|  | //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file implements a register stacking pass. | 
|  | /// | 
|  | /// This pass reorders instructions to put register uses and defs in an order | 
|  | /// such that they form single-use expression trees. Registers fitting this form | 
|  | /// are then marked as "stackified", meaning references to them are replaced by | 
|  | /// "push" and "pop" from the value stack. | 
|  | /// | 
|  | /// This is primarily a code size optimization, since temporary values on the | 
|  | /// value stack don't need to be named. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* | 
|  | #include "WebAssembly.h" | 
|  | #include "WebAssemblyMachineFunctionInfo.h" | 
|  | #include "WebAssemblySubtarget.h" | 
|  | #include "WebAssemblyUtilities.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfoImpls.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "wasm-reg-stackify" | 
|  |  | 
|  | namespace { | 
|  | class WebAssemblyRegStackify final : public MachineFunctionPass { | 
|  | StringRef getPassName() const override { | 
|  | return "WebAssembly Register Stackify"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<LiveIntervals>(); | 
|  | AU.addPreserved<MachineBlockFrequencyInfo>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | AU.addPreserved<LiveIntervals>(); | 
|  | AU.addPreservedID(LiveVariablesID); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | WebAssemblyRegStackify() : MachineFunctionPass(ID) {} | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char WebAssemblyRegStackify::ID = 0; | 
|  | INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, | 
|  | "Reorder instructions to use the WebAssembly value stack", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass *llvm::createWebAssemblyRegStackify() { | 
|  | return new WebAssemblyRegStackify(); | 
|  | } | 
|  |  | 
|  | // Decorate the given instruction with implicit operands that enforce the | 
|  | // expression stack ordering constraints for an instruction which is on | 
|  | // the expression stack. | 
|  | static void ImposeStackOrdering(MachineInstr *MI) { | 
|  | // Write the opaque VALUE_STACK register. | 
|  | if (!MI->definesRegister(WebAssembly::VALUE_STACK)) | 
|  | MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, | 
|  | /*isDef=*/true, | 
|  | /*isImp=*/true)); | 
|  |  | 
|  | // Also read the opaque VALUE_STACK register. | 
|  | if (!MI->readsRegister(WebAssembly::VALUE_STACK)) | 
|  | MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, | 
|  | /*isDef=*/false, | 
|  | /*isImp=*/true)); | 
|  | } | 
|  |  | 
|  | // Convert an IMPLICIT_DEF instruction into an instruction which defines | 
|  | // a constant zero value. | 
|  | static void ConvertImplicitDefToConstZero(MachineInstr *MI, | 
|  | MachineRegisterInfo &MRI, | 
|  | const TargetInstrInfo *TII, | 
|  | MachineFunction &MF) { | 
|  | assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); | 
|  |  | 
|  | const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); | 
|  | if (RegClass == &WebAssembly::I32RegClass) { | 
|  | MI->setDesc(TII->get(WebAssembly::CONST_I32)); | 
|  | MI->addOperand(MachineOperand::CreateImm(0)); | 
|  | } else if (RegClass == &WebAssembly::I64RegClass) { | 
|  | MI->setDesc(TII->get(WebAssembly::CONST_I64)); | 
|  | MI->addOperand(MachineOperand::CreateImm(0)); | 
|  | } else if (RegClass == &WebAssembly::F32RegClass) { | 
|  | MI->setDesc(TII->get(WebAssembly::CONST_F32)); | 
|  | ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( | 
|  | Type::getFloatTy(MF.getFunction().getContext()))); | 
|  | MI->addOperand(MachineOperand::CreateFPImm(Val)); | 
|  | } else if (RegClass == &WebAssembly::F64RegClass) { | 
|  | MI->setDesc(TII->get(WebAssembly::CONST_F64)); | 
|  | ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( | 
|  | Type::getDoubleTy(MF.getFunction().getContext()))); | 
|  | MI->addOperand(MachineOperand::CreateFPImm(Val)); | 
|  | } else { | 
|  | llvm_unreachable("Unexpected reg class"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine whether a call to the callee referenced by | 
|  | // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side | 
|  | // effects. | 
|  | static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, | 
|  | bool &Write, bool &Effects, bool &StackPointer) { | 
|  | // All calls can use the stack pointer. | 
|  | StackPointer = true; | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(CalleeOpNo); | 
|  | if (MO.isGlobal()) { | 
|  | const Constant *GV = MO.getGlobal(); | 
|  | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) | 
|  | if (!GA->isInterposable()) | 
|  | GV = GA->getAliasee(); | 
|  |  | 
|  | if (const Function *F = dyn_cast<Function>(GV)) { | 
|  | if (!F->doesNotThrow()) | 
|  | Effects = true; | 
|  | if (F->doesNotAccessMemory()) | 
|  | return; | 
|  | if (F->onlyReadsMemory()) { | 
|  | Read = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assume the worst. | 
|  | Write = true; | 
|  | Read = true; | 
|  | Effects = true; | 
|  | } | 
|  |  | 
|  | // Determine whether MI reads memory, writes memory, has side effects, | 
|  | // and/or uses the stack pointer value. | 
|  | static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, | 
|  | bool &Write, bool &Effects, bool &StackPointer) { | 
|  | assert(!MI.isTerminator()); | 
|  |  | 
|  | if (MI.isDebugInstr() || MI.isPosition()) | 
|  | return; | 
|  |  | 
|  | // Check for loads. | 
|  | if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) | 
|  | Read = true; | 
|  |  | 
|  | // Check for stores. | 
|  | if (MI.mayStore()) { | 
|  | Write = true; | 
|  |  | 
|  | // Check for stores to __stack_pointer. | 
|  | for (auto MMO : MI.memoperands()) { | 
|  | const MachinePointerInfo &MPI = MMO->getPointerInfo(); | 
|  | if (MPI.V.is<const PseudoSourceValue *>()) { | 
|  | auto PSV = MPI.V.get<const PseudoSourceValue *>(); | 
|  | if (const ExternalSymbolPseudoSourceValue *EPSV = | 
|  | dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) | 
|  | if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { | 
|  | StackPointer = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (MI.hasOrderedMemoryRef()) { | 
|  | switch (MI.getOpcode()) { | 
|  | case WebAssembly::DIV_S_I32: | 
|  | case WebAssembly::DIV_S_I64: | 
|  | case WebAssembly::REM_S_I32: | 
|  | case WebAssembly::REM_S_I64: | 
|  | case WebAssembly::DIV_U_I32: | 
|  | case WebAssembly::DIV_U_I64: | 
|  | case WebAssembly::REM_U_I32: | 
|  | case WebAssembly::REM_U_I64: | 
|  | case WebAssembly::I32_TRUNC_S_F32: | 
|  | case WebAssembly::I64_TRUNC_S_F32: | 
|  | case WebAssembly::I32_TRUNC_S_F64: | 
|  | case WebAssembly::I64_TRUNC_S_F64: | 
|  | case WebAssembly::I32_TRUNC_U_F32: | 
|  | case WebAssembly::I64_TRUNC_U_F32: | 
|  | case WebAssembly::I32_TRUNC_U_F64: | 
|  | case WebAssembly::I64_TRUNC_U_F64: | 
|  | // These instruction have hasUnmodeledSideEffects() returning true | 
|  | // because they trap on overflow and invalid so they can't be arbitrarily | 
|  | // moved, however hasOrderedMemoryRef() interprets this plus their lack | 
|  | // of memoperands as having a potential unknown memory reference. | 
|  | break; | 
|  | default: | 
|  | // Record volatile accesses, unless it's a call, as calls are handled | 
|  | // specially below. | 
|  | if (!MI.isCall()) { | 
|  | Write = true; | 
|  | Effects = true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for side effects. | 
|  | if (MI.hasUnmodeledSideEffects()) { | 
|  | switch (MI.getOpcode()) { | 
|  | case WebAssembly::DIV_S_I32: | 
|  | case WebAssembly::DIV_S_I64: | 
|  | case WebAssembly::REM_S_I32: | 
|  | case WebAssembly::REM_S_I64: | 
|  | case WebAssembly::DIV_U_I32: | 
|  | case WebAssembly::DIV_U_I64: | 
|  | case WebAssembly::REM_U_I32: | 
|  | case WebAssembly::REM_U_I64: | 
|  | case WebAssembly::I32_TRUNC_S_F32: | 
|  | case WebAssembly::I64_TRUNC_S_F32: | 
|  | case WebAssembly::I32_TRUNC_S_F64: | 
|  | case WebAssembly::I64_TRUNC_S_F64: | 
|  | case WebAssembly::I32_TRUNC_U_F32: | 
|  | case WebAssembly::I64_TRUNC_U_F32: | 
|  | case WebAssembly::I32_TRUNC_U_F64: | 
|  | case WebAssembly::I64_TRUNC_U_F64: | 
|  | // These instructions have hasUnmodeledSideEffects() returning true | 
|  | // because they trap on overflow and invalid so they can't be arbitrarily | 
|  | // moved, however in the specific case of register stackifying, it is safe | 
|  | // to move them because overflow and invalid are Undefined Behavior. | 
|  | break; | 
|  | default: | 
|  | Effects = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Analyze calls. | 
|  | if (MI.isCall()) { | 
|  | unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); | 
|  | QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test whether Def is safe and profitable to rematerialize. | 
|  | static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, | 
|  | const WebAssemblyInstrInfo *TII) { | 
|  | return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); | 
|  | } | 
|  |  | 
|  | // Identify the definition for this register at this point. This is a | 
|  | // generalization of MachineRegisterInfo::getUniqueVRegDef that uses | 
|  | // LiveIntervals to handle complex cases. | 
|  | static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const LiveIntervals &LIS) { | 
|  | // Most registers are in SSA form here so we try a quick MRI query first. | 
|  | if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) | 
|  | return Def; | 
|  |  | 
|  | // MRI doesn't know what the Def is. Try asking LIS. | 
|  | if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( | 
|  | LIS.getInstructionIndex(*Insert))) | 
|  | return LIS.getInstructionFromIndex(ValNo->def); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Test whether Reg, as defined at Def, has exactly one use. This is a | 
|  | // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals | 
|  | // to handle complex cases. | 
|  | static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, | 
|  | MachineDominatorTree &MDT, LiveIntervals &LIS) { | 
|  | // Most registers are in SSA form here so we try a quick MRI query first. | 
|  | if (MRI.hasOneUse(Reg)) | 
|  | return true; | 
|  |  | 
|  | bool HasOne = false; | 
|  | const LiveInterval &LI = LIS.getInterval(Reg); | 
|  | const VNInfo *DefVNI = | 
|  | LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); | 
|  | assert(DefVNI); | 
|  | for (auto &I : MRI.use_nodbg_operands(Reg)) { | 
|  | const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); | 
|  | if (Result.valueIn() == DefVNI) { | 
|  | if (!Result.isKill()) | 
|  | return false; | 
|  | if (HasOne) | 
|  | return false; | 
|  | HasOne = true; | 
|  | } | 
|  | } | 
|  | return HasOne; | 
|  | } | 
|  |  | 
|  | // Test whether it's safe to move Def to just before Insert. | 
|  | // TODO: Compute memory dependencies in a way that doesn't require always | 
|  | // walking the block. | 
|  | // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be | 
|  | // more precise. | 
|  | static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, | 
|  | AliasAnalysis &AA, const MachineRegisterInfo &MRI) { | 
|  | assert(Def->getParent() == Insert->getParent()); | 
|  |  | 
|  | // Check for register dependencies. | 
|  | SmallVector<unsigned, 4> MutableRegisters; | 
|  | for (const MachineOperand &MO : Def->operands()) { | 
|  | if (!MO.isReg() || MO.isUndef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  |  | 
|  | // If the register is dead here and at Insert, ignore it. | 
|  | if (MO.isDead() && Insert->definesRegister(Reg) && | 
|  | !Insert->readsRegister(Reg)) | 
|  | continue; | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions | 
|  | // from moving down, and we've already checked for that. | 
|  | if (Reg == WebAssembly::ARGUMENTS) | 
|  | continue; | 
|  | // If the physical register is never modified, ignore it. | 
|  | if (!MRI.isPhysRegModified(Reg)) | 
|  | continue; | 
|  | // Otherwise, it's a physical register with unknown liveness. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If one of the operands isn't in SSA form, it has different values at | 
|  | // different times, and we need to make sure we don't move our use across | 
|  | // a different def. | 
|  | if (!MO.isDef() && !MRI.hasOneDef(Reg)) | 
|  | MutableRegisters.push_back(Reg); | 
|  | } | 
|  |  | 
|  | bool Read = false, Write = false, Effects = false, StackPointer = false; | 
|  | Query(*Def, AA, Read, Write, Effects, StackPointer); | 
|  |  | 
|  | // If the instruction does not access memory and has no side effects, it has | 
|  | // no additional dependencies. | 
|  | bool HasMutableRegisters = !MutableRegisters.empty(); | 
|  | if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) | 
|  | return true; | 
|  |  | 
|  | // Scan through the intervening instructions between Def and Insert. | 
|  | MachineBasicBlock::const_iterator D(Def), I(Insert); | 
|  | for (--I; I != D; --I) { | 
|  | bool InterveningRead = false; | 
|  | bool InterveningWrite = false; | 
|  | bool InterveningEffects = false; | 
|  | bool InterveningStackPointer = false; | 
|  | Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, | 
|  | InterveningStackPointer); | 
|  | if (Effects && InterveningEffects) | 
|  | return false; | 
|  | if (Read && InterveningWrite) | 
|  | return false; | 
|  | if (Write && (InterveningRead || InterveningWrite)) | 
|  | return false; | 
|  | if (StackPointer && InterveningStackPointer) | 
|  | return false; | 
|  |  | 
|  | for (unsigned Reg : MutableRegisters) | 
|  | for (const MachineOperand &MO : I->operands()) | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. | 
|  | static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, | 
|  | const MachineBasicBlock &MBB, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const MachineDominatorTree &MDT, | 
|  | LiveIntervals &LIS, | 
|  | WebAssemblyFunctionInfo &MFI) { | 
|  | const LiveInterval &LI = LIS.getInterval(Reg); | 
|  |  | 
|  | const MachineInstr *OneUseInst = OneUse.getParent(); | 
|  | VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); | 
|  |  | 
|  | for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { | 
|  | if (&Use == &OneUse) | 
|  | continue; | 
|  |  | 
|  | const MachineInstr *UseInst = Use.getParent(); | 
|  | VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); | 
|  |  | 
|  | if (UseVNI != OneUseVNI) | 
|  | continue; | 
|  |  | 
|  | const MachineInstr *OneUseInst = OneUse.getParent(); | 
|  | if (UseInst == OneUseInst) { | 
|  | // Another use in the same instruction. We need to ensure that the one | 
|  | // selected use happens "before" it. | 
|  | if (&OneUse > &Use) | 
|  | return false; | 
|  | } else { | 
|  | // Test that the use is dominated by the one selected use. | 
|  | while (!MDT.dominates(OneUseInst, UseInst)) { | 
|  | // Actually, dominating is over-conservative. Test that the use would | 
|  | // happen after the one selected use in the stack evaluation order. | 
|  | // | 
|  | // This is needed as a consequence of using implicit get_locals for | 
|  | // uses and implicit set_locals for defs. | 
|  | if (UseInst->getDesc().getNumDefs() == 0) | 
|  | return false; | 
|  | const MachineOperand &MO = UseInst->getOperand(0); | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  | unsigned DefReg = MO.getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DefReg) || | 
|  | !MFI.isVRegStackified(DefReg)) | 
|  | return false; | 
|  | assert(MRI.hasOneNonDBGUse(DefReg)); | 
|  | const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); | 
|  | const MachineInstr *NewUseInst = NewUse.getParent(); | 
|  | if (NewUseInst == OneUseInst) { | 
|  | if (&OneUse > &NewUse) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | UseInst = NewUseInst; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Get the appropriate tee opcode for the given register class. | 
|  | static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { | 
|  | if (RC == &WebAssembly::I32RegClass) | 
|  | return WebAssembly::TEE_I32; | 
|  | if (RC == &WebAssembly::I64RegClass) | 
|  | return WebAssembly::TEE_I64; | 
|  | if (RC == &WebAssembly::F32RegClass) | 
|  | return WebAssembly::TEE_F32; | 
|  | if (RC == &WebAssembly::F64RegClass) | 
|  | return WebAssembly::TEE_F64; | 
|  | if (RC == &WebAssembly::V128RegClass) | 
|  | return WebAssembly::TEE_V128; | 
|  | llvm_unreachable("Unexpected register class"); | 
|  | } | 
|  |  | 
|  | // Shrink LI to its uses, cleaning up LI. | 
|  | static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { | 
|  | if (LIS.shrinkToUses(&LI)) { | 
|  | SmallVector<LiveInterval *, 4> SplitLIs; | 
|  | LIS.splitSeparateComponents(LI, SplitLIs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void MoveDebugValues(unsigned Reg, MachineInstr *Insert, | 
|  | MachineBasicBlock &MBB, MachineRegisterInfo &MRI) { | 
|  | for (auto &Op : MRI.reg_operands(Reg)) { | 
|  | MachineInstr *MI = Op.getParent(); | 
|  | assert(MI != nullptr); | 
|  | if (MI->isDebugValue() && MI->getParent() == &MBB) | 
|  | MBB.splice(Insert, &MBB, MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void UpdateDebugValuesReg(unsigned Reg, unsigned NewReg, | 
|  | MachineBasicBlock &MBB, | 
|  | MachineRegisterInfo &MRI) { | 
|  | for (auto &Op : MRI.reg_operands(Reg)) { | 
|  | MachineInstr *MI = Op.getParent(); | 
|  | assert(MI != nullptr); | 
|  | if (MI->isDebugValue() && MI->getParent() == &MBB) | 
|  | Op.setReg(NewReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A single-use def in the same block with no intervening memory or register | 
|  | /// dependencies; move the def down and nest it with the current instruction. | 
|  | static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, | 
|  | MachineInstr *Def, MachineBasicBlock &MBB, | 
|  | MachineInstr *Insert, LiveIntervals &LIS, | 
|  | WebAssemblyFunctionInfo &MFI, | 
|  | MachineRegisterInfo &MRI) { | 
|  | LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); | 
|  |  | 
|  | MBB.splice(Insert, &MBB, Def); | 
|  | MoveDebugValues(Reg, Insert, MBB, MRI); | 
|  | LIS.handleMove(*Def); | 
|  |  | 
|  | if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { | 
|  | // No one else is using this register for anything so we can just stackify | 
|  | // it in place. | 
|  | MFI.stackifyVReg(Reg); | 
|  | } else { | 
|  | // The register may have unrelated uses or defs; create a new register for | 
|  | // just our one def and use so that we can stackify it. | 
|  | unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); | 
|  | Def->getOperand(0).setReg(NewReg); | 
|  | Op.setReg(NewReg); | 
|  |  | 
|  | // Tell LiveIntervals about the new register. | 
|  | LIS.createAndComputeVirtRegInterval(NewReg); | 
|  |  | 
|  | // Tell LiveIntervals about the changes to the old register. | 
|  | LiveInterval &LI = LIS.getInterval(Reg); | 
|  | LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), | 
|  | LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), | 
|  | /*RemoveDeadValNo=*/true); | 
|  |  | 
|  | MFI.stackifyVReg(NewReg); | 
|  |  | 
|  | UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); | 
|  | } | 
|  |  | 
|  | ImposeStackOrdering(Def); | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | static void CloneDebugValues(unsigned Reg, MachineInstr *Insert, | 
|  | unsigned TargetReg, MachineBasicBlock &MBB, | 
|  | MachineRegisterInfo &MRI, | 
|  | const WebAssemblyInstrInfo *TII) { | 
|  | SmallPtrSet<MachineInstr *, 4> Instrs; | 
|  | for (auto &Op : MRI.reg_operands(Reg)) { | 
|  | MachineInstr *MI = Op.getParent(); | 
|  | assert(MI != nullptr); | 
|  | if (MI->isDebugValue() && MI->getParent() == &MBB && | 
|  | Instrs.find(MI) == Instrs.end()) | 
|  | Instrs.insert(MI); | 
|  | } | 
|  | for (const auto &MI : Instrs) { | 
|  | MachineInstr &Clone = TII->duplicate(MBB, Insert, *MI); | 
|  | for (unsigned i = 0, e = Clone.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = Clone.getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == Reg) | 
|  | MO.setReg(TargetReg); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << " - - Cloned DBG_VALUE: "; Clone.dump()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// A trivially cloneable instruction; clone it and nest the new copy with the | 
|  | /// current instruction. | 
|  | static MachineInstr *RematerializeCheapDef( | 
|  | unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, | 
|  | WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, | 
|  | const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { | 
|  | LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); | 
|  | LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); | 
|  |  | 
|  | unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); | 
|  | TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); | 
|  | Op.setReg(NewReg); | 
|  | MachineInstr *Clone = &*std::prev(Insert); | 
|  | LIS.InsertMachineInstrInMaps(*Clone); | 
|  | LIS.createAndComputeVirtRegInterval(NewReg); | 
|  | MFI.stackifyVReg(NewReg); | 
|  | ImposeStackOrdering(Clone); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); | 
|  |  | 
|  | // Shrink the interval. | 
|  | bool IsDead = MRI.use_empty(Reg); | 
|  | if (!IsDead) { | 
|  | LiveInterval &LI = LIS.getInterval(Reg); | 
|  | ShrinkToUses(LI, LIS); | 
|  | IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); | 
|  | } | 
|  |  | 
|  | // If that was the last use of the original, delete the original. | 
|  | // Move or clone corresponding DBG_VALUEs to the 'Insert' location. | 
|  | if (IsDead) { | 
|  | LLVM_DEBUG(dbgs() << " - Deleting original\n"); | 
|  | SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); | 
|  | LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); | 
|  | LIS.removeInterval(Reg); | 
|  | LIS.RemoveMachineInstrFromMaps(Def); | 
|  | Def.eraseFromParent(); | 
|  |  | 
|  | MoveDebugValues(Reg, &*Insert, MBB, MRI); | 
|  | UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); | 
|  | } else { | 
|  | CloneDebugValues(Reg, &*Insert, NewReg, MBB, MRI, TII); | 
|  | } | 
|  |  | 
|  | return Clone; | 
|  | } | 
|  |  | 
|  | /// A multiple-use def in the same block with no intervening memory or register | 
|  | /// dependencies; move the def down, nest it with the current instruction, and | 
|  | /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite | 
|  | /// this: | 
|  | /// | 
|  | ///    Reg = INST ...        // Def | 
|  | ///    INST ..., Reg, ...    // Insert | 
|  | ///    INST ..., Reg, ... | 
|  | ///    INST ..., Reg, ... | 
|  | /// | 
|  | /// to this: | 
|  | /// | 
|  | ///    DefReg = INST ...     // Def (to become the new Insert) | 
|  | ///    TeeReg, Reg = TEE_... DefReg | 
|  | ///    INST ..., TeeReg, ... // Insert | 
|  | ///    INST ..., Reg, ... | 
|  | ///    INST ..., Reg, ... | 
|  | /// | 
|  | /// with DefReg and TeeReg stackified. This eliminates a get_local from the | 
|  | /// resulting code. | 
|  | static MachineInstr *MoveAndTeeForMultiUse( | 
|  | unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, | 
|  | MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, | 
|  | MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { | 
|  | LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); | 
|  |  | 
|  | // Move Def into place. | 
|  | MBB.splice(Insert, &MBB, Def); | 
|  | LIS.handleMove(*Def); | 
|  |  | 
|  | // Create the Tee and attach the registers. | 
|  | const auto *RegClass = MRI.getRegClass(Reg); | 
|  | unsigned TeeReg = MRI.createVirtualRegister(RegClass); | 
|  | unsigned DefReg = MRI.createVirtualRegister(RegClass); | 
|  | MachineOperand &DefMO = Def->getOperand(0); | 
|  | MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), | 
|  | TII->get(GetTeeOpcode(RegClass)), TeeReg) | 
|  | .addReg(Reg, RegState::Define) | 
|  | .addReg(DefReg, getUndefRegState(DefMO.isDead())); | 
|  | Op.setReg(TeeReg); | 
|  | DefMO.setReg(DefReg); | 
|  | SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); | 
|  | SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); | 
|  |  | 
|  | MoveDebugValues(Reg, Insert, MBB, MRI); | 
|  |  | 
|  | // Tell LiveIntervals we moved the original vreg def from Def to Tee. | 
|  | LiveInterval &LI = LIS.getInterval(Reg); | 
|  | LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); | 
|  | VNInfo *ValNo = LI.getVNInfoAt(DefIdx); | 
|  | I->start = TeeIdx; | 
|  | ValNo->def = TeeIdx; | 
|  | ShrinkToUses(LI, LIS); | 
|  |  | 
|  | // Finish stackifying the new regs. | 
|  | LIS.createAndComputeVirtRegInterval(TeeReg); | 
|  | LIS.createAndComputeVirtRegInterval(DefReg); | 
|  | MFI.stackifyVReg(DefReg); | 
|  | MFI.stackifyVReg(TeeReg); | 
|  | ImposeStackOrdering(Def); | 
|  | ImposeStackOrdering(Tee); | 
|  |  | 
|  | CloneDebugValues(Reg, Tee, DefReg, MBB, MRI, TII); | 
|  | CloneDebugValues(Reg, Insert, TeeReg, MBB, MRI, TII); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); | 
|  | LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); | 
|  | return Def; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// A stack for walking the tree of instructions being built, visiting the | 
|  | /// MachineOperands in DFS order. | 
|  | class TreeWalkerState { | 
|  | typedef MachineInstr::mop_iterator mop_iterator; | 
|  | typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; | 
|  | typedef iterator_range<mop_reverse_iterator> RangeTy; | 
|  | SmallVector<RangeTy, 4> Worklist; | 
|  |  | 
|  | public: | 
|  | explicit TreeWalkerState(MachineInstr *Insert) { | 
|  | const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); | 
|  | if (Range.begin() != Range.end()) | 
|  | Worklist.push_back(reverse(Range)); | 
|  | } | 
|  |  | 
|  | bool Done() const { return Worklist.empty(); } | 
|  |  | 
|  | MachineOperand &Pop() { | 
|  | RangeTy &Range = Worklist.back(); | 
|  | MachineOperand &Op = *Range.begin(); | 
|  | Range = drop_begin(Range, 1); | 
|  | if (Range.begin() == Range.end()) | 
|  | Worklist.pop_back(); | 
|  | assert((Worklist.empty() || | 
|  | Worklist.back().begin() != Worklist.back().end()) && | 
|  | "Empty ranges shouldn't remain in the worklist"); | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | /// Push Instr's operands onto the stack to be visited. | 
|  | void PushOperands(MachineInstr *Instr) { | 
|  | const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); | 
|  | if (Range.begin() != Range.end()) | 
|  | Worklist.push_back(reverse(Range)); | 
|  | } | 
|  |  | 
|  | /// Some of Instr's operands are on the top of the stack; remove them and | 
|  | /// re-insert them starting from the beginning (because we've commuted them). | 
|  | void ResetTopOperands(MachineInstr *Instr) { | 
|  | assert(HasRemainingOperands(Instr) && | 
|  | "Reseting operands should only be done when the instruction has " | 
|  | "an operand still on the stack"); | 
|  | Worklist.back() = reverse(Instr->explicit_uses()); | 
|  | } | 
|  |  | 
|  | /// Test whether Instr has operands remaining to be visited at the top of | 
|  | /// the stack. | 
|  | bool HasRemainingOperands(const MachineInstr *Instr) const { | 
|  | if (Worklist.empty()) | 
|  | return false; | 
|  | const RangeTy &Range = Worklist.back(); | 
|  | return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; | 
|  | } | 
|  |  | 
|  | /// Test whether the given register is present on the stack, indicating an | 
|  | /// operand in the tree that we haven't visited yet. Moving a definition of | 
|  | /// Reg to a point in the tree after that would change its value. | 
|  | /// | 
|  | /// This is needed as a consequence of using implicit get_locals for | 
|  | /// uses and implicit set_locals for defs. | 
|  | bool IsOnStack(unsigned Reg) const { | 
|  | for (const RangeTy &Range : Worklist) | 
|  | for (const MachineOperand &MO : Range) | 
|  | if (MO.isReg() && MO.getReg() == Reg) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// State to keep track of whether commuting is in flight or whether it's been | 
|  | /// tried for the current instruction and didn't work. | 
|  | class CommutingState { | 
|  | /// There are effectively three states: the initial state where we haven't | 
|  | /// started commuting anything and we don't know anything yet, the tenative | 
|  | /// state where we've commuted the operands of the current instruction and are | 
|  | /// revisting it, and the declined state where we've reverted the operands | 
|  | /// back to their original order and will no longer commute it further. | 
|  | bool TentativelyCommuting; | 
|  | bool Declined; | 
|  |  | 
|  | /// During the tentative state, these hold the operand indices of the commuted | 
|  | /// operands. | 
|  | unsigned Operand0, Operand1; | 
|  |  | 
|  | public: | 
|  | CommutingState() : TentativelyCommuting(false), Declined(false) {} | 
|  |  | 
|  | /// Stackification for an operand was not successful due to ordering | 
|  | /// constraints. If possible, and if we haven't already tried it and declined | 
|  | /// it, commute Insert's operands and prepare to revisit it. | 
|  | void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, | 
|  | const WebAssemblyInstrInfo *TII) { | 
|  | if (TentativelyCommuting) { | 
|  | assert(!Declined && | 
|  | "Don't decline commuting until you've finished trying it"); | 
|  | // Commuting didn't help. Revert it. | 
|  | TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); | 
|  | TentativelyCommuting = false; | 
|  | Declined = true; | 
|  | } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { | 
|  | Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; | 
|  | Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; | 
|  | if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { | 
|  | // Tentatively commute the operands and try again. | 
|  | TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); | 
|  | TreeWalker.ResetTopOperands(Insert); | 
|  | TentativelyCommuting = true; | 
|  | Declined = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Stackification for some operand was successful. Reset to the default | 
|  | /// state. | 
|  | void Reset() { | 
|  | TentativelyCommuting = false; | 
|  | Declined = false; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { | 
|  | LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" | 
|  | "********** Function: " | 
|  | << MF.getName() << '\n'); | 
|  |  | 
|  | bool Changed = false; | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); | 
|  | const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); | 
|  | const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); | 
|  | AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); | 
|  | LiveIntervals &LIS = getAnalysis<LiveIntervals>(); | 
|  |  | 
|  | // Walk the instructions from the bottom up. Currently we don't look past | 
|  | // block boundaries, and the blocks aren't ordered so the block visitation | 
|  | // order isn't significant, but we may want to change this in the future. | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | // Don't use a range-based for loop, because we modify the list as we're | 
|  | // iterating over it and the end iterator may change. | 
|  | for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { | 
|  | MachineInstr *Insert = &*MII; | 
|  | // Don't nest anything inside an inline asm, because we don't have | 
|  | // constraints for $push inputs. | 
|  | if (Insert->getOpcode() == TargetOpcode::INLINEASM) | 
|  | continue; | 
|  |  | 
|  | // Ignore debugging intrinsics. | 
|  | if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) | 
|  | continue; | 
|  |  | 
|  | // Iterate through the inputs in reverse order, since we'll be pulling | 
|  | // operands off the stack in LIFO order. | 
|  | CommutingState Commuting; | 
|  | TreeWalkerState TreeWalker(Insert); | 
|  | while (!TreeWalker.Done()) { | 
|  | MachineOperand &Op = TreeWalker.Pop(); | 
|  |  | 
|  | // We're only interested in explicit virtual register operands. | 
|  | if (!Op.isReg()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg = Op.getReg(); | 
|  | assert(Op.isUse() && "explicit_uses() should only iterate over uses"); | 
|  | assert(!Op.isImplicit() && | 
|  | "explicit_uses() should only iterate over explicit operands"); | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | continue; | 
|  |  | 
|  | // Identify the definition for this register at this point. | 
|  | MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); | 
|  | if (!Def) | 
|  | continue; | 
|  |  | 
|  | // Don't nest an INLINE_ASM def into anything, because we don't have | 
|  | // constraints for $pop outputs. | 
|  | if (Def->getOpcode() == TargetOpcode::INLINEASM) | 
|  | continue; | 
|  |  | 
|  | // Argument instructions represent live-in registers and not real | 
|  | // instructions. | 
|  | if (WebAssembly::isArgument(*Def)) | 
|  | continue; | 
|  |  | 
|  | // Decide which strategy to take. Prefer to move a single-use value | 
|  | // over cloning it, and prefer cloning over introducing a tee. | 
|  | // For moving, we require the def to be in the same block as the use; | 
|  | // this makes things simpler (LiveIntervals' handleMove function only | 
|  | // supports intra-block moves) and it's MachineSink's job to catch all | 
|  | // the sinking opportunities anyway. | 
|  | bool SameBlock = Def->getParent() == &MBB; | 
|  | bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && | 
|  | !TreeWalker.IsOnStack(Reg); | 
|  | if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { | 
|  | Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); | 
|  | } else if (ShouldRematerialize(*Def, AA, TII)) { | 
|  | Insert = | 
|  | RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), | 
|  | LIS, MFI, MRI, TII, TRI); | 
|  | } else if (CanMove && | 
|  | OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { | 
|  | Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, | 
|  | MRI, TII); | 
|  | } else { | 
|  | // We failed to stackify the operand. If the problem was ordering | 
|  | // constraints, Commuting may be able to help. | 
|  | if (!CanMove && SameBlock) | 
|  | Commuting.MaybeCommute(Insert, TreeWalker, TII); | 
|  | // Proceed to the next operand. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the instruction we just stackified is an IMPLICIT_DEF, convert it | 
|  | // to a constant 0 so that the def is explicit, and the push/pop | 
|  | // correspondence is maintained. | 
|  | if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) | 
|  | ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); | 
|  |  | 
|  | // We stackified an operand. Add the defining instruction's operands to | 
|  | // the worklist stack now to continue to build an ever deeper tree. | 
|  | Commuting.Reset(); | 
|  | TreeWalker.PushOperands(Insert); | 
|  | } | 
|  |  | 
|  | // If we stackified any operands, skip over the tree to start looking for | 
|  | // the next instruction we can build a tree on. | 
|  | if (Insert != &*MII) { | 
|  | ImposeStackOrdering(&*MII); | 
|  | MII = MachineBasicBlock::iterator(Insert).getReverse(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so | 
|  | // that it never looks like a use-before-def. | 
|  | if (Changed) { | 
|  | MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); | 
|  | for (MachineBasicBlock &MBB : MF) | 
|  | MBB.addLiveIn(WebAssembly::VALUE_STACK); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Verify that pushes and pops are performed in LIFO order. | 
|  | SmallVector<unsigned, 0> Stack; | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  | for (MachineOperand &MO : reverse(MI.explicit_operands())) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  |  | 
|  | if (MFI.isVRegStackified(Reg)) { | 
|  | if (MO.isDef()) | 
|  | Stack.push_back(Reg); | 
|  | else | 
|  | assert(Stack.pop_back_val() == Reg && | 
|  | "Register stack pop should be paired with a push"); | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO: Generalize this code to support keeping values on the stack across | 
|  | // basic block boundaries. | 
|  | assert(Stack.empty() && | 
|  | "Register stack pushes and pops should be balanced"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return Changed; | 
|  | } |