|  | //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that PPC uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H | 
|  | #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "PPCRegisterInfo.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  |  | 
|  | namespace llvm { | 
|  | namespace PPCISD { | 
|  | enum NodeType : unsigned { | 
|  | // Start the numbering where the builtin ops and target ops leave off. | 
|  | FIRST_NUMBER = ISD::BUILTIN_OP_END, | 
|  |  | 
|  | /// FSEL - Traditional three-operand fsel node. | 
|  | /// | 
|  | FSEL, | 
|  |  | 
|  | /// FCFID - The FCFID instruction, taking an f64 operand and producing | 
|  | /// and f64 value containing the FP representation of the integer that | 
|  | /// was temporarily in the f64 operand. | 
|  | FCFID, | 
|  |  | 
|  | /// Newer FCFID[US] integer-to-floating-point conversion instructions for | 
|  | /// unsigned integers and single-precision outputs. | 
|  | FCFIDU, FCFIDS, FCFIDUS, | 
|  |  | 
|  | /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 | 
|  | /// operand, producing an f64 value containing the integer representation | 
|  | /// of that FP value. | 
|  | FCTIDZ, FCTIWZ, | 
|  |  | 
|  | /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for | 
|  | /// unsigned integers. | 
|  | FCTIDUZ, FCTIWUZ, | 
|  |  | 
|  | /// Reciprocal estimate instructions (unary FP ops). | 
|  | FRE, FRSQRTE, | 
|  |  | 
|  | // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking | 
|  | // three v4f32 operands and producing a v4f32 result. | 
|  | VMADDFP, VNMSUBFP, | 
|  |  | 
|  | /// VPERM - The PPC VPERM Instruction. | 
|  | /// | 
|  | VPERM, | 
|  |  | 
|  | /// XXSPLT - The PPC VSX splat instructions | 
|  | /// | 
|  | XXSPLT, | 
|  |  | 
|  | /// XXINSERT - The PPC VSX insert instruction | 
|  | /// | 
|  | XXINSERT, | 
|  |  | 
|  | /// VECSHL - The PPC VSX shift left instruction | 
|  | /// | 
|  | VECSHL, | 
|  |  | 
|  | /// The CMPB instruction (takes two operands of i32 or i64). | 
|  | CMPB, | 
|  |  | 
|  | /// Hi/Lo - These represent the high and low 16-bit parts of a global | 
|  | /// address respectively.  These nodes have two operands, the first of | 
|  | /// which must be a TargetGlobalAddress, and the second of which must be a | 
|  | /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C', | 
|  | /// though these are usually folded into other nodes. | 
|  | Hi, Lo, | 
|  |  | 
|  | /// The following two target-specific nodes are used for calls through | 
|  | /// function pointers in the 64-bit SVR4 ABI. | 
|  |  | 
|  | /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) | 
|  | /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to | 
|  | /// compute an allocation on the stack. | 
|  | DYNALLOC, | 
|  |  | 
|  | /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to | 
|  | /// compute an offset from native SP to the address  of the most recent | 
|  | /// dynamic alloca. | 
|  | DYNAREAOFFSET, | 
|  |  | 
|  | /// GlobalBaseReg - On Darwin, this node represents the result of the mflr | 
|  | /// at function entry, used for PIC code. | 
|  | GlobalBaseReg, | 
|  |  | 
|  | /// These nodes represent the 32-bit PPC shifts that operate on 6-bit | 
|  | /// shift amounts.  These nodes are generated by the multi-precision shift | 
|  | /// code. | 
|  | SRL, SRA, SHL, | 
|  |  | 
|  | /// The combination of sra[wd]i and addze used to implemented signed | 
|  | /// integer division by a power of 2. The first operand is the dividend, | 
|  | /// and the second is the constant shift amount (representing the | 
|  | /// divisor). | 
|  | SRA_ADDZE, | 
|  |  | 
|  | /// CALL - A direct function call. | 
|  | /// CALL_NOP is a call with the special NOP which follows 64-bit | 
|  | /// SVR4 calls. | 
|  | CALL, CALL_NOP, | 
|  |  | 
|  | /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a | 
|  | /// MTCTR instruction. | 
|  | MTCTR, | 
|  |  | 
|  | /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a | 
|  | /// BCTRL instruction. | 
|  | BCTRL, | 
|  |  | 
|  | /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl | 
|  | /// instruction and the TOC reload required on SVR4 PPC64. | 
|  | BCTRL_LOAD_TOC, | 
|  |  | 
|  | /// Return with a flag operand, matched by 'blr' | 
|  | RET_FLAG, | 
|  |  | 
|  | /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. | 
|  | /// This copies the bits corresponding to the specified CRREG into the | 
|  | /// resultant GPR.  Bits corresponding to other CR regs are undefined. | 
|  | MFOCRF, | 
|  |  | 
|  | /// Direct move from a VSX register to a GPR | 
|  | MFVSR, | 
|  |  | 
|  | /// Direct move from a GPR to a VSX register (algebraic) | 
|  | MTVSRA, | 
|  |  | 
|  | /// Direct move from a GPR to a VSX register (zero) | 
|  | MTVSRZ, | 
|  |  | 
|  | /// Extract a subvector from signed integer vector and convert to FP. | 
|  | /// It is primarily used to convert a (widened) illegal integer vector | 
|  | /// type to a legal floating point vector type. | 
|  | /// For example v2i32 -> widened to v4i32 -> v2f64 | 
|  | SINT_VEC_TO_FP, | 
|  |  | 
|  | /// Extract a subvector from unsigned integer vector and convert to FP. | 
|  | /// As with SINT_VEC_TO_FP, used for converting illegal types. | 
|  | UINT_VEC_TO_FP, | 
|  |  | 
|  | // FIXME: Remove these once the ANDI glue bug is fixed: | 
|  | /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the | 
|  | /// eq or gt bit of CR0 after executing andi. x, 1. This is used to | 
|  | /// implement truncation of i32 or i64 to i1. | 
|  | ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT, | 
|  |  | 
|  | // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit | 
|  | // target (returns (Lo, Hi)). It takes a chain operand. | 
|  | READ_TIME_BASE, | 
|  |  | 
|  | // EH_SJLJ_SETJMP - SjLj exception handling setjmp. | 
|  | EH_SJLJ_SETJMP, | 
|  |  | 
|  | // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. | 
|  | EH_SJLJ_LONGJMP, | 
|  |  | 
|  | /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* | 
|  | /// instructions.  For lack of better number, we use the opcode number | 
|  | /// encoding for the OPC field to identify the compare.  For example, 838 | 
|  | /// is VCMPGTSH. | 
|  | VCMP, | 
|  |  | 
|  | /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the | 
|  | /// altivec VCMP*o instructions.  For lack of better number, we use the | 
|  | /// opcode number encoding for the OPC field to identify the compare.  For | 
|  | /// example, 838 is VCMPGTSH. | 
|  | VCMPo, | 
|  |  | 
|  | /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This | 
|  | /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the | 
|  | /// condition register to branch on, OPC is the branch opcode to use (e.g. | 
|  | /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is | 
|  | /// an optional input flag argument. | 
|  | COND_BRANCH, | 
|  |  | 
|  | /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based | 
|  | /// loops. | 
|  | BDNZ, BDZ, | 
|  |  | 
|  | /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding | 
|  | /// towards zero.  Used only as part of the long double-to-int | 
|  | /// conversion sequence. | 
|  | FADDRTZ, | 
|  |  | 
|  | /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. | 
|  | MFFS, | 
|  |  | 
|  | /// TC_RETURN - A tail call return. | 
|  | ///   operand #0 chain | 
|  | ///   operand #1 callee (register or absolute) | 
|  | ///   operand #2 stack adjustment | 
|  | ///   operand #3 optional in flag | 
|  | TC_RETURN, | 
|  |  | 
|  | /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls | 
|  | CR6SET, | 
|  | CR6UNSET, | 
|  |  | 
|  | /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS | 
|  | /// on PPC32. | 
|  | PPC32_GOT, | 
|  |  | 
|  | /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and | 
|  | /// local dynamic TLS on PPC32. | 
|  | PPC32_PICGOT, | 
|  |  | 
|  | /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec | 
|  | /// TLS model, produces an ADDIS8 instruction that adds the GOT | 
|  | /// base to sym\@got\@tprel\@ha. | 
|  | ADDIS_GOT_TPREL_HA, | 
|  |  | 
|  | /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec | 
|  | /// TLS model, produces a LD instruction with base register G8RReg | 
|  | /// and offset sym\@got\@tprel\@l.  This completes the addition that | 
|  | /// finds the offset of "sym" relative to the thread pointer. | 
|  | LD_GOT_TPREL_L, | 
|  |  | 
|  | /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS | 
|  | /// model, produces an ADD instruction that adds the contents of | 
|  | /// G8RReg to the thread pointer.  Symbol contains a relocation | 
|  | /// sym\@tls which is to be replaced by the thread pointer and | 
|  | /// identifies to the linker that the instruction is part of a | 
|  | /// TLS sequence. | 
|  | ADD_TLS, | 
|  |  | 
|  | /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS | 
|  | /// model, produces an ADDIS8 instruction that adds the GOT base | 
|  | /// register to sym\@got\@tlsgd\@ha. | 
|  | ADDIS_TLSGD_HA, | 
|  |  | 
|  | /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS | 
|  | /// model, produces an ADDI8 instruction that adds G8RReg to | 
|  | /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by | 
|  | /// ADDIS_TLSGD_L_ADDR until after register assignment. | 
|  | ADDI_TLSGD_L, | 
|  |  | 
|  | /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS | 
|  | /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by | 
|  | /// ADDIS_TLSGD_L_ADDR until after register assignment. | 
|  | GET_TLS_ADDR, | 
|  |  | 
|  | /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that | 
|  | /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following | 
|  | /// register assignment. | 
|  | ADDI_TLSGD_L_ADDR, | 
|  |  | 
|  | /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS | 
|  | /// model, produces an ADDIS8 instruction that adds the GOT base | 
|  | /// register to sym\@got\@tlsld\@ha. | 
|  | ADDIS_TLSLD_HA, | 
|  |  | 
|  | /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS | 
|  | /// model, produces an ADDI8 instruction that adds G8RReg to | 
|  | /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by | 
|  | /// ADDIS_TLSLD_L_ADDR until after register assignment. | 
|  | ADDI_TLSLD_L, | 
|  |  | 
|  | /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS | 
|  | /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by | 
|  | /// ADDIS_TLSLD_L_ADDR until after register assignment. | 
|  | GET_TLSLD_ADDR, | 
|  |  | 
|  | /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that | 
|  | /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion | 
|  | /// following register assignment. | 
|  | ADDI_TLSLD_L_ADDR, | 
|  |  | 
|  | /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS | 
|  | /// model, produces an ADDIS8 instruction that adds X3 to | 
|  | /// sym\@dtprel\@ha. | 
|  | ADDIS_DTPREL_HA, | 
|  |  | 
|  | /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS | 
|  | /// model, produces an ADDI8 instruction that adds G8RReg to | 
|  | /// sym\@got\@dtprel\@l. | 
|  | ADDI_DTPREL_L, | 
|  |  | 
|  | /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded | 
|  | /// during instruction selection to optimize a BUILD_VECTOR into | 
|  | /// operations on splats.  This is necessary to avoid losing these | 
|  | /// optimizations due to constant folding. | 
|  | VADD_SPLAT, | 
|  |  | 
|  | /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned | 
|  | /// operand identifies the operating system entry point. | 
|  | SC, | 
|  |  | 
|  | /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer. | 
|  | CLRBHRB, | 
|  |  | 
|  | /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch | 
|  | /// history rolling buffer entry. | 
|  | MFBHRBE, | 
|  |  | 
|  | /// CHAIN = RFEBB CHAIN, State - Return from event-based branch. | 
|  | RFEBB, | 
|  |  | 
|  | /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little | 
|  | /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x | 
|  | /// or stxvd2x instruction.  The chain is necessary because the | 
|  | /// sequence replaces a load and needs to provide the same number | 
|  | /// of outputs. | 
|  | XXSWAPD, | 
|  |  | 
|  | /// An SDNode for swaps that are not associated with any loads/stores | 
|  | /// and thereby have no chain. | 
|  | SWAP_NO_CHAIN, | 
|  |  | 
|  | /// QVFPERM = This corresponds to the QPX qvfperm instruction. | 
|  | QVFPERM, | 
|  |  | 
|  | /// QVGPCI = This corresponds to the QPX qvgpci instruction. | 
|  | QVGPCI, | 
|  |  | 
|  | /// QVALIGNI = This corresponds to the QPX qvaligni instruction. | 
|  | QVALIGNI, | 
|  |  | 
|  | /// QVESPLATI = This corresponds to the QPX qvesplati instruction. | 
|  | QVESPLATI, | 
|  |  | 
|  | /// QBFLT = Access the underlying QPX floating-point boolean | 
|  | /// representation. | 
|  | QBFLT, | 
|  |  | 
|  | /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a | 
|  | /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of | 
|  | /// the GPRC input, then stores it through Ptr.  Type can be either i16 or | 
|  | /// i32. | 
|  | STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE, | 
|  |  | 
|  | /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a | 
|  | /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it, | 
|  | /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16 | 
|  | /// or i32. | 
|  | LBRX, | 
|  |  | 
|  | /// STFIWX - The STFIWX instruction.  The first operand is an input token | 
|  | /// chain, then an f64 value to store, then an address to store it to. | 
|  | STFIWX, | 
|  |  | 
|  | /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point | 
|  | /// load which sign-extends from a 32-bit integer value into the | 
|  | /// destination 64-bit register. | 
|  | LFIWAX, | 
|  |  | 
|  | /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point | 
|  | /// load which zero-extends from a 32-bit integer value into the | 
|  | /// destination 64-bit register. | 
|  | LFIWZX, | 
|  |  | 
|  | /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian. | 
|  | /// Maps directly to an lxvd2x instruction that will be followed by | 
|  | /// an xxswapd. | 
|  | LXVD2X, | 
|  |  | 
|  | /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian. | 
|  | /// Maps directly to an stxvd2x instruction that will be preceded by | 
|  | /// an xxswapd. | 
|  | STXVD2X, | 
|  |  | 
|  | /// QBRC, CHAIN = QVLFSb CHAIN, Ptr | 
|  | /// The 4xf32 load used for v4i1 constants. | 
|  | QVLFSb, | 
|  |  | 
|  | /// GPRC = TOC_ENTRY GA, TOC | 
|  | /// Loads the entry for GA from the TOC, where the TOC base is given by | 
|  | /// the last operand. | 
|  | TOC_ENTRY | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Define some predicates that are used for node matching. | 
|  | namespace PPC { | 
|  | /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUHUM instruction. | 
|  | bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUWUM instruction. | 
|  | bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a | 
|  | /// VPKUDUM instruction. | 
|  | bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | unsigned ShuffleKind, SelectionDAG &DAG); | 
|  |  | 
|  | /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). | 
|  | bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, | 
|  | unsigned ShuffleKind, SelectionDAG &DAG); | 
|  |  | 
|  | /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for | 
|  | /// a VMRGEW or VMRGOW instruction | 
|  | bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, | 
|  | unsigned ShuffleKind, SelectionDAG &DAG); | 
|  |  | 
|  | /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the | 
|  | /// shift amount, otherwise return -1. | 
|  | int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, | 
|  | SelectionDAG &DAG); | 
|  |  | 
|  | /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand | 
|  | /// specifies a splat of a single element that is suitable for input to | 
|  | /// VSPLTB/VSPLTH/VSPLTW. | 
|  | bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); | 
|  |  | 
|  | /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by | 
|  | /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any | 
|  | /// shuffle of v4f32/v4i32 vectors that just inserts one element from one | 
|  | /// vector into the other. This function will also set a couple of | 
|  | /// output parameters for how much the source vector needs to be shifted and | 
|  | /// what byte number needs to be specified for the instruction to put the | 
|  | /// element in the desired location of the target vector. | 
|  | bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, | 
|  | unsigned &InsertAtByte, bool &Swap, bool IsLE); | 
|  |  | 
|  | /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the | 
|  | /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. | 
|  | unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG); | 
|  |  | 
|  | /// get_VSPLTI_elt - If this is a build_vector of constants which can be | 
|  | /// formed by using a vspltis[bhw] instruction of the specified element | 
|  | /// size, return the constant being splatted.  The ByteSize field indicates | 
|  | /// the number of bytes of each element [124] -> [bhw]. | 
|  | SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); | 
|  |  | 
|  | /// If this is a qvaligni shuffle mask, return the shift | 
|  | /// amount, otherwise return -1. | 
|  | int isQVALIGNIShuffleMask(SDNode *N); | 
|  | } | 
|  |  | 
|  | class PPCTargetLowering : public TargetLowering { | 
|  | const PPCSubtarget &Subtarget; | 
|  |  | 
|  | public: | 
|  | explicit PPCTargetLowering(const PPCTargetMachine &TM, | 
|  | const PPCSubtarget &STI); | 
|  |  | 
|  | /// getTargetNodeName() - This method returns the name of a target specific | 
|  | /// DAG node. | 
|  | const char *getTargetNodeName(unsigned Opcode) const override; | 
|  |  | 
|  | /// getPreferredVectorAction - The code we generate when vector types are | 
|  | /// legalized by promoting the integer element type is often much worse | 
|  | /// than code we generate if we widen the type for applicable vector types. | 
|  | /// The issue with promoting is that the vector is scalaraized, individual | 
|  | /// elements promoted and then the vector is rebuilt. So say we load a pair | 
|  | /// of v4i8's and shuffle them. This will turn into a mess of 8 extending | 
|  | /// loads, moves back into VSR's (or memory ops if we don't have moves) and | 
|  | /// then the VPERM for the shuffle. All in all a very slow sequence. | 
|  | TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT) | 
|  | const override { | 
|  | if (VT.getVectorElementType().getSizeInBits() % 8 == 0) | 
|  | return TypeWidenVector; | 
|  | return TargetLoweringBase::getPreferredVectorAction(VT); | 
|  | } | 
|  | bool useSoftFloat() const override; | 
|  |  | 
|  | MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | bool isCheapToSpeculateCttz() const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isCheapToSpeculateCtlz() const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool isCtlzFast() const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool hasAndNotCompare(SDValue) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool supportSplitCSR(MachineFunction *MF) const override { | 
|  | return | 
|  | MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS && | 
|  | MF->getFunction()->hasFnAttribute(Attribute::NoUnwind); | 
|  | } | 
|  |  | 
|  | void initializeSplitCSR(MachineBasicBlock *Entry) const override; | 
|  |  | 
|  | void insertCopiesSplitCSR( | 
|  | MachineBasicBlock *Entry, | 
|  | const SmallVectorImpl<MachineBasicBlock *> &Exits) const override; | 
|  |  | 
|  | /// getSetCCResultType - Return the ISD::SETCC ValueType | 
|  | EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, | 
|  | EVT VT) const override; | 
|  |  | 
|  | /// Return true if target always beneficiates from combining into FMA for a | 
|  | /// given value type. This must typically return false on targets where FMA | 
|  | /// takes more cycles to execute than FADD. | 
|  | bool enableAggressiveFMAFusion(EVT VT) const override; | 
|  |  | 
|  | /// getPreIndexedAddressParts - returns true by value, base pointer and | 
|  | /// offset pointer and addressing mode by reference if the node's address | 
|  | /// can be legally represented as pre-indexed load / store address. | 
|  | bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
|  | SDValue &Offset, | 
|  | ISD::MemIndexedMode &AM, | 
|  | SelectionDAG &DAG) const override; | 
|  |  | 
|  | /// SelectAddressRegReg - Given the specified addressed, check to see if it | 
|  | /// can be represented as an indexed [r+r] operation.  Returns false if it | 
|  | /// can be more efficiently represented with [r+imm]. | 
|  | bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, | 
|  | SelectionDAG &DAG) const; | 
|  |  | 
|  | /// SelectAddressRegImm - Returns true if the address N can be represented | 
|  | /// by a base register plus a signed 16-bit displacement [r+imm], and if it | 
|  | /// is not better represented as reg+reg.  If Aligned is true, only accept | 
|  | /// displacements suitable for STD and friends, i.e. multiples of 4. | 
|  | bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, | 
|  | SelectionDAG &DAG, bool Aligned) const; | 
|  |  | 
|  | /// SelectAddressRegRegOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, | 
|  | SelectionDAG &DAG) const; | 
|  |  | 
|  | Sched::Preference getSchedulingPreference(SDNode *N) const override; | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; | 
|  |  | 
|  | /// ReplaceNodeResults - Replace the results of node with an illegal result | 
|  | /// type with new values built out of custom code. | 
|  | /// | 
|  | void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, | 
|  | SelectionDAG &DAG) const override; | 
|  |  | 
|  | SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const; | 
|  | SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const; | 
|  |  | 
|  | SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; | 
|  |  | 
|  | SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, | 
|  | std::vector<SDNode *> *Created) const override; | 
|  |  | 
|  | unsigned getRegisterByName(const char* RegName, EVT VT, | 
|  | SelectionDAG &DAG) const override; | 
|  |  | 
|  | void computeKnownBitsForTargetNode(const SDValue Op, | 
|  | APInt &KnownZero, | 
|  | APInt &KnownOne, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth = 0) const override; | 
|  |  | 
|  | unsigned getPrefLoopAlignment(MachineLoop *ML) const override; | 
|  |  | 
|  | bool shouldInsertFencesForAtomic(const Instruction *I) const override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord, | 
|  | bool IsStore, bool IsLoad) const override; | 
|  | Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord, | 
|  | bool IsStore, bool IsLoad) const override; | 
|  |  | 
|  | MachineBasicBlock * | 
|  | EmitInstrWithCustomInserter(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const override; | 
|  | MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | unsigned AtomicSize, | 
|  | unsigned BinOpcode, | 
|  | unsigned CmpOpcode = 0, | 
|  | unsigned CmpPred = 0) const; | 
|  | MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | bool is8bit, | 
|  | unsigned Opcode, | 
|  | unsigned CmpOpcode = 0, | 
|  | unsigned CmpPred = 0) const; | 
|  |  | 
|  | MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const; | 
|  |  | 
|  | MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) const; | 
|  |  | 
|  | ConstraintType getConstraintType(StringRef Constraint) const override; | 
|  |  | 
|  | /// Examine constraint string and operand type and determine a weight value. | 
|  | /// The operand object must already have been set up with the operand type. | 
|  | ConstraintWeight getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const override; | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, MVT VT) const override; | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area.  This is the actual | 
|  | /// alignment, not its logarithm. | 
|  | unsigned getByValTypeAlignment(Type *Ty, | 
|  | const DataLayout &DL) const override; | 
|  |  | 
|  | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
|  | /// vector.  If it is invalid, don't add anything to Ops. | 
|  | void LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const override; | 
|  |  | 
|  | unsigned | 
|  | getInlineAsmMemConstraint(StringRef ConstraintCode) const override { | 
|  | if (ConstraintCode == "es") | 
|  | return InlineAsm::Constraint_es; | 
|  | else if (ConstraintCode == "o") | 
|  | return InlineAsm::Constraint_o; | 
|  | else if (ConstraintCode == "Q") | 
|  | return InlineAsm::Constraint_Q; | 
|  | else if (ConstraintCode == "Z") | 
|  | return InlineAsm::Constraint_Z; | 
|  | else if (ConstraintCode == "Zy") | 
|  | return InlineAsm::Constraint_Zy; | 
|  | return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); | 
|  | } | 
|  |  | 
|  | /// isLegalAddressingMode - Return true if the addressing mode represented | 
|  | /// by AM is legal for this target, for a load/store of the specified type. | 
|  | bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, | 
|  | Type *Ty, unsigned AS) const override; | 
|  |  | 
|  | /// isLegalICmpImmediate - Return true if the specified immediate is legal | 
|  | /// icmp immediate, that is the target has icmp instructions which can | 
|  | /// compare a register against the immediate without having to materialize | 
|  | /// the immediate into a register. | 
|  | bool isLegalICmpImmediate(int64_t Imm) const override; | 
|  |  | 
|  | /// isLegalAddImmediate - Return true if the specified immediate is legal | 
|  | /// add immediate, that is the target has add instructions which can | 
|  | /// add a register and the immediate without having to materialize | 
|  | /// the immediate into a register. | 
|  | bool isLegalAddImmediate(int64_t Imm) const override; | 
|  |  | 
|  | /// isTruncateFree - Return true if it's free to truncate a value of | 
|  | /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in | 
|  | /// register X1 to i32 by referencing its sub-register R1. | 
|  | bool isTruncateFree(Type *Ty1, Type *Ty2) const override; | 
|  | bool isTruncateFree(EVT VT1, EVT VT2) const override; | 
|  |  | 
|  | bool isZExtFree(SDValue Val, EVT VT2) const override; | 
|  |  | 
|  | bool isFPExtFree(EVT VT) const override; | 
|  |  | 
|  | /// \brief Returns true if it is beneficial to convert a load of a constant | 
|  | /// to just the constant itself. | 
|  | bool shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const override; | 
|  |  | 
|  | bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; | 
|  |  | 
|  | bool getTgtMemIntrinsic(IntrinsicInfo &Info, | 
|  | const CallInst &I, | 
|  | unsigned Intrinsic) const override; | 
|  |  | 
|  | /// getOptimalMemOpType - Returns the target specific optimal type for load | 
|  | /// and store operations as a result of memset, memcpy, and memmove | 
|  | /// lowering. If DstAlign is zero that means it's safe to destination | 
|  | /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it | 
|  | /// means there isn't a need to check it against alignment requirement, | 
|  | /// probably because the source does not need to be loaded. If 'IsMemset' is | 
|  | /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that | 
|  | /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy | 
|  | /// source is constant so it does not need to be loaded. | 
|  | /// It returns EVT::Other if the type should be determined using generic | 
|  | /// target-independent logic. | 
|  | EVT | 
|  | getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, | 
|  | bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const override; | 
|  |  | 
|  | /// Is unaligned memory access allowed for the given type, and is it fast | 
|  | /// relative to software emulation. | 
|  | bool allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned AddrSpace, | 
|  | unsigned Align = 1, | 
|  | bool *Fast = nullptr) const override; | 
|  |  | 
|  | /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster | 
|  | /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be | 
|  | /// expanded to FMAs when this method returns true, otherwise fmuladd is | 
|  | /// expanded to fmul + fadd. | 
|  | bool isFMAFasterThanFMulAndFAdd(EVT VT) const override; | 
|  |  | 
|  | const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; | 
|  |  | 
|  | // Should we expand the build vector with shuffles? | 
|  | bool | 
|  | shouldExpandBuildVectorWithShuffles(EVT VT, | 
|  | unsigned DefinedValues) const override; | 
|  |  | 
|  | /// createFastISel - This method returns a target-specific FastISel object, | 
|  | /// or null if the target does not support "fast" instruction selection. | 
|  | FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, | 
|  | const TargetLibraryInfo *LibInfo) const override; | 
|  |  | 
|  | /// \brief Returns true if an argument of type Ty needs to be passed in a | 
|  | /// contiguous block of registers in calling convention CallConv. | 
|  | bool functionArgumentNeedsConsecutiveRegisters( | 
|  | Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override { | 
|  | // We support any array type as "consecutive" block in the parameter | 
|  | // save area.  The element type defines the alignment requirement and | 
|  | // whether the argument should go in GPRs, FPRs, or VRs if available. | 
|  | // | 
|  | // Note that clang uses this capability both to implement the ELFv2 | 
|  | // homogeneous float/vector aggregate ABI, and to avoid having to use | 
|  | // "byval" when passing aggregates that might fully fit in registers. | 
|  | return Ty->isArrayTy(); | 
|  | } | 
|  |  | 
|  | /// If a physical register, this returns the register that receives the | 
|  | /// exception address on entry to an EH pad. | 
|  | unsigned | 
|  | getExceptionPointerRegister(const Constant *PersonalityFn) const override; | 
|  |  | 
|  | /// If a physical register, this returns the register that receives the | 
|  | /// exception typeid on entry to a landing pad. | 
|  | unsigned | 
|  | getExceptionSelectorRegister(const Constant *PersonalityFn) const override; | 
|  |  | 
|  | /// Override to support customized stack guard loading. | 
|  | bool useLoadStackGuardNode() const override; | 
|  | void insertSSPDeclarations(Module &M) const override; | 
|  |  | 
|  | private: | 
|  | struct ReuseLoadInfo { | 
|  | SDValue Ptr; | 
|  | SDValue Chain; | 
|  | SDValue ResChain; | 
|  | MachinePointerInfo MPI; | 
|  | bool IsDereferenceable; | 
|  | bool IsInvariant; | 
|  | unsigned Alignment; | 
|  | AAMDNodes AAInfo; | 
|  | const MDNode *Ranges; | 
|  |  | 
|  | ReuseLoadInfo() | 
|  | : IsDereferenceable(false), IsInvariant(false), Alignment(0), | 
|  | Ranges(nullptr) {} | 
|  |  | 
|  | MachineMemOperand::Flags MMOFlags() const { | 
|  | MachineMemOperand::Flags F = MachineMemOperand::MONone; | 
|  | if (IsDereferenceable) | 
|  | F |= MachineMemOperand::MODereferenceable; | 
|  | if (IsInvariant) | 
|  | F |= MachineMemOperand::MOInvariant; | 
|  | return F; | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, | 
|  | SelectionDAG &DAG, | 
|  | ISD::LoadExtType ET = ISD::NON_EXTLOAD) const; | 
|  | void spliceIntoChain(SDValue ResChain, SDValue NewResChain, | 
|  | SelectionDAG &DAG) const; | 
|  |  | 
|  | void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, | 
|  | SelectionDAG &DAG, const SDLoc &dl) const; | 
|  | SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, | 
|  | const SDLoc &dl) const; | 
|  | SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, | 
|  | const SDLoc &dl) const; | 
|  |  | 
|  | SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; | 
|  | SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; | 
|  |  | 
|  | bool | 
|  | IsEligibleForTailCallOptimization(SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG& DAG) const; | 
|  |  | 
|  | bool | 
|  | IsEligibleForTailCallOptimization_64SVR4( | 
|  | SDValue Callee, | 
|  | CallingConv::ID CalleeCC, | 
|  | ImmutableCallSite *CS, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SelectionDAG& DAG) const; | 
|  |  | 
|  | SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff, | 
|  | SDValue Chain, SDValue &LROpOut, | 
|  | SDValue &FPOpOut, | 
|  | const SDLoc &dl) const; | 
|  |  | 
|  | SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, | 
|  | const SDLoc &dl) const; | 
|  | SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; | 
|  |  | 
|  | SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const; | 
|  |  | 
|  | SDValue LowerCallResult(SDValue Chain, SDValue InFlag, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const; | 
|  | SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl, | 
|  | bool isTailCall, bool isVarArg, bool isPatchPoint, | 
|  | bool hasNest, SelectionDAG &DAG, | 
|  | SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, | 
|  | SDValue InFlag, SDValue Chain, SDValue CallSeqStart, | 
|  | SDValue &Callee, int SPDiff, unsigned NumBytes, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | SmallVectorImpl<SDValue> &InVals, | 
|  | ImmutableCallSite *CS) const; | 
|  |  | 
|  | SDValue | 
|  | LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const override; | 
|  |  | 
|  | SDValue | 
|  | LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
|  | SmallVectorImpl<SDValue> &InVals) const override; | 
|  |  | 
|  | bool | 
|  | CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, | 
|  | bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | LLVMContext &Context) const override; | 
|  |  | 
|  | SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SDLoc &dl, SelectionDAG &DAG) const override; | 
|  |  | 
|  | SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, | 
|  | SelectionDAG &DAG, SDValue ArgVal, | 
|  | const SDLoc &dl) const; | 
|  |  | 
|  | SDValue LowerFormalArguments_Darwin( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; | 
|  | SDValue LowerFormalArguments_64SVR4( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; | 
|  | SDValue LowerFormalArguments_32SVR4( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, | 
|  | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; | 
|  |  | 
|  | SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, | 
|  | SDValue CallSeqStart, | 
|  | ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
|  | const SDLoc &dl) const; | 
|  |  | 
|  | SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, bool isPatchPoint, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals, | 
|  | ImmutableCallSite *CS) const; | 
|  | SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, bool isPatchPoint, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals, | 
|  | ImmutableCallSite *CS) const; | 
|  | SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, | 
|  | CallingConv::ID CallConv, bool isVarArg, | 
|  | bool isTailCall, bool isPatchPoint, | 
|  | const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const SmallVectorImpl<SDValue> &OutVals, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals, | 
|  | ImmutableCallSite *CS) const; | 
|  |  | 
|  | SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; | 
|  | SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; | 
|  |  | 
|  | SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; | 
|  | SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const; | 
|  | SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; | 
|  | SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const; | 
|  |  | 
|  | SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, | 
|  | unsigned &RefinementSteps, | 
|  | bool &UseOneConstNR) const override; | 
|  | SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI, | 
|  | unsigned &RefinementSteps) const override; | 
|  | unsigned combineRepeatedFPDivisors() const override; | 
|  |  | 
|  | CCAssignFn *useFastISelCCs(unsigned Flag) const; | 
|  | }; | 
|  |  | 
|  | namespace PPC { | 
|  | FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, | 
|  | const TargetLibraryInfo *LibInfo); | 
|  | } | 
|  |  | 
|  | bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  |  | 
|  | bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  |  | 
|  | bool | 
|  | CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  |  | 
|  | bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State); | 
|  | } | 
|  |  | 
|  | #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H |