|  | //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the pass that transforms the ARM machine instructions into | 
|  | // relocatable machine code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "jit" | 
|  | #include "ARM.h" | 
|  | #include "ARMAddressingModes.h" | 
|  | #include "ARMConstantPoolValue.h" | 
|  | #include "ARMInstrInfo.h" | 
|  | #include "ARMRelocations.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "ARMTargetMachine.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/CodeGen/JITCodeEmitter.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #ifndef NDEBUG | 
|  | #include <iomanip> | 
|  | #endif | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumEmitted, "Number of machine instructions emitted"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ARMCodeEmitter : public MachineFunctionPass { | 
|  | ARMJITInfo                *JTI; | 
|  | const ARMInstrInfo        *II; | 
|  | const TargetData          *TD; | 
|  | const ARMSubtarget        *Subtarget; | 
|  | TargetMachine             &TM; | 
|  | JITCodeEmitter            &MCE; | 
|  | MachineModuleInfo *MMI; | 
|  | const std::vector<MachineConstantPoolEntry> *MCPEs; | 
|  | const std::vector<MachineJumpTableEntry> *MJTEs; | 
|  | bool IsPIC; | 
|  | bool IsThumb; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<MachineModuleInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | static char ID; | 
|  | public: | 
|  | ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce) | 
|  | : MachineFunctionPass(ID), JTI(0), | 
|  | II((const ARMInstrInfo *)tm.getInstrInfo()), | 
|  | TD(tm.getTargetData()), TM(tm), | 
|  | MCE(mce), MCPEs(0), MJTEs(0), | 
|  | IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {} | 
|  |  | 
|  | /// getBinaryCodeForInstr - This function, generated by the | 
|  | /// CodeEmitterGenerator using TableGen, produces the binary encoding for | 
|  | /// machine instructions. | 
|  | unsigned getBinaryCodeForInstr(const MachineInstr &MI) const; | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF); | 
|  |  | 
|  | virtual const char *getPassName() const { | 
|  | return "ARM Machine Code Emitter"; | 
|  | } | 
|  |  | 
|  | void emitInstruction(const MachineInstr &MI); | 
|  |  | 
|  | private: | 
|  |  | 
|  | void emitWordLE(unsigned Binary); | 
|  | void emitDWordLE(uint64_t Binary); | 
|  | void emitConstPoolInstruction(const MachineInstr &MI); | 
|  | void emitMOVi32immInstruction(const MachineInstr &MI); | 
|  | void emitMOVi2piecesInstruction(const MachineInstr &MI); | 
|  | void emitLEApcrelJTInstruction(const MachineInstr &MI); | 
|  | void emitPseudoMoveInstruction(const MachineInstr &MI); | 
|  | void addPCLabel(unsigned LabelID); | 
|  | void emitPseudoInstruction(const MachineInstr &MI); | 
|  | unsigned getMachineSoRegOpValue(const MachineInstr &MI, | 
|  | const TargetInstrDesc &TID, | 
|  | const MachineOperand &MO, | 
|  | unsigned OpIdx); | 
|  |  | 
|  | unsigned getMachineSoImmOpValue(unsigned SoImm); | 
|  | unsigned getAddrModeSBit(const MachineInstr &MI, | 
|  | const TargetInstrDesc &TID) const; | 
|  |  | 
|  | void emitDataProcessingInstruction(const MachineInstr &MI, | 
|  | unsigned ImplicitRd = 0, | 
|  | unsigned ImplicitRn = 0); | 
|  |  | 
|  | void emitLoadStoreInstruction(const MachineInstr &MI, | 
|  | unsigned ImplicitRd = 0, | 
|  | unsigned ImplicitRn = 0); | 
|  |  | 
|  | void emitMiscLoadStoreInstruction(const MachineInstr &MI, | 
|  | unsigned ImplicitRn = 0); | 
|  |  | 
|  | void emitLoadStoreMultipleInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitMulFrmInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitExtendInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitMiscArithInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitSaturateInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitBranchInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitInlineJumpTable(unsigned JTIndex); | 
|  |  | 
|  | void emitMiscBranchInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitVFPArithInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitVFPConversionInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitVFPLoadStoreInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI); | 
|  |  | 
|  | void emitNEONLaneInstruction(const MachineInstr &MI); | 
|  | void emitNEONDupInstruction(const MachineInstr &MI); | 
|  | void emitNEON1RegModImmInstruction(const MachineInstr &MI); | 
|  | void emitNEON2RegInstruction(const MachineInstr &MI); | 
|  | void emitNEON3RegInstruction(const MachineInstr &MI); | 
|  |  | 
|  | /// getMachineOpValue - Return binary encoding of operand. If the machine | 
|  | /// operand requires relocation, record the relocation and return zero. | 
|  | unsigned getMachineOpValue(const MachineInstr &MI, | 
|  | const MachineOperand &MO) const; | 
|  | unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const { | 
|  | return getMachineOpValue(MI, MI.getOperand(OpIdx)); | 
|  | } | 
|  |  | 
|  | // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the | 
|  | //  TableGen'erated getBinaryCodeForInstr() function to encode any | 
|  | //  operand values, instead querying getMachineOpValue() directly for | 
|  | //  each operand it needs to encode. Thus, any of the new encoder | 
|  | //  helper functions can simply return 0 as the values the return | 
|  | //  are already handled elsewhere. They are placeholders to allow this | 
|  | //  encoder to continue to function until the MC encoder is sufficiently | 
|  | //  far along that this one can be eliminated entirely. | 
|  | unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val) | 
|  | const { return 0; } | 
|  | unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val) | 
|  | const { return 0; } | 
|  | unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val) | 
|  | const { return 0; } | 
|  | unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val) | 
|  | const { return 0; } | 
|  | unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI, | 
|  | unsigned Op) const { return 0; } | 
|  | unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI, | 
|  | unsigned Op) const { return 0; } | 
|  | unsigned getMsbOpValue(const MachineInstr &MI, | 
|  | unsigned Op) const { return 0; } | 
|  | uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx) | 
|  | const {return 0; } | 
|  | uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx) | 
|  | const { return 0; } | 
|  |  | 
|  | unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { | 
|  | // {17-13} = reg | 
|  | // {12}    = (U)nsigned (add == '1', sub == '0') | 
|  | // {11-0}  = imm12 | 
|  | const MachineOperand &MO  = MI.getOperand(Op); | 
|  | const MachineOperand &MO1 = MI.getOperand(Op + 1); | 
|  | if (!MO.isReg()) { | 
|  | emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); | 
|  | return 0; | 
|  | } | 
|  | unsigned Reg = getARMRegisterNumbering(MO.getReg()); | 
|  | int32_t Imm12 = MO1.getImm(); | 
|  | uint32_t Binary; | 
|  | Binary = Imm12 & 0xfff; | 
|  | if (Imm12 >= 0) | 
|  | Binary |= (1 << 12); | 
|  | Binary |= (Reg << 13); | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx) | 
|  | const { return 0;} | 
|  | uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) | 
|  | const { return 0;} | 
|  | uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) | 
|  | const { return 0;} | 
|  | uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  | uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const { | 
|  | // {17-13} = reg | 
|  | // {12}    = (U)nsigned (add == '1', sub == '0') | 
|  | // {11-0}  = imm12 | 
|  | const MachineOperand &MO  = MI.getOperand(Op); | 
|  | const MachineOperand &MO1 = MI.getOperand(Op + 1); | 
|  | if (!MO.isReg()) { | 
|  | emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); | 
|  | return 0; | 
|  | } | 
|  | unsigned Reg = getARMRegisterNumbering(MO.getReg()); | 
|  | int32_t Imm12 = MO1.getImm(); | 
|  |  | 
|  | // Special value for #-0 | 
|  | if (Imm12 == INT32_MIN) | 
|  | Imm12 = 0; | 
|  |  | 
|  | // Immediate is always encoded as positive. The 'U' bit controls add vs | 
|  | // sub. | 
|  | bool isAdd = true; | 
|  | if (Imm12 < 0) { | 
|  | Imm12 = -Imm12; | 
|  | isAdd = false; | 
|  | } | 
|  |  | 
|  | uint32_t Binary = Imm12 & 0xfff; | 
|  | if (isAdd) | 
|  | Binary |= (1 << 12); | 
|  | Binary |= (Reg << 13); | 
|  | return Binary; | 
|  | } | 
|  | unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  |  | 
|  | unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op) | 
|  | const { return 0; } | 
|  |  | 
|  | /// getMovi32Value - Return binary encoding of operand for movw/movt. If the | 
|  | /// machine operand requires relocation, record the relocation and return | 
|  | /// zero. | 
|  | unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO, | 
|  | unsigned Reloc); | 
|  |  | 
|  | /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. | 
|  | /// | 
|  | unsigned getShiftOp(unsigned Imm) const ; | 
|  |  | 
|  | /// Routines that handle operands which add machine relocations which are | 
|  | /// fixed up by the relocation stage. | 
|  | void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, | 
|  | bool MayNeedFarStub,  bool Indirect, | 
|  | intptr_t ACPV = 0) const; | 
|  | void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const; | 
|  | void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const; | 
|  | void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const; | 
|  | void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, | 
|  | intptr_t JTBase = 0) const; | 
|  | }; | 
|  | } | 
|  |  | 
|  | char ARMCodeEmitter::ID = 0; | 
|  |  | 
|  | /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM | 
|  | /// code to the specified MCE object. | 
|  | FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, | 
|  | JITCodeEmitter &JCE) { | 
|  | return new ARMCodeEmitter(TM, JCE); | 
|  | } | 
|  |  | 
|  | bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { | 
|  | assert((MF.getTarget().getRelocationModel() != Reloc::Default || | 
|  | MF.getTarget().getRelocationModel() != Reloc::Static) && | 
|  | "JIT relocation model must be set to static or default!"); | 
|  | JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo(); | 
|  | II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo(); | 
|  | TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData(); | 
|  | Subtarget = &TM.getSubtarget<ARMSubtarget>(); | 
|  | MCPEs = &MF.getConstantPool()->getConstants(); | 
|  | MJTEs = 0; | 
|  | if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables(); | 
|  | IsPIC = TM.getRelocationModel() == Reloc::PIC_; | 
|  | IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction(); | 
|  | JTI->Initialize(MF, IsPIC); | 
|  | MMI = &getAnalysis<MachineModuleInfo>(); | 
|  | MCE.setModuleInfo(MMI); | 
|  |  | 
|  | do { | 
|  | DEBUG(errs() << "JITTing function '" | 
|  | << MF.getFunction()->getName() << "'\n"); | 
|  | MCE.startFunction(MF); | 
|  | for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); | 
|  | MBB != E; ++MBB) { | 
|  | MCE.StartMachineBasicBlock(MBB); | 
|  | for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); | 
|  | I != E; ++I) | 
|  | emitInstruction(*I); | 
|  | } | 
|  | } while (MCE.finishFunction(MF)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. | 
|  | /// | 
|  | unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const { | 
|  | switch (ARM_AM::getAM2ShiftOpc(Imm)) { | 
|  | default: llvm_unreachable("Unknown shift opc!"); | 
|  | case ARM_AM::asr: return 2; | 
|  | case ARM_AM::lsl: return 0; | 
|  | case ARM_AM::lsr: return 1; | 
|  | case ARM_AM::ror: | 
|  | case ARM_AM::rrx: return 3; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getMovi32Value - Return binary encoding of operand for movw/movt. If the | 
|  | /// machine operand requires relocation, record the relocation and return zero. | 
|  | unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI, | 
|  | const MachineOperand &MO, | 
|  | unsigned Reloc) { | 
|  | assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw)) | 
|  | && "Relocation to this function should be for movt or movw"); | 
|  |  | 
|  | if (MO.isImm()) | 
|  | return static_cast<unsigned>(MO.getImm()); | 
|  | else if (MO.isGlobal()) | 
|  | emitGlobalAddress(MO.getGlobal(), Reloc, true, false); | 
|  | else if (MO.isSymbol()) | 
|  | emitExternalSymbolAddress(MO.getSymbolName(), Reloc); | 
|  | else if (MO.isMBB()) | 
|  | emitMachineBasicBlock(MO.getMBB(), Reloc); | 
|  | else { | 
|  | #ifndef NDEBUG | 
|  | errs() << MO; | 
|  | #endif | 
|  | llvm_unreachable("Unsupported operand type for movw/movt"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// getMachineOpValue - Return binary encoding of operand. If the machine | 
|  | /// operand requires relocation, record the relocation and return zero. | 
|  | unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, | 
|  | const MachineOperand &MO) const { | 
|  | if (MO.isReg()) | 
|  | return getARMRegisterNumbering(MO.getReg()); | 
|  | else if (MO.isImm()) | 
|  | return static_cast<unsigned>(MO.getImm()); | 
|  | else if (MO.isGlobal()) | 
|  | emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false); | 
|  | else if (MO.isSymbol()) | 
|  | emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch); | 
|  | else if (MO.isCPI()) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | // For VFP load, the immediate offset is multiplied by 4. | 
|  | unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm) | 
|  | ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry; | 
|  | emitConstPoolAddress(MO.getIndex(), Reloc); | 
|  | } else if (MO.isJTI()) | 
|  | emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); | 
|  | else if (MO.isMBB()) | 
|  | emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); | 
|  | else | 
|  | llvm_unreachable("Unable to encode MachineOperand!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// emitGlobalAddress - Emit the specified address to the code stream. | 
|  | /// | 
|  | void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, | 
|  | bool MayNeedFarStub, bool Indirect, | 
|  | intptr_t ACPV) const { | 
|  | MachineRelocation MR = Indirect | 
|  | ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, | 
|  | const_cast<GlobalValue *>(GV), | 
|  | ACPV, MayNeedFarStub) | 
|  | : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, | 
|  | const_cast<GlobalValue *>(GV), ACPV, | 
|  | MayNeedFarStub); | 
|  | MCE.addRelocation(MR); | 
|  | } | 
|  |  | 
|  | /// emitExternalSymbolAddress - Arrange for the address of an external symbol to | 
|  | /// be emitted to the current location in the function, and allow it to be PC | 
|  | /// relative. | 
|  | void ARMCodeEmitter:: | 
|  | emitExternalSymbolAddress(const char *ES, unsigned Reloc) const { | 
|  | MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), | 
|  | Reloc, ES)); | 
|  | } | 
|  |  | 
|  | /// emitConstPoolAddress - Arrange for the address of an constant pool | 
|  | /// to be emitted to the current location in the function, and allow it to be PC | 
|  | /// relative. | 
|  | void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const { | 
|  | // Tell JIT emitter we'll resolve the address. | 
|  | MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), | 
|  | Reloc, CPI, 0, true)); | 
|  | } | 
|  |  | 
|  | /// emitJumpTableAddress - Arrange for the address of a jump table to | 
|  | /// be emitted to the current location in the function, and allow it to be PC | 
|  | /// relative. | 
|  | void ARMCodeEmitter:: | 
|  | emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const { | 
|  | MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), | 
|  | Reloc, JTIndex, 0, true)); | 
|  | } | 
|  |  | 
|  | /// emitMachineBasicBlock - Emit the specified address basic block. | 
|  | void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, | 
|  | unsigned Reloc, | 
|  | intptr_t JTBase) const { | 
|  | MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), | 
|  | Reloc, BB, JTBase)); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitWordLE(unsigned Binary) { | 
|  | DEBUG(errs() << "  0x"; | 
|  | errs().write_hex(Binary) << "\n"); | 
|  | MCE.emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitDWordLE(uint64_t Binary) { | 
|  | DEBUG(errs() << "  0x"; | 
|  | errs().write_hex(Binary) << "\n"); | 
|  | MCE.emitDWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { | 
|  | DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI); | 
|  |  | 
|  | MCE.processDebugLoc(MI.getDebugLoc(), true); | 
|  |  | 
|  | ++NumEmitted;  // Keep track of the # of mi's emitted | 
|  | switch (MI.getDesc().TSFlags & ARMII::FormMask) { | 
|  | default: { | 
|  | llvm_unreachable("Unhandled instruction encoding format!"); | 
|  | break; | 
|  | } | 
|  | case ARMII::MiscFrm: | 
|  | if (MI.getOpcode() == ARM::LEApcrelJT) { | 
|  | // Materialize jumptable address. | 
|  | emitLEApcrelJTInstruction(MI); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unhandled instruction encoding!"); | 
|  | break; | 
|  | case ARMII::Pseudo: | 
|  | emitPseudoInstruction(MI); | 
|  | break; | 
|  | case ARMII::DPFrm: | 
|  | case ARMII::DPSoRegFrm: | 
|  | emitDataProcessingInstruction(MI); | 
|  | break; | 
|  | case ARMII::LdFrm: | 
|  | case ARMII::StFrm: | 
|  | emitLoadStoreInstruction(MI); | 
|  | break; | 
|  | case ARMII::LdMiscFrm: | 
|  | case ARMII::StMiscFrm: | 
|  | emitMiscLoadStoreInstruction(MI); | 
|  | break; | 
|  | case ARMII::LdStMulFrm: | 
|  | emitLoadStoreMultipleInstruction(MI); | 
|  | break; | 
|  | case ARMII::MulFrm: | 
|  | emitMulFrmInstruction(MI); | 
|  | break; | 
|  | case ARMII::ExtFrm: | 
|  | emitExtendInstruction(MI); | 
|  | break; | 
|  | case ARMII::ArithMiscFrm: | 
|  | emitMiscArithInstruction(MI); | 
|  | break; | 
|  | case ARMII::SatFrm: | 
|  | emitSaturateInstruction(MI); | 
|  | break; | 
|  | case ARMII::BrFrm: | 
|  | emitBranchInstruction(MI); | 
|  | break; | 
|  | case ARMII::BrMiscFrm: | 
|  | emitMiscBranchInstruction(MI); | 
|  | break; | 
|  | // VFP instructions. | 
|  | case ARMII::VFPUnaryFrm: | 
|  | case ARMII::VFPBinaryFrm: | 
|  | emitVFPArithInstruction(MI); | 
|  | break; | 
|  | case ARMII::VFPConv1Frm: | 
|  | case ARMII::VFPConv2Frm: | 
|  | case ARMII::VFPConv3Frm: | 
|  | case ARMII::VFPConv4Frm: | 
|  | case ARMII::VFPConv5Frm: | 
|  | emitVFPConversionInstruction(MI); | 
|  | break; | 
|  | case ARMII::VFPLdStFrm: | 
|  | emitVFPLoadStoreInstruction(MI); | 
|  | break; | 
|  | case ARMII::VFPLdStMulFrm: | 
|  | emitVFPLoadStoreMultipleInstruction(MI); | 
|  | break; | 
|  |  | 
|  | // NEON instructions. | 
|  | case ARMII::NGetLnFrm: | 
|  | case ARMII::NSetLnFrm: | 
|  | emitNEONLaneInstruction(MI); | 
|  | break; | 
|  | case ARMII::NDupFrm: | 
|  | emitNEONDupInstruction(MI); | 
|  | break; | 
|  | case ARMII::N1RegModImmFrm: | 
|  | emitNEON1RegModImmInstruction(MI); | 
|  | break; | 
|  | case ARMII::N2RegFrm: | 
|  | emitNEON2RegInstruction(MI); | 
|  | break; | 
|  | case ARMII::N3RegFrm: | 
|  | emitNEON3RegInstruction(MI); | 
|  | break; | 
|  | } | 
|  | MCE.processDebugLoc(MI.getDebugLoc(), false); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { | 
|  | unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index. | 
|  | unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. | 
|  | const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; | 
|  |  | 
|  | // Remember the CONSTPOOL_ENTRY address for later relocation. | 
|  | JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); | 
|  |  | 
|  | // Emit constpool island entry. In most cases, the actual values will be | 
|  | // resolved and relocated after code emission. | 
|  | if (MCPE.isMachineConstantPoolEntry()) { | 
|  | ARMConstantPoolValue *ACPV = | 
|  | static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); | 
|  |  | 
|  | DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ " | 
|  | << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'); | 
|  |  | 
|  | assert(ACPV->isGlobalValue() && "unsupported constant pool value"); | 
|  | const GlobalValue *GV = ACPV->getGV(); | 
|  | if (GV) { | 
|  | Reloc::Model RelocM = TM.getRelocationModel(); | 
|  | emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, | 
|  | isa<Function>(GV), | 
|  | Subtarget->GVIsIndirectSymbol(GV, RelocM), | 
|  | (intptr_t)ACPV); | 
|  | } else  { | 
|  | emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute); | 
|  | } | 
|  | emitWordLE(0); | 
|  | } else { | 
|  | const Constant *CV = MCPE.Val.ConstVal; | 
|  |  | 
|  | DEBUG({ | 
|  | errs() << "  ** Constant pool #" << CPI << " @ " | 
|  | << (void*)MCE.getCurrentPCValue() << " "; | 
|  | if (const Function *F = dyn_cast<Function>(CV)) | 
|  | errs() << F->getName(); | 
|  | else | 
|  | errs() << *CV; | 
|  | errs() << '\n'; | 
|  | }); | 
|  |  | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { | 
|  | emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false); | 
|  | emitWordLE(0); | 
|  | } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { | 
|  | uint32_t Val = uint32_t(*CI->getValue().getRawData()); | 
|  | emitWordLE(Val); | 
|  | } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { | 
|  | if (CFP->getType()->isFloatTy()) | 
|  | emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); | 
|  | else if (CFP->getType()->isDoubleTy()) | 
|  | emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); | 
|  | else { | 
|  | llvm_unreachable("Unable to handle this constantpool entry!"); | 
|  | } | 
|  | } else { | 
|  | llvm_unreachable("Unable to handle this constantpool entry!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) { | 
|  | const MachineOperand &MO0 = MI.getOperand(0); | 
|  | const MachineOperand &MO1 = MI.getOperand(1); | 
|  |  | 
|  | // Emit the 'movw' instruction. | 
|  | unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000 | 
|  |  | 
|  | unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF; | 
|  |  | 
|  | // Set the conditional execution predicate. | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode Rd. | 
|  | Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode imm16 as imm4:imm12 | 
|  | Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12 | 
|  | Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4 | 
|  | emitWordLE(Binary); | 
|  |  | 
|  | unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16; | 
|  | // Emit the 'movt' instruction. | 
|  | Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100 | 
|  |  | 
|  | // Set the conditional execution predicate. | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode Rd. | 
|  | Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode imm16 as imm4:imm1, same as movw above. | 
|  | Binary |= Hi16 & 0xFFF; | 
|  | Binary |= ((Hi16 >> 12) & 0xF) << 16; | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) { | 
|  | const MachineOperand &MO0 = MI.getOperand(0); | 
|  | const MachineOperand &MO1 = MI.getOperand(1); | 
|  | assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) && | 
|  | "Not a valid so_imm value!"); | 
|  | unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); | 
|  | unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); | 
|  |  | 
|  | // Emit the 'mov' instruction. | 
|  | unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101 | 
|  |  | 
|  | // Set the conditional execution predicate. | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode Rd. | 
|  | Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode so_imm. | 
|  | // Set bit I(25) to identify this is the immediate form of <shifter_op> | 
|  | Binary |= 1 << ARMII::I_BitShift; | 
|  | Binary |= getMachineSoImmOpValue(V1); | 
|  | emitWordLE(Binary); | 
|  |  | 
|  | // Now the 'orr' instruction. | 
|  | Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100 | 
|  |  | 
|  | // Set the conditional execution predicate. | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode Rd. | 
|  | Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode Rn. | 
|  | Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; | 
|  |  | 
|  | // Encode so_imm. | 
|  | // Set bit I(25) to identify this is the immediate form of <shifter_op> | 
|  | Binary |= 1 << ARMII::I_BitShift; | 
|  | Binary |= getMachineSoImmOpValue(V2); | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) { | 
|  | // It's basically add r, pc, (LJTI - $+8) | 
|  |  | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Emit the 'add' instruction. | 
|  | unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100 | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode S bit if MI modifies CPSR. | 
|  | Binary |= getAddrModeSBit(MI, TID); | 
|  |  | 
|  | // Encode Rd. | 
|  | Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode Rn which is PC. | 
|  | Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift; | 
|  |  | 
|  | // Encode the displacement. | 
|  | Binary |= 1 << ARMII::I_BitShift; | 
|  | emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) { | 
|  | unsigned Opcode = MI.getDesc().Opcode; | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode S bit if MI modifies CPSR. | 
|  | if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag) | 
|  | Binary |= 1 << ARMII::S_BitShift; | 
|  |  | 
|  | // Encode register def if there is one. | 
|  | Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode the shift operation. | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case ARM::RRX: | 
|  | // rrx | 
|  | Binary |= 0x6 << 4; | 
|  | break; | 
|  | case ARM::MOVsrl_flag: | 
|  | // lsr #1 | 
|  | Binary |= (0x2 << 4) | (1 << 7); | 
|  | break; | 
|  | case ARM::MOVsra_flag: | 
|  | // asr #1 | 
|  | Binary |= (0x4 << 4) | (1 << 7); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Encode register Rm. | 
|  | Binary |= getMachineOpValue(MI, 1); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::addPCLabel(unsigned LabelID) { | 
|  | DEBUG(errs() << "  ** LPC" << LabelID << " @ " | 
|  | << (void*)MCE.getCurrentPCValue() << '\n'); | 
|  | JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { | 
|  | unsigned Opcode = MI.getDesc().Opcode; | 
|  | switch (Opcode) { | 
|  | default: | 
|  | llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction"); | 
|  | case ARM::BX_CALL: | 
|  | case ARM::BMOVPCRX_CALL: | 
|  | case ARM::BXr9_CALL: | 
|  | case ARM::BMOVPCRXr9_CALL: { | 
|  | // First emit mov lr, pc | 
|  | unsigned Binary = 0x01a0e00f; | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  | emitWordLE(Binary); | 
|  |  | 
|  | // and then emit the branch. | 
|  | emitMiscBranchInstruction(MI); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::INLINEASM: { | 
|  | // We allow inline assembler nodes with empty bodies - they can | 
|  | // implicitly define registers, which is ok for JIT. | 
|  | if (MI.getOperand(0).getSymbolName()[0]) { | 
|  | report_fatal_error("JIT does not support inline asm!"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::PROLOG_LABEL: | 
|  | case TargetOpcode::EH_LABEL: | 
|  | MCE.emitLabel(MI.getOperand(0).getMCSymbol()); | 
|  | break; | 
|  | case TargetOpcode::IMPLICIT_DEF: | 
|  | case TargetOpcode::KILL: | 
|  | // Do nothing. | 
|  | break; | 
|  | case ARM::CONSTPOOL_ENTRY: | 
|  | emitConstPoolInstruction(MI); | 
|  | break; | 
|  | case ARM::PICADD: { | 
|  | // Remember of the address of the PC label for relocation later. | 
|  | addPCLabel(MI.getOperand(2).getImm()); | 
|  | // PICADD is just an add instruction that implicitly read pc. | 
|  | emitDataProcessingInstruction(MI, 0, ARM::PC); | 
|  | break; | 
|  | } | 
|  | case ARM::PICLDR: | 
|  | case ARM::PICLDRB: | 
|  | case ARM::PICSTR: | 
|  | case ARM::PICSTRB: { | 
|  | // Remember of the address of the PC label for relocation later. | 
|  | addPCLabel(MI.getOperand(2).getImm()); | 
|  | // These are just load / store instructions that implicitly read pc. | 
|  | emitLoadStoreInstruction(MI, 0, ARM::PC); | 
|  | break; | 
|  | } | 
|  | case ARM::PICLDRH: | 
|  | case ARM::PICLDRSH: | 
|  | case ARM::PICLDRSB: | 
|  | case ARM::PICSTRH: { | 
|  | // Remember of the address of the PC label for relocation later. | 
|  | addPCLabel(MI.getOperand(2).getImm()); | 
|  | // These are just load / store instructions that implicitly read pc. | 
|  | emitMiscLoadStoreInstruction(MI, ARM::PC); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ARM::MOVi32imm: | 
|  | // Two instructions to materialize a constant. | 
|  | if (Subtarget->hasV6T2Ops()) | 
|  | emitMOVi32immInstruction(MI); | 
|  | else | 
|  | emitMOVi2piecesInstruction(MI); | 
|  | break; | 
|  |  | 
|  | case ARM::LEApcrelJT: | 
|  | // Materialize jumptable address. | 
|  | emitLEApcrelJTInstruction(MI); | 
|  | break; | 
|  | case ARM::RRX: | 
|  | case ARM::MOVsrl_flag: | 
|  | case ARM::MOVsra_flag: | 
|  | emitPseudoMoveInstruction(MI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, | 
|  | const TargetInstrDesc &TID, | 
|  | const MachineOperand &MO, | 
|  | unsigned OpIdx) { | 
|  | unsigned Binary = getMachineOpValue(MI, MO); | 
|  |  | 
|  | const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); | 
|  | const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); | 
|  | ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); | 
|  |  | 
|  | // Encode the shift opcode. | 
|  | unsigned SBits = 0; | 
|  | unsigned Rs = MO1.getReg(); | 
|  | if (Rs) { | 
|  | // Set shift operand (bit[7:4]). | 
|  | // LSL - 0001 | 
|  | // LSR - 0011 | 
|  | // ASR - 0101 | 
|  | // ROR - 0111 | 
|  | // RRX - 0110 and bit[11:8] clear. | 
|  | switch (SOpc) { | 
|  | default: llvm_unreachable("Unknown shift opc!"); | 
|  | case ARM_AM::lsl: SBits = 0x1; break; | 
|  | case ARM_AM::lsr: SBits = 0x3; break; | 
|  | case ARM_AM::asr: SBits = 0x5; break; | 
|  | case ARM_AM::ror: SBits = 0x7; break; | 
|  | case ARM_AM::rrx: SBits = 0x6; break; | 
|  | } | 
|  | } else { | 
|  | // Set shift operand (bit[6:4]). | 
|  | // LSL - 000 | 
|  | // LSR - 010 | 
|  | // ASR - 100 | 
|  | // ROR - 110 | 
|  | switch (SOpc) { | 
|  | default: llvm_unreachable("Unknown shift opc!"); | 
|  | case ARM_AM::lsl: SBits = 0x0; break; | 
|  | case ARM_AM::lsr: SBits = 0x2; break; | 
|  | case ARM_AM::asr: SBits = 0x4; break; | 
|  | case ARM_AM::ror: SBits = 0x6; break; | 
|  | } | 
|  | } | 
|  | Binary |= SBits << 4; | 
|  | if (SOpc == ARM_AM::rrx) | 
|  | return Binary; | 
|  |  | 
|  | // Encode the shift operation Rs or shift_imm (except rrx). | 
|  | if (Rs) { | 
|  | // Encode Rs bit[11:8]. | 
|  | assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); | 
|  | return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift); | 
|  | } | 
|  |  | 
|  | // Encode shift_imm bit[11:7]. | 
|  | return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; | 
|  | } | 
|  |  | 
|  | unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) { | 
|  | int SoImmVal = ARM_AM::getSOImmVal(SoImm); | 
|  | assert(SoImmVal != -1 && "Not a valid so_imm value!"); | 
|  |  | 
|  | // Encode rotate_imm. | 
|  | unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) | 
|  | << ARMII::SoRotImmShift; | 
|  |  | 
|  | // Encode immed_8. | 
|  | Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, | 
|  | const TargetInstrDesc &TID) const { | 
|  | for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){ | 
|  | const MachineOperand &MO = MI.getOperand(i-1); | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) | 
|  | return 1 << ARMII::S_BitShift; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI, | 
|  | unsigned ImplicitRd, | 
|  | unsigned ImplicitRn) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode S bit if MI modifies CPSR. | 
|  | Binary |= getAddrModeSBit(MI, TID); | 
|  |  | 
|  | // Encode register def if there is one. | 
|  | unsigned NumDefs = TID.getNumDefs(); | 
|  | unsigned OpIdx = 0; | 
|  | if (NumDefs) | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; | 
|  | else if (ImplicitRd) | 
|  | // Special handling for implicit use (e.g. PC). | 
|  | Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); | 
|  |  | 
|  | if (TID.Opcode == ARM::MOVi16) { | 
|  | // Get immediate from MI. | 
|  | unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx), | 
|  | ARM::reloc_arm_movw); | 
|  | // Encode imm which is the same as in emitMOVi32immInstruction(). | 
|  | Binary |= Lo16 & 0xFFF; | 
|  | Binary |= ((Lo16 >> 12) & 0xF) << 16; | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } else if(TID.Opcode == ARM::MOVTi16) { | 
|  | unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx), | 
|  | ARM::reloc_arm_movt) >> 16); | 
|  | Binary |= Hi16 & 0xFFF; | 
|  | Binary |= ((Hi16 >> 12) & 0xF) << 16; | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) { | 
|  | uint32_t v = ~MI.getOperand(2).getImm(); | 
|  | int32_t lsb = CountTrailingZeros_32(v); | 
|  | int32_t msb = (32 - CountLeadingZeros_32(v)) - 1; | 
|  | // Instr{20-16} = msb, Instr{11-7} = lsb | 
|  | Binary |= (msb & 0x1F) << 16; | 
|  | Binary |= (lsb & 0x1F) << 7; | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) { | 
|  | // Encode Rn in Instr{0-3} | 
|  | Binary |= getMachineOpValue(MI, OpIdx++); | 
|  |  | 
|  | uint32_t lsb = MI.getOperand(OpIdx++).getImm(); | 
|  | uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1; | 
|  |  | 
|  | // Instr{20-16} = widthm1, Instr{11-7} = lsb | 
|  | Binary |= (widthm1 & 0x1F) << 16; | 
|  | Binary |= (lsb & 0x1F) << 7; | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. | 
|  | if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  |  | 
|  | // Encode first non-shifter register operand if there is one. | 
|  | bool isUnary = TID.TSFlags & ARMII::UnaryDP; | 
|  | if (!isUnary) { | 
|  | if (ImplicitRn) | 
|  | // Special handling for implicit use (e.g. PC). | 
|  | Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); | 
|  | else { | 
|  | Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; | 
|  | ++OpIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Encode shifter operand. | 
|  | const MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { | 
|  | // Encode SoReg. | 
|  | emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (MO.isReg()) { | 
|  | // Encode register Rm. | 
|  | emitWordLE(Binary | getARMRegisterNumbering(MO.getReg())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Encode so_imm. | 
|  | Binary |= getMachineSoImmOpValue((unsigned)MO.getImm()); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI, | 
|  | unsigned ImplicitRd, | 
|  | unsigned ImplicitRn) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | unsigned Form = TID.TSFlags & ARMII::FormMask; | 
|  | bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0; | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done. | 
|  | if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp || | 
|  | MI.getOpcode() == ARM::STRi12) { | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | unsigned OpIdx = 0; | 
|  |  | 
|  | // Operand 0 of a pre- and post-indexed store is the address base | 
|  | // writeback. Skip it. | 
|  | bool Skipped = false; | 
|  | if (IsPrePost && Form == ARMII::StFrm) { | 
|  | ++OpIdx; | 
|  | Skipped = true; | 
|  | } | 
|  |  | 
|  | // Set first operand | 
|  | if (ImplicitRd) | 
|  | // Special handling for implicit use (e.g. PC). | 
|  | Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); | 
|  | else | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; | 
|  |  | 
|  | // Set second operand | 
|  | if (ImplicitRn) | 
|  | // Special handling for implicit use (e.g. PC). | 
|  | Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); | 
|  | else | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; | 
|  |  | 
|  | // If this is a two-address operand, skip it. e.g. LDR_PRE. | 
|  | if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  |  | 
|  | const MachineOperand &MO2 = MI.getOperand(OpIdx); | 
|  | unsigned AM2Opc = (ImplicitRn == ARM::PC) | 
|  | ? 0 : MI.getOperand(OpIdx+1).getImm(); | 
|  |  | 
|  | // Set bit U(23) according to sign of immed value (positive or negative). | 
|  | Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << | 
|  | ARMII::U_BitShift); | 
|  | if (!MO2.getReg()) { // is immediate | 
|  | if (ARM_AM::getAM2Offset(AM2Opc)) | 
|  | // Set the value of offset_12 field | 
|  | Binary |= ARM_AM::getAM2Offset(AM2Opc); | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set bit I(25), because this is not in immediate encoding. | 
|  | Binary |= 1 << ARMII::I_BitShift; | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); | 
|  | // Set bit[3:0] to the corresponding Rm register | 
|  | Binary |= getARMRegisterNumbering(MO2.getReg()); | 
|  |  | 
|  | // If this instr is in scaled register offset/index instruction, set | 
|  | // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. | 
|  | if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { | 
|  | Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift | 
|  | Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed | 
|  | } | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI, | 
|  | unsigned ImplicitRn) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | unsigned Form = TID.TSFlags & ARMII::FormMask; | 
|  | bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0; | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | unsigned OpIdx = 0; | 
|  |  | 
|  | // Operand 0 of a pre- and post-indexed store is the address base | 
|  | // writeback. Skip it. | 
|  | bool Skipped = false; | 
|  | if (IsPrePost && Form == ARMII::StMiscFrm) { | 
|  | ++OpIdx; | 
|  | Skipped = true; | 
|  | } | 
|  |  | 
|  | // Set first operand | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; | 
|  |  | 
|  | // Skip LDRD and STRD's second operand. | 
|  | if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD) | 
|  | ++OpIdx; | 
|  |  | 
|  | // Set second operand | 
|  | if (ImplicitRn) | 
|  | // Special handling for implicit use (e.g. PC). | 
|  | Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); | 
|  | else | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; | 
|  |  | 
|  | // If this is a two-address operand, skip it. e.g. LDRH_POST. | 
|  | if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  |  | 
|  | const MachineOperand &MO2 = MI.getOperand(OpIdx); | 
|  | unsigned AM3Opc = (ImplicitRn == ARM::PC) | 
|  | ? 0 : MI.getOperand(OpIdx+1).getImm(); | 
|  |  | 
|  | // Set bit U(23) according to sign of immed value (positive or negative) | 
|  | Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << | 
|  | ARMII::U_BitShift); | 
|  |  | 
|  | // If this instr is in register offset/index encoding, set bit[3:0] | 
|  | // to the corresponding Rm register. | 
|  | if (MO2.getReg()) { | 
|  | Binary |= getARMRegisterNumbering(MO2.getReg()); | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // This instr is in immediate offset/index encoding, set bit 22 to 1. | 
|  | Binary |= 1 << ARMII::AM3_I_BitShift; | 
|  | if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { | 
|  | // Set operands | 
|  | Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH | 
|  | Binary |= (ImmOffs & 0xF);                      // immedL | 
|  | } | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | static unsigned getAddrModeUPBits(unsigned Mode) { | 
|  | unsigned Binary = 0; | 
|  |  | 
|  | // Set addressing mode by modifying bits U(23) and P(24) | 
|  | // IA - Increment after  - bit U = 1 and bit P = 0 | 
|  | // IB - Increment before - bit U = 1 and bit P = 1 | 
|  | // DA - Decrement after  - bit U = 0 and bit P = 0 | 
|  | // DB - Decrement before - bit U = 0 and bit P = 1 | 
|  | switch (Mode) { | 
|  | default: llvm_unreachable("Unknown addressing sub-mode!"); | 
|  | case ARM_AM::da:                                     break; | 
|  | case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; | 
|  | case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; | 
|  | case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; | 
|  | } | 
|  |  | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0; | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Skip operand 0 of an instruction with base register update. | 
|  | unsigned OpIdx = 0; | 
|  | if (IsUpdating) | 
|  | ++OpIdx; | 
|  |  | 
|  | // Set base address operand | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; | 
|  |  | 
|  | // Set addressing mode by modifying bits U(23) and P(24) | 
|  | ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); | 
|  | Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); | 
|  |  | 
|  | // Set bit W(21) | 
|  | if (IsUpdating) | 
|  | Binary |= 0x1 << ARMII::W_BitShift; | 
|  |  | 
|  | // Set registers | 
|  | for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || MO.isImplicit()) | 
|  | break; | 
|  | unsigned RegNum = getARMRegisterNumbering(MO.getReg()); | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && | 
|  | RegNum < 16); | 
|  | Binary |= 0x1 << RegNum; | 
|  | } | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode S bit if MI modifies CPSR. | 
|  | Binary |= getAddrModeSBit(MI, TID); | 
|  |  | 
|  | // 32x32->64bit operations have two destination registers. The number | 
|  | // of register definitions will tell us if that's what we're dealing with. | 
|  | unsigned OpIdx = 0; | 
|  | if (TID.getNumDefs() == 2) | 
|  | Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; | 
|  |  | 
|  | // Encode Rd | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; | 
|  |  | 
|  | // Encode Rm | 
|  | Binary |= getMachineOpValue(MI, OpIdx++); | 
|  |  | 
|  | // Encode Rs | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; | 
|  |  | 
|  | // Many multiple instructions (e.g. MLA) have three src operands. Encode | 
|  | // it as Rn (for multiply, that's in the same offset as RdLo. | 
|  | if (TID.getNumOperands() > OpIdx && | 
|  | !TID.OpInfo[OpIdx].isPredicate() && | 
|  | !TID.OpInfo[OpIdx].isOptionalDef()) | 
|  | Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | unsigned OpIdx = 0; | 
|  |  | 
|  | // Encode Rd | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; | 
|  |  | 
|  | const MachineOperand &MO1 = MI.getOperand(OpIdx++); | 
|  | const MachineOperand &MO2 = MI.getOperand(OpIdx); | 
|  | if (MO2.isReg()) { | 
|  | // Two register operand form. | 
|  | // Encode Rn. | 
|  | Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; | 
|  |  | 
|  | // Encode Rm. | 
|  | Binary |= getMachineOpValue(MI, MO2); | 
|  | ++OpIdx; | 
|  | } else { | 
|  | Binary |= getMachineOpValue(MI, MO1); | 
|  | } | 
|  |  | 
|  | // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. | 
|  | if (MI.getOperand(OpIdx).isImm() && | 
|  | !TID.OpInfo[OpIdx].isPredicate() && | 
|  | !TID.OpInfo[OpIdx].isOptionalDef()) | 
|  | Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | unsigned OpIdx = 0; | 
|  |  | 
|  | // Encode Rd | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(OpIdx++); | 
|  | if (OpIdx == TID.getNumOperands() || | 
|  | TID.OpInfo[OpIdx].isPredicate() || | 
|  | TID.OpInfo[OpIdx].isOptionalDef()) { | 
|  | // Encode Rm and it's done. | 
|  | Binary |= getMachineOpValue(MI, MO); | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Encode Rn. | 
|  | Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; | 
|  |  | 
|  | // Encode Rm. | 
|  | Binary |= getMachineOpValue(MI, OpIdx++); | 
|  |  | 
|  | // Encode shift_imm. | 
|  | unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); | 
|  | if (TID.Opcode == ARM::PKHTB) { | 
|  | assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!"); | 
|  | if (ShiftAmt == 32) | 
|  | ShiftAmt = 0; | 
|  | } | 
|  | assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); | 
|  | Binary |= ShiftAmt << ARMII::ShiftShift; | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Part of binary is determined by TableGen. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Encode Rd | 
|  | Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; | 
|  |  | 
|  | // Encode saturate bit position. | 
|  | unsigned Pos = MI.getOperand(1).getImm(); | 
|  | if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16) | 
|  | Pos -= 1; | 
|  | assert((Pos < 16 || (Pos < 32 && | 
|  | TID.Opcode != ARM::SSAT16 && | 
|  | TID.Opcode != ARM::USAT16)) && | 
|  | "saturate bit position out of range"); | 
|  | Binary |= Pos << 16; | 
|  |  | 
|  | // Encode Rm | 
|  | Binary |= getMachineOpValue(MI, 2); | 
|  |  | 
|  | // Encode shift_imm. | 
|  | if (TID.getNumOperands() == 4) { | 
|  | unsigned ShiftOp = MI.getOperand(3).getImm(); | 
|  | ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp); | 
|  | if (Opc == ARM_AM::asr) | 
|  | Binary |= (1 << 6); | 
|  | unsigned ShiftAmt = MI.getOperand(3).getImm(); | 
|  | if (ShiftAmt == 32 && Opc == ARM_AM::asr) | 
|  | ShiftAmt = 0; | 
|  | assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); | 
|  | Binary |= ShiftAmt << ARMII::ShiftShift; | 
|  | } | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | if (TID.Opcode == ARM::TPsoft) { | 
|  | llvm_unreachable("ARM::TPsoft FIXME"); // FIXME | 
|  | } | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Set signed_immed_24 field | 
|  | Binary |= getMachineOpValue(MI, 0); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) { | 
|  | // Remember the base address of the inline jump table. | 
|  | uintptr_t JTBase = MCE.getCurrentPCValue(); | 
|  | JTI->addJumpTableBaseAddr(JTIndex, JTBase); | 
|  | DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase | 
|  | << '\n'); | 
|  |  | 
|  | // Now emit the jump table entries. | 
|  | const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs; | 
|  | for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { | 
|  | if (IsPIC) | 
|  | // DestBB address - JT base. | 
|  | emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); | 
|  | else | 
|  | // Absolute DestBB address. | 
|  | emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); | 
|  | emitWordLE(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Handle jump tables. | 
|  | if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) { | 
|  | // First emit a ldr pc, [] instruction. | 
|  | emitDataProcessingInstruction(MI, ARM::PC); | 
|  |  | 
|  | // Then emit the inline jump table. | 
|  | unsigned JTIndex = | 
|  | (TID.Opcode == ARM::BR_JTr) | 
|  | ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); | 
|  | emitInlineJumpTable(JTIndex); | 
|  | return; | 
|  | } else if (TID.Opcode == ARM::BR_JTm) { | 
|  | // First emit a ldr pc, [] instruction. | 
|  | emitLoadStoreInstruction(MI, ARM::PC); | 
|  |  | 
|  | // Then emit the inline jump table. | 
|  | emitInlineJumpTable(MI.getOperand(3).getIndex()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR) | 
|  | // The return register is LR. | 
|  | Binary |= getARMRegisterNumbering(ARM::LR); | 
|  | else | 
|  | // otherwise, set the return register | 
|  | Binary |= getMachineOpValue(MI, 0); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) { | 
|  | unsigned RegD = MI.getOperand(OpIdx).getReg(); | 
|  | unsigned Binary = 0; | 
|  | bool isSPVFP = ARM::SPRRegisterClass->contains(RegD); | 
|  | RegD = getARMRegisterNumbering(RegD); | 
|  | if (!isSPVFP) | 
|  | Binary |=   RegD               << ARMII::RegRdShift; | 
|  | else { | 
|  | Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift; | 
|  | Binary |=  (RegD & 0x01)       << ARMII::D_BitShift; | 
|  | } | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) { | 
|  | unsigned RegN = MI.getOperand(OpIdx).getReg(); | 
|  | unsigned Binary = 0; | 
|  | bool isSPVFP = ARM::SPRRegisterClass->contains(RegN); | 
|  | RegN = getARMRegisterNumbering(RegN); | 
|  | if (!isSPVFP) | 
|  | Binary |=   RegN               << ARMII::RegRnShift; | 
|  | else { | 
|  | Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift; | 
|  | Binary |=  (RegN & 0x01)       << ARMII::N_BitShift; | 
|  | } | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) { | 
|  | unsigned RegM = MI.getOperand(OpIdx).getReg(); | 
|  | unsigned Binary = 0; | 
|  | bool isSPVFP = ARM::SPRRegisterClass->contains(RegM); | 
|  | RegM = getARMRegisterNumbering(RegM); | 
|  | if (!isSPVFP) | 
|  | Binary |=   RegM; | 
|  | else { | 
|  | Binary |= ((RegM & 0x1E) >> 1); | 
|  | Binary |=  (RegM & 0x01)       << ARMII::M_BitShift; | 
|  | } | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | unsigned OpIdx = 0; | 
|  | assert((Binary & ARMII::D_BitShift) == 0 && | 
|  | (Binary & ARMII::N_BitShift) == 0 && | 
|  | (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!"); | 
|  |  | 
|  | // Encode Dd / Sd. | 
|  | Binary |= encodeVFPRd(MI, OpIdx++); | 
|  |  | 
|  | // If this is a two-address operand, skip it, e.g. FMACD. | 
|  | if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  |  | 
|  | // Encode Dn / Sn. | 
|  | if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) | 
|  | Binary |= encodeVFPRn(MI, OpIdx++); | 
|  |  | 
|  | if (OpIdx == TID.getNumOperands() || | 
|  | TID.OpInfo[OpIdx].isPredicate() || | 
|  | TID.OpInfo[OpIdx].isOptionalDef()) { | 
|  | // FCMPEZD etc. has only one operand. | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Encode Dm / Sm. | 
|  | Binary |= encodeVFPRm(MI, OpIdx); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | unsigned Form = TID.TSFlags & ARMII::FormMask; | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | switch (Form) { | 
|  | default: break; | 
|  | case ARMII::VFPConv1Frm: | 
|  | case ARMII::VFPConv2Frm: | 
|  | case ARMII::VFPConv3Frm: | 
|  | // Encode Dd / Sd. | 
|  | Binary |= encodeVFPRd(MI, 0); | 
|  | break; | 
|  | case ARMII::VFPConv4Frm: | 
|  | // Encode Dn / Sn. | 
|  | Binary |= encodeVFPRn(MI, 0); | 
|  | break; | 
|  | case ARMII::VFPConv5Frm: | 
|  | // Encode Dm / Sm. | 
|  | Binary |= encodeVFPRm(MI, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (Form) { | 
|  | default: break; | 
|  | case ARMII::VFPConv1Frm: | 
|  | // Encode Dm / Sm. | 
|  | Binary |= encodeVFPRm(MI, 1); | 
|  | break; | 
|  | case ARMII::VFPConv2Frm: | 
|  | case ARMII::VFPConv3Frm: | 
|  | // Encode Dn / Sn. | 
|  | Binary |= encodeVFPRn(MI, 1); | 
|  | break; | 
|  | case ARMII::VFPConv4Frm: | 
|  | case ARMII::VFPConv5Frm: | 
|  | // Encode Dd / Sd. | 
|  | Binary |= encodeVFPRd(MI, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Form == ARMII::VFPConv5Frm) | 
|  | // Encode Dn / Sn. | 
|  | Binary |= encodeVFPRn(MI, 2); | 
|  | else if (Form == ARMII::VFPConv3Frm) | 
|  | // Encode Dm / Sm. | 
|  | Binary |= encodeVFPRm(MI, 2); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) { | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | unsigned OpIdx = 0; | 
|  |  | 
|  | // Encode Dd / Sd. | 
|  | Binary |= encodeVFPRd(MI, OpIdx++); | 
|  |  | 
|  | // Encode address base. | 
|  | const MachineOperand &Base = MI.getOperand(OpIdx++); | 
|  | Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift; | 
|  |  | 
|  | // If there is a non-zero immediate offset, encode it. | 
|  | if (Base.isReg()) { | 
|  | const MachineOperand &Offset = MI.getOperand(OpIdx); | 
|  | if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) { | 
|  | if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add) | 
|  | Binary |= 1 << ARMII::U_BitShift; | 
|  | Binary |= ImmOffs; | 
|  | emitWordLE(Binary); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If immediate offset is omitted, default to +0. | 
|  | Binary |= 1 << ARMII::U_BitShift; | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void | 
|  | ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0; | 
|  |  | 
|  | // Part of binary is determined by TableGn. | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= II->getPredicate(&MI) << ARMII::CondShift; | 
|  |  | 
|  | // Skip operand 0 of an instruction with base register update. | 
|  | unsigned OpIdx = 0; | 
|  | if (IsUpdating) | 
|  | ++OpIdx; | 
|  |  | 
|  | // Set base address operand | 
|  | Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; | 
|  |  | 
|  | // Set addressing mode by modifying bits U(23) and P(24) | 
|  | ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); | 
|  | Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); | 
|  |  | 
|  | // Set bit W(21) | 
|  | if (IsUpdating) | 
|  | Binary |= 0x1 << ARMII::W_BitShift; | 
|  |  | 
|  | // First register is encoded in Dd. | 
|  | Binary |= encodeVFPRd(MI, OpIdx+2); | 
|  |  | 
|  | // Count the number of registers. | 
|  | unsigned NumRegs = 1; | 
|  | for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || MO.isImplicit()) | 
|  | break; | 
|  | ++NumRegs; | 
|  | } | 
|  | // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0) | 
|  | // Otherwise, it will be 0, in the case of 32-bit registers. | 
|  | if(Binary & 0x100) | 
|  | Binary |= NumRegs * 2; | 
|  | else | 
|  | Binary |= NumRegs; | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) { | 
|  | unsigned RegD = MI.getOperand(OpIdx).getReg(); | 
|  | unsigned Binary = 0; | 
|  | RegD = getARMRegisterNumbering(RegD); | 
|  | Binary |= (RegD & 0xf) << ARMII::RegRdShift; | 
|  | Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift; | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) { | 
|  | unsigned RegN = MI.getOperand(OpIdx).getReg(); | 
|  | unsigned Binary = 0; | 
|  | RegN = getARMRegisterNumbering(RegN); | 
|  | Binary |= (RegN & 0xf) << ARMII::RegRnShift; | 
|  | Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift; | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) { | 
|  | unsigned RegM = MI.getOperand(OpIdx).getReg(); | 
|  | unsigned Binary = 0; | 
|  | RegM = getARMRegisterNumbering(RegM); | 
|  | Binary |= (RegM & 0xf); | 
|  | Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift; | 
|  | return Binary; | 
|  | } | 
|  |  | 
|  | /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON | 
|  | /// data-processing instruction to the corresponding Thumb encoding. | 
|  | static unsigned convertNEONDataProcToThumb(unsigned Binary) { | 
|  | assert((Binary & 0xfe000000) == 0xf2000000 && | 
|  | "not an ARM NEON data-processing instruction"); | 
|  | unsigned UBit = (Binary >> 24) & 1; | 
|  | return 0xef000000 | (UBit << 28) | (Binary & 0xffffff); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) { | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | unsigned RegTOpIdx, RegNOpIdx, LnOpIdx; | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) { | 
|  | RegTOpIdx = 0; | 
|  | RegNOpIdx = 1; | 
|  | LnOpIdx = 2; | 
|  | } else { // ARMII::NSetLnFrm | 
|  | RegTOpIdx = 2; | 
|  | RegNOpIdx = 0; | 
|  | LnOpIdx = 3; | 
|  | } | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; | 
|  |  | 
|  | unsigned RegT = MI.getOperand(RegTOpIdx).getReg(); | 
|  | RegT = getARMRegisterNumbering(RegT); | 
|  | Binary |= (RegT << ARMII::RegRdShift); | 
|  | Binary |= encodeNEONRn(MI, RegNOpIdx); | 
|  |  | 
|  | unsigned LaneShift; | 
|  | if ((Binary & (1 << 22)) != 0) | 
|  | LaneShift = 0; // 8-bit elements | 
|  | else if ((Binary & (1 << 5)) != 0) | 
|  | LaneShift = 1; // 16-bit elements | 
|  | else | 
|  | LaneShift = 2; // 32-bit elements | 
|  |  | 
|  | unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift; | 
|  | unsigned Opc1 = Lane >> 2; | 
|  | unsigned Opc2 = Lane & 3; | 
|  | assert((Opc1 & 3) == 0 && "out-of-range lane number operand"); | 
|  | Binary |= (Opc1 << 21); | 
|  | Binary |= (Opc2 << 5); | 
|  |  | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) { | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  |  | 
|  | // Set the conditional execution predicate | 
|  | Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; | 
|  |  | 
|  | unsigned RegT = MI.getOperand(1).getReg(); | 
|  | RegT = getARMRegisterNumbering(RegT); | 
|  | Binary |= (RegT << ARMII::RegRdShift); | 
|  | Binary |= encodeNEONRn(MI, 0); | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) { | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  | // Destination register is encoded in Dd. | 
|  | Binary |= encodeNEONRd(MI, 0); | 
|  | // Immediate fields: Op, Cmode, I, Imm3, Imm4 | 
|  | unsigned Imm = MI.getOperand(1).getImm(); | 
|  | unsigned Op = (Imm >> 12) & 1; | 
|  | unsigned Cmode = (Imm >> 8) & 0xf; | 
|  | unsigned I = (Imm >> 7) & 1; | 
|  | unsigned Imm3 = (Imm >> 4) & 0x7; | 
|  | unsigned Imm4 = Imm & 0xf; | 
|  | Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4; | 
|  | if (IsThumb) | 
|  | Binary = convertNEONDataProcToThumb(Binary); | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  | // Destination register is encoded in Dd; source register in Dm. | 
|  | unsigned OpIdx = 0; | 
|  | Binary |= encodeNEONRd(MI, OpIdx++); | 
|  | if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  | Binary |= encodeNEONRm(MI, OpIdx); | 
|  | if (IsThumb) | 
|  | Binary = convertNEONDataProcToThumb(Binary); | 
|  | // FIXME: This does not handle VDUPfdf or VDUPfqf. | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) { | 
|  | const TargetInstrDesc &TID = MI.getDesc(); | 
|  | unsigned Binary = getBinaryCodeForInstr(MI); | 
|  | // Destination register is encoded in Dd; source registers in Dn and Dm. | 
|  | unsigned OpIdx = 0; | 
|  | Binary |= encodeNEONRd(MI, OpIdx++); | 
|  | if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  | Binary |= encodeNEONRn(MI, OpIdx++); | 
|  | if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) | 
|  | ++OpIdx; | 
|  | Binary |= encodeNEONRm(MI, OpIdx); | 
|  | if (IsThumb) | 
|  | Binary = convertNEONDataProcToThumb(Binary); | 
|  | // FIXME: This does not handle VMOVDneon or VMOVQ. | 
|  | emitWordLE(Binary); | 
|  | } | 
|  |  | 
|  | #include "ARMGenCodeEmitter.inc" |