|  | //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the X86 implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86.h" | 
|  | #include "X86GenInstrInfo.inc" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Target/TargetAsmInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | cl::opt<bool> | 
|  | NoFusing("disable-spill-fusing", | 
|  | cl::desc("Disable fusing of spill code into instructions")); | 
|  | cl::opt<bool> | 
|  | PrintFailedFusing("print-failed-fuse-candidates", | 
|  | cl::desc("Print instructions that the allocator wants to" | 
|  | " fuse, but the X86 backend currently can't"), | 
|  | cl::Hidden); | 
|  | cl::opt<bool> | 
|  | ReMatPICStubLoad("remat-pic-stub-load", | 
|  | cl::desc("Re-materialize load from stub in PIC mode"), | 
|  | cl::init(false), cl::Hidden); | 
|  | } | 
|  |  | 
|  | X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) | 
|  | : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)), | 
|  | TM(tm), RI(tm, *this) { | 
|  | SmallVector<unsigned,16> AmbEntries; | 
|  | static const unsigned OpTbl2Addr[][2] = { | 
|  | { X86::ADC32ri,     X86::ADC32mi }, | 
|  | { X86::ADC32ri8,    X86::ADC32mi8 }, | 
|  | { X86::ADC32rr,     X86::ADC32mr }, | 
|  | { X86::ADC64ri32,   X86::ADC64mi32 }, | 
|  | { X86::ADC64ri8,    X86::ADC64mi8 }, | 
|  | { X86::ADC64rr,     X86::ADC64mr }, | 
|  | { X86::ADD16ri,     X86::ADD16mi }, | 
|  | { X86::ADD16ri8,    X86::ADD16mi8 }, | 
|  | { X86::ADD16rr,     X86::ADD16mr }, | 
|  | { X86::ADD32ri,     X86::ADD32mi }, | 
|  | { X86::ADD32ri8,    X86::ADD32mi8 }, | 
|  | { X86::ADD32rr,     X86::ADD32mr }, | 
|  | { X86::ADD64ri32,   X86::ADD64mi32 }, | 
|  | { X86::ADD64ri8,    X86::ADD64mi8 }, | 
|  | { X86::ADD64rr,     X86::ADD64mr }, | 
|  | { X86::ADD8ri,      X86::ADD8mi }, | 
|  | { X86::ADD8rr,      X86::ADD8mr }, | 
|  | { X86::AND16ri,     X86::AND16mi }, | 
|  | { X86::AND16ri8,    X86::AND16mi8 }, | 
|  | { X86::AND16rr,     X86::AND16mr }, | 
|  | { X86::AND32ri,     X86::AND32mi }, | 
|  | { X86::AND32ri8,    X86::AND32mi8 }, | 
|  | { X86::AND32rr,     X86::AND32mr }, | 
|  | { X86::AND64ri32,   X86::AND64mi32 }, | 
|  | { X86::AND64ri8,    X86::AND64mi8 }, | 
|  | { X86::AND64rr,     X86::AND64mr }, | 
|  | { X86::AND8ri,      X86::AND8mi }, | 
|  | { X86::AND8rr,      X86::AND8mr }, | 
|  | { X86::DEC16r,      X86::DEC16m }, | 
|  | { X86::DEC32r,      X86::DEC32m }, | 
|  | { X86::DEC64_16r,   X86::DEC64_16m }, | 
|  | { X86::DEC64_32r,   X86::DEC64_32m }, | 
|  | { X86::DEC64r,      X86::DEC64m }, | 
|  | { X86::DEC8r,       X86::DEC8m }, | 
|  | { X86::INC16r,      X86::INC16m }, | 
|  | { X86::INC32r,      X86::INC32m }, | 
|  | { X86::INC64_16r,   X86::INC64_16m }, | 
|  | { X86::INC64_32r,   X86::INC64_32m }, | 
|  | { X86::INC64r,      X86::INC64m }, | 
|  | { X86::INC8r,       X86::INC8m }, | 
|  | { X86::NEG16r,      X86::NEG16m }, | 
|  | { X86::NEG32r,      X86::NEG32m }, | 
|  | { X86::NEG64r,      X86::NEG64m }, | 
|  | { X86::NEG8r,       X86::NEG8m }, | 
|  | { X86::NOT16r,      X86::NOT16m }, | 
|  | { X86::NOT32r,      X86::NOT32m }, | 
|  | { X86::NOT64r,      X86::NOT64m }, | 
|  | { X86::NOT8r,       X86::NOT8m }, | 
|  | { X86::OR16ri,      X86::OR16mi }, | 
|  | { X86::OR16ri8,     X86::OR16mi8 }, | 
|  | { X86::OR16rr,      X86::OR16mr }, | 
|  | { X86::OR32ri,      X86::OR32mi }, | 
|  | { X86::OR32ri8,     X86::OR32mi8 }, | 
|  | { X86::OR32rr,      X86::OR32mr }, | 
|  | { X86::OR64ri32,    X86::OR64mi32 }, | 
|  | { X86::OR64ri8,     X86::OR64mi8 }, | 
|  | { X86::OR64rr,      X86::OR64mr }, | 
|  | { X86::OR8ri,       X86::OR8mi }, | 
|  | { X86::OR8rr,       X86::OR8mr }, | 
|  | { X86::ROL16r1,     X86::ROL16m1 }, | 
|  | { X86::ROL16rCL,    X86::ROL16mCL }, | 
|  | { X86::ROL16ri,     X86::ROL16mi }, | 
|  | { X86::ROL32r1,     X86::ROL32m1 }, | 
|  | { X86::ROL32rCL,    X86::ROL32mCL }, | 
|  | { X86::ROL32ri,     X86::ROL32mi }, | 
|  | { X86::ROL64r1,     X86::ROL64m1 }, | 
|  | { X86::ROL64rCL,    X86::ROL64mCL }, | 
|  | { X86::ROL64ri,     X86::ROL64mi }, | 
|  | { X86::ROL8r1,      X86::ROL8m1 }, | 
|  | { X86::ROL8rCL,     X86::ROL8mCL }, | 
|  | { X86::ROL8ri,      X86::ROL8mi }, | 
|  | { X86::ROR16r1,     X86::ROR16m1 }, | 
|  | { X86::ROR16rCL,    X86::ROR16mCL }, | 
|  | { X86::ROR16ri,     X86::ROR16mi }, | 
|  | { X86::ROR32r1,     X86::ROR32m1 }, | 
|  | { X86::ROR32rCL,    X86::ROR32mCL }, | 
|  | { X86::ROR32ri,     X86::ROR32mi }, | 
|  | { X86::ROR64r1,     X86::ROR64m1 }, | 
|  | { X86::ROR64rCL,    X86::ROR64mCL }, | 
|  | { X86::ROR64ri,     X86::ROR64mi }, | 
|  | { X86::ROR8r1,      X86::ROR8m1 }, | 
|  | { X86::ROR8rCL,     X86::ROR8mCL }, | 
|  | { X86::ROR8ri,      X86::ROR8mi }, | 
|  | { X86::SAR16r1,     X86::SAR16m1 }, | 
|  | { X86::SAR16rCL,    X86::SAR16mCL }, | 
|  | { X86::SAR16ri,     X86::SAR16mi }, | 
|  | { X86::SAR32r1,     X86::SAR32m1 }, | 
|  | { X86::SAR32rCL,    X86::SAR32mCL }, | 
|  | { X86::SAR32ri,     X86::SAR32mi }, | 
|  | { X86::SAR64r1,     X86::SAR64m1 }, | 
|  | { X86::SAR64rCL,    X86::SAR64mCL }, | 
|  | { X86::SAR64ri,     X86::SAR64mi }, | 
|  | { X86::SAR8r1,      X86::SAR8m1 }, | 
|  | { X86::SAR8rCL,     X86::SAR8mCL }, | 
|  | { X86::SAR8ri,      X86::SAR8mi }, | 
|  | { X86::SBB32ri,     X86::SBB32mi }, | 
|  | { X86::SBB32ri8,    X86::SBB32mi8 }, | 
|  | { X86::SBB32rr,     X86::SBB32mr }, | 
|  | { X86::SBB64ri32,   X86::SBB64mi32 }, | 
|  | { X86::SBB64ri8,    X86::SBB64mi8 }, | 
|  | { X86::SBB64rr,     X86::SBB64mr }, | 
|  | { X86::SHL16rCL,    X86::SHL16mCL }, | 
|  | { X86::SHL16ri,     X86::SHL16mi }, | 
|  | { X86::SHL32rCL,    X86::SHL32mCL }, | 
|  | { X86::SHL32ri,     X86::SHL32mi }, | 
|  | { X86::SHL64rCL,    X86::SHL64mCL }, | 
|  | { X86::SHL64ri,     X86::SHL64mi }, | 
|  | { X86::SHL8rCL,     X86::SHL8mCL }, | 
|  | { X86::SHL8ri,      X86::SHL8mi }, | 
|  | { X86::SHLD16rrCL,  X86::SHLD16mrCL }, | 
|  | { X86::SHLD16rri8,  X86::SHLD16mri8 }, | 
|  | { X86::SHLD32rrCL,  X86::SHLD32mrCL }, | 
|  | { X86::SHLD32rri8,  X86::SHLD32mri8 }, | 
|  | { X86::SHLD64rrCL,  X86::SHLD64mrCL }, | 
|  | { X86::SHLD64rri8,  X86::SHLD64mri8 }, | 
|  | { X86::SHR16r1,     X86::SHR16m1 }, | 
|  | { X86::SHR16rCL,    X86::SHR16mCL }, | 
|  | { X86::SHR16ri,     X86::SHR16mi }, | 
|  | { X86::SHR32r1,     X86::SHR32m1 }, | 
|  | { X86::SHR32rCL,    X86::SHR32mCL }, | 
|  | { X86::SHR32ri,     X86::SHR32mi }, | 
|  | { X86::SHR64r1,     X86::SHR64m1 }, | 
|  | { X86::SHR64rCL,    X86::SHR64mCL }, | 
|  | { X86::SHR64ri,     X86::SHR64mi }, | 
|  | { X86::SHR8r1,      X86::SHR8m1 }, | 
|  | { X86::SHR8rCL,     X86::SHR8mCL }, | 
|  | { X86::SHR8ri,      X86::SHR8mi }, | 
|  | { X86::SHRD16rrCL,  X86::SHRD16mrCL }, | 
|  | { X86::SHRD16rri8,  X86::SHRD16mri8 }, | 
|  | { X86::SHRD32rrCL,  X86::SHRD32mrCL }, | 
|  | { X86::SHRD32rri8,  X86::SHRD32mri8 }, | 
|  | { X86::SHRD64rrCL,  X86::SHRD64mrCL }, | 
|  | { X86::SHRD64rri8,  X86::SHRD64mri8 }, | 
|  | { X86::SUB16ri,     X86::SUB16mi }, | 
|  | { X86::SUB16ri8,    X86::SUB16mi8 }, | 
|  | { X86::SUB16rr,     X86::SUB16mr }, | 
|  | { X86::SUB32ri,     X86::SUB32mi }, | 
|  | { X86::SUB32ri8,    X86::SUB32mi8 }, | 
|  | { X86::SUB32rr,     X86::SUB32mr }, | 
|  | { X86::SUB64ri32,   X86::SUB64mi32 }, | 
|  | { X86::SUB64ri8,    X86::SUB64mi8 }, | 
|  | { X86::SUB64rr,     X86::SUB64mr }, | 
|  | { X86::SUB8ri,      X86::SUB8mi }, | 
|  | { X86::SUB8rr,      X86::SUB8mr }, | 
|  | { X86::XOR16ri,     X86::XOR16mi }, | 
|  | { X86::XOR16ri8,    X86::XOR16mi8 }, | 
|  | { X86::XOR16rr,     X86::XOR16mr }, | 
|  | { X86::XOR32ri,     X86::XOR32mi }, | 
|  | { X86::XOR32ri8,    X86::XOR32mi8 }, | 
|  | { X86::XOR32rr,     X86::XOR32mr }, | 
|  | { X86::XOR64ri32,   X86::XOR64mi32 }, | 
|  | { X86::XOR64ri8,    X86::XOR64mi8 }, | 
|  | { X86::XOR64rr,     X86::XOR64mr }, | 
|  | { X86::XOR8ri,      X86::XOR8mi }, | 
|  | { X86::XOR8rr,      X86::XOR8mr } | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { | 
|  | unsigned RegOp = OpTbl2Addr[i][0]; | 
|  | unsigned MemOp = OpTbl2Addr[i][1]; | 
|  | if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, | 
|  | std::make_pair(MemOp,0))).second) | 
|  | assert(false && "Duplicated entries?"); | 
|  | // Index 0, folded load and store, no alignment requirement. | 
|  | unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); | 
|  | if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, | 
|  | std::make_pair(RegOp, | 
|  | AuxInfo))).second) | 
|  | AmbEntries.push_back(MemOp); | 
|  | } | 
|  |  | 
|  | // If the third value is 1, then it's folding either a load or a store. | 
|  | static const unsigned OpTbl0[][4] = { | 
|  | { X86::BT16ri8,     X86::BT16mi8, 1, 0 }, | 
|  | { X86::BT32ri8,     X86::BT32mi8, 1, 0 }, | 
|  | { X86::BT64ri8,     X86::BT64mi8, 1, 0 }, | 
|  | { X86::CALL32r,     X86::CALL32m, 1, 0 }, | 
|  | { X86::CALL64r,     X86::CALL64m, 1, 0 }, | 
|  | { X86::CMP16ri,     X86::CMP16mi, 1, 0 }, | 
|  | { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 }, | 
|  | { X86::CMP16rr,     X86::CMP16mr, 1, 0 }, | 
|  | { X86::CMP32ri,     X86::CMP32mi, 1, 0 }, | 
|  | { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 }, | 
|  | { X86::CMP32rr,     X86::CMP32mr, 1, 0 }, | 
|  | { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 }, | 
|  | { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 }, | 
|  | { X86::CMP64rr,     X86::CMP64mr, 1, 0 }, | 
|  | { X86::CMP8ri,      X86::CMP8mi, 1, 0 }, | 
|  | { X86::CMP8rr,      X86::CMP8mr, 1, 0 }, | 
|  | { X86::DIV16r,      X86::DIV16m, 1, 0 }, | 
|  | { X86::DIV32r,      X86::DIV32m, 1, 0 }, | 
|  | { X86::DIV64r,      X86::DIV64m, 1, 0 }, | 
|  | { X86::DIV8r,       X86::DIV8m, 1, 0 }, | 
|  | { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 }, | 
|  | { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 }, | 
|  | { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 }, | 
|  | { X86::IDIV16r,     X86::IDIV16m, 1, 0 }, | 
|  | { X86::IDIV32r,     X86::IDIV32m, 1, 0 }, | 
|  | { X86::IDIV64r,     X86::IDIV64m, 1, 0 }, | 
|  | { X86::IDIV8r,      X86::IDIV8m, 1, 0 }, | 
|  | { X86::IMUL16r,     X86::IMUL16m, 1, 0 }, | 
|  | { X86::IMUL32r,     X86::IMUL32m, 1, 0 }, | 
|  | { X86::IMUL64r,     X86::IMUL64m, 1, 0 }, | 
|  | { X86::IMUL8r,      X86::IMUL8m, 1, 0 }, | 
|  | { X86::JMP32r,      X86::JMP32m, 1, 0 }, | 
|  | { X86::JMP64r,      X86::JMP64m, 1, 0 }, | 
|  | { X86::MOV16ri,     X86::MOV16mi, 0, 0 }, | 
|  | { X86::MOV16rr,     X86::MOV16mr, 0, 0 }, | 
|  | { X86::MOV32ri,     X86::MOV32mi, 0, 0 }, | 
|  | { X86::MOV32rr,     X86::MOV32mr, 0, 0 }, | 
|  | { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 }, | 
|  | { X86::MOV64rr,     X86::MOV64mr, 0, 0 }, | 
|  | { X86::MOV8ri,      X86::MOV8mi, 0, 0 }, | 
|  | { X86::MOV8rr,      X86::MOV8mr, 0, 0 }, | 
|  | { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 }, | 
|  | { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 }, | 
|  | { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 }, | 
|  | { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 }, | 
|  | { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 }, | 
|  | { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 }, | 
|  | { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0, 0 }, | 
|  | { X86::MOVSDrr,     X86::MOVSDmr, 0, 0 }, | 
|  | { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 }, | 
|  | { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 }, | 
|  | { X86::MOVSSrr,     X86::MOVSSmr, 0, 0 }, | 
|  | { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 }, | 
|  | { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 }, | 
|  | { X86::MUL16r,      X86::MUL16m, 1, 0 }, | 
|  | { X86::MUL32r,      X86::MUL32m, 1, 0 }, | 
|  | { X86::MUL64r,      X86::MUL64m, 1, 0 }, | 
|  | { X86::MUL8r,       X86::MUL8m, 1, 0 }, | 
|  | { X86::SETAEr,      X86::SETAEm, 0, 0 }, | 
|  | { X86::SETAr,       X86::SETAm, 0, 0 }, | 
|  | { X86::SETBEr,      X86::SETBEm, 0, 0 }, | 
|  | { X86::SETBr,       X86::SETBm, 0, 0 }, | 
|  | { X86::SETEr,       X86::SETEm, 0, 0 }, | 
|  | { X86::SETGEr,      X86::SETGEm, 0, 0 }, | 
|  | { X86::SETGr,       X86::SETGm, 0, 0 }, | 
|  | { X86::SETLEr,      X86::SETLEm, 0, 0 }, | 
|  | { X86::SETLr,       X86::SETLm, 0, 0 }, | 
|  | { X86::SETNEr,      X86::SETNEm, 0, 0 }, | 
|  | { X86::SETNOr,      X86::SETNOm, 0, 0 }, | 
|  | { X86::SETNPr,      X86::SETNPm, 0, 0 }, | 
|  | { X86::SETNSr,      X86::SETNSm, 0, 0 }, | 
|  | { X86::SETOr,       X86::SETOm, 0, 0 }, | 
|  | { X86::SETPr,       X86::SETPm, 0, 0 }, | 
|  | { X86::SETSr,       X86::SETSm, 0, 0 }, | 
|  | { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 }, | 
|  | { X86::TEST16ri,    X86::TEST16mi, 1, 0 }, | 
|  | { X86::TEST32ri,    X86::TEST32mi, 1, 0 }, | 
|  | { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 }, | 
|  | { X86::TEST8ri,     X86::TEST8mi, 1, 0 } | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { | 
|  | unsigned RegOp = OpTbl0[i][0]; | 
|  | unsigned MemOp = OpTbl0[i][1]; | 
|  | unsigned Align = OpTbl0[i][3]; | 
|  | if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, | 
|  | std::make_pair(MemOp,Align))).second) | 
|  | assert(false && "Duplicated entries?"); | 
|  | unsigned FoldedLoad = OpTbl0[i][2]; | 
|  | // Index 0, folded load or store. | 
|  | unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); | 
|  | if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr) | 
|  | if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, | 
|  | std::make_pair(RegOp, AuxInfo))).second) | 
|  | AmbEntries.push_back(MemOp); | 
|  | } | 
|  |  | 
|  | static const unsigned OpTbl1[][3] = { | 
|  | { X86::CMP16rr,         X86::CMP16rm, 0 }, | 
|  | { X86::CMP32rr,         X86::CMP32rm, 0 }, | 
|  | { X86::CMP64rr,         X86::CMP64rm, 0 }, | 
|  | { X86::CMP8rr,          X86::CMP8rm, 0 }, | 
|  | { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 }, | 
|  | { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 }, | 
|  | { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 }, | 
|  | { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 }, | 
|  | { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 }, | 
|  | { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 }, | 
|  | { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 }, | 
|  | { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 }, | 
|  | { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 }, | 
|  | { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 }, | 
|  | { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 }, | 
|  | { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 }, | 
|  | { X86::IMUL16rri,       X86::IMUL16rmi, 0 }, | 
|  | { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 }, | 
|  | { X86::IMUL32rri,       X86::IMUL32rmi, 0 }, | 
|  | { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 }, | 
|  | { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 }, | 
|  | { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 }, | 
|  | { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 }, | 
|  | { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 }, | 
|  | { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 }, | 
|  | { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 }, | 
|  | { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 }, | 
|  | { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 }, | 
|  | { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 }, | 
|  | { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 }, | 
|  | { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 }, | 
|  | { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 }, | 
|  | { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 }, | 
|  | { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 }, | 
|  | { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 }, | 
|  | { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, | 
|  | { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 }, | 
|  | { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, | 
|  | { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 }, | 
|  | { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 }, | 
|  | { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 }, | 
|  | { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 }, | 
|  | { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 }, | 
|  | { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 }, | 
|  | { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, | 
|  | { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, | 
|  | { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, | 
|  | { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, | 
|  | { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 }, | 
|  | { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 }, | 
|  | { X86::MOV16rr,         X86::MOV16rm, 0 }, | 
|  | { X86::MOV32rr,         X86::MOV32rm, 0 }, | 
|  | { X86::MOV64rr,         X86::MOV64rm, 0 }, | 
|  | { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 }, | 
|  | { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 }, | 
|  | { X86::MOV8rr,          X86::MOV8rm, 0 }, | 
|  | { X86::MOVAPDrr,        X86::MOVAPDrm, 16 }, | 
|  | { X86::MOVAPSrr,        X86::MOVAPSrm, 16 }, | 
|  | { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 }, | 
|  | { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 }, | 
|  | { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 }, | 
|  | { X86::MOVDQArr,        X86::MOVDQArm, 16 }, | 
|  | { X86::MOVSD2PDrr,      X86::MOVSD2PDrm, 0 }, | 
|  | { X86::MOVSDrr,         X86::MOVSDrm, 0 }, | 
|  | { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 }, | 
|  | { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 }, | 
|  | { X86::MOVSS2PSrr,      X86::MOVSS2PSrm, 0 }, | 
|  | { X86::MOVSSrr,         X86::MOVSSrm, 0 }, | 
|  | { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 }, | 
|  | { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 }, | 
|  | { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 }, | 
|  | { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 }, | 
|  | { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 }, | 
|  | { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 }, | 
|  | { X86::MOVUPDrr,        X86::MOVUPDrm, 16 }, | 
|  | { X86::MOVUPSrr,        X86::MOVUPSrm, 16 }, | 
|  | { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 }, | 
|  | { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 }, | 
|  | { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 }, | 
|  | { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 }, | 
|  | { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 }, | 
|  | { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, | 
|  | { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 }, | 
|  | { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 }, | 
|  | { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 }, | 
|  | { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 }, | 
|  | { X86::PSHUFDri,        X86::PSHUFDmi, 16 }, | 
|  | { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 }, | 
|  | { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 }, | 
|  | { X86::RCPPSr,          X86::RCPPSm, 16 }, | 
|  | { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 }, | 
|  | { X86::RSQRTPSr,        X86::RSQRTPSm, 16 }, | 
|  | { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 }, | 
|  | { X86::RSQRTSSr,        X86::RSQRTSSm, 0 }, | 
|  | { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 }, | 
|  | { X86::SQRTPDr,         X86::SQRTPDm, 16 }, | 
|  | { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 }, | 
|  | { X86::SQRTPSr,         X86::SQRTPSm, 16 }, | 
|  | { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 }, | 
|  | { X86::SQRTSDr,         X86::SQRTSDm, 0 }, | 
|  | { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 }, | 
|  | { X86::SQRTSSr,         X86::SQRTSSm, 0 }, | 
|  | { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 }, | 
|  | { X86::TEST16rr,        X86::TEST16rm, 0 }, | 
|  | { X86::TEST32rr,        X86::TEST32rm, 0 }, | 
|  | { X86::TEST64rr,        X86::TEST64rm, 0 }, | 
|  | { X86::TEST8rr,         X86::TEST8rm, 0 }, | 
|  | // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 | 
|  | { X86::UCOMISDrr,       X86::UCOMISDrm, 0 }, | 
|  | { X86::UCOMISSrr,       X86::UCOMISSrm, 0 } | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { | 
|  | unsigned RegOp = OpTbl1[i][0]; | 
|  | unsigned MemOp = OpTbl1[i][1]; | 
|  | unsigned Align = OpTbl1[i][2]; | 
|  | if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, | 
|  | std::make_pair(MemOp,Align))).second) | 
|  | assert(false && "Duplicated entries?"); | 
|  | // Index 1, folded load | 
|  | unsigned AuxInfo = 1 | (1 << 4); | 
|  | if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr) | 
|  | if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, | 
|  | std::make_pair(RegOp, AuxInfo))).second) | 
|  | AmbEntries.push_back(MemOp); | 
|  | } | 
|  |  | 
|  | static const unsigned OpTbl2[][3] = { | 
|  | { X86::ADC32rr,         X86::ADC32rm, 0 }, | 
|  | { X86::ADC64rr,         X86::ADC64rm, 0 }, | 
|  | { X86::ADD16rr,         X86::ADD16rm, 0 }, | 
|  | { X86::ADD32rr,         X86::ADD32rm, 0 }, | 
|  | { X86::ADD64rr,         X86::ADD64rm, 0 }, | 
|  | { X86::ADD8rr,          X86::ADD8rm, 0 }, | 
|  | { X86::ADDPDrr,         X86::ADDPDrm, 16 }, | 
|  | { X86::ADDPSrr,         X86::ADDPSrm, 16 }, | 
|  | { X86::ADDSDrr,         X86::ADDSDrm, 0 }, | 
|  | { X86::ADDSSrr,         X86::ADDSSrm, 0 }, | 
|  | { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 }, | 
|  | { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 }, | 
|  | { X86::AND16rr,         X86::AND16rm, 0 }, | 
|  | { X86::AND32rr,         X86::AND32rm, 0 }, | 
|  | { X86::AND64rr,         X86::AND64rm, 0 }, | 
|  | { X86::AND8rr,          X86::AND8rm, 0 }, | 
|  | { X86::ANDNPDrr,        X86::ANDNPDrm, 16 }, | 
|  | { X86::ANDNPSrr,        X86::ANDNPSrm, 16 }, | 
|  | { X86::ANDPDrr,         X86::ANDPDrm, 16 }, | 
|  | { X86::ANDPSrr,         X86::ANDPSrm, 16 }, | 
|  | { X86::CMOVA16rr,       X86::CMOVA16rm, 0 }, | 
|  | { X86::CMOVA32rr,       X86::CMOVA32rm, 0 }, | 
|  | { X86::CMOVA64rr,       X86::CMOVA64rm, 0 }, | 
|  | { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 }, | 
|  | { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 }, | 
|  | { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 }, | 
|  | { X86::CMOVB16rr,       X86::CMOVB16rm, 0 }, | 
|  | { X86::CMOVB32rr,       X86::CMOVB32rm, 0 }, | 
|  | { X86::CMOVB64rr,       X86::CMOVB64rm, 0 }, | 
|  | { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 }, | 
|  | { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 }, | 
|  | { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 }, | 
|  | { X86::CMOVE16rr,       X86::CMOVE16rm, 0 }, | 
|  | { X86::CMOVE32rr,       X86::CMOVE32rm, 0 }, | 
|  | { X86::CMOVE64rr,       X86::CMOVE64rm, 0 }, | 
|  | { X86::CMOVG16rr,       X86::CMOVG16rm, 0 }, | 
|  | { X86::CMOVG32rr,       X86::CMOVG32rm, 0 }, | 
|  | { X86::CMOVG64rr,       X86::CMOVG64rm, 0 }, | 
|  | { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 }, | 
|  | { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 }, | 
|  | { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 }, | 
|  | { X86::CMOVL16rr,       X86::CMOVL16rm, 0 }, | 
|  | { X86::CMOVL32rr,       X86::CMOVL32rm, 0 }, | 
|  | { X86::CMOVL64rr,       X86::CMOVL64rm, 0 }, | 
|  | { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 }, | 
|  | { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 }, | 
|  | { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 }, | 
|  | { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 }, | 
|  | { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 }, | 
|  | { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 }, | 
|  | { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 }, | 
|  | { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 }, | 
|  | { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 }, | 
|  | { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 }, | 
|  | { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 }, | 
|  | { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 }, | 
|  | { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 }, | 
|  | { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 }, | 
|  | { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 }, | 
|  | { X86::CMOVO16rr,       X86::CMOVO16rm, 0 }, | 
|  | { X86::CMOVO32rr,       X86::CMOVO32rm, 0 }, | 
|  | { X86::CMOVO64rr,       X86::CMOVO64rm, 0 }, | 
|  | { X86::CMOVP16rr,       X86::CMOVP16rm, 0 }, | 
|  | { X86::CMOVP32rr,       X86::CMOVP32rm, 0 }, | 
|  | { X86::CMOVP64rr,       X86::CMOVP64rm, 0 }, | 
|  | { X86::CMOVS16rr,       X86::CMOVS16rm, 0 }, | 
|  | { X86::CMOVS32rr,       X86::CMOVS32rm, 0 }, | 
|  | { X86::CMOVS64rr,       X86::CMOVS64rm, 0 }, | 
|  | { X86::CMPPDrri,        X86::CMPPDrmi, 16 }, | 
|  | { X86::CMPPSrri,        X86::CMPPSrmi, 16 }, | 
|  | { X86::CMPSDrr,         X86::CMPSDrm, 0 }, | 
|  | { X86::CMPSSrr,         X86::CMPSSrm, 0 }, | 
|  | { X86::DIVPDrr,         X86::DIVPDrm, 16 }, | 
|  | { X86::DIVPSrr,         X86::DIVPSrm, 16 }, | 
|  | { X86::DIVSDrr,         X86::DIVSDrm, 0 }, | 
|  | { X86::DIVSSrr,         X86::DIVSSrm, 0 }, | 
|  | { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 }, | 
|  | { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 }, | 
|  | { X86::FsANDPDrr,       X86::FsANDPDrm, 16 }, | 
|  | { X86::FsANDPSrr,       X86::FsANDPSrm, 16 }, | 
|  | { X86::FsORPDrr,        X86::FsORPDrm, 16 }, | 
|  | { X86::FsORPSrr,        X86::FsORPSrm, 16 }, | 
|  | { X86::FsXORPDrr,       X86::FsXORPDrm, 16 }, | 
|  | { X86::FsXORPSrr,       X86::FsXORPSrm, 16 }, | 
|  | { X86::HADDPDrr,        X86::HADDPDrm, 16 }, | 
|  | { X86::HADDPSrr,        X86::HADDPSrm, 16 }, | 
|  | { X86::HSUBPDrr,        X86::HSUBPDrm, 16 }, | 
|  | { X86::HSUBPSrr,        X86::HSUBPSrm, 16 }, | 
|  | { X86::IMUL16rr,        X86::IMUL16rm, 0 }, | 
|  | { X86::IMUL32rr,        X86::IMUL32rm, 0 }, | 
|  | { X86::IMUL64rr,        X86::IMUL64rm, 0 }, | 
|  | { X86::MAXPDrr,         X86::MAXPDrm, 16 }, | 
|  | { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 }, | 
|  | { X86::MAXPSrr,         X86::MAXPSrm, 16 }, | 
|  | { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 }, | 
|  | { X86::MAXSDrr,         X86::MAXSDrm, 0 }, | 
|  | { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 }, | 
|  | { X86::MAXSSrr,         X86::MAXSSrm, 0 }, | 
|  | { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 }, | 
|  | { X86::MINPDrr,         X86::MINPDrm, 16 }, | 
|  | { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 }, | 
|  | { X86::MINPSrr,         X86::MINPSrm, 16 }, | 
|  | { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 }, | 
|  | { X86::MINSDrr,         X86::MINSDrm, 0 }, | 
|  | { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 }, | 
|  | { X86::MINSSrr,         X86::MINSSrm, 0 }, | 
|  | { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 }, | 
|  | { X86::MULPDrr,         X86::MULPDrm, 16 }, | 
|  | { X86::MULPSrr,         X86::MULPSrm, 16 }, | 
|  | { X86::MULSDrr,         X86::MULSDrm, 0 }, | 
|  | { X86::MULSSrr,         X86::MULSSrm, 0 }, | 
|  | { X86::OR16rr,          X86::OR16rm, 0 }, | 
|  | { X86::OR32rr,          X86::OR32rm, 0 }, | 
|  | { X86::OR64rr,          X86::OR64rm, 0 }, | 
|  | { X86::OR8rr,           X86::OR8rm, 0 }, | 
|  | { X86::ORPDrr,          X86::ORPDrm, 16 }, | 
|  | { X86::ORPSrr,          X86::ORPSrm, 16 }, | 
|  | { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 }, | 
|  | { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 }, | 
|  | { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 }, | 
|  | { X86::PADDBrr,         X86::PADDBrm, 16 }, | 
|  | { X86::PADDDrr,         X86::PADDDrm, 16 }, | 
|  | { X86::PADDQrr,         X86::PADDQrm, 16 }, | 
|  | { X86::PADDSBrr,        X86::PADDSBrm, 16 }, | 
|  | { X86::PADDSWrr,        X86::PADDSWrm, 16 }, | 
|  | { X86::PADDWrr,         X86::PADDWrm, 16 }, | 
|  | { X86::PANDNrr,         X86::PANDNrm, 16 }, | 
|  | { X86::PANDrr,          X86::PANDrm, 16 }, | 
|  | { X86::PAVGBrr,         X86::PAVGBrm, 16 }, | 
|  | { X86::PAVGWrr,         X86::PAVGWrm, 16 }, | 
|  | { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 }, | 
|  | { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 }, | 
|  | { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 }, | 
|  | { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 }, | 
|  | { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 }, | 
|  | { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 }, | 
|  | { X86::PINSRWrri,       X86::PINSRWrmi, 16 }, | 
|  | { X86::PMADDWDrr,       X86::PMADDWDrm, 16 }, | 
|  | { X86::PMAXSWrr,        X86::PMAXSWrm, 16 }, | 
|  | { X86::PMAXUBrr,        X86::PMAXUBrm, 16 }, | 
|  | { X86::PMINSWrr,        X86::PMINSWrm, 16 }, | 
|  | { X86::PMINUBrr,        X86::PMINUBrm, 16 }, | 
|  | { X86::PMULDQrr,        X86::PMULDQrm, 16 }, | 
|  | { X86::PMULHUWrr,       X86::PMULHUWrm, 16 }, | 
|  | { X86::PMULHWrr,        X86::PMULHWrm, 16 }, | 
|  | { X86::PMULLDrr,        X86::PMULLDrm, 16 }, | 
|  | { X86::PMULLDrr_int,    X86::PMULLDrm_int, 16 }, | 
|  | { X86::PMULLWrr,        X86::PMULLWrm, 16 }, | 
|  | { X86::PMULUDQrr,       X86::PMULUDQrm, 16 }, | 
|  | { X86::PORrr,           X86::PORrm, 16 }, | 
|  | { X86::PSADBWrr,        X86::PSADBWrm, 16 }, | 
|  | { X86::PSLLDrr,         X86::PSLLDrm, 16 }, | 
|  | { X86::PSLLQrr,         X86::PSLLQrm, 16 }, | 
|  | { X86::PSLLWrr,         X86::PSLLWrm, 16 }, | 
|  | { X86::PSRADrr,         X86::PSRADrm, 16 }, | 
|  | { X86::PSRAWrr,         X86::PSRAWrm, 16 }, | 
|  | { X86::PSRLDrr,         X86::PSRLDrm, 16 }, | 
|  | { X86::PSRLQrr,         X86::PSRLQrm, 16 }, | 
|  | { X86::PSRLWrr,         X86::PSRLWrm, 16 }, | 
|  | { X86::PSUBBrr,         X86::PSUBBrm, 16 }, | 
|  | { X86::PSUBDrr,         X86::PSUBDrm, 16 }, | 
|  | { X86::PSUBSBrr,        X86::PSUBSBrm, 16 }, | 
|  | { X86::PSUBSWrr,        X86::PSUBSWrm, 16 }, | 
|  | { X86::PSUBWrr,         X86::PSUBWrm, 16 }, | 
|  | { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 }, | 
|  | { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 }, | 
|  | { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 }, | 
|  | { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 }, | 
|  | { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 }, | 
|  | { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 }, | 
|  | { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 }, | 
|  | { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 }, | 
|  | { X86::PXORrr,          X86::PXORrm, 16 }, | 
|  | { X86::SBB32rr,         X86::SBB32rm, 0 }, | 
|  | { X86::SBB64rr,         X86::SBB64rm, 0 }, | 
|  | { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 }, | 
|  | { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 }, | 
|  | { X86::SUB16rr,         X86::SUB16rm, 0 }, | 
|  | { X86::SUB32rr,         X86::SUB32rm, 0 }, | 
|  | { X86::SUB64rr,         X86::SUB64rm, 0 }, | 
|  | { X86::SUB8rr,          X86::SUB8rm, 0 }, | 
|  | { X86::SUBPDrr,         X86::SUBPDrm, 16 }, | 
|  | { X86::SUBPSrr,         X86::SUBPSrm, 16 }, | 
|  | { X86::SUBSDrr,         X86::SUBSDrm, 0 }, | 
|  | { X86::SUBSSrr,         X86::SUBSSrm, 0 }, | 
|  | // FIXME: TEST*rr -> swapped operand of TEST*mr. | 
|  | { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 }, | 
|  | { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 }, | 
|  | { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 }, | 
|  | { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 }, | 
|  | { X86::XOR16rr,         X86::XOR16rm, 0 }, | 
|  | { X86::XOR32rr,         X86::XOR32rm, 0 }, | 
|  | { X86::XOR64rr,         X86::XOR64rm, 0 }, | 
|  | { X86::XOR8rr,          X86::XOR8rm, 0 }, | 
|  | { X86::XORPDrr,         X86::XORPDrm, 16 }, | 
|  | { X86::XORPSrr,         X86::XORPSrm, 16 } | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { | 
|  | unsigned RegOp = OpTbl2[i][0]; | 
|  | unsigned MemOp = OpTbl2[i][1]; | 
|  | unsigned Align = OpTbl2[i][2]; | 
|  | if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, | 
|  | std::make_pair(MemOp,Align))).second) | 
|  | assert(false && "Duplicated entries?"); | 
|  | // Index 2, folded load | 
|  | unsigned AuxInfo = 2 | (1 << 4); | 
|  | if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, | 
|  | std::make_pair(RegOp, AuxInfo))).second) | 
|  | AmbEntries.push_back(MemOp); | 
|  | } | 
|  |  | 
|  | // Remove ambiguous entries. | 
|  | assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?"); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isMoveInstr(const MachineInstr& MI, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | unsigned &SrcSubIdx, unsigned &DstSubIdx) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8rr: | 
|  | case X86::MOV8rr_NOREX: | 
|  | case X86::MOV16rr: | 
|  | case X86::MOV32rr: | 
|  | case X86::MOV64rr: | 
|  | case X86::MOVSSrr: | 
|  | case X86::MOVSDrr: | 
|  |  | 
|  | // FP Stack register class copies | 
|  | case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080: | 
|  | case X86::MOV_Fp3264: case X86::MOV_Fp3280: | 
|  | case X86::MOV_Fp6432: case X86::MOV_Fp8032: | 
|  |  | 
|  | case X86::FsMOVAPSrr: | 
|  | case X86::FsMOVAPDrr: | 
|  | case X86::MOVAPSrr: | 
|  | case X86::MOVAPDrr: | 
|  | case X86::MOVDQArr: | 
|  | case X86::MOVSS2PSrr: | 
|  | case X86::MOVSD2PDrr: | 
|  | case X86::MOVPS2SSrr: | 
|  | case X86::MOVPD2SDrr: | 
|  | case X86::MMX_MOVQ64rr: | 
|  | assert(MI.getNumOperands() >= 2 && | 
|  | MI.getOperand(0).isReg() && | 
|  | MI.getOperand(1).isReg() && | 
|  | "invalid register-register move instruction"); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcSubIdx = MI.getOperand(1).getSubReg(); | 
|  | DstSubIdx = MI.getOperand(0).getSubReg(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && | 
|  | MI->getOperand(3).isReg() && MI->getOperand(4).isImm() && | 
|  | MI->getOperand(2).getImm() == 1 && | 
|  | MI->getOperand(3).getReg() == 0 && | 
|  | MI->getOperand(4).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(1).getIndex(); | 
|  | return MI->getOperand(0).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, | 
|  | int &FrameIndex) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOV8mr: | 
|  | case X86::MOV16mr: | 
|  | case X86::MOV32mr: | 
|  | case X86::MOV64mr: | 
|  | case X86::ST_FpP64m: | 
|  | case X86::MOVSSmr: | 
|  | case X86::MOVSDmr: | 
|  | case X86::MOVAPSmr: | 
|  | case X86::MOVAPDmr: | 
|  | case X86::MOVDQAmr: | 
|  | case X86::MMX_MOVD64mr: | 
|  | case X86::MMX_MOVQ64mr: | 
|  | case X86::MMX_MOVNTQmr: | 
|  | if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() && | 
|  | MI->getOperand(2).isReg() && MI->getOperand(3).isImm() && | 
|  | MI->getOperand(1).getImm() == 1 && | 
|  | MI->getOperand(2).getReg() == 0 && | 
|  | MI->getOperand(3).getImm() == 0) { | 
|  | FrameIndex = MI->getOperand(0).getIndex(); | 
|  | return MI->getOperand(X86AddrNumOperands).getReg(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// regIsPICBase - Return true if register is PIC base (i.e.g defined by | 
|  | /// X86::MOVPC32r. | 
|  | static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { | 
|  | bool isPICBase = false; | 
|  | for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), | 
|  | E = MRI.def_end(); I != E; ++I) { | 
|  | MachineInstr *DefMI = I.getOperand().getParent(); | 
|  | if (DefMI->getOpcode() != X86::MOVPC32r) | 
|  | return false; | 
|  | assert(!isPICBase && "More than one PIC base?"); | 
|  | isPICBase = true; | 
|  | } | 
|  | return isPICBase; | 
|  | } | 
|  |  | 
|  | /// CanRematLoadWithDispOperand - Return true if a load with the specified | 
|  | /// operand is a candidate for remat: for this to be true we need to know that | 
|  | /// the load will always return the same value, even if moved. | 
|  | static bool CanRematLoadWithDispOperand(const MachineOperand &MO, | 
|  | X86TargetMachine &TM) { | 
|  | // Loads from constant pool entries can be remat'd. | 
|  | if (MO.isCPI()) return true; | 
|  |  | 
|  | // We can remat globals in some cases. | 
|  | if (MO.isGlobal()) { | 
|  | // If this is a load of a stub, not of the global, we can remat it.  This | 
|  | // access will always return the address of the global. | 
|  | if (isGlobalStubReference(MO.getTargetFlags())) | 
|  | return true; | 
|  |  | 
|  | // If the global itself is constant, we can remat the load. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal())) | 
|  | if (GV->isConstant()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const { | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: { | 
|  | // Loads from constant pools are trivially rematerializable. | 
|  | if (MI->getOperand(1).isReg() && | 
|  | MI->getOperand(2).isImm() && | 
|  | MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && | 
|  | CanRematLoadWithDispOperand(MI->getOperand(4), TM)) { | 
|  | unsigned BaseReg = MI->getOperand(1).getReg(); | 
|  | if (BaseReg == 0 || BaseReg == X86::RIP) | 
|  | return true; | 
|  | // Allow re-materialization of PIC load. | 
|  | if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) | 
|  | return false; | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | bool isPICBase = false; | 
|  | for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), | 
|  | E = MRI.def_end(); I != E; ++I) { | 
|  | MachineInstr *DefMI = I.getOperand().getParent(); | 
|  | if (DefMI->getOpcode() != X86::MOVPC32r) | 
|  | return false; | 
|  | assert(!isPICBase && "More than one PIC base?"); | 
|  | isPICBase = true; | 
|  | } | 
|  | return isPICBase; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64r: { | 
|  | if (MI->getOperand(2).isImm() && | 
|  | MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && | 
|  | !MI->getOperand(4).isReg()) { | 
|  | // lea fi#, lea GV, etc. are all rematerializable. | 
|  | if (!MI->getOperand(1).isReg()) | 
|  | return true; | 
|  | unsigned BaseReg = MI->getOperand(1).getReg(); | 
|  | if (BaseReg == 0) | 
|  | return true; | 
|  | // Allow re-materialization of lea PICBase + x. | 
|  | const MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | return regIsPICBase(BaseReg, MRI); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All other instructions marked M_REMATERIALIZABLE are always trivially | 
|  | // rematerializable. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that | 
|  | /// would clobber the EFLAGS condition register. Note the result may be | 
|  | /// conservative. If it cannot definitely determine the safety after visiting | 
|  | /// two instructions it assumes it's not safe. | 
|  | static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I) { | 
|  | // It's always safe to clobber EFLAGS at the end of a block. | 
|  | if (I == MBB.end()) | 
|  | return true; | 
|  |  | 
|  | // For compile time consideration, if we are not able to determine the | 
|  | // safety after visiting 2 instructions, we will assume it's not safe. | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | bool SeenDef = false; | 
|  | for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) { | 
|  | MachineOperand &MO = I->getOperand(j); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (MO.getReg() == X86::EFLAGS) { | 
|  | if (MO.isUse()) | 
|  | return false; | 
|  | SeenDef = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SeenDef) | 
|  | // This instruction defines EFLAGS, no need to look any further. | 
|  | return true; | 
|  | ++I; | 
|  |  | 
|  | // If we make it to the end of the block, it's safe to clobber EFLAGS. | 
|  | if (I == MBB.end()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Conservative answer. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | unsigned DestReg, unsigned SubIdx, | 
|  | const MachineInstr *Orig) const { | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (I != MBB.end()) DL = I->getDebugLoc(); | 
|  |  | 
|  | if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) { | 
|  | DestReg = RI.getSubReg(DestReg, SubIdx); | 
|  | SubIdx = 0; | 
|  | } | 
|  |  | 
|  | // MOV32r0 etc. are implemented with xor which clobbers condition code. | 
|  | // Re-materialize them as movri instructions to avoid side effects. | 
|  | bool Clone = true; | 
|  | unsigned Opc = Orig->getOpcode(); | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86::MOV8r0: | 
|  | case X86::MOV16r0: | 
|  | case X86::MOV32r0: { | 
|  | if (!isSafeToClobberEFLAGS(MBB, I)) { | 
|  | switch (Opc) { | 
|  | default: break; | 
|  | case X86::MOV8r0:  Opc = X86::MOV8ri;  break; | 
|  | case X86::MOV16r0: Opc = X86::MOV16ri; break; | 
|  | case X86::MOV32r0: Opc = X86::MOV32ri; break; | 
|  | } | 
|  | Clone = false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Clone) { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
|  | MI->getOperand(0).setReg(DestReg); | 
|  | MBB.insert(I, MI); | 
|  | } else { | 
|  | BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0); | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = prior(I); | 
|  | NewMI->getOperand(0).setSubReg(SubIdx); | 
|  | } | 
|  |  | 
|  | /// isInvariantLoad - Return true if the specified instruction (which is marked | 
|  | /// mayLoad) is loading from a location whose value is invariant across the | 
|  | /// function.  For example, loading a value from the constant pool or from | 
|  | /// from the argument area of a function if it does not change.  This should | 
|  | /// only return true of *all* loads the instruction does are invariant (if it | 
|  | /// does multiple loads). | 
|  | bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const { | 
|  | // This code cares about loads from three cases: constant pool entries, | 
|  | // invariant argument slots, and global stubs.  In order to handle these cases | 
|  | // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV | 
|  | // operand and base our analysis on it.  This is safe because the address of | 
|  | // none of these three cases is ever used as anything other than a load base | 
|  | // and X86 doesn't have any instructions that load from multiple places. | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | // Loads from constant pools are trivially invariant. | 
|  | if (MO.isCPI()) | 
|  | return true; | 
|  |  | 
|  | if (MO.isGlobal()) | 
|  | return isGlobalStubReference(MO.getTargetFlags()); | 
|  |  | 
|  | // If this is a load from an invariant stack slot, the load is a constant. | 
|  | if (MO.isFI()) { | 
|  | const MachineFrameInfo &MFI = | 
|  | *MI->getParent()->getParent()->getFrameInfo(); | 
|  | int Idx = MO.getIndex(); | 
|  | return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All other instances of these instructions are presumed to have other | 
|  | // issues. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that | 
|  | /// is not marked dead. | 
|  | static bool hasLiveCondCodeDef(MachineInstr *MI) { | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (MO.isReg() && MO.isDef() && | 
|  | MO.getReg() == X86::EFLAGS && !MO.isDead()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// convertToThreeAddress - This method must be implemented by targets that | 
|  | /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target | 
|  | /// may be able to convert a two-address instruction into a true | 
|  | /// three-address instruction on demand.  This allows the X86 target (for | 
|  | /// example) to convert ADD and SHL instructions into LEA instructions if they | 
|  | /// would require register copies due to two-addressness. | 
|  | /// | 
|  | /// This method returns a null pointer if the transformation cannot be | 
|  | /// performed, otherwise it returns the new instruction. | 
|  | /// | 
|  | MachineInstr * | 
|  | X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, | 
|  | MachineBasicBlock::iterator &MBBI, | 
|  | LiveVariables *LV) const { | 
|  | MachineInstr *MI = MBBI; | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | // All instructions input are two-addr instructions.  Get the known operands. | 
|  | unsigned Dest = MI->getOperand(0).getReg(); | 
|  | unsigned Src = MI->getOperand(1).getReg(); | 
|  | bool isDead = MI->getOperand(0).isDead(); | 
|  | bool isKill = MI->getOperand(1).isKill(); | 
|  |  | 
|  | MachineInstr *NewMI = NULL; | 
|  | // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When | 
|  | // we have better subtarget support, enable the 16-bit LEA generation here. | 
|  | bool DisableLEA16 = true; | 
|  |  | 
|  | unsigned MIOpc = MI->getOpcode(); | 
|  | switch (MIOpc) { | 
|  | case X86::SHUFPSrri: { | 
|  | assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); | 
|  | if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; | 
|  |  | 
|  | unsigned B = MI->getOperand(1).getReg(); | 
|  | unsigned C = MI->getOperand(2).getReg(); | 
|  | if (B != C) return 0; | 
|  | unsigned A = MI->getOperand(0).getReg(); | 
|  | unsigned M = MI->getOperand(3).getImm(); | 
|  | NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) | 
|  | .addReg(A, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(B, getKillRegState(isKill)).addImm(M); | 
|  | break; | 
|  | } | 
|  | case X86::SHL64ri: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses | 
|  | // the flags produced by a shift yet, so this is safe. | 
|  | unsigned ShAmt = MI->getOperand(2).getImm(); | 
|  | if (ShAmt == 0 || ShAmt >= 4) return 0; | 
|  |  | 
|  | NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(0).addImm(1 << ShAmt) | 
|  | .addReg(Src, getKillRegState(isKill)) | 
|  | .addImm(0); | 
|  | break; | 
|  | } | 
|  | case X86::SHL32ri: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses | 
|  | // the flags produced by a shift yet, so this is safe. | 
|  | unsigned ShAmt = MI->getOperand(2).getImm(); | 
|  | if (ShAmt == 0 || ShAmt >= 4) return 0; | 
|  |  | 
|  | unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ? | 
|  | X86::LEA64_32r : X86::LEA32r; | 
|  | NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(0).addImm(1 << ShAmt) | 
|  | .addReg(Src, getKillRegState(isKill)).addImm(0); | 
|  | break; | 
|  | } | 
|  | case X86::SHL16ri: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses | 
|  | // the flags produced by a shift yet, so this is safe. | 
|  | unsigned ShAmt = MI->getOperand(2).getImm(); | 
|  | if (ShAmt == 0 || ShAmt >= 4) return 0; | 
|  |  | 
|  | if (DisableLEA16) { | 
|  | // If 16-bit LEA is disabled, use 32-bit LEA via subregisters. | 
|  | MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); | 
|  | unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() | 
|  | ? X86::LEA64_32r : X86::LEA32r; | 
|  | unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  |  | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // well be shifting and then extracting the lower 16-bits. | 
|  | BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); | 
|  | MachineInstr *InsMI = | 
|  | BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg) | 
|  | .addReg(leaInReg) | 
|  | .addReg(Src, getKillRegState(isKill)) | 
|  | .addImm(X86::SUBREG_16BIT); | 
|  |  | 
|  | NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg) | 
|  | .addReg(0).addImm(1 << ShAmt) | 
|  | .addReg(leaInReg, RegState::Kill) | 
|  | .addImm(0); | 
|  |  | 
|  | MachineInstr *ExtMI = | 
|  | BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(leaOutReg, RegState::Kill) | 
|  | .addImm(X86::SUBREG_16BIT); | 
|  |  | 
|  | if (LV) { | 
|  | // Update live variables | 
|  | LV->getVarInfo(leaInReg).Kills.push_back(NewMI); | 
|  | LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); | 
|  | if (isKill) | 
|  | LV->replaceKillInstruction(Src, MI, InsMI); | 
|  | if (isDead) | 
|  | LV->replaceKillInstruction(Dest, MI, ExtMI); | 
|  | } | 
|  | return ExtMI; | 
|  | } else { | 
|  | NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(isDead)) | 
|  | .addReg(0).addImm(1 << ShAmt) | 
|  | .addReg(Src, getKillRegState(isKill)) | 
|  | .addImm(0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | // The following opcodes also sets the condition code register(s). Only | 
|  | // convert them to equivalent lea if the condition code register def's | 
|  | // are dead! | 
|  | if (hasLiveCondCodeDef(MI)) | 
|  | return 0; | 
|  |  | 
|  | bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); | 
|  | switch (MIOpc) { | 
|  | default: return 0; | 
|  | case X86::INC64r: | 
|  | case X86::INC32r: | 
|  | case X86::INC64_32r: { | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  | NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, 1); | 
|  | break; | 
|  | } | 
|  | case X86::INC16r: | 
|  | case X86::INC64_16r: | 
|  | if (DisableLEA16) return 0; | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, 1); | 
|  | break; | 
|  | case X86::DEC64r: | 
|  | case X86::DEC32r: | 
|  | case X86::DEC64_32r: { | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  | NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, -1); | 
|  | break; | 
|  | } | 
|  | case X86::DEC16r: | 
|  | case X86::DEC64_16r: | 
|  | if (DisableLEA16) return 0; | 
|  | assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, -1); | 
|  | break; | 
|  | case X86::ADD64rr: | 
|  | case X86::ADD32rr: { | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r | 
|  | : (is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  | unsigned Src2 = MI->getOperand(2).getReg(); | 
|  | bool isKill2 = MI->getOperand(2).isKill(); | 
|  | NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, Src2, isKill2); | 
|  | if (LV && isKill2) | 
|  | LV->replaceKillInstruction(Src2, MI, NewMI); | 
|  | break; | 
|  | } | 
|  | case X86::ADD16rr: { | 
|  | if (DisableLEA16) return 0; | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Src2 = MI->getOperand(2).getReg(); | 
|  | bool isKill2 = MI->getOperand(2).isKill(); | 
|  | NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, Src2, isKill2); | 
|  | if (LV && isKill2) | 
|  | LV->replaceKillInstruction(Src2, MI, NewMI); | 
|  | break; | 
|  | } | 
|  | case X86::ADD64ri32: | 
|  | case X86::ADD64ri8: | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | if (MI->getOperand(2).isImm()) | 
|  | NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, MI->getOperand(2).getImm()); | 
|  | break; | 
|  | case X86::ADD32ri: | 
|  | case X86::ADD32ri8: | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | if (MI->getOperand(2).isImm()) { | 
|  | unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  | NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, MI->getOperand(2).getImm()); | 
|  | } | 
|  | break; | 
|  | case X86::ADD16ri: | 
|  | case X86::ADD16ri8: | 
|  | if (DisableLEA16) return 0; | 
|  | assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | if (MI->getOperand(2).isImm()) | 
|  | NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), | 
|  | Src, isKill, MI->getOperand(2).getImm()); | 
|  | break; | 
|  | case X86::SHL16ri: | 
|  | if (DisableLEA16) return 0; | 
|  | case X86::SHL32ri: | 
|  | case X86::SHL64ri: { | 
|  | assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() && | 
|  | "Unknown shl instruction!"); | 
|  | unsigned ShAmt = MI->getOperand(2).getImm(); | 
|  | if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) { | 
|  | X86AddressMode AM; | 
|  | AM.Scale = 1 << ShAmt; | 
|  | AM.IndexReg = Src; | 
|  | unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r | 
|  | : (MIOpc == X86::SHL32ri | 
|  | ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r); | 
|  | NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc)) | 
|  | .addReg(Dest, RegState::Define | | 
|  | getDeadRegState(isDead)), AM); | 
|  | if (isKill) | 
|  | NewMI->getOperand(3).setIsKill(true); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NewMI) return 0; | 
|  |  | 
|  | if (LV) {  // Update live variables | 
|  | if (isKill) | 
|  | LV->replaceKillInstruction(Src, MI, NewMI); | 
|  | if (isDead) | 
|  | LV->replaceKillInstruction(Dest, MI, NewMI); | 
|  | } | 
|  |  | 
|  | MFI->insert(MBBI, NewMI);          // Insert the new inst | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// commuteInstruction - We have a few instructions that must be hacked on to | 
|  | /// commute them. | 
|  | /// | 
|  | MachineInstr * | 
|  | X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) | 
|  | case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) | 
|  | case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) | 
|  | case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) | 
|  | case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) | 
|  | case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) | 
|  | unsigned Opc; | 
|  | unsigned Size; | 
|  | switch (MI->getOpcode()) { | 
|  | default: llvm_unreachable("Unreachable!"); | 
|  | case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; | 
|  | case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; | 
|  | case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; | 
|  | case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; | 
|  | case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; | 
|  | case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; | 
|  | } | 
|  | unsigned Amt = MI->getOperand(3).getImm(); | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->setDesc(get(Opc)); | 
|  | MI->getOperand(3).setImm(Size-Amt); | 
|  | return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); | 
|  | } | 
|  | case X86::CMOVB16rr: | 
|  | case X86::CMOVB32rr: | 
|  | case X86::CMOVB64rr: | 
|  | case X86::CMOVAE16rr: | 
|  | case X86::CMOVAE32rr: | 
|  | case X86::CMOVAE64rr: | 
|  | case X86::CMOVE16rr: | 
|  | case X86::CMOVE32rr: | 
|  | case X86::CMOVE64rr: | 
|  | case X86::CMOVNE16rr: | 
|  | case X86::CMOVNE32rr: | 
|  | case X86::CMOVNE64rr: | 
|  | case X86::CMOVBE16rr: | 
|  | case X86::CMOVBE32rr: | 
|  | case X86::CMOVBE64rr: | 
|  | case X86::CMOVA16rr: | 
|  | case X86::CMOVA32rr: | 
|  | case X86::CMOVA64rr: | 
|  | case X86::CMOVL16rr: | 
|  | case X86::CMOVL32rr: | 
|  | case X86::CMOVL64rr: | 
|  | case X86::CMOVGE16rr: | 
|  | case X86::CMOVGE32rr: | 
|  | case X86::CMOVGE64rr: | 
|  | case X86::CMOVLE16rr: | 
|  | case X86::CMOVLE32rr: | 
|  | case X86::CMOVLE64rr: | 
|  | case X86::CMOVG16rr: | 
|  | case X86::CMOVG32rr: | 
|  | case X86::CMOVG64rr: | 
|  | case X86::CMOVS16rr: | 
|  | case X86::CMOVS32rr: | 
|  | case X86::CMOVS64rr: | 
|  | case X86::CMOVNS16rr: | 
|  | case X86::CMOVNS32rr: | 
|  | case X86::CMOVNS64rr: | 
|  | case X86::CMOVP16rr: | 
|  | case X86::CMOVP32rr: | 
|  | case X86::CMOVP64rr: | 
|  | case X86::CMOVNP16rr: | 
|  | case X86::CMOVNP32rr: | 
|  | case X86::CMOVNP64rr: | 
|  | case X86::CMOVO16rr: | 
|  | case X86::CMOVO32rr: | 
|  | case X86::CMOVO64rr: | 
|  | case X86::CMOVNO16rr: | 
|  | case X86::CMOVNO32rr: | 
|  | case X86::CMOVNO64rr: { | 
|  | unsigned Opc = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break; | 
|  | case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break; | 
|  | case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break; | 
|  | case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; | 
|  | case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; | 
|  | case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; | 
|  | case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break; | 
|  | case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break; | 
|  | case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break; | 
|  | case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; | 
|  | case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; | 
|  | case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; | 
|  | case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; | 
|  | case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; | 
|  | case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; | 
|  | case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break; | 
|  | case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break; | 
|  | case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break; | 
|  | case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break; | 
|  | case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break; | 
|  | case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break; | 
|  | case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; | 
|  | case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; | 
|  | case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; | 
|  | case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; | 
|  | case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; | 
|  | case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; | 
|  | case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break; | 
|  | case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break; | 
|  | case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break; | 
|  | case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break; | 
|  | case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break; | 
|  | case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break; | 
|  | case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; | 
|  | case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; | 
|  | case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; | 
|  | case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break; | 
|  | case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break; | 
|  | case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break; | 
|  | case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; | 
|  | case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; | 
|  | case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; | 
|  | case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break; | 
|  | case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break; | 
|  | case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break; | 
|  | case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; | 
|  | case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; | 
|  | case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; | 
|  | } | 
|  | if (NewMI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MI = MF.CloneMachineInstr(MI); | 
|  | NewMI = false; | 
|  | } | 
|  | MI->setDesc(get(Opc)); | 
|  | // Fallthrough intended. | 
|  | } | 
|  | default: | 
|  | return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { | 
|  | switch (BrOpc) { | 
|  | default: return X86::COND_INVALID; | 
|  | case X86::JE:  return X86::COND_E; | 
|  | case X86::JNE: return X86::COND_NE; | 
|  | case X86::JL:  return X86::COND_L; | 
|  | case X86::JLE: return X86::COND_LE; | 
|  | case X86::JG:  return X86::COND_G; | 
|  | case X86::JGE: return X86::COND_GE; | 
|  | case X86::JB:  return X86::COND_B; | 
|  | case X86::JBE: return X86::COND_BE; | 
|  | case X86::JA:  return X86::COND_A; | 
|  | case X86::JAE: return X86::COND_AE; | 
|  | case X86::JS:  return X86::COND_S; | 
|  | case X86::JNS: return X86::COND_NS; | 
|  | case X86::JP:  return X86::COND_P; | 
|  | case X86::JNP: return X86::COND_NP; | 
|  | case X86::JO:  return X86::COND_O; | 
|  | case X86::JNO: return X86::COND_NO; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E:  return X86::JE; | 
|  | case X86::COND_NE: return X86::JNE; | 
|  | case X86::COND_L:  return X86::JL; | 
|  | case X86::COND_LE: return X86::JLE; | 
|  | case X86::COND_G:  return X86::JG; | 
|  | case X86::COND_GE: return X86::JGE; | 
|  | case X86::COND_B:  return X86::JB; | 
|  | case X86::COND_BE: return X86::JBE; | 
|  | case X86::COND_A:  return X86::JA; | 
|  | case X86::COND_AE: return X86::JAE; | 
|  | case X86::COND_S:  return X86::JS; | 
|  | case X86::COND_NS: return X86::JNS; | 
|  | case X86::COND_P:  return X86::JP; | 
|  | case X86::COND_NP: return X86::JNP; | 
|  | case X86::COND_O:  return X86::JO; | 
|  | case X86::COND_NO: return X86::JNO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetOppositeBranchCondition - Return the inverse of the specified condition, | 
|  | /// e.g. turning COND_E to COND_NE. | 
|  | X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E:  return X86::COND_NE; | 
|  | case X86::COND_NE: return X86::COND_E; | 
|  | case X86::COND_L:  return X86::COND_GE; | 
|  | case X86::COND_LE: return X86::COND_G; | 
|  | case X86::COND_G:  return X86::COND_LE; | 
|  | case X86::COND_GE: return X86::COND_L; | 
|  | case X86::COND_B:  return X86::COND_AE; | 
|  | case X86::COND_BE: return X86::COND_A; | 
|  | case X86::COND_A:  return X86::COND_BE; | 
|  | case X86::COND_AE: return X86::COND_B; | 
|  | case X86::COND_S:  return X86::COND_NS; | 
|  | case X86::COND_NS: return X86::COND_S; | 
|  | case X86::COND_P:  return X86::COND_NP; | 
|  | case X86::COND_NP: return X86::COND_P; | 
|  | case X86::COND_O:  return X86::COND_NO; | 
|  | case X86::COND_NO: return X86::COND_O; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { | 
|  | const TargetInstrDesc &TID = MI->getDesc(); | 
|  | if (!TID.isTerminator()) return false; | 
|  |  | 
|  | // Conditional branch is a special case. | 
|  | if (TID.isBranch() && !TID.isBarrier()) | 
|  | return true; | 
|  | if (!TID.isPredicable()) | 
|  | return true; | 
|  | return !isPredicated(MI); | 
|  | } | 
|  |  | 
|  | // For purposes of branch analysis do not count FP_REG_KILL as a terminator. | 
|  | static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI, | 
|  | const X86InstrInfo &TII) { | 
|  | if (MI->getOpcode() == X86::FP_REG_KILL) | 
|  | return false; | 
|  | return TII.isUnpredicatedTerminator(MI); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | // Start from the bottom of the block and work up, examining the | 
|  | // terminator instructions. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | // Working from the bottom, when we see a non-terminator | 
|  | // instruction, we're done. | 
|  | if (!isBrAnalysisUnpredicatedTerminator(I, *this)) | 
|  | break; | 
|  | // A terminator that isn't a branch can't easily be handled | 
|  | // by this analysis. | 
|  | if (!I->getDesc().isBranch()) | 
|  | return true; | 
|  | // Handle unconditional branches. | 
|  | if (I->getOpcode() == X86::JMP) { | 
|  | if (!AllowModify) { | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the block has any instructions after a JMP, delete them. | 
|  | while (next(I) != MBB.end()) | 
|  | next(I)->eraseFromParent(); | 
|  | Cond.clear(); | 
|  | FBB = 0; | 
|  | // Delete the JMP if it's equivalent to a fall-through. | 
|  | if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | TBB = 0; | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | continue; | 
|  | } | 
|  | // TBB is used to indicate the unconditinal destination. | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  | // Handle conditional branches. | 
|  | X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); | 
|  | if (BranchCode == X86::COND_INVALID) | 
|  | return true;  // Can't handle indirect branch. | 
|  | // Working from the bottom, handle the first conditional branch. | 
|  | if (Cond.empty()) { | 
|  | FBB = TBB; | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(BranchCode)); | 
|  | continue; | 
|  | } | 
|  | // Handle subsequent conditional branches. Only handle the case | 
|  | // where all conditional branches branch to the same destination | 
|  | // and their condition opcodes fit one of the special | 
|  | // multi-branch idioms. | 
|  | assert(Cond.size() == 1); | 
|  | assert(TBB); | 
|  | // Only handle the case where all conditional branches branch to | 
|  | // the same destination. | 
|  | if (TBB != I->getOperand(0).getMBB()) | 
|  | return true; | 
|  | X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); | 
|  | // If the conditions are the same, we can leave them alone. | 
|  | if (OldBranchCode == BranchCode) | 
|  | continue; | 
|  | // If they differ, see if they fit one of the known patterns. | 
|  | // Theoretically we could handle more patterns here, but | 
|  | // we shouldn't expect to see them if instruction selection | 
|  | // has done a reasonable job. | 
|  | if ((OldBranchCode == X86::COND_NP && | 
|  | BranchCode == X86::COND_E) || | 
|  | (OldBranchCode == X86::COND_E && | 
|  | BranchCode == X86::COND_NP)) | 
|  | BranchCode = X86::COND_NP_OR_E; | 
|  | else if ((OldBranchCode == X86::COND_P && | 
|  | BranchCode == X86::COND_NE) || | 
|  | (OldBranchCode == X86::COND_NE && | 
|  | BranchCode == X86::COND_P)) | 
|  | BranchCode = X86::COND_NE_OR_P; | 
|  | else | 
|  | return true; | 
|  | // Update the MachineOperand. | 
|  | Cond[0].setImm(BranchCode); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | unsigned Count = 0; | 
|  |  | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->getOpcode() != X86::JMP && | 
|  | GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) | 
|  | break; | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | ++Count; | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | const SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | // FIXME this should probably have a DebugLoc operand | 
|  | DebugLoc dl = DebugLoc::getUnknownLoc(); | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "InsertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 1 || Cond.size() == 0) && | 
|  | "X86 branch conditions have one component!"); | 
|  |  | 
|  | if (Cond.empty()) { | 
|  | // Unconditional branch? | 
|  | assert(!FBB && "Unconditional branch with multiple successors!"); | 
|  | BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Conditional branch. | 
|  | unsigned Count = 0; | 
|  | X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); | 
|  | switch (CC) { | 
|  | case X86::COND_NP_OR_E: | 
|  | // Synthesize NP_OR_E with two branches. | 
|  | BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB); | 
|  | ++Count; | 
|  | BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB); | 
|  | ++Count; | 
|  | break; | 
|  | case X86::COND_NE_OR_P: | 
|  | // Synthesize NE_OR_P with two branches. | 
|  | BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB); | 
|  | ++Count; | 
|  | BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB); | 
|  | ++Count; | 
|  | break; | 
|  | default: { | 
|  | unsigned Opc = GetCondBranchFromCond(CC); | 
|  | BuildMI(&MBB, dl, get(Opc)).addMBB(TBB); | 
|  | ++Count; | 
|  | } | 
|  | } | 
|  | if (FBB) { | 
|  | // Two-way Conditional branch. Insert the second branch. | 
|  | BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB); | 
|  | ++Count; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | /// isHReg - Test if the given register is a physical h register. | 
|  | static bool isHReg(unsigned Reg) { | 
|  | return X86::GR8_ABCD_HRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, unsigned SrcReg, | 
|  | const TargetRegisterClass *DestRC, | 
|  | const TargetRegisterClass *SrcRC) const { | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  |  | 
|  | // Determine if DstRC and SrcRC have a common superclass in common. | 
|  | const TargetRegisterClass *CommonRC = DestRC; | 
|  | if (DestRC == SrcRC) | 
|  | /* Source and destination have the same register class. */; | 
|  | else if (CommonRC->hasSuperClass(SrcRC)) | 
|  | CommonRC = SrcRC; | 
|  | else if (!DestRC->hasSubClass(SrcRC)) { | 
|  | // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other, | 
|  | // but we want to copy then as GR64. Similarly, for GR32_NOREX and | 
|  | // GR32_NOSP, copy as GR32. | 
|  | if (SrcRC->hasSuperClass(&X86::GR64RegClass) && | 
|  | DestRC->hasSuperClass(&X86::GR64RegClass)) | 
|  | CommonRC = &X86::GR64RegClass; | 
|  | else if (SrcRC->hasSuperClass(&X86::GR32RegClass) && | 
|  | DestRC->hasSuperClass(&X86::GR32RegClass)) | 
|  | CommonRC = &X86::GR32RegClass; | 
|  | else | 
|  | CommonRC = 0; | 
|  | } | 
|  |  | 
|  | if (CommonRC) { | 
|  | unsigned Opc; | 
|  | if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) { | 
|  | Opc = X86::MOV64rr; | 
|  | } else if (CommonRC == &X86::GR32RegClass || | 
|  | CommonRC == &X86::GR32_NOSPRegClass) { | 
|  | Opc = X86::MOV32rr; | 
|  | } else if (CommonRC == &X86::GR16RegClass) { | 
|  | Opc = X86::MOV16rr; | 
|  | } else if (CommonRC == &X86::GR8RegClass) { | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if ((isHReg(DestReg) || isHReg(SrcReg)) && | 
|  | TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | Opc = X86::MOV8rr_NOREX; | 
|  | else | 
|  | Opc = X86::MOV8rr; | 
|  | } else if (CommonRC == &X86::GR64_ABCDRegClass) { | 
|  | Opc = X86::MOV64rr; | 
|  | } else if (CommonRC == &X86::GR32_ABCDRegClass) { | 
|  | Opc = X86::MOV32rr; | 
|  | } else if (CommonRC == &X86::GR16_ABCDRegClass) { | 
|  | Opc = X86::MOV16rr; | 
|  | } else if (CommonRC == &X86::GR8_ABCD_LRegClass) { | 
|  | Opc = X86::MOV8rr; | 
|  | } else if (CommonRC == &X86::GR8_ABCD_HRegClass) { | 
|  | if (TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | Opc = X86::MOV8rr_NOREX; | 
|  | else | 
|  | Opc = X86::MOV8rr; | 
|  | } else if (CommonRC == &X86::GR64_NOREXRegClass || | 
|  | CommonRC == &X86::GR64_NOREX_NOSPRegClass) { | 
|  | Opc = X86::MOV64rr; | 
|  | } else if (CommonRC == &X86::GR32_NOREXRegClass) { | 
|  | Opc = X86::MOV32rr; | 
|  | } else if (CommonRC == &X86::GR16_NOREXRegClass) { | 
|  | Opc = X86::MOV16rr; | 
|  | } else if (CommonRC == &X86::GR8_NOREXRegClass) { | 
|  | Opc = X86::MOV8rr; | 
|  | } else if (CommonRC == &X86::RFP32RegClass) { | 
|  | Opc = X86::MOV_Fp3232; | 
|  | } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) { | 
|  | Opc = X86::MOV_Fp6464; | 
|  | } else if (CommonRC == &X86::RFP80RegClass) { | 
|  | Opc = X86::MOV_Fp8080; | 
|  | } else if (CommonRC == &X86::FR32RegClass) { | 
|  | Opc = X86::FsMOVAPSrr; | 
|  | } else if (CommonRC == &X86::FR64RegClass) { | 
|  | Opc = X86::FsMOVAPDrr; | 
|  | } else if (CommonRC == &X86::VR128RegClass) { | 
|  | Opc = X86::MOVAPSrr; | 
|  | } else if (CommonRC == &X86::VR64RegClass) { | 
|  | Opc = X86::MMX_MOVQ64rr; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Moving EFLAGS to / from another register requires a push and a pop. | 
|  | if (SrcRC == &X86::CCRRegClass) { | 
|  | if (SrcReg != X86::EFLAGS) | 
|  | return false; | 
|  | if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) { | 
|  | BuildMI(MBB, MI, DL, get(X86::PUSHFQ)); | 
|  | BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); | 
|  | return true; | 
|  | } else if (DestRC == &X86::GR32RegClass || | 
|  | DestRC == &X86::GR32_NOSPRegClass) { | 
|  | BuildMI(MBB, MI, DL, get(X86::PUSHFD)); | 
|  | BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); | 
|  | return true; | 
|  | } | 
|  | } else if (DestRC == &X86::CCRRegClass) { | 
|  | if (DestReg != X86::EFLAGS) | 
|  | return false; | 
|  | if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) { | 
|  | BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg); | 
|  | BuildMI(MBB, MI, DL, get(X86::POPFQ)); | 
|  | return true; | 
|  | } else if (SrcRC == &X86::GR32RegClass || | 
|  | DestRC == &X86::GR32_NOSPRegClass) { | 
|  | BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg); | 
|  | BuildMI(MBB, MI, DL, get(X86::POPFD)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Moving from ST(0) turns into FpGET_ST0_32 etc. | 
|  | if (SrcRC == &X86::RSTRegClass) { | 
|  | // Copying from ST(0)/ST(1). | 
|  | if (SrcReg != X86::ST0 && SrcReg != X86::ST1) | 
|  | // Can only copy from ST(0)/ST(1) right now | 
|  | return false; | 
|  | bool isST0 = SrcReg == X86::ST0; | 
|  | unsigned Opc; | 
|  | if (DestRC == &X86::RFP32RegClass) | 
|  | Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32; | 
|  | else if (DestRC == &X86::RFP64RegClass) | 
|  | Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64; | 
|  | else { | 
|  | if (DestRC != &X86::RFP80RegClass) | 
|  | return false; | 
|  | Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80; | 
|  | } | 
|  | BuildMI(MBB, MI, DL, get(Opc), DestReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Moving to ST(0) turns into FpSET_ST0_32 etc. | 
|  | if (DestRC == &X86::RSTRegClass) { | 
|  | // Copying to ST(0) / ST(1). | 
|  | if (DestReg != X86::ST0 && DestReg != X86::ST1) | 
|  | // Can only copy to TOS right now | 
|  | return false; | 
|  | bool isST0 = DestReg == X86::ST0; | 
|  | unsigned Opc; | 
|  | if (SrcRC == &X86::RFP32RegClass) | 
|  | Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32; | 
|  | else if (SrcRC == &X86::RFP64RegClass) | 
|  | Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64; | 
|  | else { | 
|  | if (SrcRC != &X86::RFP80RegClass) | 
|  | return false; | 
|  | Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80; | 
|  | } | 
|  | BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Not yet supported! | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned getStoreRegOpcode(unsigned SrcReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | TargetMachine &TM) { | 
|  | unsigned Opc = 0; | 
|  | if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) { | 
|  | Opc = X86::MOV64mr; | 
|  | } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) { | 
|  | Opc = X86::MOV32mr; | 
|  | } else if (RC == &X86::GR16RegClass) { | 
|  | Opc = X86::MOV16mr; | 
|  | } else if (RC == &X86::GR8RegClass) { | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if (isHReg(SrcReg) && | 
|  | TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | Opc = X86::MOV8mr_NOREX; | 
|  | else | 
|  | Opc = X86::MOV8mr; | 
|  | } else if (RC == &X86::GR64_ABCDRegClass) { | 
|  | Opc = X86::MOV64mr; | 
|  | } else if (RC == &X86::GR32_ABCDRegClass) { | 
|  | Opc = X86::MOV32mr; | 
|  | } else if (RC == &X86::GR16_ABCDRegClass) { | 
|  | Opc = X86::MOV16mr; | 
|  | } else if (RC == &X86::GR8_ABCD_LRegClass) { | 
|  | Opc = X86::MOV8mr; | 
|  | } else if (RC == &X86::GR8_ABCD_HRegClass) { | 
|  | if (TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | Opc = X86::MOV8mr_NOREX; | 
|  | else | 
|  | Opc = X86::MOV8mr; | 
|  | } else if (RC == &X86::GR64_NOREXRegClass || | 
|  | RC == &X86::GR64_NOREX_NOSPRegClass) { | 
|  | Opc = X86::MOV64mr; | 
|  | } else if (RC == &X86::GR32_NOREXRegClass) { | 
|  | Opc = X86::MOV32mr; | 
|  | } else if (RC == &X86::GR16_NOREXRegClass) { | 
|  | Opc = X86::MOV16mr; | 
|  | } else if (RC == &X86::GR8_NOREXRegClass) { | 
|  | Opc = X86::MOV8mr; | 
|  | } else if (RC == &X86::RFP80RegClass) { | 
|  | Opc = X86::ST_FpP80m;   // pops | 
|  | } else if (RC == &X86::RFP64RegClass) { | 
|  | Opc = X86::ST_Fp64m; | 
|  | } else if (RC == &X86::RFP32RegClass) { | 
|  | Opc = X86::ST_Fp32m; | 
|  | } else if (RC == &X86::FR32RegClass) { | 
|  | Opc = X86::MOVSSmr; | 
|  | } else if (RC == &X86::FR64RegClass) { | 
|  | Opc = X86::MOVSDmr; | 
|  | } else if (RC == &X86::VR128RegClass) { | 
|  | // If stack is realigned we can use aligned stores. | 
|  | Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr; | 
|  | } else if (RC == &X86::VR64RegClass) { | 
|  | Opc = X86::MMX_MOVQ64mr; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass"); | 
|  | } | 
|  |  | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, int FrameIdx, | 
|  | const TargetRegisterClass *RC) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | bool isAligned = (RI.getStackAlignment() >= 16) || | 
|  | RI.needsStackRealignment(MF); | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  | addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) | 
|  | .addReg(SrcReg, getKillRegState(isKill)); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, | 
|  | bool isKill, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | bool isAligned = (RI.getStackAlignment() >= 16) || | 
|  | RI.needsStackRealignment(MF); | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); | 
|  | for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
|  | MIB.addOperand(Addr[i]); | 
|  | MIB.addReg(SrcReg, getKillRegState(isKill)); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  | static unsigned getLoadRegOpcode(unsigned DestReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool isStackAligned, | 
|  | const TargetMachine &TM) { | 
|  | unsigned Opc = 0; | 
|  | if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) { | 
|  | Opc = X86::MOV64rm; | 
|  | } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) { | 
|  | Opc = X86::MOV32rm; | 
|  | } else if (RC == &X86::GR16RegClass) { | 
|  | Opc = X86::MOV16rm; | 
|  | } else if (RC == &X86::GR8RegClass) { | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if (isHReg(DestReg) && | 
|  | TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | Opc = X86::MOV8rm_NOREX; | 
|  | else | 
|  | Opc = X86::MOV8rm; | 
|  | } else if (RC == &X86::GR64_ABCDRegClass) { | 
|  | Opc = X86::MOV64rm; | 
|  | } else if (RC == &X86::GR32_ABCDRegClass) { | 
|  | Opc = X86::MOV32rm; | 
|  | } else if (RC == &X86::GR16_ABCDRegClass) { | 
|  | Opc = X86::MOV16rm; | 
|  | } else if (RC == &X86::GR8_ABCD_LRegClass) { | 
|  | Opc = X86::MOV8rm; | 
|  | } else if (RC == &X86::GR8_ABCD_HRegClass) { | 
|  | if (TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | Opc = X86::MOV8rm_NOREX; | 
|  | else | 
|  | Opc = X86::MOV8rm; | 
|  | } else if (RC == &X86::GR64_NOREXRegClass || | 
|  | RC == &X86::GR64_NOREX_NOSPRegClass) { | 
|  | Opc = X86::MOV64rm; | 
|  | } else if (RC == &X86::GR32_NOREXRegClass) { | 
|  | Opc = X86::MOV32rm; | 
|  | } else if (RC == &X86::GR16_NOREXRegClass) { | 
|  | Opc = X86::MOV16rm; | 
|  | } else if (RC == &X86::GR8_NOREXRegClass) { | 
|  | Opc = X86::MOV8rm; | 
|  | } else if (RC == &X86::RFP80RegClass) { | 
|  | Opc = X86::LD_Fp80m; | 
|  | } else if (RC == &X86::RFP64RegClass) { | 
|  | Opc = X86::LD_Fp64m; | 
|  | } else if (RC == &X86::RFP32RegClass) { | 
|  | Opc = X86::LD_Fp32m; | 
|  | } else if (RC == &X86::FR32RegClass) { | 
|  | Opc = X86::MOVSSrm; | 
|  | } else if (RC == &X86::FR64RegClass) { | 
|  | Opc = X86::MOVSDrm; | 
|  | } else if (RC == &X86::VR128RegClass) { | 
|  | // If stack is realigned we can use aligned loads. | 
|  | Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm; | 
|  | } else if (RC == &X86::VR64RegClass) { | 
|  | Opc = X86::MMX_MOVQ64rm; | 
|  | } else { | 
|  | llvm_unreachable("Unknown regclass"); | 
|  | } | 
|  |  | 
|  | return Opc; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIdx, | 
|  | const TargetRegisterClass *RC) const{ | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | bool isAligned = (RI.getStackAlignment() >= 16) || | 
|  | RI.needsStackRealignment(MF); | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  | addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, | 
|  | SmallVectorImpl<MachineOperand> &Addr, | 
|  | const TargetRegisterClass *RC, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | bool isAligned = (RI.getStackAlignment() >= 16) || | 
|  | RI.needsStackRealignment(MF); | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); | 
|  | for (unsigned i = 0, e = Addr.size(); i != e; ++i) | 
|  | MIB.addOperand(Addr[i]); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | const std::vector<CalleeSavedInfo> &CSI) const { | 
|  | if (CSI.empty()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  |  | 
|  | bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); | 
|  | unsigned SlotSize = is64Bit ? 8 : 4; | 
|  |  | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned FPReg = RI.getFrameRegister(MF); | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned CalleeFrameSize = 0; | 
|  |  | 
|  | unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r; | 
|  | for (unsigned i = CSI.size(); i != 0; --i) { | 
|  | unsigned Reg = CSI[i-1].getReg(); | 
|  | const TargetRegisterClass *RegClass = CSI[i-1].getRegClass(); | 
|  | // Add the callee-saved register as live-in. It's killed at the spill. | 
|  | MBB.addLiveIn(Reg); | 
|  | if (Reg == FPReg) | 
|  | // X86RegisterInfo::emitPrologue will handle spilling of frame register. | 
|  | continue; | 
|  | if (RegClass != &X86::VR128RegClass) { | 
|  | CalleeFrameSize += SlotSize; | 
|  | BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill); | 
|  | } else { | 
|  | storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | X86FI->setCalleeSavedFrameSize(CalleeFrameSize); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | const std::vector<CalleeSavedInfo> &CSI) const { | 
|  | if (CSI.empty()) | 
|  | return false; | 
|  |  | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (MI != MBB.end()) DL = MI->getDebugLoc(); | 
|  |  | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned FPReg = RI.getFrameRegister(MF); | 
|  | bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); | 
|  | unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r; | 
|  | for (unsigned i = 0, e = CSI.size(); i != e; ++i) { | 
|  | unsigned Reg = CSI[i].getReg(); | 
|  | if (Reg == FPReg) | 
|  | // X86RegisterInfo::emitEpilogue will handle restoring of frame register. | 
|  | continue; | 
|  | const TargetRegisterClass *RegClass = CSI[i].getRegClass(); | 
|  | if (RegClass != &X86::VR128RegClass) { | 
|  | BuildMI(MBB, MI, DL, get(Opc), Reg); | 
|  | } else { | 
|  | loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, | 
|  | const SmallVectorImpl<MachineOperand> &MOs, | 
|  | MachineInstr *MI, | 
|  | const TargetInstrInfo &TII) { | 
|  | // Create the base instruction with the memory operand as the first part. | 
|  | MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | 
|  | MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(NewMI); | 
|  | unsigned NumAddrOps = MOs.size(); | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) | 
|  | MIB.addOperand(MOs[i]); | 
|  | if (NumAddrOps < 4)  // FrameIndex only | 
|  | addOffset(MIB, 0); | 
|  |  | 
|  | // Loop over the rest of the ri operands, converting them over. | 
|  | unsigned NumOps = MI->getDesc().getNumOperands()-2; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i+2); | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *FuseInst(MachineFunction &MF, | 
|  | unsigned Opcode, unsigned OpNo, | 
|  | const SmallVectorImpl<MachineOperand> &MOs, | 
|  | MachineInstr *MI, const TargetInstrInfo &TII) { | 
|  | MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), | 
|  | MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(NewMI); | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (i == OpNo) { | 
|  | assert(MO.isReg() && "Expected to fold into reg operand!"); | 
|  | unsigned NumAddrOps = MOs.size(); | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) | 
|  | MIB.addOperand(MOs[i]); | 
|  | if (NumAddrOps < 4)  // FrameIndex only | 
|  | addOffset(MIB, 0); | 
|  | } else { | 
|  | MIB.addOperand(MO); | 
|  | } | 
|  | } | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, | 
|  | const SmallVectorImpl<MachineOperand> &MOs, | 
|  | MachineInstr *MI) { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); | 
|  |  | 
|  | unsigned NumAddrOps = MOs.size(); | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) | 
|  | MIB.addOperand(MOs[i]); | 
|  | if (NumAddrOps < 4)  // FrameIndex only | 
|  | addOffset(MIB, 0); | 
|  | return MIB.addImm(0); | 
|  | } | 
|  |  | 
|  | MachineInstr* | 
|  | X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr *MI, unsigned i, | 
|  | const SmallVectorImpl<MachineOperand> &MOs, | 
|  | unsigned Align) const { | 
|  | const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL; | 
|  | bool isTwoAddrFold = false; | 
|  | unsigned NumOps = MI->getDesc().getNumOperands(); | 
|  | bool isTwoAddr = NumOps > 1 && | 
|  | MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; | 
|  |  | 
|  | MachineInstr *NewMI = NULL; | 
|  | // Folding a memory location into the two-address part of a two-address | 
|  | // instruction is different than folding it other places.  It requires | 
|  | // replacing the *two* registers with the memory location. | 
|  | if (isTwoAddr && NumOps >= 2 && i < 2 && | 
|  | MI->getOperand(0).isReg() && | 
|  | MI->getOperand(1).isReg() && | 
|  | MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable2Addr; | 
|  | isTwoAddrFold = true; | 
|  | } else if (i == 0) { // If operand 0 | 
|  | if (MI->getOpcode() == X86::MOV16r0) | 
|  | NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); | 
|  | else if (MI->getOpcode() == X86::MOV32r0) | 
|  | NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); | 
|  | else if (MI->getOpcode() == X86::MOV8r0) | 
|  | NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  |  | 
|  | OpcodeTablePtr = &RegOp2MemOpTable0; | 
|  | } else if (i == 1) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable1; | 
|  | } else if (i == 2) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable2; | 
|  | } | 
|  |  | 
|  | // If table selected... | 
|  | if (OpcodeTablePtr) { | 
|  | // Find the Opcode to fuse | 
|  | DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = | 
|  | OpcodeTablePtr->find((unsigned*)MI->getOpcode()); | 
|  | if (I != OpcodeTablePtr->end()) { | 
|  | unsigned MinAlign = I->second.second; | 
|  | if (Align < MinAlign) | 
|  | return NULL; | 
|  | if (isTwoAddrFold) | 
|  | NewMI = FuseTwoAddrInst(MF, I->second.first, MOs, MI, *this); | 
|  | else | 
|  | NewMI = FuseInst(MF, I->second.first, i, MOs, MI, *this); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No fusion | 
|  | if (PrintFailedFusing) | 
|  | cerr << "We failed to fuse operand " << i << " in " << *MI; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr *MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | int FrameIndex) const { | 
|  | // Check switch flag | 
|  | if (NoFusing) return NULL; | 
|  |  | 
|  | const MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | unsigned Alignment = MFI->getObjectAlignment(FrameIndex); | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | default: return NULL; | 
|  | case X86::TEST8rr:  NewOpc = X86::CMP8ri; break; | 
|  | case X86::TEST16rr: NewOpc = X86::CMP16ri; break; | 
|  | case X86::TEST32rr: NewOpc = X86::CMP32ri; break; | 
|  | case X86::TEST64rr: NewOpc = X86::CMP64ri32; break; | 
|  | } | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI->setDesc(get(NewOpc)); | 
|  | MI->getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return NULL; | 
|  |  | 
|  | SmallVector<MachineOperand,4> MOs; | 
|  | MOs.push_back(MachineOperand::CreateFI(FrameIndex)); | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Alignment); | 
|  | } | 
|  |  | 
|  | MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, | 
|  | MachineInstr *MI, | 
|  | const SmallVectorImpl<unsigned> &Ops, | 
|  | MachineInstr *LoadMI) const { | 
|  | // Check switch flag | 
|  | if (NoFusing) return NULL; | 
|  |  | 
|  | // Determine the alignment of the load. | 
|  | unsigned Alignment = 0; | 
|  | if (LoadMI->hasOneMemOperand()) | 
|  | Alignment = LoadMI->memoperands_begin()->getAlignment(); | 
|  | else if (LoadMI->getOpcode() == X86::V_SET0 || | 
|  | LoadMI->getOpcode() == X86::V_SETALLONES) | 
|  | Alignment = 16; | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | switch (MI->getOpcode()) { | 
|  | default: return NULL; | 
|  | case X86::TEST8rr:  NewOpc = X86::CMP8ri; break; | 
|  | case X86::TEST16rr: NewOpc = X86::CMP16ri; break; | 
|  | case X86::TEST32rr: NewOpc = X86::CMP32ri; break; | 
|  | case X86::TEST64rr: NewOpc = X86::CMP64ri32; break; | 
|  | } | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI->setDesc(get(NewOpc)); | 
|  | MI->getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return NULL; | 
|  |  | 
|  | SmallVector<MachineOperand,X86AddrNumOperands> MOs; | 
|  | if (LoadMI->getOpcode() == X86::V_SET0 || | 
|  | LoadMI->getOpcode() == X86::V_SETALLONES) { | 
|  | // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. | 
|  | // Create a constant-pool entry and operands to load from it. | 
|  |  | 
|  | // x86-32 PIC requires a PIC base register for constant pools. | 
|  | unsigned PICBase = 0; | 
|  | if (TM.getRelocationModel() == Reloc::PIC_) { | 
|  | if (TM.getSubtarget<X86Subtarget>().is64Bit()) | 
|  | PICBase = X86::RIP; | 
|  | else | 
|  | // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF); | 
|  | // This doesn't work for several reasons. | 
|  | // 1. GlobalBaseReg may have been spilled. | 
|  | // 2. It may not be live at MI. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create a v4i32 constant-pool entry. | 
|  | MachineConstantPool &MCP = *MF.getConstantPool(); | 
|  | const VectorType *Ty = | 
|  | VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); | 
|  | Constant *C = LoadMI->getOpcode() == X86::V_SET0 ? | 
|  | Constant::getNullValue(Ty) : | 
|  | Constant::getAllOnesValue(Ty); | 
|  | unsigned CPI = MCP.getConstantPoolIndex(C, 16); | 
|  |  | 
|  | // Create operands to load from the constant pool entry. | 
|  | MOs.push_back(MachineOperand::CreateReg(PICBase, false)); | 
|  | MOs.push_back(MachineOperand::CreateImm(1)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | } else { | 
|  | // Folding a normal load. Just copy the load's address operands. | 
|  | unsigned NumOps = LoadMI->getDesc().getNumOperands(); | 
|  | for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i) | 
|  | MOs.push_back(LoadMI->getOperand(i)); | 
|  | } | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Alignment); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, | 
|  | const SmallVectorImpl<unsigned> &Ops) const { | 
|  | // Check switch flag | 
|  | if (NoFusing) return 0; | 
|  |  | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: return false; | 
|  | case X86::TEST8rr: | 
|  | case X86::TEST16rr: | 
|  | case X86::TEST32rr: | 
|  | case X86::TEST64rr: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Ops.size() != 1) | 
|  | return false; | 
|  |  | 
|  | unsigned OpNum = Ops[0]; | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | unsigned NumOps = MI->getDesc().getNumOperands(); | 
|  | bool isTwoAddr = NumOps > 1 && | 
|  | MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; | 
|  |  | 
|  | // Folding a memory location into the two-address part of a two-address | 
|  | // instruction is different than folding it other places.  It requires | 
|  | // replacing the *two* registers with the memory location. | 
|  | const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL; | 
|  | if (isTwoAddr && NumOps >= 2 && OpNum < 2) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable2Addr; | 
|  | } else if (OpNum == 0) { // If operand 0 | 
|  | switch (Opc) { | 
|  | case X86::MOV8r0: | 
|  | case X86::MOV16r0: | 
|  | case X86::MOV32r0: | 
|  | return true; | 
|  | default: break; | 
|  | } | 
|  | OpcodeTablePtr = &RegOp2MemOpTable0; | 
|  | } else if (OpNum == 1) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable1; | 
|  | } else if (OpNum == 2) { | 
|  | OpcodeTablePtr = &RegOp2MemOpTable2; | 
|  | } | 
|  |  | 
|  | if (OpcodeTablePtr) { | 
|  | // Find the Opcode to fuse | 
|  | DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = | 
|  | OpcodeTablePtr->find((unsigned*)Opc); | 
|  | if (I != OpcodeTablePtr->end()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, | 
|  | unsigned Reg, bool UnfoldLoad, bool UnfoldStore, | 
|  | SmallVectorImpl<MachineInstr*> &NewMIs) const { | 
|  | DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = | 
|  | MemOp2RegOpTable.find((unsigned*)MI->getOpcode()); | 
|  | if (I == MemOp2RegOpTable.end()) | 
|  | return false; | 
|  | DebugLoc dl = MI->getDebugLoc(); | 
|  | unsigned Opc = I->second.first; | 
|  | unsigned Index = I->second.second & 0xf; | 
|  | bool FoldedLoad = I->second.second & (1 << 4); | 
|  | bool FoldedStore = I->second.second & (1 << 5); | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return false; | 
|  | UnfoldLoad &= FoldedLoad; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return false; | 
|  | UnfoldStore &= FoldedStore; | 
|  |  | 
|  | const TargetInstrDesc &TID = get(Opc); | 
|  | const TargetOperandInfo &TOI = TID.OpInfo[Index]; | 
|  | const TargetRegisterClass *RC = TOI.getRegClass(&RI); | 
|  | SmallVector<MachineOperand, X86AddrNumOperands> AddrOps; | 
|  | SmallVector<MachineOperand,2> BeforeOps; | 
|  | SmallVector<MachineOperand,2> AfterOps; | 
|  | SmallVector<MachineOperand,4> ImpOps; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI->getOperand(i); | 
|  | if (i >= Index && i < Index + X86AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (Op.isReg() && Op.isImplicit()) | 
|  | ImpOps.push_back(Op); | 
|  | else if (i < Index) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  |  | 
|  | // Emit the load instruction. | 
|  | if (UnfoldLoad) { | 
|  | loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs); | 
|  | if (UnfoldStore) { | 
|  | // Address operands cannot be marked isKill. | 
|  | for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) { | 
|  | MachineOperand &MO = NewMIs[0]->getOperand(i); | 
|  | if (MO.isReg()) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(DataMI); | 
|  |  | 
|  | if (FoldedStore) | 
|  | MIB.addReg(Reg, RegState::Define); | 
|  | for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) | 
|  | MIB.addOperand(BeforeOps[i]); | 
|  | if (FoldedLoad) | 
|  | MIB.addReg(Reg); | 
|  | for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) | 
|  | MIB.addOperand(AfterOps[i]); | 
|  | for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { | 
|  | MachineOperand &MO = ImpOps[i]; | 
|  | MIB.addReg(MO.getReg(), | 
|  | getDefRegState(MO.isDef()) | | 
|  | RegState::Implicit | | 
|  | getKillRegState(MO.isKill()) | | 
|  | getDeadRegState(MO.isDead()) | | 
|  | getUndefRegState(MO.isUndef())); | 
|  | } | 
|  | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
|  | unsigned NewOpc = 0; | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP8ri: { | 
|  | MachineOperand &MO0 = DataMI->getOperand(0); | 
|  | MachineOperand &MO1 = DataMI->getOperand(1); | 
|  | if (MO1.getImm() == 0) { | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: break; | 
|  | case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; | 
|  | case X86::CMP32ri:   NewOpc = X86::TEST32rr; break; | 
|  | case X86::CMP16ri:   NewOpc = X86::TEST16rr; break; | 
|  | case X86::CMP8ri:    NewOpc = X86::TEST8rr; break; | 
|  | } | 
|  | DataMI->setDesc(get(NewOpc)); | 
|  | MO1.ChangeToRegister(MO0.getReg(), false); | 
|  | } | 
|  | } | 
|  | } | 
|  | NewMIs.push_back(DataMI); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (UnfoldStore) { | 
|  | const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI); | 
|  | storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, | 
|  | SmallVectorImpl<SDNode*> &NewNodes) const { | 
|  | if (!N->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = | 
|  | MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode()); | 
|  | if (I == MemOp2RegOpTable.end()) | 
|  | return false; | 
|  | unsigned Opc = I->second.first; | 
|  | unsigned Index = I->second.second & 0xf; | 
|  | bool FoldedLoad = I->second.second & (1 << 4); | 
|  | bool FoldedStore = I->second.second & (1 << 5); | 
|  | const TargetInstrDesc &TID = get(Opc); | 
|  | const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI); | 
|  | unsigned NumDefs = TID.NumDefs; | 
|  | std::vector<SDValue> AddrOps; | 
|  | std::vector<SDValue> BeforeOps; | 
|  | std::vector<SDValue> AfterOps; | 
|  | DebugLoc dl = N->getDebugLoc(); | 
|  | unsigned NumOps = N->getNumOperands(); | 
|  | for (unsigned i = 0; i != NumOps-1; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  | if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (i < Index-NumDefs) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index-NumDefs) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  | SDValue Chain = N->getOperand(NumOps-1); | 
|  | AddrOps.push_back(Chain); | 
|  |  | 
|  | // Emit the load instruction. | 
|  | SDNode *Load = 0; | 
|  | const MachineFunction &MF = DAG.getMachineFunction(); | 
|  | if (FoldedLoad) { | 
|  | EVT VT = *RC->vt_begin(); | 
|  | bool isAligned = (RI.getStackAlignment() >= 16) || | 
|  | RI.needsStackRealignment(MF); | 
|  | Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, | 
|  | VT, MVT::Other, &AddrOps[0], AddrOps.size()); | 
|  | NewNodes.push_back(Load); | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | std::vector<EVT> VTs; | 
|  | const TargetRegisterClass *DstRC = 0; | 
|  | if (TID.getNumDefs() > 0) { | 
|  | DstRC = TID.OpInfo[0].getRegClass(&RI); | 
|  | VTs.push_back(*DstRC->vt_begin()); | 
|  | } | 
|  | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { | 
|  | EVT VT = N->getValueType(i); | 
|  | if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs()) | 
|  | VTs.push_back(VT); | 
|  | } | 
|  | if (Load) | 
|  | BeforeOps.push_back(SDValue(Load, 0)); | 
|  | std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); | 
|  | SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0], | 
|  | BeforeOps.size()); | 
|  | NewNodes.push_back(NewNode); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (FoldedStore) { | 
|  | AddrOps.pop_back(); | 
|  | AddrOps.push_back(SDValue(NewNode, 0)); | 
|  | AddrOps.push_back(Chain); | 
|  | bool isAligned = (RI.getStackAlignment() >= 16) || | 
|  | RI.needsStackRealignment(MF); | 
|  | SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC, | 
|  | isAligned, TM), | 
|  | dl, MVT::Other, | 
|  | &AddrOps[0], AddrOps.size()); | 
|  | NewNodes.push_back(Store); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, | 
|  | bool UnfoldLoad, bool UnfoldStore) const { | 
|  | DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = | 
|  | MemOp2RegOpTable.find((unsigned*)Opc); | 
|  | if (I == MemOp2RegOpTable.end()) | 
|  | return 0; | 
|  | bool FoldedLoad = I->second.second & (1 << 4); | 
|  | bool FoldedStore = I->second.second & (1 << 5); | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return 0; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return 0; | 
|  | return I->second.first; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { | 
|  | if (MBB.empty()) return false; | 
|  |  | 
|  | switch (MBB.back().getOpcode()) { | 
|  | case X86::TCRETURNri: | 
|  | case X86::TCRETURNdi: | 
|  | case X86::RET:     // Return. | 
|  | case X86::RETI: | 
|  | case X86::TAILJMPd: | 
|  | case X86::TAILJMPr: | 
|  | case X86::TAILJMPm: | 
|  | case X86::JMP:     // Uncond branch. | 
|  | case X86::JMP32r:  // Indirect branch. | 
|  | case X86::JMP64r:  // Indirect branch (64-bit). | 
|  | case X86::JMP32m:  // Indirect branch through mem. | 
|  | case X86::JMP64m:  // Indirect branch through mem (64-bit). | 
|  | return true; | 
|  | default: return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | assert(Cond.size() == 1 && "Invalid X86 branch condition!"); | 
|  | X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); | 
|  | if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) | 
|  | return true; | 
|  | Cond[0].setImm(GetOppositeBranchCondition(CC)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo:: | 
|  | isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { | 
|  | // FIXME: Return false for x87 stack register classes for now. We can't | 
|  | // allow any loads of these registers before FpGet_ST0_80. | 
|  | return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || | 
|  | RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) { | 
|  | switch (Desc->TSFlags & X86II::ImmMask) { | 
|  | case X86II::Imm8:   return 1; | 
|  | case X86II::Imm16:  return 2; | 
|  | case X86II::Imm32:  return 4; | 
|  | case X86II::Imm64:  return 8; | 
|  | default: llvm_unreachable("Immediate size not set!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register? | 
|  | /// e.g. r8, xmm8, etc. | 
|  | bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) { | 
|  | if (!MO.isReg()) return false; | 
|  | switch (MO.getReg()) { | 
|  | default: break; | 
|  | case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11: | 
|  | case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15: | 
|  | case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D: | 
|  | case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D: | 
|  | case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W: | 
|  | case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W: | 
|  | case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B: | 
|  | case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B: | 
|  | case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11: | 
|  | case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 | 
|  | /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand | 
|  | /// size, and 3) use of X86-64 extended registers. | 
|  | unsigned X86InstrInfo::determineREX(const MachineInstr &MI) { | 
|  | unsigned REX = 0; | 
|  | const TargetInstrDesc &Desc = MI.getDesc(); | 
|  |  | 
|  | // Pseudo instructions do not need REX prefix byte. | 
|  | if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo) | 
|  | return 0; | 
|  | if (Desc.TSFlags & X86II::REX_W) | 
|  | REX |= 1 << 3; | 
|  |  | 
|  | unsigned NumOps = Desc.getNumOperands(); | 
|  | if (NumOps) { | 
|  | bool isTwoAddr = NumOps > 1 && | 
|  | Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; | 
|  |  | 
|  | // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. | 
|  | unsigned i = isTwoAddr ? 1 : 0; | 
|  | for (unsigned e = NumOps; i != e; ++i) { | 
|  | const MachineOperand& MO = MI.getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (isX86_64NonExtLowByteReg(Reg)) | 
|  | REX |= 0x40; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Desc.TSFlags & X86II::FormMask) { | 
|  | case X86II::MRMInitReg: | 
|  | if (isX86_64ExtendedReg(MI.getOperand(0))) | 
|  | REX |= (1 << 0) | (1 << 2); | 
|  | break; | 
|  | case X86II::MRMSrcReg: { | 
|  | if (isX86_64ExtendedReg(MI.getOperand(0))) | 
|  | REX |= 1 << 2; | 
|  | i = isTwoAddr ? 2 : 1; | 
|  | for (unsigned e = NumOps; i != e; ++i) { | 
|  | const MachineOperand& MO = MI.getOperand(i); | 
|  | if (isX86_64ExtendedReg(MO)) | 
|  | REX |= 1 << 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86II::MRMSrcMem: { | 
|  | if (isX86_64ExtendedReg(MI.getOperand(0))) | 
|  | REX |= 1 << 2; | 
|  | unsigned Bit = 0; | 
|  | i = isTwoAddr ? 2 : 1; | 
|  | for (; i != NumOps; ++i) { | 
|  | const MachineOperand& MO = MI.getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | if (isX86_64ExtendedReg(MO)) | 
|  | REX |= 1 << Bit; | 
|  | Bit++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: | 
|  | case X86II::MRMDestMem: { | 
|  | unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); | 
|  | i = isTwoAddr ? 1 : 0; | 
|  | if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e))) | 
|  | REX |= 1 << 2; | 
|  | unsigned Bit = 0; | 
|  | for (; i != e; ++i) { | 
|  | const MachineOperand& MO = MI.getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | if (isX86_64ExtendedReg(MO)) | 
|  | REX |= 1 << Bit; | 
|  | Bit++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | if (isX86_64ExtendedReg(MI.getOperand(0))) | 
|  | REX |= 1 << 0; | 
|  | i = isTwoAddr ? 2 : 1; | 
|  | for (unsigned e = NumOps; i != e; ++i) { | 
|  | const MachineOperand& MO = MI.getOperand(i); | 
|  | if (isX86_64ExtendedReg(MO)) | 
|  | REX |= 1 << 2; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return REX; | 
|  | } | 
|  |  | 
|  | /// sizePCRelativeBlockAddress - This method returns the size of a PC | 
|  | /// relative block address instruction | 
|  | /// | 
|  | static unsigned sizePCRelativeBlockAddress() { | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /// sizeGlobalAddress - Give the size of the emission of this global address | 
|  | /// | 
|  | static unsigned sizeGlobalAddress(bool dword) { | 
|  | return dword ? 8 : 4; | 
|  | } | 
|  |  | 
|  | /// sizeConstPoolAddress - Give the size of the emission of this constant | 
|  | /// pool address | 
|  | /// | 
|  | static unsigned sizeConstPoolAddress(bool dword) { | 
|  | return dword ? 8 : 4; | 
|  | } | 
|  |  | 
|  | /// sizeExternalSymbolAddress - Give the size of the emission of this external | 
|  | /// symbol | 
|  | /// | 
|  | static unsigned sizeExternalSymbolAddress(bool dword) { | 
|  | return dword ? 8 : 4; | 
|  | } | 
|  |  | 
|  | /// sizeJumpTableAddress - Give the size of the emission of this jump | 
|  | /// table address | 
|  | /// | 
|  | static unsigned sizeJumpTableAddress(bool dword) { | 
|  | return dword ? 8 : 4; | 
|  | } | 
|  |  | 
|  | static unsigned sizeConstant(unsigned Size) { | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | static unsigned sizeRegModRMByte(){ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned sizeSIBByte(){ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) { | 
|  | unsigned FinalSize = 0; | 
|  | // If this is a simple integer displacement that doesn't require a relocation. | 
|  | if (!RelocOp) { | 
|  | FinalSize += sizeConstant(4); | 
|  | return FinalSize; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is something that requires a relocation. | 
|  | if (RelocOp->isGlobal()) { | 
|  | FinalSize += sizeGlobalAddress(false); | 
|  | } else if (RelocOp->isCPI()) { | 
|  | FinalSize += sizeConstPoolAddress(false); | 
|  | } else if (RelocOp->isJTI()) { | 
|  | FinalSize += sizeJumpTableAddress(false); | 
|  | } else { | 
|  | llvm_unreachable("Unknown value to relocate!"); | 
|  | } | 
|  | return FinalSize; | 
|  | } | 
|  |  | 
|  | static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op, | 
|  | bool IsPIC, bool Is64BitMode) { | 
|  | const MachineOperand &Op3 = MI.getOperand(Op+3); | 
|  | int DispVal = 0; | 
|  | const MachineOperand *DispForReloc = 0; | 
|  | unsigned FinalSize = 0; | 
|  |  | 
|  | // Figure out what sort of displacement we have to handle here. | 
|  | if (Op3.isGlobal()) { | 
|  | DispForReloc = &Op3; | 
|  | } else if (Op3.isCPI()) { | 
|  | if (Is64BitMode || IsPIC) { | 
|  | DispForReloc = &Op3; | 
|  | } else { | 
|  | DispVal = 1; | 
|  | } | 
|  | } else if (Op3.isJTI()) { | 
|  | if (Is64BitMode || IsPIC) { | 
|  | DispForReloc = &Op3; | 
|  | } else { | 
|  | DispVal = 1; | 
|  | } | 
|  | } else { | 
|  | DispVal = 1; | 
|  | } | 
|  |  | 
|  | const MachineOperand &Base     = MI.getOperand(Op); | 
|  | const MachineOperand &IndexReg = MI.getOperand(Op+2); | 
|  |  | 
|  | unsigned BaseReg = Base.getReg(); | 
|  |  | 
|  | // Is a SIB byte needed? | 
|  | if ((!Is64BitMode || DispForReloc || BaseReg != 0) && | 
|  | IndexReg.getReg() == 0 && | 
|  | (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) { | 
|  | if (BaseReg == 0) {  // Just a displacement? | 
|  | // Emit special case [disp32] encoding | 
|  | ++FinalSize; | 
|  | FinalSize += getDisplacementFieldSize(DispForReloc); | 
|  | } else { | 
|  | unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg); | 
|  | if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { | 
|  | // Emit simple indirect register encoding... [EAX] f.e. | 
|  | ++FinalSize; | 
|  | // Be pessimistic and assume it's a disp32, not a disp8 | 
|  | } else { | 
|  | // Emit the most general non-SIB encoding: [REG+disp32] | 
|  | ++FinalSize; | 
|  | FinalSize += getDisplacementFieldSize(DispForReloc); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else {  // We need a SIB byte, so start by outputting the ModR/M byte first | 
|  | assert(IndexReg.getReg() != X86::ESP && | 
|  | IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); | 
|  |  | 
|  | bool ForceDisp32 = false; | 
|  | if (BaseReg == 0 || DispForReloc) { | 
|  | // Emit the normal disp32 encoding. | 
|  | ++FinalSize; | 
|  | ForceDisp32 = true; | 
|  | } else { | 
|  | ++FinalSize; | 
|  | } | 
|  |  | 
|  | FinalSize += sizeSIBByte(); | 
|  |  | 
|  | // Do we need to output a displacement? | 
|  | if (DispVal != 0 || ForceDisp32) { | 
|  | FinalSize += getDisplacementFieldSize(DispForReloc); | 
|  | } | 
|  | } | 
|  | return FinalSize; | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned GetInstSizeWithDesc(const MachineInstr &MI, | 
|  | const TargetInstrDesc *Desc, | 
|  | bool IsPIC, bool Is64BitMode) { | 
|  |  | 
|  | unsigned Opcode = Desc->Opcode; | 
|  | unsigned FinalSize = 0; | 
|  |  | 
|  | // Emit the lock opcode prefix as needed. | 
|  | if (Desc->TSFlags & X86II::LOCK) ++FinalSize; | 
|  |  | 
|  | // Emit segment override opcode prefix as needed. | 
|  | switch (Desc->TSFlags & X86II::SegOvrMask) { | 
|  | case X86II::FS: | 
|  | case X86II::GS: | 
|  | ++FinalSize; | 
|  | break; | 
|  | default: llvm_unreachable("Invalid segment!"); | 
|  | case 0: break;  // No segment override! | 
|  | } | 
|  |  | 
|  | // Emit the repeat opcode prefix as needed. | 
|  | if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize; | 
|  |  | 
|  | // Emit the operand size opcode prefix as needed. | 
|  | if (Desc->TSFlags & X86II::OpSize) ++FinalSize; | 
|  |  | 
|  | // Emit the address size opcode prefix as needed. | 
|  | if (Desc->TSFlags & X86II::AdSize) ++FinalSize; | 
|  |  | 
|  | bool Need0FPrefix = false; | 
|  | switch (Desc->TSFlags & X86II::Op0Mask) { | 
|  | case X86II::TB:  // Two-byte opcode prefix | 
|  | case X86II::T8:  // 0F 38 | 
|  | case X86II::TA:  // 0F 3A | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::TF: // F2 0F 38 | 
|  | ++FinalSize; | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::REP: break; // already handled. | 
|  | case X86II::XS:   // F3 0F | 
|  | ++FinalSize; | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::XD:   // F2 0F | 
|  | ++FinalSize; | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: | 
|  | case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: | 
|  | ++FinalSize; | 
|  | break; // Two-byte opcode prefix | 
|  | default: llvm_unreachable("Invalid prefix!"); | 
|  | case 0: break;  // No prefix! | 
|  | } | 
|  |  | 
|  | if (Is64BitMode) { | 
|  | // REX prefix | 
|  | unsigned REX = X86InstrInfo::determineREX(MI); | 
|  | if (REX) | 
|  | ++FinalSize; | 
|  | } | 
|  |  | 
|  | // 0x0F escape code must be emitted just before the opcode. | 
|  | if (Need0FPrefix) | 
|  | ++FinalSize; | 
|  |  | 
|  | switch (Desc->TSFlags & X86II::Op0Mask) { | 
|  | case X86II::T8:  // 0F 38 | 
|  | ++FinalSize; | 
|  | break; | 
|  | case X86II::TA:  // 0F 3A | 
|  | ++FinalSize; | 
|  | break; | 
|  | case X86II::TF: // F2 0F 38 | 
|  | ++FinalSize; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a two-address instruction, skip one of the register operands. | 
|  | unsigned NumOps = Desc->getNumOperands(); | 
|  | unsigned CurOp = 0; | 
|  | if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) | 
|  | CurOp++; | 
|  | else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) | 
|  | // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 | 
|  | --NumOps; | 
|  |  | 
|  | switch (Desc->TSFlags & X86II::FormMask) { | 
|  | default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); | 
|  | case X86II::Pseudo: | 
|  | // Remember the current PC offset, this is the PIC relocation | 
|  | // base address. | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case TargetInstrInfo::INLINEASM: { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); | 
|  | FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(), | 
|  | *MF->getTarget().getTargetAsmInfo()); | 
|  | break; | 
|  | } | 
|  | case TargetInstrInfo::DBG_LABEL: | 
|  | case TargetInstrInfo::EH_LABEL: | 
|  | break; | 
|  | case TargetInstrInfo::IMPLICIT_DEF: | 
|  | case TargetInstrInfo::DECLARE: | 
|  | case X86::DWARF_LOC: | 
|  | case X86::FP_REG_KILL: | 
|  | break; | 
|  | case X86::MOVPC32r: { | 
|  | // This emits the "call" portion of this pseudo instruction. | 
|  | ++FinalSize; | 
|  | FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | CurOp = NumOps; | 
|  | break; | 
|  | case X86II::RawFrm: | 
|  | ++FinalSize; | 
|  |  | 
|  | if (CurOp != NumOps) { | 
|  | const MachineOperand &MO = MI.getOperand(CurOp++); | 
|  | if (MO.isMBB()) { | 
|  | FinalSize += sizePCRelativeBlockAddress(); | 
|  | } else if (MO.isGlobal()) { | 
|  | FinalSize += sizeGlobalAddress(false); | 
|  | } else if (MO.isSymbol()) { | 
|  | FinalSize += sizeExternalSymbolAddress(false); | 
|  | } else if (MO.isImm()) { | 
|  | FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc)); | 
|  | } else { | 
|  | llvm_unreachable("Unknown RawFrm operand!"); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::AddRegFrm: | 
|  | ++FinalSize; | 
|  | ++CurOp; | 
|  |  | 
|  | if (CurOp != NumOps) { | 
|  | const MachineOperand &MO1 = MI.getOperand(CurOp++); | 
|  | unsigned Size = X86InstrInfo::sizeOfImm(Desc); | 
|  | if (MO1.isImm()) | 
|  | FinalSize += sizeConstant(Size); | 
|  | else { | 
|  | bool dword = false; | 
|  | if (Opcode == X86::MOV64ri) | 
|  | dword = true; | 
|  | if (MO1.isGlobal()) { | 
|  | FinalSize += sizeGlobalAddress(dword); | 
|  | } else if (MO1.isSymbol()) | 
|  | FinalSize += sizeExternalSymbolAddress(dword); | 
|  | else if (MO1.isCPI()) | 
|  | FinalSize += sizeConstPoolAddress(dword); | 
|  | else if (MO1.isJTI()) | 
|  | FinalSize += sizeJumpTableAddress(dword); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::MRMDestReg: { | 
|  | ++FinalSize; | 
|  | FinalSize += sizeRegModRMByte(); | 
|  | CurOp += 2; | 
|  | if (CurOp != NumOps) { | 
|  | ++CurOp; | 
|  | FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86II::MRMDestMem: { | 
|  | ++FinalSize; | 
|  | FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode); | 
|  | CurOp +=  X86AddrNumOperands + 1; | 
|  | if (CurOp != NumOps) { | 
|  | ++CurOp; | 
|  | FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86II::MRMSrcReg: | 
|  | ++FinalSize; | 
|  | FinalSize += sizeRegModRMByte(); | 
|  | CurOp += 2; | 
|  | if (CurOp != NumOps) { | 
|  | ++CurOp; | 
|  | FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::MRMSrcMem: { | 
|  | int AddrOperands; | 
|  | if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || | 
|  | Opcode == X86::LEA16r || Opcode == X86::LEA32r) | 
|  | AddrOperands = X86AddrNumOperands - 1; // No segment register | 
|  | else | 
|  | AddrOperands = X86AddrNumOperands; | 
|  |  | 
|  | ++FinalSize; | 
|  | FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode); | 
|  | CurOp += AddrOperands + 1; | 
|  | if (CurOp != NumOps) { | 
|  | ++CurOp; | 
|  | FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86II::MRM0r: case X86II::MRM1r: | 
|  | case X86II::MRM2r: case X86II::MRM3r: | 
|  | case X86II::MRM4r: case X86II::MRM5r: | 
|  | case X86II::MRM6r: case X86II::MRM7r: | 
|  | ++FinalSize; | 
|  | if (Desc->getOpcode() == X86::LFENCE || | 
|  | Desc->getOpcode() == X86::MFENCE) { | 
|  | // Special handling of lfence and mfence; | 
|  | FinalSize += sizeRegModRMByte(); | 
|  | } else if (Desc->getOpcode() == X86::MONITOR || | 
|  | Desc->getOpcode() == X86::MWAIT) { | 
|  | // Special handling of monitor and mwait. | 
|  | FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode. | 
|  | } else { | 
|  | ++CurOp; | 
|  | FinalSize += sizeRegModRMByte(); | 
|  | } | 
|  |  | 
|  | if (CurOp != NumOps) { | 
|  | const MachineOperand &MO1 = MI.getOperand(CurOp++); | 
|  | unsigned Size = X86InstrInfo::sizeOfImm(Desc); | 
|  | if (MO1.isImm()) | 
|  | FinalSize += sizeConstant(Size); | 
|  | else { | 
|  | bool dword = false; | 
|  | if (Opcode == X86::MOV64ri32) | 
|  | dword = true; | 
|  | if (MO1.isGlobal()) { | 
|  | FinalSize += sizeGlobalAddress(dword); | 
|  | } else if (MO1.isSymbol()) | 
|  | FinalSize += sizeExternalSymbolAddress(dword); | 
|  | else if (MO1.isCPI()) | 
|  | FinalSize += sizeConstPoolAddress(dword); | 
|  | else if (MO1.isJTI()) | 
|  | FinalSize += sizeJumpTableAddress(dword); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: { | 
|  |  | 
|  | ++FinalSize; | 
|  | FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode); | 
|  | CurOp += X86AddrNumOperands; | 
|  |  | 
|  | if (CurOp != NumOps) { | 
|  | const MachineOperand &MO = MI.getOperand(CurOp++); | 
|  | unsigned Size = X86InstrInfo::sizeOfImm(Desc); | 
|  | if (MO.isImm()) | 
|  | FinalSize += sizeConstant(Size); | 
|  | else { | 
|  | bool dword = false; | 
|  | if (Opcode == X86::MOV64mi32) | 
|  | dword = true; | 
|  | if (MO.isGlobal()) { | 
|  | FinalSize += sizeGlobalAddress(dword); | 
|  | } else if (MO.isSymbol()) | 
|  | FinalSize += sizeExternalSymbolAddress(dword); | 
|  | else if (MO.isCPI()) | 
|  | FinalSize += sizeConstPoolAddress(dword); | 
|  | else if (MO.isJTI()) | 
|  | FinalSize += sizeJumpTableAddress(dword); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86II::MRMInitReg: | 
|  | ++FinalSize; | 
|  | // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). | 
|  | FinalSize += sizeRegModRMByte(); | 
|  | ++CurOp; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Desc->isVariadic() && CurOp != NumOps) { | 
|  | std::string msg; | 
|  | raw_string_ostream Msg(msg); | 
|  | Msg << "Cannot determine size: " << MI; | 
|  | llvm_report_error(Msg.str()); | 
|  | } | 
|  |  | 
|  |  | 
|  | return FinalSize; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { | 
|  | const TargetInstrDesc &Desc = MI->getDesc(); | 
|  | bool IsPIC = TM.getRelocationModel() == Reloc::PIC_; | 
|  | bool Is64BitMode = TM.getSubtargetImpl()->is64Bit(); | 
|  | unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode); | 
|  | if (Desc.getOpcode() == X86::MOVPC32r) | 
|  | Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Return a virtual register initialized with the | 
|  | /// the global base register value. Output instructions required to | 
|  | /// initialize the register in the function entry block, if necessary. | 
|  | /// | 
|  | unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { | 
|  | assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && | 
|  | "X86-64 PIC uses RIP relative addressing"); | 
|  |  | 
|  | X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  | if (GlobalBaseReg != 0) | 
|  | return GlobalBaseReg; | 
|  |  | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF->front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | DebugLoc DL = DebugLoc::getUnknownLoc(); | 
|  | if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc(); | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); | 
|  |  | 
|  | const TargetInstrInfo *TII = TM.getInstrInfo(); | 
|  | // Operand of MovePCtoStack is completely ignored by asm printer. It's | 
|  | // only used in JIT code emission as displacement to pc. | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); | 
|  |  | 
|  | // If we're using vanilla 'GOT' PIC style, we should use relative addressing | 
|  | // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. | 
|  | if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) { | 
|  | GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); | 
|  | // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) | 
|  | .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 0, | 
|  | X86II::MO_GOT_ABSOLUTE_ADDRESS); | 
|  | } else { | 
|  | GlobalBaseReg = PC; | 
|  | } | 
|  |  | 
|  | X86FI->setGlobalBaseReg(GlobalBaseReg); | 
|  | return GlobalBaseReg; | 
|  | } |