dyn_cast<ConstantInt>((*$4)[i])) | 
|  | if (CUI->getType() == Type::UByteTy) | 
|  | (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy); | 
|  |  | 
|  | const Type *IdxTy = | 
|  | GetElementPtrInst::getIndexedType($3->getType(), *$4, true); | 
|  | if (!IdxTy) | 
|  | GEN_ERROR("Index list invalid for constant getelementptr!"); | 
|  |  | 
|  | std::vector<Constant*> IdxVec; | 
|  | for (unsigned i = 0, e = $4->size(); i != e; ++i) | 
|  | if (Constant *C = dyn_cast<Constant>((*$4)[i])) | 
|  | IdxVec.push_back(C); | 
|  | else | 
|  | GEN_ERROR("Indices to constant getelementptr must be constants!"); | 
|  |  | 
|  | delete $4; | 
|  |  | 
|  | $$ = ConstantExpr::getGetElementPtr($3, IdxVec); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { | 
|  | if ($3->getType() != Type::BoolTy) | 
|  | GEN_ERROR("Select condition must be of boolean type!"); | 
|  | if ($5->getType() != $7->getType()) | 
|  | GEN_ERROR("Select operand types must match!"); | 
|  | $$ = ConstantExpr::getSelect($3, $5, $7); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ArithmeticOps '(' ConstVal ',' ConstVal ')' { | 
|  | if ($3->getType() != $5->getType()) | 
|  | GEN_ERROR("Binary operator types must match!"); | 
|  | // First, make sure we're dealing with the right opcode by upgrading from | 
|  | // obsolete versions. | 
|  | sanitizeOpCode($1,$3->getType()); | 
|  | CHECK_FOR_ERROR; | 
|  |  | 
|  | // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs. | 
|  | // To retain backward compatibility with these early compilers, we emit a | 
|  | // cast to the appropriate integer type automatically if we are in the | 
|  | // broken case.  See PR424 for more information. | 
|  | if (!isa<PointerType>($3->getType())) { | 
|  | $$ = ConstantExpr::get($1.opcode, $3, $5); | 
|  | } else { | 
|  | const Type *IntPtrTy = 0; | 
|  | switch (CurModule.CurrentModule->getPointerSize()) { | 
|  | case Module::Pointer32: IntPtrTy = Type::IntTy; break; | 
|  | case Module::Pointer64: IntPtrTy = Type::LongTy; break; | 
|  | default: GEN_ERROR("invalid pointer binary constant expr!"); | 
|  | } | 
|  | $$ = ConstantExpr::get($1.opcode, ConstantExpr::getCast($3, IntPtrTy), | 
|  | ConstantExpr::getCast($5, IntPtrTy)); | 
|  | $$ = ConstantExpr::getCast($$, $3->getType()); | 
|  | } | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | LogicalOps '(' ConstVal ',' ConstVal ')' { | 
|  | if ($3->getType() != $5->getType()) | 
|  | GEN_ERROR("Logical operator types must match!"); | 
|  | if (!$3->getType()->isIntegral()) { | 
|  | if (!isa<PackedType>($3->getType()) || | 
|  | !cast<PackedType>($3->getType())->getElementType()->isIntegral()) | 
|  | GEN_ERROR("Logical operator requires integral operands!"); | 
|  | } | 
|  | $$ = ConstantExpr::get($1.opcode, $3, $5); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SetCondOps '(' ConstVal ',' ConstVal ')' { | 
|  | if ($3->getType() != $5->getType()) | 
|  | GEN_ERROR("setcc operand types must match!"); | 
|  | $$ = ConstantExpr::get($1.opcode, $3, $5); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ShiftOps '(' ConstVal ',' ConstVal ')' { | 
|  | if ($5->getType() != Type::UByteTy) | 
|  | GEN_ERROR("Shift count for shift constant must be unsigned byte!"); | 
|  | if (!$3->getType()->isInteger()) | 
|  | GEN_ERROR("Shift constant expression requires integer operand!"); | 
|  | // Handle opcode upgrade situations | 
|  | sanitizeOpCode($1, $3->getType()); | 
|  | CHECK_FOR_ERROR; | 
|  | $$ = ConstantExpr::get($1.opcode, $3, $5); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' { | 
|  | if (!ExtractElementInst::isValidOperands($3, $5)) | 
|  | GEN_ERROR("Invalid extractelement operands!"); | 
|  | $$ = ConstantExpr::getExtractElement($3, $5); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' { | 
|  | if (!InsertElementInst::isValidOperands($3, $5, $7)) | 
|  | GEN_ERROR("Invalid insertelement operands!"); | 
|  | $$ = ConstantExpr::getInsertElement($3, $5, $7); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' { | 
|  | if (!ShuffleVectorInst::isValidOperands($3, $5, $7)) | 
|  | GEN_ERROR("Invalid shufflevector operands!"); | 
|  | $$ = ConstantExpr::getShuffleVector($3, $5, $7); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | // ConstVector - A list of comma separated constants. | 
|  | ConstVector : ConstVector ',' ConstVal { | 
|  | ($$ = $1)->push_back($3); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstVal { | 
|  | $$ = new std::vector<Constant*>(); | 
|  | $$->push_back($1); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | // GlobalType - Match either GLOBAL or CONSTANT for global declarations... | 
|  | GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }; | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             Rules to match Modules | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Module rule: Capture the result of parsing the whole file into a result | 
|  | // variable... | 
|  | // | 
|  | Module : FunctionList { | 
|  | $$ = ParserResult = $1; | 
|  | CurModule.ModuleDone(); | 
|  | CHECK_FOR_ERROR; | 
|  | }; | 
|  |  | 
|  | // FunctionList - A list of functions, preceeded by a constant pool. | 
|  | // | 
|  | FunctionList : FunctionList Function { | 
|  | $$ = $1; | 
|  | CurFun.FunctionDone(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FunctionList FunctionProto { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FunctionList MODULE ASM_TOK AsmBlock { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FunctionList IMPLEMENTATION { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool { | 
|  | $$ = CurModule.CurrentModule; | 
|  | // Emit an error if there are any unresolved types left. | 
|  | if (!CurModule.LateResolveTypes.empty()) { | 
|  | const ValID &DID = CurModule.LateResolveTypes.begin()->first; | 
|  | if (DID.Type == ValID::NameVal) { | 
|  | GEN_ERROR("Reference to an undefined type: '"+DID.getName() + "'"); | 
|  | } else { | 
|  | GEN_ERROR("Reference to an undefined type: #" + itostr(DID.Num)); | 
|  | } | 
|  | } | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // ConstPool - Constants with optional names assigned to them. | 
|  | ConstPool : ConstPool OptAssign TYPE TypesV { | 
|  | // Eagerly resolve types.  This is not an optimization, this is a | 
|  | // requirement that is due to the fact that we could have this: | 
|  | // | 
|  | // %list = type { %list * } | 
|  | // %list = type { %list * }    ; repeated type decl | 
|  | // | 
|  | // If types are not resolved eagerly, then the two types will not be | 
|  | // determined to be the same type! | 
|  | // | 
|  | ResolveTypeTo($2, *$4); | 
|  |  | 
|  | if (!setTypeName(*$4, $2) && !$2) { | 
|  | CHECK_FOR_ERROR | 
|  | // If this is a named type that is not a redefinition, add it to the slot | 
|  | // table. | 
|  | CurModule.Types.push_back(*$4); | 
|  | } | 
|  |  | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool FunctionProto {       // Function prototypes can be in const pool | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool MODULE ASM_TOK AsmBlock {  // Asm blocks can be in the const pool | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool OptAssign OptLinkage GlobalType ConstVal { | 
|  | if ($5 == 0) | 
|  | GEN_ERROR("Global value initializer is not a constant!"); | 
|  | CurGV = ParseGlobalVariable($2, $3, $4, $5->getType(), $5); | 
|  | CHECK_FOR_ERROR | 
|  | } GlobalVarAttributes { | 
|  | CurGV = 0; | 
|  | } | 
|  | | ConstPool OptAssign EXTERNAL GlobalType Types { | 
|  | CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, *$5, 0); | 
|  | CHECK_FOR_ERROR | 
|  | delete $5; | 
|  | } GlobalVarAttributes { | 
|  | CurGV = 0; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool OptAssign DLLIMPORT GlobalType Types { | 
|  | CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, *$5, 0); | 
|  | CHECK_FOR_ERROR | 
|  | delete $5; | 
|  | } GlobalVarAttributes { | 
|  | CurGV = 0; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool OptAssign EXTERN_WEAK GlobalType Types { | 
|  | CurGV = | 
|  | ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, *$5, 0); | 
|  | CHECK_FOR_ERROR | 
|  | delete $5; | 
|  | } GlobalVarAttributes { | 
|  | CurGV = 0; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool TARGET TargetDefinition { | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstPool DEPLIBS '=' LibrariesDefinition { | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /* empty: end of list */ { | 
|  | }; | 
|  |  | 
|  |  | 
|  | AsmBlock : STRINGCONSTANT { | 
|  | const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm(); | 
|  | char *EndStr = UnEscapeLexed($1, true); | 
|  | std::string NewAsm($1, EndStr); | 
|  | free($1); | 
|  |  | 
|  | if (AsmSoFar.empty()) | 
|  | CurModule.CurrentModule->setModuleInlineAsm(NewAsm); | 
|  | else | 
|  | CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | BigOrLittle : BIG    { $$ = Module::BigEndian; }; | 
|  | BigOrLittle : LITTLE { $$ = Module::LittleEndian; }; | 
|  |  | 
|  | TargetDefinition : ENDIAN '=' BigOrLittle { | 
|  | CurModule.CurrentModule->setEndianness($3); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | POINTERSIZE '=' EUINT64VAL { | 
|  | if ($3 == 32) | 
|  | CurModule.CurrentModule->setPointerSize(Module::Pointer32); | 
|  | else if ($3 == 64) | 
|  | CurModule.CurrentModule->setPointerSize(Module::Pointer64); | 
|  | else | 
|  | GEN_ERROR("Invalid pointer size: '" + utostr($3) + "'!"); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | TRIPLE '=' STRINGCONSTANT { | 
|  | CurModule.CurrentModule->setTargetTriple($3); | 
|  | free($3); | 
|  | } | 
|  | | DATALAYOUT '=' STRINGCONSTANT { | 
|  | CurModule.CurrentModule->setDataLayout($3); | 
|  | free($3); | 
|  | }; | 
|  |  | 
|  | LibrariesDefinition : '[' LibList ']'; | 
|  |  | 
|  | LibList : LibList ',' STRINGCONSTANT { | 
|  | CurModule.CurrentModule->addLibrary($3); | 
|  | free($3); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | STRINGCONSTANT { | 
|  | CurModule.CurrentModule->addLibrary($1); | 
|  | free($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /* empty: end of list */ { | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | ; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                       Rules to match Function Headers | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Name : VAR_ID | STRINGCONSTANT; | 
|  | OptName : Name | /*empty*/ { $$ = 0; }; | 
|  |  | 
|  | ArgVal : Types OptName { | 
|  | if (*$1 == Type::VoidTy) | 
|  | GEN_ERROR("void typed arguments are invalid!"); | 
|  | $$ = new std::pair<PATypeHolder*, char*>($1, $2); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | ArgListH : ArgListH ',' ArgVal { | 
|  | $$ = $1; | 
|  | $1->push_back(*$3); | 
|  | delete $3; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ArgVal { | 
|  | $$ = new std::vector<std::pair<PATypeHolder*,char*> >(); | 
|  | $$->push_back(*$1); | 
|  | delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | ArgList : ArgListH { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ArgListH ',' DOTDOTDOT { | 
|  | $$ = $1; | 
|  | $$->push_back(std::pair<PATypeHolder*, | 
|  | char*>(new PATypeHolder(Type::VoidTy), 0)); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | DOTDOTDOT { | 
|  | $$ = new std::vector<std::pair<PATypeHolder*,char*> >(); | 
|  | $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0)); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /* empty */ { | 
|  | $$ = 0; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')' | 
|  | OptSection OptAlign { | 
|  | UnEscapeLexed($3); | 
|  | std::string FunctionName($3); | 
|  | free($3);  // Free strdup'd memory! | 
|  |  | 
|  | if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy) | 
|  | GEN_ERROR("LLVM functions cannot return aggregate types!"); | 
|  |  | 
|  | std::vector<const Type*> ParamTypeList; | 
|  | if ($5) {   // If there are arguments... | 
|  | for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin(); | 
|  | I != $5->end(); ++I) | 
|  | ParamTypeList.push_back(I->first->get()); | 
|  | } | 
|  |  | 
|  | bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; | 
|  | if (isVarArg) ParamTypeList.pop_back(); | 
|  |  | 
|  | const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg); | 
|  | const PointerType *PFT = PointerType::get(FT); | 
|  | delete $2; | 
|  |  | 
|  | ValID ID; | 
|  | if (!FunctionName.empty()) { | 
|  | ID = ValID::create((char*)FunctionName.c_str()); | 
|  | } else { | 
|  | ID = ValID::create((int)CurModule.Values[PFT].size()); | 
|  | } | 
|  |  | 
|  | Function *Fn = 0; | 
|  | // See if this function was forward referenced.  If so, recycle the object. | 
|  | if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) { | 
|  | // Move the function to the end of the list, from whereever it was | 
|  | // previously inserted. | 
|  | Fn = cast<Function>(FWRef); | 
|  | CurModule.CurrentModule->getFunctionList().remove(Fn); | 
|  | CurModule.CurrentModule->getFunctionList().push_back(Fn); | 
|  | } else if (!FunctionName.empty() &&     // Merge with an earlier prototype? | 
|  | (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) { | 
|  | // If this is the case, either we need to be a forward decl, or it needs | 
|  | // to be. | 
|  | if (!CurFun.isDeclare && !Fn->isExternal()) | 
|  | GEN_ERROR("Redefinition of function '" + FunctionName + "'!"); | 
|  |  | 
|  | // Make sure to strip off any argument names so we can't get conflicts. | 
|  | if (Fn->isExternal()) | 
|  | for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); | 
|  | AI != AE; ++AI) | 
|  | AI->setName(""); | 
|  | } else  {  // Not already defined? | 
|  | Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName, | 
|  | CurModule.CurrentModule); | 
|  |  | 
|  | InsertValue(Fn, CurModule.Values); | 
|  | } | 
|  |  | 
|  | CurFun.FunctionStart(Fn); | 
|  |  | 
|  | if (CurFun.isDeclare) { | 
|  | // If we have declaration, always overwrite linkage.  This will allow us to | 
|  | // correctly handle cases, when pointer to function is passed as argument to | 
|  | // another function. | 
|  | Fn->setLinkage(CurFun.Linkage); | 
|  | } | 
|  | Fn->setCallingConv($1); | 
|  | Fn->setAlignment($8); | 
|  | if ($7) { | 
|  | Fn->setSection($7); | 
|  | free($7); | 
|  | } | 
|  |  | 
|  | // Add all of the arguments we parsed to the function... | 
|  | if ($5) {                     // Is null if empty... | 
|  | if (isVarArg) {  // Nuke the last entry | 
|  | assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&& | 
|  | "Not a varargs marker!"); | 
|  | delete $5->back().first; | 
|  | $5->pop_back();  // Delete the last entry | 
|  | } | 
|  | Function::arg_iterator ArgIt = Fn->arg_begin(); | 
|  | for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin(); | 
|  | I != $5->end(); ++I, ++ArgIt) { | 
|  | delete I->first;                          // Delete the typeholder... | 
|  |  | 
|  | setValueName(ArgIt, I->second);           // Insert arg into symtab... | 
|  | CHECK_FOR_ERROR | 
|  | InsertValue(ArgIt); | 
|  | } | 
|  |  | 
|  | delete $5;                     // We're now done with the argument list | 
|  | } | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function | 
|  |  | 
|  | FunctionHeader : OptLinkage FunctionHeaderH BEGIN { | 
|  | $$ = CurFun.CurrentFunction; | 
|  |  | 
|  | // Make sure that we keep track of the linkage type even if there was a | 
|  | // previous "declare". | 
|  | $$->setLinkage($1); | 
|  | }; | 
|  |  | 
|  | END : ENDTOK | '}';                    // Allow end of '}' to end a function | 
|  |  | 
|  | Function : BasicBlockList END { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | FnDeclareLinkage: /*default*/ | | 
|  | DLLIMPORT   { CurFun.Linkage = GlobalValue::DLLImportLinkage; } | | 
|  | EXTERN_WEAK { CurFun.Linkage = GlobalValue::DLLImportLinkage; }; | 
|  |  | 
|  | FunctionProto : DECLARE { CurFun.isDeclare = true; } FnDeclareLinkage FunctionHeaderH { | 
|  | $$ = CurFun.CurrentFunction; | 
|  | CurFun.FunctionDone(); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Rules to match Basic Blocks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | OptSideEffect : /* empty */ { | 
|  | $$ = false; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SIDEEFFECT { | 
|  | $$ = true; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | ConstValueRef : ESINT64VAL {    // A reference to a direct constant | 
|  | $$ = ValID::create($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | EUINT64VAL { | 
|  | $$ = ValID::create($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FPVAL {                     // Perhaps it's an FP constant? | 
|  | $$ = ValID::create($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | TRUETOK { | 
|  | $$ = ValID::create(ConstantBool::getTrue()); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FALSETOK { | 
|  | $$ = ValID::create(ConstantBool::getFalse()); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | NULL_TOK { | 
|  | $$ = ValID::createNull(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | UNDEF { | 
|  | $$ = ValID::createUndef(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ZEROINITIALIZER {     // A vector zero constant. | 
|  | $$ = ValID::createZeroInit(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | '<' ConstVector '>' { // Nonempty unsized packed vector | 
|  | const Type *ETy = (*$2)[0]->getType(); | 
|  | int NumElements = $2->size(); | 
|  |  | 
|  | PackedType* pt = PackedType::get(ETy, NumElements); | 
|  | PATypeHolder* PTy = new PATypeHolder( | 
|  | HandleUpRefs( | 
|  | PackedType::get( | 
|  | ETy, | 
|  | NumElements) | 
|  | ) | 
|  | ); | 
|  |  | 
|  | // Verify all elements are correct type! | 
|  | for (unsigned i = 0; i < $2->size(); i++) { | 
|  | if (ETy != (*$2)[i]->getType()) | 
|  | GEN_ERROR("Element #" + utostr(i) + " is not of type '" + | 
|  | ETy->getDescription() +"' as required!\nIt is of type '" + | 
|  | (*$2)[i]->getType()->getDescription() + "'."); | 
|  | } | 
|  |  | 
|  | $$ = ValID::create(ConstantPacked::get(pt, *$2)); | 
|  | delete PTy; delete $2; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ConstExpr { | 
|  | $$ = ValID::create($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT { | 
|  | char *End = UnEscapeLexed($3, true); | 
|  | std::string AsmStr = std::string($3, End); | 
|  | End = UnEscapeLexed($5, true); | 
|  | std::string Constraints = std::string($5, End); | 
|  | $$ = ValID::createInlineAsm(AsmStr, Constraints, $2); | 
|  | free($3); | 
|  | free($5); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // SymbolicValueRef - Reference to one of two ways of symbolically refering to | 
|  | // another value. | 
|  | // | 
|  | SymbolicValueRef : INTVAL {  // Is it an integer reference...? | 
|  | $$ = ValID::create($1); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | Name {                   // Is it a named reference...? | 
|  | $$ = ValID::create($1); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // ValueRef - A reference to a definition... either constant or symbolic | 
|  | ValueRef : SymbolicValueRef | ConstValueRef; | 
|  |  | 
|  |  | 
|  | // ResolvedVal - a <type> <value> pair.  This is used only in cases where the | 
|  | // type immediately preceeds the value reference, and allows complex constant | 
|  | // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') | 
|  | ResolvedVal : Types ValueRef { | 
|  | $$ = getVal(*$1, $2); delete $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | BasicBlockList : BasicBlockList BasicBlock { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Basic blocks are terminated by branching instructions: | 
|  | // br, br/cc, switch, ret | 
|  | // | 
|  | BasicBlock : InstructionList OptAssign BBTerminatorInst  { | 
|  | setValueName($3, $2); | 
|  | CHECK_FOR_ERROR | 
|  | InsertValue($3); | 
|  |  | 
|  | $1->getInstList().push_back($3); | 
|  | InsertValue($1); | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | InstructionList : InstructionList Inst { | 
|  | $1->getInstList().push_back($2); | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /* empty */ { | 
|  | $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true); | 
|  | CHECK_FOR_ERROR | 
|  |  | 
|  | // Make sure to move the basic block to the correct location in the | 
|  | // function, instead of leaving it inserted wherever it was first | 
|  | // referenced. | 
|  | Function::BasicBlockListType &BBL = | 
|  | CurFun.CurrentFunction->getBasicBlockList(); | 
|  | BBL.splice(BBL.end(), BBL, $$); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | LABELSTR { | 
|  | $$ = CurBB = getBBVal(ValID::create($1), true); | 
|  | CHECK_FOR_ERROR | 
|  |  | 
|  | // Make sure to move the basic block to the correct location in the | 
|  | // function, instead of leaving it inserted wherever it was first | 
|  | // referenced. | 
|  | Function::BasicBlockListType &BBL = | 
|  | CurFun.CurrentFunction->getBasicBlockList(); | 
|  | BBL.splice(BBL.end(), BBL, $$); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | BBTerminatorInst : RET ResolvedVal {              // Return with a result... | 
|  | $$ = new ReturnInst($2); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | RET VOID {                                       // Return with no result... | 
|  | $$ = new ReturnInst(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | BR LABEL ValueRef {                         // Unconditional Branch... | 
|  | BasicBlock* tmpBB = getBBVal($3); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new BranchInst(tmpBB); | 
|  | }                                                  // Conditional Branch... | 
|  | | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { | 
|  | BasicBlock* tmpBBA = getBBVal($6); | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock* tmpBBB = getBBVal($9); | 
|  | CHECK_FOR_ERROR | 
|  | Value* tmpVal = getVal(Type::BoolTy, $3); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal); | 
|  | } | 
|  | | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { | 
|  | Value* tmpVal = getVal($2, $3); | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock* tmpBB = getBBVal($6); | 
|  | CHECK_FOR_ERROR | 
|  | SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size()); | 
|  | $$ = S; | 
|  |  | 
|  | std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(), | 
|  | E = $8->end(); | 
|  | for (; I != E; ++I) { | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first)) | 
|  | S->addCase(CI, I->second); | 
|  | else | 
|  | GEN_ERROR("Switch case is constant, but not a simple integer!"); | 
|  | } | 
|  | delete $8; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { | 
|  | Value* tmpVal = getVal($2, $3); | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock* tmpBB = getBBVal($6); | 
|  | CHECK_FOR_ERROR | 
|  | SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0); | 
|  | $$ = S; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')' | 
|  | TO LABEL ValueRef UNWIND LABEL ValueRef { | 
|  | const PointerType *PFTy; | 
|  | const FunctionType *Ty; | 
|  |  | 
|  | if (!(PFTy = dyn_cast<PointerType>($3->get())) || | 
|  | !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { | 
|  | // Pull out the types of all of the arguments... | 
|  | std::vector<const Type*> ParamTypes; | 
|  | if ($6) { | 
|  | for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end(); | 
|  | I != E; ++I) | 
|  | ParamTypes.push_back((*I)->getType()); | 
|  | } | 
|  |  | 
|  | bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; | 
|  | if (isVarArg) ParamTypes.pop_back(); | 
|  |  | 
|  | Ty = FunctionType::get($3->get(), ParamTypes, isVarArg); | 
|  | PFTy = PointerType::get(Ty); | 
|  | } | 
|  |  | 
|  | Value *V = getVal(PFTy, $4);   // Get the function we're calling... | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock *Normal = getBBVal($10); | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock *Except = getBBVal($13); | 
|  | CHECK_FOR_ERROR | 
|  |  | 
|  | // Create the call node... | 
|  | if (!$6) {                                   // Has no arguments? | 
|  | $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>()); | 
|  | } else {                                     // Has arguments? | 
|  | // Loop through FunctionType's arguments and ensure they are specified | 
|  | // correctly! | 
|  | // | 
|  | FunctionType::param_iterator I = Ty->param_begin(); | 
|  | FunctionType::param_iterator E = Ty->param_end(); | 
|  | std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end(); | 
|  |  | 
|  | for (; ArgI != ArgE && I != E; ++ArgI, ++I) | 
|  | if ((*ArgI)->getType() != *I) | 
|  | GEN_ERROR("Parameter " +(*ArgI)->getName()+ " is not of type '" + | 
|  | (*I)->getDescription() + "'!"); | 
|  |  | 
|  | if (I != E || (ArgI != ArgE && !Ty->isVarArg())) | 
|  | GEN_ERROR("Invalid number of parameters detected!"); | 
|  |  | 
|  | $$ = new InvokeInst(V, Normal, Except, *$6); | 
|  | } | 
|  | cast<InvokeInst>($$)->setCallingConv($2); | 
|  |  | 
|  | delete $3; | 
|  | delete $6; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | UNWIND { | 
|  | $$ = new UnwindInst(); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | UNREACHABLE { | 
|  | $$ = new UnreachableInst(); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { | 
|  | $$ = $1; | 
|  | Constant *V = cast<Constant>(getValNonImprovising($2, $3)); | 
|  | CHECK_FOR_ERROR | 
|  | if (V == 0) | 
|  | GEN_ERROR("May only switch on a constant pool value!"); | 
|  |  | 
|  | BasicBlock* tmpBB = getBBVal($6); | 
|  | CHECK_FOR_ERROR | 
|  | $$->push_back(std::make_pair(V, tmpBB)); | 
|  | } | 
|  | | IntType ConstValueRef ',' LABEL ValueRef { | 
|  | $$ = new std::vector<std::pair<Constant*, BasicBlock*> >(); | 
|  | Constant *V = cast<Constant>(getValNonImprovising($1, $2)); | 
|  | CHECK_FOR_ERROR | 
|  |  | 
|  | if (V == 0) | 
|  | GEN_ERROR("May only switch on a constant pool value!"); | 
|  |  | 
|  | BasicBlock* tmpBB = getBBVal($5); | 
|  | CHECK_FOR_ERROR | 
|  | $$->push_back(std::make_pair(V, tmpBB)); | 
|  | }; | 
|  |  | 
|  | Inst : OptAssign InstVal { | 
|  | // Is this definition named?? if so, assign the name... | 
|  | setValueName($2, $1); | 
|  | CHECK_FOR_ERROR | 
|  | InsertValue($2); | 
|  | $$ = $2; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes | 
|  | $$ = new std::list<std::pair<Value*, BasicBlock*> >(); | 
|  | Value* tmpVal = getVal(*$1, $3); | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock* tmpBB = getBBVal($5); | 
|  | CHECK_FOR_ERROR | 
|  | $$->push_back(std::make_pair(tmpVal, tmpBB)); | 
|  | delete $1; | 
|  | } | 
|  | | PHIList ',' '[' ValueRef ',' ValueRef ']' { | 
|  | $$ = $1; | 
|  | Value* tmpVal = getVal($1->front().first->getType(), $4); | 
|  | CHECK_FOR_ERROR | 
|  | BasicBlock* tmpBB = getBBVal($6); | 
|  | CHECK_FOR_ERROR | 
|  | $1->push_back(std::make_pair(tmpVal, tmpBB)); | 
|  | }; | 
|  |  | 
|  |  | 
|  | ValueRefList : ResolvedVal {    // Used for call statements, and memory insts... | 
|  | $$ = new std::vector<Value*>(); | 
|  | $$->push_back($1); | 
|  | } | 
|  | | ValueRefList ',' ResolvedVal { | 
|  | $$ = $1; | 
|  | $1->push_back($3); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | // ValueRefListE - Just like ValueRefList, except that it may also be empty! | 
|  | ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }; | 
|  |  | 
|  | OptTailCall : TAIL CALL { | 
|  | $$ = true; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | CALL { | 
|  | $$ = false; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | InstVal : ArithmeticOps Types ValueRef ',' ValueRef { | 
|  | if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && | 
|  | !isa<PackedType>((*$2).get())) | 
|  | GEN_ERROR( | 
|  | "Arithmetic operator requires integer, FP, or packed operands!"); | 
|  | if (isa<PackedType>((*$2).get()) && | 
|  | ($1.opcode == Instruction::URem || | 
|  | $1.opcode == Instruction::SRem || | 
|  | $1.opcode == Instruction::FRem)) | 
|  | GEN_ERROR("U/S/FRem not supported on packed types!"); | 
|  | // Upgrade the opcode from obsolete versions before we do anything with it. | 
|  | sanitizeOpCode($1,*$2); | 
|  | CHECK_FOR_ERROR; | 
|  | Value* val1 = getVal(*$2, $3); | 
|  | CHECK_FOR_ERROR | 
|  | Value* val2 = getVal(*$2, $5); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = BinaryOperator::create($1.opcode, val1, val2); | 
|  | if ($$ == 0) | 
|  | GEN_ERROR("binary operator returned null!"); | 
|  | delete $2; | 
|  | } | 
|  | | LogicalOps Types ValueRef ',' ValueRef { | 
|  | if (!(*$2)->isIntegral()) { | 
|  | if (!isa<PackedType>($2->get()) || | 
|  | !cast<PackedType>($2->get())->getElementType()->isIntegral()) | 
|  | GEN_ERROR("Logical operator requires integral operands!"); | 
|  | } | 
|  | Value* tmpVal1 = getVal(*$2, $3); | 
|  | CHECK_FOR_ERROR | 
|  | Value* tmpVal2 = getVal(*$2, $5); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = BinaryOperator::create($1.opcode, tmpVal1, tmpVal2); | 
|  | if ($$ == 0) | 
|  | GEN_ERROR("binary operator returned null!"); | 
|  | delete $2; | 
|  | } | 
|  | | SetCondOps Types ValueRef ',' ValueRef { | 
|  | if(isa<PackedType>((*$2).get())) { | 
|  | GEN_ERROR( | 
|  | "PackedTypes currently not supported in setcc instructions!"); | 
|  | } | 
|  | Value* tmpVal1 = getVal(*$2, $3); | 
|  | CHECK_FOR_ERROR | 
|  | Value* tmpVal2 = getVal(*$2, $5); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new SetCondInst($1.opcode, tmpVal1, tmpVal2); | 
|  | if ($$ == 0) | 
|  | GEN_ERROR("binary operator returned null!"); | 
|  | delete $2; | 
|  | } | 
|  | | NOT ResolvedVal { | 
|  | std::cerr << "WARNING: Use of eliminated 'not' instruction:" | 
|  | << " Replacing with 'xor'.\n"; | 
|  |  | 
|  | Value *Ones = ConstantIntegral::getAllOnesValue($2->getType()); | 
|  | if (Ones == 0) | 
|  | GEN_ERROR("Expected integral type for not instruction!"); | 
|  |  | 
|  | $$ = BinaryOperator::create(Instruction::Xor, $2, Ones); | 
|  | if ($$ == 0) | 
|  | GEN_ERROR("Could not create a xor instruction!"); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ShiftOps ResolvedVal ',' ResolvedVal { | 
|  | if ($4->getType() != Type::UByteTy) | 
|  | GEN_ERROR("Shift amount must be ubyte!"); | 
|  | if (!$2->getType()->isInteger()) | 
|  | GEN_ERROR("Shift constant expression requires integer operand!"); | 
|  | // Handle opcode upgrade situations | 
|  | sanitizeOpCode($1, $2->getType()); | 
|  | CHECK_FOR_ERROR; | 
|  | $$ = new ShiftInst($1.opcode, $2, $4); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | CAST ResolvedVal TO Types { | 
|  | if (!$4->get()->isFirstClassType()) | 
|  | GEN_ERROR("cast instruction to a non-primitive type: '" + | 
|  | $4->get()->getDescription() + "'!"); | 
|  | $$ = new CastInst($2, *$4); | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { | 
|  | if ($2->getType() != Type::BoolTy) | 
|  | GEN_ERROR("select condition must be boolean!"); | 
|  | if ($4->getType() != $6->getType()) | 
|  | GEN_ERROR("select value types should match!"); | 
|  | $$ = new SelectInst($2, $4, $6); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | VAARG ResolvedVal ',' Types { | 
|  | NewVarArgs = true; | 
|  | $$ = new VAArgInst($2, *$4); | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | VAARG_old ResolvedVal ',' Types { | 
|  | ObsoleteVarArgs = true; | 
|  | const Type* ArgTy = $2->getType(); | 
|  | Function* NF = CurModule.CurrentModule-> | 
|  | getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0); | 
|  |  | 
|  | //b = vaarg a, t -> | 
|  | //foo = alloca 1 of t | 
|  | //bar = vacopy a | 
|  | //store bar -> foo | 
|  | //b = vaarg foo, t | 
|  | AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix"); | 
|  | CurBB->getInstList().push_back(foo); | 
|  | CallInst* bar = new CallInst(NF, $2); | 
|  | CurBB->getInstList().push_back(bar); | 
|  | CurBB->getInstList().push_back(new StoreInst(bar, foo)); | 
|  | $$ = new VAArgInst(foo, *$4); | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | VANEXT_old ResolvedVal ',' Types { | 
|  | ObsoleteVarArgs = true; | 
|  | const Type* ArgTy = $2->getType(); | 
|  | Function* NF = CurModule.CurrentModule-> | 
|  | getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0); | 
|  |  | 
|  | //b = vanext a, t -> | 
|  | //foo = alloca 1 of t | 
|  | //bar = vacopy a | 
|  | //store bar -> foo | 
|  | //tmp = vaarg foo, t | 
|  | //b = load foo | 
|  | AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix"); | 
|  | CurBB->getInstList().push_back(foo); | 
|  | CallInst* bar = new CallInst(NF, $2); | 
|  | CurBB->getInstList().push_back(bar); | 
|  | CurBB->getInstList().push_back(new StoreInst(bar, foo)); | 
|  | Instruction* tmp = new VAArgInst(foo, *$4); | 
|  | CurBB->getInstList().push_back(tmp); | 
|  | $$ = new LoadInst(foo); | 
|  | delete $4; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | EXTRACTELEMENT ResolvedVal ',' ResolvedVal { | 
|  | if (!ExtractElementInst::isValidOperands($2, $4)) | 
|  | GEN_ERROR("Invalid extractelement operands!"); | 
|  | $$ = new ExtractElementInst($2, $4); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal { | 
|  | if (!InsertElementInst::isValidOperands($2, $4, $6)) | 
|  | GEN_ERROR("Invalid insertelement operands!"); | 
|  | $$ = new InsertElementInst($2, $4, $6); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal { | 
|  | if (!ShuffleVectorInst::isValidOperands($2, $4, $6)) | 
|  | GEN_ERROR("Invalid shufflevector operands!"); | 
|  | $$ = new ShuffleVectorInst($2, $4, $6); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | PHI_TOK PHIList { | 
|  | const Type *Ty = $2->front().first->getType(); | 
|  | if (!Ty->isFirstClassType()) | 
|  | GEN_ERROR("PHI node operands must be of first class type!"); | 
|  | $$ = new PHINode(Ty); | 
|  | ((PHINode*)$$)->reserveOperandSpace($2->size()); | 
|  | while ($2->begin() != $2->end()) { | 
|  | if ($2->front().first->getType() != Ty) | 
|  | GEN_ERROR("All elements of a PHI node must be of the same type!"); | 
|  | cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second); | 
|  | $2->pop_front(); | 
|  | } | 
|  | delete $2;  // Free the list... | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')'  { | 
|  | const PointerType *PFTy; | 
|  | const FunctionType *Ty; | 
|  |  | 
|  | if (!(PFTy = dyn_cast<PointerType>($3->get())) || | 
|  | !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { | 
|  | // Pull out the types of all of the arguments... | 
|  | std::vector<const Type*> ParamTypes; | 
|  | if ($6) { | 
|  | for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end(); | 
|  | I != E; ++I) | 
|  | ParamTypes.push_back((*I)->getType()); | 
|  | } | 
|  |  | 
|  | bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; | 
|  | if (isVarArg) ParamTypes.pop_back(); | 
|  |  | 
|  | if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy) | 
|  | GEN_ERROR("LLVM functions cannot return aggregate types!"); | 
|  |  | 
|  | Ty = FunctionType::get($3->get(), ParamTypes, isVarArg); | 
|  | PFTy = PointerType::get(Ty); | 
|  | } | 
|  |  | 
|  | Value *V = getVal(PFTy, $4);   // Get the function we're calling... | 
|  | CHECK_FOR_ERROR | 
|  |  | 
|  | // Create the call node... | 
|  | if (!$6) {                                   // Has no arguments? | 
|  | // Make sure no arguments is a good thing! | 
|  | if (Ty->getNumParams() != 0) | 
|  | GEN_ERROR("No arguments passed to a function that " | 
|  | "expects arguments!"); | 
|  |  | 
|  | $$ = new CallInst(V, std::vector<Value*>()); | 
|  | } else {                                     // Has arguments? | 
|  | // Loop through FunctionType's arguments and ensure they are specified | 
|  | // correctly! | 
|  | // | 
|  | FunctionType::param_iterator I = Ty->param_begin(); | 
|  | FunctionType::param_iterator E = Ty->param_end(); | 
|  | std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end(); | 
|  |  | 
|  | for (; ArgI != ArgE && I != E; ++ArgI, ++I) | 
|  | if ((*ArgI)->getType() != *I) | 
|  | GEN_ERROR("Parameter " +(*ArgI)->getName()+ " is not of type '" + | 
|  | (*I)->getDescription() + "'!"); | 
|  |  | 
|  | if (I != E || (ArgI != ArgE && !Ty->isVarArg())) | 
|  | GEN_ERROR("Invalid number of parameters detected!"); | 
|  |  | 
|  | $$ = new CallInst(V, *$6); | 
|  | } | 
|  | cast<CallInst>($$)->setTailCall($1); | 
|  | cast<CallInst>($$)->setCallingConv($2); | 
|  | delete $3; | 
|  | delete $6; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | MemoryInst { | 
|  | $$ = $1; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  | // IndexList - List of indices for GEP based instructions... | 
|  | IndexList : ',' ValueRefList { | 
|  | $$ = $2; | 
|  | CHECK_FOR_ERROR | 
|  | } | /* empty */ { | 
|  | $$ = new std::vector<Value*>(); | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  | OptVolatile : VOLATILE { | 
|  | $$ = true; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | /* empty */ { | 
|  | $$ = false; | 
|  | CHECK_FOR_ERROR | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | MemoryInst : MALLOC Types OptCAlign { | 
|  | $$ = new MallocInst(*$2, 0, $3); | 
|  | delete $2; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | MALLOC Types ',' UINT ValueRef OptCAlign { | 
|  | Value* tmpVal = getVal($4, $5); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new MallocInst(*$2, tmpVal, $6); | 
|  | delete $2; | 
|  | } | 
|  | | ALLOCA Types OptCAlign { | 
|  | $$ = new AllocaInst(*$2, 0, $3); | 
|  | delete $2; | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  | | ALLOCA Types ',' UINT ValueRef OptCAlign { | 
|  | Value* tmpVal = getVal($4, $5); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new AllocaInst(*$2, tmpVal, $6); | 
|  | delete $2; | 
|  | } | 
|  | | FREE ResolvedVal { | 
|  | if (!isa<PointerType>($2->getType())) | 
|  | GEN_ERROR("Trying to free nonpointer type " + | 
|  | $2->getType()->getDescription() + "!"); | 
|  | $$ = new FreeInst($2); | 
|  | CHECK_FOR_ERROR | 
|  | } | 
|  |  | 
|  | | OptVolatile LOAD Types ValueRef { | 
|  | if (!isa<PointerType>($3->get())) | 
|  | GEN_ERROR("Can't load from nonpointer type: " + | 
|  | (*$3)->getDescription()); | 
|  | if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType()) | 
|  | GEN_ERROR("Can't load from pointer of non-first-class type: " + | 
|  | (*$3)->getDescription()); | 
|  | Value* tmpVal = getVal(*$3, $4); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new LoadInst(tmpVal, "", $1); | 
|  | delete $3; | 
|  | } | 
|  | | OptVolatile STORE ResolvedVal ',' Types ValueRef { | 
|  | const PointerType *PT = dyn_cast<PointerType>($5->get()); | 
|  | if (!PT) | 
|  | GEN_ERROR("Can't store to a nonpointer type: " + | 
|  | (*$5)->getDescription()); | 
|  | const Type *ElTy = PT->getElementType(); | 
|  | if (ElTy != $3->getType()) | 
|  | GEN_ERROR("Can't store '" + $3->getType()->getDescription() + | 
|  | "' into space of type '" + ElTy->getDescription() + "'!"); | 
|  |  | 
|  | Value* tmpVal = getVal(*$5, $6); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new StoreInst($3, tmpVal, $1); | 
|  | delete $5; | 
|  | } | 
|  | | GETELEMENTPTR Types ValueRef IndexList { | 
|  | if (!isa<PointerType>($2->get())) | 
|  | GEN_ERROR("getelementptr insn requires pointer operand!"); | 
|  |  | 
|  | // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte struct | 
|  | // indices to uint struct indices for compatibility. | 
|  | generic_gep_type_iterator<std::vector<Value*>::iterator> | 
|  | GTI = gep_type_begin($2->get(), $4->begin(), $4->end()), | 
|  | GTE = gep_type_end($2->get(), $4->begin(), $4->end()); | 
|  | for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI) | 
|  | if (isa<StructType>(*GTI))        // Only change struct indices | 
|  | if (ConstantInt *CUI = dyn_cast<ConstantInt>((*$4)[i])) | 
|  | if (CUI->getType() == Type::UByteTy) | 
|  | (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy); | 
|  |  | 
|  | if (!GetElementPtrInst::getIndexedType(*$2, *$4, true)) | 
|  | GEN_ERROR("Invalid getelementptr indices for type '" + | 
|  | (*$2)->getDescription()+ "'!"); | 
|  | Value* tmpVal = getVal(*$2, $3); | 
|  | CHECK_FOR_ERROR | 
|  | $$ = new GetElementPtrInst(tmpVal, *$4); | 
|  | delete $2; | 
|  | delete $4; | 
|  | }; | 
|  |  | 
|  |  | 
|  | %% | 
|  |  | 
|  | void llvm::GenerateError(const std::string &message, int LineNo) { | 
|  | if (LineNo == -1) LineNo = llvmAsmlineno; | 
|  | // TODO: column number in exception | 
|  | if (TheParseError) | 
|  | TheParseError->setError(CurFilename, message, LineNo); | 
|  | TriggerError = 1; | 
|  | } | 
|  |  | 
|  | int yyerror(const char *ErrorMsg) { | 
|  | std::string where | 
|  | = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename) | 
|  | + ":" + utostr((unsigned) llvmAsmlineno) + ": "; | 
|  | std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading "; | 
|  | if (yychar == YYEMPTY || yychar == 0) | 
|  | errMsg += "end-of-file."; | 
|  | else | 
|  | errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'"; | 
|  | GenerateError(errMsg); | 
|  | return 0; | 
|  | } |