|  | //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the pass which converts floating point instructions from | 
|  | // virtual registers into register stack instructions.  This pass uses live | 
|  | // variable information to indicate where the FPn registers are used and their | 
|  | // lifetimes. | 
|  | // | 
|  | // This pass is hampered by the lack of decent CFG manipulation routines for | 
|  | // machine code.  In particular, this wants to be able to split critical edges | 
|  | // as necessary, traverse the machine basic block CFG in depth-first order, and | 
|  | // allow there to be multiple machine basic blocks for each LLVM basicblock | 
|  | // (needed for critical edge splitting). | 
|  | // | 
|  | // In particular, this pass currently barfs on critical edges.  Because of this, | 
|  | // it requires the instruction selector to insert FP_REG_KILL instructions on | 
|  | // the exits of any basic block that has critical edges going from it, or which | 
|  | // branch to a critical basic block. | 
|  | // | 
|  | // FIXME: this is not implemented yet.  The stackifier pass only works on local | 
|  | // basic blocks. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "x86-codegen" | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumFXCH, "Number of fxch instructions inserted"); | 
|  | STATISTIC(NumFP  , "Number of floating point instructions"); | 
|  |  | 
|  | namespace { | 
|  | struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass { | 
|  | static char ID; | 
|  | FPS() : MachineFunctionPass(&ID) {} | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addPreservedID(MachineLoopInfoID); | 
|  | AU.addPreservedID(MachineDominatorsID); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &MF); | 
|  |  | 
|  | virtual const char *getPassName() const { return "X86 FP Stackifier"; } | 
|  |  | 
|  | private: | 
|  | const TargetInstrInfo *TII; // Machine instruction info. | 
|  | MachineBasicBlock *MBB;     // Current basic block | 
|  | unsigned Stack[8];          // FP<n> Registers in each stack slot... | 
|  | unsigned RegMap[8];         // Track which stack slot contains each register | 
|  | unsigned StackTop;          // The current top of the FP stack. | 
|  |  | 
|  | void dumpStack() const { | 
|  | cerr << "Stack contents:"; | 
|  | for (unsigned i = 0; i != StackTop; ++i) { | 
|  | cerr << " FP" << Stack[i]; | 
|  | assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); | 
|  | } | 
|  | cerr << "\n"; | 
|  | } | 
|  | private: | 
|  | /// isStackEmpty - Return true if the FP stack is empty. | 
|  | bool isStackEmpty() const { | 
|  | return StackTop == 0; | 
|  | } | 
|  |  | 
|  | // getSlot - Return the stack slot number a particular register number is | 
|  | // in. | 
|  | unsigned getSlot(unsigned RegNo) const { | 
|  | assert(RegNo < 8 && "Regno out of range!"); | 
|  | return RegMap[RegNo]; | 
|  | } | 
|  |  | 
|  | // getStackEntry - Return the X86::FP<n> register in register ST(i). | 
|  | unsigned getStackEntry(unsigned STi) const { | 
|  | assert(STi < StackTop && "Access past stack top!"); | 
|  | return Stack[StackTop-1-STi]; | 
|  | } | 
|  |  | 
|  | // getSTReg - Return the X86::ST(i) register which contains the specified | 
|  | // FP<RegNo> register. | 
|  | unsigned getSTReg(unsigned RegNo) const { | 
|  | return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0; | 
|  | } | 
|  |  | 
|  | // pushReg - Push the specified FP<n> register onto the stack. | 
|  | void pushReg(unsigned Reg) { | 
|  | assert(Reg < 8 && "Register number out of range!"); | 
|  | assert(StackTop < 8 && "Stack overflow!"); | 
|  | Stack[StackTop] = Reg; | 
|  | RegMap[Reg] = StackTop++; | 
|  | } | 
|  |  | 
|  | bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } | 
|  | void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { | 
|  | MachineInstr *MI = I; | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | if (isAtTop(RegNo)) return; | 
|  |  | 
|  | unsigned STReg = getSTReg(RegNo); | 
|  | unsigned RegOnTop = getStackEntry(0); | 
|  |  | 
|  | // Swap the slots the regs are in. | 
|  | std::swap(RegMap[RegNo], RegMap[RegOnTop]); | 
|  |  | 
|  | // Swap stack slot contents. | 
|  | assert(RegMap[RegOnTop] < StackTop); | 
|  | std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); | 
|  |  | 
|  | // Emit an fxch to update the runtime processors version of the state. | 
|  | BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); | 
|  | NumFXCH++; | 
|  | } | 
|  |  | 
|  | void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { | 
|  | DebugLoc dl = I->getDebugLoc(); | 
|  | unsigned STReg = getSTReg(RegNo); | 
|  | pushReg(AsReg);   // New register on top of stack | 
|  |  | 
|  | BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); | 
|  | } | 
|  |  | 
|  | // popStackAfter - Pop the current value off of the top of the FP stack | 
|  | // after the specified instruction. | 
|  | void popStackAfter(MachineBasicBlock::iterator &I); | 
|  |  | 
|  | // freeStackSlotAfter - Free the specified register from the register stack, | 
|  | // so that it is no longer in a register.  If the register is currently at | 
|  | // the top of the stack, we just pop the current instruction, otherwise we | 
|  | // store the current top-of-stack into the specified slot, then pop the top | 
|  | // of stack. | 
|  | void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); | 
|  |  | 
|  | bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); | 
|  |  | 
|  | void handleZeroArgFP(MachineBasicBlock::iterator &I); | 
|  | void handleOneArgFP(MachineBasicBlock::iterator &I); | 
|  | void handleOneArgFPRW(MachineBasicBlock::iterator &I); | 
|  | void handleTwoArgFP(MachineBasicBlock::iterator &I); | 
|  | void handleCompareFP(MachineBasicBlock::iterator &I); | 
|  | void handleCondMovFP(MachineBasicBlock::iterator &I); | 
|  | void handleSpecialFP(MachineBasicBlock::iterator &I); | 
|  | }; | 
|  | char FPS::ID = 0; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } | 
|  |  | 
|  | /// getFPReg - Return the X86::FPx register number for the specified operand. | 
|  | /// For example, this returns 3 for X86::FP3. | 
|  | static unsigned getFPReg(const MachineOperand &MO) { | 
|  | assert(MO.isReg() && "Expected an FP register!"); | 
|  | unsigned Reg = MO.getReg(); | 
|  | assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); | 
|  | return Reg - X86::FP0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP | 
|  | /// register references into FP stack references. | 
|  | /// | 
|  | bool FPS::runOnMachineFunction(MachineFunction &MF) { | 
|  | // We only need to run this pass if there are any FP registers used in this | 
|  | // function.  If it is all integer, there is nothing for us to do! | 
|  | bool FPIsUsed = false; | 
|  |  | 
|  | assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); | 
|  | for (unsigned i = 0; i <= 6; ++i) | 
|  | if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { | 
|  | FPIsUsed = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Early exit. | 
|  | if (!FPIsUsed) return false; | 
|  |  | 
|  | TII = MF.getTarget().getInstrInfo(); | 
|  | StackTop = 0; | 
|  |  | 
|  | // Process the function in depth first order so that we process at least one | 
|  | // of the predecessors for every reachable block in the function. | 
|  | SmallPtrSet<MachineBasicBlock*, 8> Processed; | 
|  | MachineBasicBlock *Entry = MF.begin(); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> > | 
|  | I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); | 
|  | I != E; ++I) | 
|  | Changed |= processBasicBlock(MF, **I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// processBasicBlock - Loop over all of the instructions in the basic block, | 
|  | /// transforming FP instructions into their stack form. | 
|  | /// | 
|  | bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { | 
|  | bool Changed = false; | 
|  | MBB = &BB; | 
|  |  | 
|  | for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { | 
|  | MachineInstr *MI = I; | 
|  | unsigned Flags = MI->getDesc().TSFlags; | 
|  |  | 
|  | unsigned FPInstClass = Flags & X86II::FPTypeMask; | 
|  | if (MI->getOpcode() == TargetInstrInfo::INLINEASM) | 
|  | FPInstClass = X86II::SpecialFP; | 
|  |  | 
|  | if (FPInstClass == X86II::NotFP) | 
|  | continue;  // Efficiently ignore non-fp insts! | 
|  |  | 
|  | MachineInstr *PrevMI = 0; | 
|  | if (I != BB.begin()) | 
|  | PrevMI = prior(I); | 
|  |  | 
|  | ++NumFP;  // Keep track of # of pseudo instrs | 
|  | DEBUG(errs() << "\nFPInst:\t" << *MI); | 
|  |  | 
|  | // Get dead variables list now because the MI pointer may be deleted as part | 
|  | // of processing! | 
|  | SmallVector<unsigned, 8> DeadRegs; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg() && MO.isDead()) | 
|  | DeadRegs.push_back(MO.getReg()); | 
|  | } | 
|  |  | 
|  | switch (FPInstClass) { | 
|  | case X86II::ZeroArgFP:  handleZeroArgFP(I); break; | 
|  | case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0) | 
|  | case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) | 
|  | case X86II::TwoArgFP:   handleTwoArgFP(I);  break; | 
|  | case X86II::CompareFP:  handleCompareFP(I); break; | 
|  | case X86II::CondMovFP:  handleCondMovFP(I); break; | 
|  | case X86II::SpecialFP:  handleSpecialFP(I); break; | 
|  | default: llvm_unreachable("Unknown FP Type!"); | 
|  | } | 
|  |  | 
|  | // Check to see if any of the values defined by this instruction are dead | 
|  | // after definition.  If so, pop them. | 
|  | for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { | 
|  | unsigned Reg = DeadRegs[i]; | 
|  | if (Reg >= X86::FP0 && Reg <= X86::FP6) { | 
|  | DEBUG(errs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); | 
|  | freeStackSlotAfter(I, Reg-X86::FP0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print out all of the instructions expanded to if -debug | 
|  | DEBUG( | 
|  | MachineBasicBlock::iterator PrevI(PrevMI); | 
|  | if (I == PrevI) { | 
|  | cerr << "Just deleted pseudo instruction\n"; | 
|  | } else { | 
|  | MachineBasicBlock::iterator Start = I; | 
|  | // Rewind to first instruction newly inserted. | 
|  | while (Start != BB.begin() && prior(Start) != PrevI) --Start; | 
|  | cerr << "Inserted instructions:\n\t"; | 
|  | Start->print(*cerr.stream(), &MF.getTarget()); | 
|  | while (++Start != next(I)) {} | 
|  | } | 
|  | dumpStack(); | 
|  | ); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | assert(isStackEmpty() && "Stack not empty at end of basic block?"); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Efficient Lookup Table Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | struct TableEntry { | 
|  | unsigned from; | 
|  | unsigned to; | 
|  | bool operator<(const TableEntry &TE) const { return from < TE.from; } | 
|  | friend bool operator<(const TableEntry &TE, unsigned V) { | 
|  | return TE.from < V; | 
|  | } | 
|  | friend bool operator<(unsigned V, const TableEntry &TE) { | 
|  | return V < TE.from; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { | 
|  | for (unsigned i = 0; i != NumEntries-1; ++i) | 
|  | if (!(Table[i] < Table[i+1])) return false; | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { | 
|  | const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); | 
|  | if (I != Table+N && I->from == Opcode) | 
|  | return I->to; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #ifdef NDEBUG | 
|  | #define ASSERT_SORTED(TABLE) | 
|  | #else | 
|  | #define ASSERT_SORTED(TABLE)                                              \ | 
|  | { static bool TABLE##Checked = false;                                   \ | 
|  | if (!TABLE##Checked) {                                                \ | 
|  | assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \ | 
|  | "All lookup tables must be sorted for efficient access!");  \ | 
|  | TABLE##Checked = true;                                             \ | 
|  | }                                                                     \ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Register File -> Register Stack Mapping Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // OpcodeTable - Sorted map of register instructions to their stack version. | 
|  | // The first element is an register file pseudo instruction, the second is the | 
|  | // concrete X86 instruction which uses the register stack. | 
|  | // | 
|  | static const TableEntry OpcodeTable[] = { | 
|  | { X86::ABS_Fp32     , X86::ABS_F     }, | 
|  | { X86::ABS_Fp64     , X86::ABS_F     }, | 
|  | { X86::ABS_Fp80     , X86::ABS_F     }, | 
|  | { X86::ADD_Fp32m    , X86::ADD_F32m  }, | 
|  | { X86::ADD_Fp64m    , X86::ADD_F64m  }, | 
|  | { X86::ADD_Fp64m32  , X86::ADD_F32m  }, | 
|  | { X86::ADD_Fp80m32  , X86::ADD_F32m  }, | 
|  | { X86::ADD_Fp80m64  , X86::ADD_F64m  }, | 
|  | { X86::ADD_FpI16m32 , X86::ADD_FI16m }, | 
|  | { X86::ADD_FpI16m64 , X86::ADD_FI16m }, | 
|  | { X86::ADD_FpI16m80 , X86::ADD_FI16m }, | 
|  | { X86::ADD_FpI32m32 , X86::ADD_FI32m }, | 
|  | { X86::ADD_FpI32m64 , X86::ADD_FI32m }, | 
|  | { X86::ADD_FpI32m80 , X86::ADD_FI32m }, | 
|  | { X86::CHS_Fp32     , X86::CHS_F     }, | 
|  | { X86::CHS_Fp64     , X86::CHS_F     }, | 
|  | { X86::CHS_Fp80     , X86::CHS_F     }, | 
|  | { X86::CMOVBE_Fp32  , X86::CMOVBE_F  }, | 
|  | { X86::CMOVBE_Fp64  , X86::CMOVBE_F  }, | 
|  | { X86::CMOVBE_Fp80  , X86::CMOVBE_F  }, | 
|  | { X86::CMOVB_Fp32   , X86::CMOVB_F   }, | 
|  | { X86::CMOVB_Fp64   , X86::CMOVB_F  }, | 
|  | { X86::CMOVB_Fp80   , X86::CMOVB_F  }, | 
|  | { X86::CMOVE_Fp32   , X86::CMOVE_F  }, | 
|  | { X86::CMOVE_Fp64   , X86::CMOVE_F   }, | 
|  | { X86::CMOVE_Fp80   , X86::CMOVE_F   }, | 
|  | { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, | 
|  | { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, | 
|  | { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, | 
|  | { X86::CMOVNB_Fp32  , X86::CMOVNB_F  }, | 
|  | { X86::CMOVNB_Fp64  , X86::CMOVNB_F  }, | 
|  | { X86::CMOVNB_Fp80  , X86::CMOVNB_F  }, | 
|  | { X86::CMOVNE_Fp32  , X86::CMOVNE_F  }, | 
|  | { X86::CMOVNE_Fp64  , X86::CMOVNE_F  }, | 
|  | { X86::CMOVNE_Fp80  , X86::CMOVNE_F  }, | 
|  | { X86::CMOVNP_Fp32  , X86::CMOVNP_F  }, | 
|  | { X86::CMOVNP_Fp64  , X86::CMOVNP_F  }, | 
|  | { X86::CMOVNP_Fp80  , X86::CMOVNP_F  }, | 
|  | { X86::CMOVP_Fp32   , X86::CMOVP_F   }, | 
|  | { X86::CMOVP_Fp64   , X86::CMOVP_F   }, | 
|  | { X86::CMOVP_Fp80   , X86::CMOVP_F   }, | 
|  | { X86::COS_Fp32     , X86::COS_F     }, | 
|  | { X86::COS_Fp64     , X86::COS_F     }, | 
|  | { X86::COS_Fp80     , X86::COS_F     }, | 
|  | { X86::DIVR_Fp32m   , X86::DIVR_F32m }, | 
|  | { X86::DIVR_Fp64m   , X86::DIVR_F64m }, | 
|  | { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, | 
|  | { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, | 
|  | { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, | 
|  | { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, | 
|  | { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, | 
|  | { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, | 
|  | { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, | 
|  | { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, | 
|  | { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, | 
|  | { X86::DIV_Fp32m    , X86::DIV_F32m  }, | 
|  | { X86::DIV_Fp64m    , X86::DIV_F64m  }, | 
|  | { X86::DIV_Fp64m32  , X86::DIV_F32m  }, | 
|  | { X86::DIV_Fp80m32  , X86::DIV_F32m  }, | 
|  | { X86::DIV_Fp80m64  , X86::DIV_F64m  }, | 
|  | { X86::DIV_FpI16m32 , X86::DIV_FI16m }, | 
|  | { X86::DIV_FpI16m64 , X86::DIV_FI16m }, | 
|  | { X86::DIV_FpI16m80 , X86::DIV_FI16m }, | 
|  | { X86::DIV_FpI32m32 , X86::DIV_FI32m }, | 
|  | { X86::DIV_FpI32m64 , X86::DIV_FI32m }, | 
|  | { X86::DIV_FpI32m80 , X86::DIV_FI32m }, | 
|  | { X86::ILD_Fp16m32  , X86::ILD_F16m  }, | 
|  | { X86::ILD_Fp16m64  , X86::ILD_F16m  }, | 
|  | { X86::ILD_Fp16m80  , X86::ILD_F16m  }, | 
|  | { X86::ILD_Fp32m32  , X86::ILD_F32m  }, | 
|  | { X86::ILD_Fp32m64  , X86::ILD_F32m  }, | 
|  | { X86::ILD_Fp32m80  , X86::ILD_F32m  }, | 
|  | { X86::ILD_Fp64m32  , X86::ILD_F64m  }, | 
|  | { X86::ILD_Fp64m64  , X86::ILD_F64m  }, | 
|  | { X86::ILD_Fp64m80  , X86::ILD_F64m  }, | 
|  | { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, | 
|  | { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, | 
|  | { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, | 
|  | { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, | 
|  | { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, | 
|  | { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, | 
|  | { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, | 
|  | { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, | 
|  | { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, | 
|  | { X86::IST_Fp16m32  , X86::IST_F16m  }, | 
|  | { X86::IST_Fp16m64  , X86::IST_F16m  }, | 
|  | { X86::IST_Fp16m80  , X86::IST_F16m  }, | 
|  | { X86::IST_Fp32m32  , X86::IST_F32m  }, | 
|  | { X86::IST_Fp32m64  , X86::IST_F32m  }, | 
|  | { X86::IST_Fp32m80  , X86::IST_F32m  }, | 
|  | { X86::IST_Fp64m32  , X86::IST_FP64m }, | 
|  | { X86::IST_Fp64m64  , X86::IST_FP64m }, | 
|  | { X86::IST_Fp64m80  , X86::IST_FP64m }, | 
|  | { X86::LD_Fp032     , X86::LD_F0     }, | 
|  | { X86::LD_Fp064     , X86::LD_F0     }, | 
|  | { X86::LD_Fp080     , X86::LD_F0     }, | 
|  | { X86::LD_Fp132     , X86::LD_F1     }, | 
|  | { X86::LD_Fp164     , X86::LD_F1     }, | 
|  | { X86::LD_Fp180     , X86::LD_F1     }, | 
|  | { X86::LD_Fp32m     , X86::LD_F32m   }, | 
|  | { X86::LD_Fp32m64   , X86::LD_F32m   }, | 
|  | { X86::LD_Fp32m80   , X86::LD_F32m   }, | 
|  | { X86::LD_Fp64m     , X86::LD_F64m   }, | 
|  | { X86::LD_Fp64m80   , X86::LD_F64m   }, | 
|  | { X86::LD_Fp80m     , X86::LD_F80m   }, | 
|  | { X86::MUL_Fp32m    , X86::MUL_F32m  }, | 
|  | { X86::MUL_Fp64m    , X86::MUL_F64m  }, | 
|  | { X86::MUL_Fp64m32  , X86::MUL_F32m  }, | 
|  | { X86::MUL_Fp80m32  , X86::MUL_F32m  }, | 
|  | { X86::MUL_Fp80m64  , X86::MUL_F64m  }, | 
|  | { X86::MUL_FpI16m32 , X86::MUL_FI16m }, | 
|  | { X86::MUL_FpI16m64 , X86::MUL_FI16m }, | 
|  | { X86::MUL_FpI16m80 , X86::MUL_FI16m }, | 
|  | { X86::MUL_FpI32m32 , X86::MUL_FI32m }, | 
|  | { X86::MUL_FpI32m64 , X86::MUL_FI32m }, | 
|  | { X86::MUL_FpI32m80 , X86::MUL_FI32m }, | 
|  | { X86::SIN_Fp32     , X86::SIN_F     }, | 
|  | { X86::SIN_Fp64     , X86::SIN_F     }, | 
|  | { X86::SIN_Fp80     , X86::SIN_F     }, | 
|  | { X86::SQRT_Fp32    , X86::SQRT_F    }, | 
|  | { X86::SQRT_Fp64    , X86::SQRT_F    }, | 
|  | { X86::SQRT_Fp80    , X86::SQRT_F    }, | 
|  | { X86::ST_Fp32m     , X86::ST_F32m   }, | 
|  | { X86::ST_Fp64m     , X86::ST_F64m   }, | 
|  | { X86::ST_Fp64m32   , X86::ST_F32m   }, | 
|  | { X86::ST_Fp80m32   , X86::ST_F32m   }, | 
|  | { X86::ST_Fp80m64   , X86::ST_F64m   }, | 
|  | { X86::ST_FpP80m    , X86::ST_FP80m  }, | 
|  | { X86::SUBR_Fp32m   , X86::SUBR_F32m }, | 
|  | { X86::SUBR_Fp64m   , X86::SUBR_F64m }, | 
|  | { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, | 
|  | { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, | 
|  | { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, | 
|  | { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, | 
|  | { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, | 
|  | { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, | 
|  | { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, | 
|  | { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, | 
|  | { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, | 
|  | { X86::SUB_Fp32m    , X86::SUB_F32m  }, | 
|  | { X86::SUB_Fp64m    , X86::SUB_F64m  }, | 
|  | { X86::SUB_Fp64m32  , X86::SUB_F32m  }, | 
|  | { X86::SUB_Fp80m32  , X86::SUB_F32m  }, | 
|  | { X86::SUB_Fp80m64  , X86::SUB_F64m  }, | 
|  | { X86::SUB_FpI16m32 , X86::SUB_FI16m }, | 
|  | { X86::SUB_FpI16m64 , X86::SUB_FI16m }, | 
|  | { X86::SUB_FpI16m80 , X86::SUB_FI16m }, | 
|  | { X86::SUB_FpI32m32 , X86::SUB_FI32m }, | 
|  | { X86::SUB_FpI32m64 , X86::SUB_FI32m }, | 
|  | { X86::SUB_FpI32m80 , X86::SUB_FI32m }, | 
|  | { X86::TST_Fp32     , X86::TST_F     }, | 
|  | { X86::TST_Fp64     , X86::TST_F     }, | 
|  | { X86::TST_Fp80     , X86::TST_F     }, | 
|  | { X86::UCOM_FpIr32  , X86::UCOM_FIr  }, | 
|  | { X86::UCOM_FpIr64  , X86::UCOM_FIr  }, | 
|  | { X86::UCOM_FpIr80  , X86::UCOM_FIr  }, | 
|  | { X86::UCOM_Fpr32   , X86::UCOM_Fr   }, | 
|  | { X86::UCOM_Fpr64   , X86::UCOM_Fr   }, | 
|  | { X86::UCOM_Fpr80   , X86::UCOM_Fr   }, | 
|  | }; | 
|  |  | 
|  | static unsigned getConcreteOpcode(unsigned Opcode) { | 
|  | ASSERT_SORTED(OpcodeTable); | 
|  | int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); | 
|  | assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // PopTable - Sorted map of instructions to their popping version.  The first | 
|  | // element is an instruction, the second is the version which pops. | 
|  | // | 
|  | static const TableEntry PopTable[] = { | 
|  | { X86::ADD_FrST0 , X86::ADD_FPrST0  }, | 
|  |  | 
|  | { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, | 
|  | { X86::DIV_FrST0 , X86::DIV_FPrST0  }, | 
|  |  | 
|  | { X86::IST_F16m  , X86::IST_FP16m   }, | 
|  | { X86::IST_F32m  , X86::IST_FP32m   }, | 
|  |  | 
|  | { X86::MUL_FrST0 , X86::MUL_FPrST0  }, | 
|  |  | 
|  | { X86::ST_F32m   , X86::ST_FP32m    }, | 
|  | { X86::ST_F64m   , X86::ST_FP64m    }, | 
|  | { X86::ST_Frr    , X86::ST_FPrr     }, | 
|  |  | 
|  | { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, | 
|  | { X86::SUB_FrST0 , X86::SUB_FPrST0  }, | 
|  |  | 
|  | { X86::UCOM_FIr  , X86::UCOM_FIPr   }, | 
|  |  | 
|  | { X86::UCOM_FPr  , X86::UCOM_FPPr   }, | 
|  | { X86::UCOM_Fr   , X86::UCOM_FPr    }, | 
|  | }; | 
|  |  | 
|  | /// popStackAfter - Pop the current value off of the top of the FP stack after | 
|  | /// the specified instruction.  This attempts to be sneaky and combine the pop | 
|  | /// into the instruction itself if possible.  The iterator is left pointing to | 
|  | /// the last instruction, be it a new pop instruction inserted, or the old | 
|  | /// instruction if it was modified in place. | 
|  | /// | 
|  | void FPS::popStackAfter(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr* MI = I; | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | ASSERT_SORTED(PopTable); | 
|  | assert(StackTop > 0 && "Cannot pop empty stack!"); | 
|  | RegMap[Stack[--StackTop]] = ~0;     // Update state | 
|  |  | 
|  | // Check to see if there is a popping version of this instruction... | 
|  | int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); | 
|  | if (Opcode != -1) { | 
|  | I->setDesc(TII->get(Opcode)); | 
|  | if (Opcode == X86::UCOM_FPPr) | 
|  | I->RemoveOperand(0); | 
|  | } else {    // Insert an explicit pop | 
|  | I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// freeStackSlotAfter - Free the specified register from the register stack, so | 
|  | /// that it is no longer in a register.  If the register is currently at the top | 
|  | /// of the stack, we just pop the current instruction, otherwise we store the | 
|  | /// current top-of-stack into the specified slot, then pop the top of stack. | 
|  | void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { | 
|  | if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy. | 
|  | popStackAfter(I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, store the top of stack into the dead slot, killing the operand | 
|  | // without having to add in an explicit xchg then pop. | 
|  | // | 
|  | unsigned STReg    = getSTReg(FPRegNo); | 
|  | unsigned OldSlot  = getSlot(FPRegNo); | 
|  | unsigned TopReg   = Stack[StackTop-1]; | 
|  | Stack[OldSlot]    = TopReg; | 
|  | RegMap[TopReg]    = OldSlot; | 
|  | RegMap[FPRegNo]   = ~0; | 
|  | Stack[--StackTop] = ~0; | 
|  | MachineInstr *MI  = I; | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction transformation implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem> | 
|  | /// | 
|  | void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr *MI = I; | 
|  | unsigned DestReg = getFPReg(MI->getOperand(0)); | 
|  |  | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI->RemoveOperand(0);   // Remove the explicit ST(0) operand | 
|  | MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); | 
|  |  | 
|  | // Result gets pushed on the stack. | 
|  | pushReg(DestReg); | 
|  | } | 
|  |  | 
|  | /// handleOneArgFP - fst <mem>, ST(0) | 
|  | /// | 
|  | void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr *MI = I; | 
|  | unsigned NumOps = MI->getDesc().getNumOperands(); | 
|  | assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) && | 
|  | "Can only handle fst* & ftst instructions!"); | 
|  |  | 
|  | // Is this the last use of the source register? | 
|  | unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); | 
|  | bool KillsSrc = MI->killsRegister(X86::FP0+Reg); | 
|  |  | 
|  | // FISTP64m is strange because there isn't a non-popping versions. | 
|  | // If we have one _and_ we don't want to pop the operand, duplicate the value | 
|  | // on the stack instead of moving it.  This ensure that popping the value is | 
|  | // always ok. | 
|  | // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. | 
|  | // | 
|  | if (!KillsSrc && | 
|  | (MI->getOpcode() == X86::IST_Fp64m32 || | 
|  | MI->getOpcode() == X86::ISTT_Fp16m32 || | 
|  | MI->getOpcode() == X86::ISTT_Fp32m32 || | 
|  | MI->getOpcode() == X86::ISTT_Fp64m32 || | 
|  | MI->getOpcode() == X86::IST_Fp64m64 || | 
|  | MI->getOpcode() == X86::ISTT_Fp16m64 || | 
|  | MI->getOpcode() == X86::ISTT_Fp32m64 || | 
|  | MI->getOpcode() == X86::ISTT_Fp64m64 || | 
|  | MI->getOpcode() == X86::IST_Fp64m80 || | 
|  | MI->getOpcode() == X86::ISTT_Fp16m80 || | 
|  | MI->getOpcode() == X86::ISTT_Fp32m80 || | 
|  | MI->getOpcode() == X86::ISTT_Fp64m80 || | 
|  | MI->getOpcode() == X86::ST_FpP80m)) { | 
|  | duplicateToTop(Reg, 7 /*temp register*/, I); | 
|  | } else { | 
|  | moveToTop(Reg, I);            // Move to the top of the stack... | 
|  | } | 
|  |  | 
|  | // Convert from the pseudo instruction to the concrete instruction. | 
|  | MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand | 
|  | MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); | 
|  |  | 
|  | if (MI->getOpcode() == X86::IST_FP64m || | 
|  | MI->getOpcode() == X86::ISTT_FP16m || | 
|  | MI->getOpcode() == X86::ISTT_FP32m || | 
|  | MI->getOpcode() == X86::ISTT_FP64m || | 
|  | MI->getOpcode() == X86::ST_FP80m) { | 
|  | assert(StackTop > 0 && "Stack empty??"); | 
|  | --StackTop; | 
|  | } else if (KillsSrc) { // Last use of operand? | 
|  | popStackAfter(I); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// handleOneArgFPRW: Handle instructions that read from the top of stack and | 
|  | /// replace the value with a newly computed value.  These instructions may have | 
|  | /// non-fp operands after their FP operands. | 
|  | /// | 
|  | ///  Examples: | 
|  | ///     R1 = fchs R2 | 
|  | ///     R1 = fadd R2, [mem] | 
|  | /// | 
|  | void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr *MI = I; | 
|  | #ifndef NDEBUG | 
|  | unsigned NumOps = MI->getDesc().getNumOperands(); | 
|  | assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); | 
|  | #endif | 
|  |  | 
|  | // Is this the last use of the source register? | 
|  | unsigned Reg = getFPReg(MI->getOperand(1)); | 
|  | bool KillsSrc = MI->killsRegister(X86::FP0+Reg); | 
|  |  | 
|  | if (KillsSrc) { | 
|  | // If this is the last use of the source register, just make sure it's on | 
|  | // the top of the stack. | 
|  | moveToTop(Reg, I); | 
|  | assert(StackTop > 0 && "Stack cannot be empty!"); | 
|  | --StackTop; | 
|  | pushReg(getFPReg(MI->getOperand(0))); | 
|  | } else { | 
|  | // If this is not the last use of the source register, _copy_ it to the top | 
|  | // of the stack. | 
|  | duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); | 
|  | } | 
|  |  | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI->RemoveOperand(1);   // Drop the source operand. | 
|  | MI->RemoveOperand(0);   // Drop the destination operand. | 
|  | MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Define tables of various ways to map pseudo instructions | 
|  | // | 
|  |  | 
|  | // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i) | 
|  | static const TableEntry ForwardST0Table[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FST0r }, | 
|  | { X86::ADD_Fp64  , X86::ADD_FST0r }, | 
|  | { X86::ADD_Fp80  , X86::ADD_FST0r }, | 
|  | { X86::DIV_Fp32  , X86::DIV_FST0r }, | 
|  | { X86::DIV_Fp64  , X86::DIV_FST0r }, | 
|  | { X86::DIV_Fp80  , X86::DIV_FST0r }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FST0r }, | 
|  | { X86::MUL_Fp64  , X86::MUL_FST0r }, | 
|  | { X86::MUL_Fp80  , X86::MUL_FST0r }, | 
|  | { X86::SUB_Fp32  , X86::SUB_FST0r }, | 
|  | { X86::SUB_Fp64  , X86::SUB_FST0r }, | 
|  | { X86::SUB_Fp80  , X86::SUB_FST0r }, | 
|  | }; | 
|  |  | 
|  | // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0) | 
|  | static const TableEntry ReverseST0Table[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative | 
|  | { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative | 
|  | { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative | 
|  | { X86::DIV_Fp32  , X86::DIVR_FST0r }, | 
|  | { X86::DIV_Fp64  , X86::DIVR_FST0r }, | 
|  | { X86::DIV_Fp80  , X86::DIVR_FST0r }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative | 
|  | { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative | 
|  | { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative | 
|  | { X86::SUB_Fp32  , X86::SUBR_FST0r }, | 
|  | { X86::SUB_Fp64  , X86::SUBR_FST0r }, | 
|  | { X86::SUB_Fp80  , X86::SUBR_FST0r }, | 
|  | }; | 
|  |  | 
|  | // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i) | 
|  | static const TableEntry ForwardSTiTable[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative | 
|  | { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative | 
|  | { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative | 
|  | { X86::DIV_Fp32  , X86::DIVR_FrST0 }, | 
|  | { X86::DIV_Fp64  , X86::DIVR_FrST0 }, | 
|  | { X86::DIV_Fp80  , X86::DIVR_FrST0 }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative | 
|  | { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative | 
|  | { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative | 
|  | { X86::SUB_Fp32  , X86::SUBR_FrST0 }, | 
|  | { X86::SUB_Fp64  , X86::SUBR_FrST0 }, | 
|  | { X86::SUB_Fp80  , X86::SUBR_FrST0 }, | 
|  | }; | 
|  |  | 
|  | // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0) | 
|  | static const TableEntry ReverseSTiTable[] = { | 
|  | { X86::ADD_Fp32  , X86::ADD_FrST0 }, | 
|  | { X86::ADD_Fp64  , X86::ADD_FrST0 }, | 
|  | { X86::ADD_Fp80  , X86::ADD_FrST0 }, | 
|  | { X86::DIV_Fp32  , X86::DIV_FrST0 }, | 
|  | { X86::DIV_Fp64  , X86::DIV_FrST0 }, | 
|  | { X86::DIV_Fp80  , X86::DIV_FrST0 }, | 
|  | { X86::MUL_Fp32  , X86::MUL_FrST0 }, | 
|  | { X86::MUL_Fp64  , X86::MUL_FrST0 }, | 
|  | { X86::MUL_Fp80  , X86::MUL_FrST0 }, | 
|  | { X86::SUB_Fp32  , X86::SUB_FrST0 }, | 
|  | { X86::SUB_Fp64  , X86::SUB_FrST0 }, | 
|  | { X86::SUB_Fp80  , X86::SUB_FrST0 }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual | 
|  | /// instructions which need to be simplified and possibly transformed. | 
|  | /// | 
|  | /// Result: ST(0) = fsub  ST(0), ST(i) | 
|  | ///         ST(i) = fsub  ST(0), ST(i) | 
|  | ///         ST(0) = fsubr ST(0), ST(i) | 
|  | ///         ST(i) = fsubr ST(0), ST(i) | 
|  | /// | 
|  | void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { | 
|  | ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); | 
|  | ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); | 
|  | MachineInstr *MI = I; | 
|  |  | 
|  | unsigned NumOperands = MI->getDesc().getNumOperands(); | 
|  | assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); | 
|  | unsigned Dest = getFPReg(MI->getOperand(0)); | 
|  | unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); | 
|  | unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); | 
|  | bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); | 
|  | bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  |  | 
|  | unsigned TOS = getStackEntry(0); | 
|  |  | 
|  | // One of our operands must be on the top of the stack.  If neither is yet, we | 
|  | // need to move one. | 
|  | if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS? | 
|  | // We can choose to move either operand to the top of the stack.  If one of | 
|  | // the operands is killed by this instruction, we want that one so that we | 
|  | // can update right on top of the old version. | 
|  | if (KillsOp0) { | 
|  | moveToTop(Op0, I);         // Move dead operand to TOS. | 
|  | TOS = Op0; | 
|  | } else if (KillsOp1) { | 
|  | moveToTop(Op1, I); | 
|  | TOS = Op1; | 
|  | } else { | 
|  | // All of the operands are live after this instruction executes, so we | 
|  | // cannot update on top of any operand.  Because of this, we must | 
|  | // duplicate one of the stack elements to the top.  It doesn't matter | 
|  | // which one we pick. | 
|  | // | 
|  | duplicateToTop(Op0, Dest, I); | 
|  | Op0 = TOS = Dest; | 
|  | KillsOp0 = true; | 
|  | } | 
|  | } else if (!KillsOp0 && !KillsOp1) { | 
|  | // If we DO have one of our operands at the top of the stack, but we don't | 
|  | // have a dead operand, we must duplicate one of the operands to a new slot | 
|  | // on the stack. | 
|  | duplicateToTop(Op0, Dest, I); | 
|  | Op0 = TOS = Dest; | 
|  | KillsOp0 = true; | 
|  | } | 
|  |  | 
|  | // Now we know that one of our operands is on the top of the stack, and at | 
|  | // least one of our operands is killed by this instruction. | 
|  | assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && | 
|  | "Stack conditions not set up right!"); | 
|  |  | 
|  | // We decide which form to use based on what is on the top of the stack, and | 
|  | // which operand is killed by this instruction. | 
|  | const TableEntry *InstTable; | 
|  | bool isForward = TOS == Op0; | 
|  | bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); | 
|  | if (updateST0) { | 
|  | if (isForward) | 
|  | InstTable = ForwardST0Table; | 
|  | else | 
|  | InstTable = ReverseST0Table; | 
|  | } else { | 
|  | if (isForward) | 
|  | InstTable = ForwardSTiTable; | 
|  | else | 
|  | InstTable = ReverseSTiTable; | 
|  | } | 
|  |  | 
|  | int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), | 
|  | MI->getOpcode()); | 
|  | assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); | 
|  |  | 
|  | // NotTOS - The register which is not on the top of stack... | 
|  | unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; | 
|  |  | 
|  | // Replace the old instruction with a new instruction | 
|  | MBB->remove(I++); | 
|  | I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); | 
|  |  | 
|  | // If both operands are killed, pop one off of the stack in addition to | 
|  | // overwriting the other one. | 
|  | if (KillsOp0 && KillsOp1 && Op0 != Op1) { | 
|  | assert(!updateST0 && "Should have updated other operand!"); | 
|  | popStackAfter(I);   // Pop the top of stack | 
|  | } | 
|  |  | 
|  | // Update stack information so that we know the destination register is now on | 
|  | // the stack. | 
|  | unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); | 
|  | assert(UpdatedSlot < StackTop && Dest < 7); | 
|  | Stack[UpdatedSlot]   = Dest; | 
|  | RegMap[Dest]         = UpdatedSlot; | 
|  | MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction | 
|  | } | 
|  |  | 
|  | /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP | 
|  | /// register arguments and no explicit destinations. | 
|  | /// | 
|  | void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { | 
|  | ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); | 
|  | ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); | 
|  | MachineInstr *MI = I; | 
|  |  | 
|  | unsigned NumOperands = MI->getDesc().getNumOperands(); | 
|  | assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); | 
|  | unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); | 
|  | unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); | 
|  | bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); | 
|  | bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); | 
|  |  | 
|  | // Make sure the first operand is on the top of stack, the other one can be | 
|  | // anywhere. | 
|  | moveToTop(Op0, I); | 
|  |  | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI->getOperand(0).setReg(getSTReg(Op1)); | 
|  | MI->RemoveOperand(1); | 
|  | MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); | 
|  |  | 
|  | // If any of the operands are killed by this instruction, free them. | 
|  | if (KillsOp0) freeStackSlotAfter(I, Op0); | 
|  | if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); | 
|  | } | 
|  |  | 
|  | /// handleCondMovFP - Handle two address conditional move instructions.  These | 
|  | /// instructions move a st(i) register to st(0) iff a condition is true.  These | 
|  | /// instructions require that the first operand is at the top of the stack, but | 
|  | /// otherwise don't modify the stack at all. | 
|  | void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr *MI = I; | 
|  |  | 
|  | unsigned Op0 = getFPReg(MI->getOperand(0)); | 
|  | unsigned Op1 = getFPReg(MI->getOperand(2)); | 
|  | bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); | 
|  |  | 
|  | // The first operand *must* be on the top of the stack. | 
|  | moveToTop(Op0, I); | 
|  |  | 
|  | // Change the second operand to the stack register that the operand is in. | 
|  | // Change from the pseudo instruction to the concrete instruction. | 
|  | MI->RemoveOperand(0); | 
|  | MI->RemoveOperand(1); | 
|  | MI->getOperand(0).setReg(getSTReg(Op1)); | 
|  | MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); | 
|  |  | 
|  | // If we kill the second operand, make sure to pop it from the stack. | 
|  | if (Op0 != Op1 && KillsOp1) { | 
|  | // Get this value off of the register stack. | 
|  | freeStackSlotAfter(I, Op1); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// handleSpecialFP - Handle special instructions which behave unlike other | 
|  | /// floating point instructions.  This is primarily intended for use by pseudo | 
|  | /// instructions. | 
|  | /// | 
|  | void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { | 
|  | MachineInstr *MI = I; | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unknown SpecialFP instruction!"); | 
|  | case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type! | 
|  | case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type! | 
|  | case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type! | 
|  | assert(StackTop == 0 && "Stack should be empty after a call!"); | 
|  | pushReg(getFPReg(MI->getOperand(0))); | 
|  | break; | 
|  | case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type! | 
|  | case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type! | 
|  | case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type! | 
|  | // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm. | 
|  | // The pattern we expect is: | 
|  | //  CALL | 
|  | //  FP1 = FpGET_ST0 | 
|  | //  FP4 = FpGET_ST1 | 
|  | // | 
|  | // At this point, we've pushed FP1 on the top of stack, so it should be | 
|  | // present if it isn't dead.  If it was dead, we already emitted a pop to | 
|  | // remove it from the stack and StackTop = 0. | 
|  |  | 
|  | // Push FP4 as top of stack next. | 
|  | pushReg(getFPReg(MI->getOperand(0))); | 
|  |  | 
|  | // If StackTop was 0 before we pushed our operand, then ST(0) must have been | 
|  | // dead.  In this case, the ST(1) value is the only thing that is live, so | 
|  | // it should be on the TOS (after the pop that was emitted) and is.  Just | 
|  | // continue in this case. | 
|  | if (StackTop == 1) | 
|  | break; | 
|  |  | 
|  | // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top | 
|  | // elements so that our accounting is correct. | 
|  | unsigned RegOnTop = getStackEntry(0); | 
|  | unsigned RegNo = getStackEntry(1); | 
|  |  | 
|  | // Swap the slots the regs are in. | 
|  | std::swap(RegMap[RegNo], RegMap[RegOnTop]); | 
|  |  | 
|  | // Swap stack slot contents. | 
|  | assert(RegMap[RegOnTop] < StackTop); | 
|  | std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); | 
|  | break; | 
|  | } | 
|  | case X86::FpSET_ST0_32: | 
|  | case X86::FpSET_ST0_64: | 
|  | case X86::FpSET_ST0_80: { | 
|  | unsigned Op0 = getFPReg(MI->getOperand(0)); | 
|  |  | 
|  | // FpSET_ST0_80 is generated by copyRegToReg for both function return | 
|  | // and inline assembly with the "st" constrain. In the latter case, | 
|  | // it is possible for ST(0) to be alive after this instruction. | 
|  | if (!MI->killsRegister(X86::FP0 + Op0)) { | 
|  | // Duplicate Op0 | 
|  | duplicateToTop(0, 7 /*temp register*/, I); | 
|  | } else { | 
|  | moveToTop(Op0, I); | 
|  | } | 
|  | --StackTop;   // "Forget" we have something on the top of stack! | 
|  | break; | 
|  | } | 
|  | case X86::FpSET_ST1_32: | 
|  | case X86::FpSET_ST1_64: | 
|  | case X86::FpSET_ST1_80: | 
|  | // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them. | 
|  | if (StackTop == 1) { | 
|  | BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1); | 
|  | NumFXCH++; | 
|  | StackTop = 0; | 
|  | break; | 
|  | } | 
|  | assert(StackTop == 2 && "Stack should have two element on it to return!"); | 
|  | --StackTop;   // "Forget" we have something on the top of stack! | 
|  | break; | 
|  | case X86::MOV_Fp3232: | 
|  | case X86::MOV_Fp3264: | 
|  | case X86::MOV_Fp6432: | 
|  | case X86::MOV_Fp6464: | 
|  | case X86::MOV_Fp3280: | 
|  | case X86::MOV_Fp6480: | 
|  | case X86::MOV_Fp8032: | 
|  | case X86::MOV_Fp8064: | 
|  | case X86::MOV_Fp8080: { | 
|  | const MachineOperand &MO1 = MI->getOperand(1); | 
|  | unsigned SrcReg = getFPReg(MO1); | 
|  |  | 
|  | const MachineOperand &MO0 = MI->getOperand(0); | 
|  | // These can be created due to inline asm. Two address pass can introduce | 
|  | // copies from RFP registers to virtual registers. | 
|  | if (MO0.getReg() == X86::ST0 && SrcReg == 0) { | 
|  | assert(MO1.isKill()); | 
|  | // Treat %ST0<def> = MOV_Fp8080 %FP0<kill> | 
|  | // like  FpSET_ST0_80 %FP0<kill>, %ST0<imp-def> | 
|  | assert((StackTop == 1 || StackTop == 2) | 
|  | && "Stack should have one or two element on it to return!"); | 
|  | --StackTop;   // "Forget" we have something on the top of stack! | 
|  | break; | 
|  | } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) { | 
|  | assert(MO1.isKill()); | 
|  | // Treat %ST1<def> = MOV_Fp8080 %FP1<kill> | 
|  | // like  FpSET_ST1_80 %FP0<kill>, %ST1<imp-def> | 
|  | // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them. | 
|  | if (StackTop == 1) { | 
|  | BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1); | 
|  | NumFXCH++; | 
|  | StackTop = 0; | 
|  | break; | 
|  | } | 
|  | assert(StackTop == 2 && "Stack should have two element on it to return!"); | 
|  | --StackTop;   // "Forget" we have something on the top of stack! | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned DestReg = getFPReg(MO0); | 
|  | if (MI->killsRegister(X86::FP0+SrcReg)) { | 
|  | // If the input operand is killed, we can just change the owner of the | 
|  | // incoming stack slot into the result. | 
|  | unsigned Slot = getSlot(SrcReg); | 
|  | assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); | 
|  | Stack[Slot] = DestReg; | 
|  | RegMap[DestReg] = Slot; | 
|  |  | 
|  | } else { | 
|  | // For FMOV we just duplicate the specified value to a new stack slot. | 
|  | // This could be made better, but would require substantial changes. | 
|  | duplicateToTop(SrcReg, DestReg, I); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TargetInstrInfo::INLINEASM: { | 
|  | // The inline asm MachineInstr currently only *uses* FP registers for the | 
|  | // 'f' constraint.  These should be turned into the current ST(x) register | 
|  | // in the machine instr.  Also, any kills should be explicitly popped after | 
|  | // the inline asm. | 
|  | unsigned Kills[7]; | 
|  | unsigned NumKills = 0; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) | 
|  | continue; | 
|  | assert(Op.isUse() && "Only handle inline asm uses right now"); | 
|  |  | 
|  | unsigned FPReg = getFPReg(Op); | 
|  | Op.setReg(getSTReg(FPReg)); | 
|  |  | 
|  | // If we kill this operand, make sure to pop it from the stack after the | 
|  | // asm.  We just remember it for now, and pop them all off at the end in | 
|  | // a batch. | 
|  | if (Op.isKill()) | 
|  | Kills[NumKills++] = FPReg; | 
|  | } | 
|  |  | 
|  | // If this asm kills any FP registers (is the last use of them) we must | 
|  | // explicitly emit pop instructions for them.  Do this now after the asm has | 
|  | // executed so that the ST(x) numbers are not off (which would happen if we | 
|  | // did this inline with operand rewriting). | 
|  | // | 
|  | // Note: this might be a non-optimal pop sequence.  We might be able to do | 
|  | // better by trying to pop in stack order or something. | 
|  | MachineBasicBlock::iterator InsertPt = MI; | 
|  | while (NumKills) | 
|  | freeStackSlotAfter(InsertPt, Kills[--NumKills]); | 
|  |  | 
|  | // Don't delete the inline asm! | 
|  | return; | 
|  | } | 
|  |  | 
|  | case X86::RET: | 
|  | case X86::RETI: | 
|  | // If RET has an FP register use operand, pass the first one in ST(0) and | 
|  | // the second one in ST(1). | 
|  | if (isStackEmpty()) return;  // Quick check to see if any are possible. | 
|  |  | 
|  | // Find the register operands. | 
|  | unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) | 
|  | continue; | 
|  | // FP Register uses must be kills unless there are two uses of the same | 
|  | // register, in which case only one will be a kill. | 
|  | assert(Op.isUse() && | 
|  | (Op.isKill() ||                        // Marked kill. | 
|  | getFPReg(Op) == FirstFPRegOp ||       // Second instance. | 
|  | MI->killsRegister(Op.getReg())) &&    // Later use is marked kill. | 
|  | "Ret only defs operands, and values aren't live beyond it"); | 
|  |  | 
|  | if (FirstFPRegOp == ~0U) | 
|  | FirstFPRegOp = getFPReg(Op); | 
|  | else { | 
|  | assert(SecondFPRegOp == ~0U && "More than two fp operands!"); | 
|  | SecondFPRegOp = getFPReg(Op); | 
|  | } | 
|  |  | 
|  | // Remove the operand so that later passes don't see it. | 
|  | MI->RemoveOperand(i); | 
|  | --i, --e; | 
|  | } | 
|  |  | 
|  | // There are only four possibilities here: | 
|  | // 1) we are returning a single FP value.  In this case, it has to be in | 
|  | //    ST(0) already, so just declare success by removing the value from the | 
|  | //    FP Stack. | 
|  | if (SecondFPRegOp == ~0U) { | 
|  | // Assert that the top of stack contains the right FP register. | 
|  | assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && | 
|  | "Top of stack not the right register for RET!"); | 
|  |  | 
|  | // Ok, everything is good, mark the value as not being on the stack | 
|  | // anymore so that our assertion about the stack being empty at end of | 
|  | // block doesn't fire. | 
|  | StackTop = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we are returning two values: | 
|  | // 2) If returning the same value for both, we only have one thing in the FP | 
|  | //    stack.  Consider:  RET FP1, FP1 | 
|  | if (StackTop == 1) { | 
|  | assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& | 
|  | "Stack misconfiguration for RET!"); | 
|  |  | 
|  | // Duplicate the TOS so that we return it twice.  Just pick some other FPx | 
|  | // register to hold it. | 
|  | unsigned NewReg = (FirstFPRegOp+1)%7; | 
|  | duplicateToTop(FirstFPRegOp, NewReg, MI); | 
|  | FirstFPRegOp = NewReg; | 
|  | } | 
|  |  | 
|  | /// Okay we know we have two different FPx operands now: | 
|  | assert(StackTop == 2 && "Must have two values live!"); | 
|  |  | 
|  | /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently | 
|  | ///    in ST(1).  In this case, emit an fxch. | 
|  | if (getStackEntry(0) == SecondFPRegOp) { | 
|  | assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); | 
|  | moveToTop(FirstFPRegOp, MI); | 
|  | } | 
|  |  | 
|  | /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in | 
|  | /// ST(1).  Just remove both from our understanding of the stack and return. | 
|  | assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); | 
|  | assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); | 
|  | StackTop = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | I = MBB->erase(I);  // Remove the pseudo instruction | 
|  | --I; | 
|  | } |